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Abstract
An efficient partial ellipsoid approximation scheme is presented to find a 1

�m
2 � -

approximation solution to the nonconvex homogeneous quadratic optimization with
m convex quadratic constraints, where �x� is the smallest integer larger than or equal
to x . If there is an additional nonconvex quadratic constraint beyond the m convex
constraints, we can use the new scheme to find a 1

m -approximation solution.
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1 Introduction

We investigate nonconvex homogeneous quadratic optimization problems with
quadratic constraints, which are expressed as (Q[m,k]):

(Q[m,k]) max
x∈Rn

xT A0x

s.t. xT Ai x ≤ 1, i = 1, 2, . . . ,m, (1)

xT B j x ≤ 1, j = 1, 2, . . . , k, (2)

where A0, Ai , and Bj ∈ R
n×n are symmetric matrices, with Ai being positive semi-

definite and A0, Bj being indefinite. (Q[m,k]) has many applications, see Cen et al.
(2020), Henrion et al. (2001), Nemirovski et al. (1999), Wolkowicz et al. (2000), Xia
(2020) and references therein. Moreover, it can be used to approximately reformulate
the general inhomogeneous quadratic optimization:

(GQ) maxx∈Rn xT A0x + 2b0x

s.t. xT Ai x + 2bi x + ci ≤ 1, i = 1, 2, . . . ,m,

xT B j x + 2d j x + h j ≤ 1, j = 1, 2, . . . , k, (3)

where b0, bi , d j ∈ R
n and ci , h j ∈ R for i = 1, . . . ,m and j = 1, . . . , k. In fact,

by introducing a new variable t ∈ R with t2 ≤ 1 and then adding a penalty term
ρ(t2 − 1) (where ρ ≥ 0 is a sufficient large parameter) to the objective function, we
can approximately reformulate (GQ) as the following homogeneous version:

maxx∈Rn ,t∈R xT A0x + 2tb0x + ρt2 − ρ

s.t. xT Ai x + 2tbi x + ci ≤ 1, i = 1, 2, . . . ,m,

xT B j x + 2td j x + h j ≤ 1, j = 1, 2, . . . , k,

t2 ≤ 1.

In particular, if bi = 0 = d j for all i = 1, . . . ,m and j = 1, . . . , k, we can simply set
ρ = 0.

Generally, (Q[m,k]) isNP-hard since it contains thewell-knownMax-Cut problemas
a special case. Only a few cases with tight semidefinite programming (SDP) relaxation
(Wang and Kılınç-Karzan 2022; Xia 2020) can be efficiently solved in polynomial
time, see details in the next section. So it leads to an increased focus on approximation
algorithms. The SDP relaxation approach (Wolkowicz et al. 2000) has been the most
popular one due to its ability to solve theMax-Cut problemwith a 0.878-approximation
bound (Goemans and Williamson 1995). Conversely, there has been limited research
on ellipsoid approximation algorithms (Fu et al. 1998; Henrion et al. 2001; Zhang
and Xia 2022), which have typically shown poor approximation results and limited
applicability, being restricted only to (Q[m,0]). This paper investigates a partial ellipsoid
approximation scheme that is more effective in approximating (Q[m,0]), and can be
extended to (Q[m,k]) with k ≥ 1.
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The remainder of this paper is structured as follows. In Section 2, we provide a
review of polynomially solvable cases of (Q[m,k]), and we present two approximate
approaches that are used for constructing approximation algorithms in detail. In Sec-
tion 3, we present the partial ellipsoidal approximation algorithm scheme for (Q[m,k]).
The relaxation problem can be efficiently solved when k ≤ 1. In Section 4, we present
the results of numerical experiments. Conclusions are provided in Section 5.

Notation. v(·) represents the optimal value of problem (·). A � (�) 0 indicates
that the matrix A is positive (semi)definite. Tr(A) denotes the trace of the matrix A.
Tr(ABT ) = �n

i=1�
n
j=1ai j bi j represents the inner product of the matrices A and B.

2 Preliminary

In this section, we present some known results on specific cases of (Q[m,k]) that can
be solved polynomially. Subsequently, we discuss two approximate approaches for
solving (Q[m,k]).

2.1 Polynomial solvable case

As mentioned in Section 1, there exist some cases of (Q[m,k]) that can be solved in
polynomial time. The partial ellipsoidal approximation scheme is also based on these
results, which we discuss before introducing the approximation scheme.

For m = 1 and k = 0, (GQ) is known as the trust region subproblem (TRS),
which is a crucial component of the trust region method for nonlinear programming
(Yuan 2015). Despite being nonconvex, TRS has an exact SDP reformulation in its
Lagrangian dual, and its SDP relaxation is tight. An optimal solution of TRS can
be obtained from an optimal solution of the polynomial solvable SDP problem by
performing a matrix rank-one decomposition. Additionally, it has been shown that
a TRS can be reformulated as a convex optimization problem, indicating that it has
hidden convexity (Xia 2020). Linear-time approximation algorithms for TRS have
been proposed in Hazan and Koren (2016); Ho-Nguyen and Kılınç-Karzan (2017),
Wang and Xia (2017). In particular, the homogeneous TRS, (Q[1,0]), can be viewed
as a generalized eigenvalue problem.

With the increasing interest in extending TRS, researchers have explored the addi-
tion of another quadratic constraint to this problem. For m = 2 and k = 0, (GQ)
is known as the so-called Celis-Dennis-Tapia subproblem (CDT) (Celis et al. 1985).
(GQ) with m + k ≤ 2 is referred to as the generalized CDT (Peng and Yuan 1997).
The additional constraint makes CDT much more difficult to solve than TRS and can
lead to a duality gap in general. However, Polyak (1998) proved that the generalized
homogeneous CDT, (Q[m,k]) with m + k ≤ 2, has strong duality under mild assump-
tions, and Ye and Zhang (2003) independently found the globally optimal solution
to a homogeneous CDT in polynomial time based on the rank-one decomposition
approach. Ai and Zhang (2009) presented an easily verifiable necessary and sufficient
condition to determine when CDT and its Lagrangian dual have no duality gap, and
if strong duality holds, then an optimal solution of CDT can be obtained from an
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96 Z. Xu et al.

optimal solution of the SDP relaxation. Bienstock (2016) proved the polynomial-time
solvability of the homogeneous CDT and presented an algorithm for general quadratic
optimization problems with an arbitrary fixed number of quadratic constraints, while
Sakaue et al. (2016) derived another practical algorithm that is guaranteed to find a
global solution. Recently, Song et al. (2023) have thoroughly studied local solutions
of (Q[m,k]) with m + k ≤ 2.

Variousmethods have beenused to solve the quadratic problemapproximatelywhen
there are more than two quadratic constraints in (Q[m,k]), revealing many properties.
Luo et al. (2007) and He et al. (2008) discussed a real and complex SDP relaxation
for (Q[m,k]), giving a ratio bound between the optimal value of (Q[m,k]) and its SDP
relaxation when there is only one indefinite constraint, and A0 is positive semidefinite.
He et al. (2008) also improved the ratio bound given by the approximate S-Lemma
of Ben-Tal et al. (2002) for both the real and complex cases when all but one of the
constraint matrices are positive semidefinite, while A0 can be indefinite. To the best
of our knowledge, no further investigation has been done on approximate solutions to
the general (Q[m,k]).

2.2 Approximation approaches

In this section, we will discuss two different methods for approximately solving
(Q[m,k]): SDP relaxation and ellipsoidal approximation.

SDP relaxation is awidely-used approach for approximating (Q[m,k])with quadratic
constraints. The standard Shor’s relaxation scheme is used to formulate the SDP relax-
ation of (Q[m,k]) as follows:

(SDP) max Tr(A0Y )

s.t. Tr(AiY ) ≤ 1, i = 1, 2, . . . ,m, (4)

Tr(BjY ) ≤ 1, j = 1, 2, . . . , k, (5)

Y � 0, Y = Y T ∈ R
n×n, (6)

where Y is introduced to replace xxT which certainly satisfies (6), and (4)–(5) follow
from (1)–(2), xT Ai x = Tr(Ai xxT ) and xT B j x = Tr(Bj xxT ).

Inspired by the 0.878-approximation of the Max-Cut problem by SDP relaxation
due to Goemans and Williamson (1995), Nesterov (1998) and Ye (1999) extended
the algorithm to the general binary quadratic optimization and box-constrained
quadratic optimization, respectively, achieving 2

π
-approximation results. For (Q[m,0]),

Nemirovski et al. (1999) demonstrated that a (1 − 1
(2 ln(2(m+1)μ))

)-minimizer can be
obtained, where μ = min{m + 1,maxi=1,··· ,m rank(Ai )}. Consequently, SDP relax-
ation has become a popular and powerful optimization tool, with many studies based
on it, not only in mathematics but also in engineering. SDP relaxation has several
advantages, including convexity, efficient solvability via interior point methods, and
the ability to construct high-quality approximate solutions of the original non-convex
problem using its optimal solutions.
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Despite its many advantages, SDP relaxation has some non-negligible disadvan-
tages. Not all types of optimization problems can be approximately solved using SDP
relaxation, and the computational cost of SDP increases as the problem scales up. In
particular,Wu et al. (2018) showed that SDP relaxation ismisleading in approximating
the weighted maximin dispersion problem over an �p-ball.

Various methods have been proposed for approximating a bounded subset of Rn

with an ellipsoid, which can be used for approximation. The subset can be enclosed
by or enclose an ellipsoid from either the inside or the outside. Given a feasible setS
of Rn , an ellipsoid can be constructed such that:

Ein ⊆ S ⊆ Eout .

By optimizing the same objective function over Ein and Eout , lower and upper bounds
on the optimal value of the objective function over S can be obtained, respectively.

There are two distinct approaches for constructing ellipsoids. Tarasov, Khachiyan,
and Erlikh proposed an approach where they construct an inner ellipsoid that has
the largest volume and is fully enclosed by the feasible set (Tarasov et al. 1988). In
contrast, Nemirovski and Yudin constructed an outer ellipsoid that has the smallest
volume and completely encloses the feasible set (Nemirovski and Yudin 1983). By
using a pair of ellipsoids with identical parameters, an approximation bound (r/R)2

can be obtained, where r and R represent the radius of the inner and outer ellipsoids,
respectively (Fu et al. 1998). The quality of the approximations can be assessed based
on the volume or the radius of the ellipsoid.

Due to the different approaches in ellipsoid construction, we have two distinct
methods for ellipsoidal approximation. One method involves constructing an inner
ellipsoid and then expanding it to cover the entire subset. The other method involves
constructing an outer ellipsoid that fully encloses the feasible set and then shrinking it
until it is entirely containedwithin the subset.We outline the ellipsoidal approximation
algorithm for the general (GQ) problem with convex constraints as below:

Algorithm 1 Ellipsoidal Approximation Algorithm for (GQ)
Input: data of (GQ) with k = 0.
(a) Construct an inner or outer ellipsoid corresponding to the feasible set.
(b) Solve the relaxation problem consisting of the origin objective function and the constructed ellipsoid,
which is a TRS subproblem.
Output: The optimal value of the TRS subproblem is an approximate result for (GQ).

The Löwner–John ellipsoid Schrijver (1986) is a minimal-volume ellipsoid used to
approximate polyhedra, denoted by the union or sum of ellipsoids, El j . For a polyhe-
dron set S of full dimension, a Löwner–John concentric ellipsoid pair El j and τEl j ,
where τ = 1

n (Boyd andVandenberghe 2004), can bound S as follows: τEl j ⊆ S ⊆ El j .
Without additional assumptions on the convex set, the approximation bound 1

n cannot
be improved. However, if the set is point-symmetric, the ratio can be tightened to 1√

n
(Boyd and Vandenberghe 2004). Lovász (1986) showed that a weak Löwner–John
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ellipsoid pair with τ = 1
((n+1)

√
n)

and r = 1 can be computed in polynomial time for

S.
The Dikin ellipsoid, another well-known inner ellipsoid, is derived from the defi-

nition of the barrier function and analytic center of a convex set (Boyd and El Ghaoui
1993). The construction process of the Dikin ellipsoid is as follows. Let � be the set
defined by the m ellipsoidal constraints (3).

The logarithmic barrier function L(x) for � is defined as:

L(x) = −
m∑

i=1

log
(
−xT Ai x − 2bTi x − ci

)
.

It can be verified that L(x) goes to infinite as x gets closer to the boundary of �.
Moreover, L(x) is analytic and strictly convexwhen x ∈ �, andhas a uniqueminimizer
denoted by x∗, which is defined as the analytic center of �.

We can obtain the gradient and Hessian of L(x) from the definition:

∇L(x) =
m∑

i=1

2(bi + Ai x)

−xT Ai x − 2bTi x − ci
,

∇2L(x) =
m∑

i=1

(
4(bi + Ai x)(bi + Ai x)T

(−xT Ai x − 2bTi x − ci )2
+ 2Ai

−xT Ai x − 2bTi x − ci

)
.

For any r ≥ 0 and interior point z in �, we define an ellipsoid centered at z as:

E (z; r) := {x ∈ R
n : (x − z)T∇2L(z)(x − z) ≤ r2}. (7)

The ellipsoidE (z; 1) is called theDikin ellipsoid at z, and it is known thatE (z; 1) ⊆ �

for all interior points z of � (Nesterov and Nemirovski 1994). Then we have

E (x∗; 1) ⊆ � ⊆ E (x∗;
√
m2 + m), (8)

which was first derived in Fu et al. (1998) and later corrected in Zhang and Xia (2022).
Henrion et al. (2001) showed that if all the constraints are homogeneous (i.e., bi = 0

for i = 1, 2, . . . ,m), then x∗ = 0 and (8) can be strengthened to

E (0; 1) ⊆ � ⊆ E (0;√
m).

3 Partial ellipsoidal approximation scheme

In this section, we present the new partial ellipsoidal approximation scheme for
(Q[m,k]).

Consider� as the feasible region of (Q[m,k]). Note that� is not empty as it contains
the origin as a feasible point.
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Algorithm 2 Partial Ellipsoidal Approximation Algorithm for (Q[m,k])
Input: data of (Q[m,k]).
(a) Construct an inner or outer ellipsoid corresponding to all the convex constraints.
(b) Solve the relaxation problem consisting of the original objective function, original indefinite quadratic
constraints and the constructed ellipsoid.
Output: The optimal value of the relaxation problem is an approximate result for (Q[m,k]).

The partial ellipsoidal approximation algorithm enables the approximation of
(Q[m,k]) with a number of indefinite quadratic constraints, which is not achievable
by the classical ellipsoidal approximation algorithms. Moreover, this algorithm can
significantly improve the previous approximate results for (Q[m,k]) with k = 0 pro-
vided by the ellipsoidal approximation algorithm.

3.1 Partial ellipsoidal approximation for (Q[m,1]) and extension

We first consider the special case (Q[m,1]). Throughout this section, we make the
following assumption:

Assumption 1 There is at least one quadratic constraint with Ai positive definite,
i ∈ {1, 2, . . . ,m}.

We will prove that the partial ellipsoidal approximation scheme can approximate
(Q[m,1]) by the generalized homogeneous CDT. We define the feasible set of (Q[m,1]),
(1)–(2), as �H . By separating the constraints that define �H into convex and non-
convex groups, we define two sets as:

�HC := {x ∈ R
n : xT Ai x ≤ 1, i = 1, 2, . . . ,m},

�HN := {x ∈ R
n : xT B1x ≤ 1}.

The analytic center for�HC is clearly 0. According to (7), the Dikin ellipsoid of�HC

is simplified to

E r
H := {x ∈ R

n : xT AH x ≤ r2},

where

AH = 2
m∑

i=1

Ai .

Since 0 ∈ E 1
H and 0 ∈ �HN hold simultaneously, we have E 1

H

⋂
�HN = ∅.

Moreover, we have the following result.

Theorem 2 For the feasible set �H , we have an enclosure and inclusion by

E
√
2

H

⋂
�HN ⊆ �H ⊆ E

√
2m

H

⋂
�HN . (9)
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Proof We first prove the inclusion relation between E
√
2

H

⋂
�HN and �H . By defini-

tion, a vector x ∈ E
√
2

H

⋂
�HN if and only if it satisfies

xT AH x ≤ 2, xT B1x ≤ 1.

Since Ai � 0, we can be deduced that

xT Ai x ≤
m∑

i=1

xT Ai x = 1

2
xT AH x ≤ 1.

Hence, x ∈ �H .

Next, we prove the inclusion relation between �H and E
√
2m

H

⋂
�HN . For any

x ∈ �H , we have xT B1x ≤ 1 and

xT Ai x ≤ 1, i = 1, 2, . . . ,m.

By summing up the inequalities above, we obtain

xT AH x ≤ 2
m∑

i=1

xT Ai x ≤ 2m.

which implies that x ∈ E
√
2m

H . Hence, we have �H ⊆ E
√
2m

H . Therefore, we obtain
the desired result (9). ��

Theorem 2 presents a 1
m ellipsoidal approximation bound for (Q[m,1]), which can

be achieved by solving the generalized homogeneous problem CDT:

(GCDT) max xT A0x

s.t. xT AH x ≤ 2m,

xT B1x ≤ 1.

Corollary 3 It holds that

1

m
v(GCDT) ≤ v(Q[m,1]) ≤ v(GCDT). (10)

Remark 1 He et al. (2008) proposed an SDP relaxation-based method for approximat-
ing (Q[m,1]), which provides the following approximation bound:

1

2 log(174mμ)
v(SDP) ≤ v(Q[m,1]) ≤ v(SDP),

where μ = min{m,maxi rank(Ai X̂)} and X̂ is the optimal solution of SDP relaxation
corresponding to (Q[m,1]). Notice that bound (10) is more tight than than the bound
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provided by He et al.’s bound for small values of the number of convex constraints m.
Moreover, (10) is exact for the case m = 1.

Polyak (1998) showed that (GCDT) can be globally solved. Consider the optimiza-
tion problem:

(Q[2,0]) max xT A0x

s.t. xT A1x ≤ α1,

xT A2x ≤ α2.

The Lagrangian dual problem of (Q[2,0]) reads as

(D) min −λ1α1 − λ2α2,

s.t. A0 + λ1A1 + λ2A2 � 0,

λ1, λ2 ≥ 0.

Under mild assumptions, strong duality holds for (Q[2,0]) and (D).

Theorem 4 (Polyak 1998)For n ≥ 3, if there exist nonnegativeμ0, μ1, μ2 ∈ R satisfy
that

μ0A0 + μ1A1 + μ2A2 � 0,

and if there exists x0 ∈ R
n such that

xT0 A1x0 < α1, xT0 A2x0 < α2,

the strong duality holds between (Q[2,0]) and its dual (D) and the SDP relaxation is
tight, which can be represented by the following equality.

v(Q[2,0]) = v(D) = v(SDP).

With Theorem 4, we can obtain the optimal value of (GCDT) in polynomial time by
solving the SDP relaxation. To recover the solution of (Q[2,0]), one can apply the rank-
one decomposition approach, see details in Ye and Zhang (2003). Then we can obtain
an approximate value of (Q[m,1]). To solve (GCDT) with nonhomogeneous objective
function instead of homogeneous objective function, Sakaue et al. (2016) presented a
polynomial time algorithm.

The partial ellipsoidal approximation process presented above only considers a
single indefinite constraint.Moreover, the approach can be extended to handle (Q[m,k])
with a fixed number of indefinite constraints, which can be relaxed to a homogeneous
quadratic optimization as follows:

(HQP) max xT A0x

s.t. xT AH x ≤ 2m,
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102 Z. Xu et al.

xT B j x ≤ 1, j = 1, 2, . . . , k.

A 1
m ellipsoidal approximation bound can also be achieved with this relaxation. More-

over, if k is fixed, Bienstock (2016) developed a polynomial-time (though not efficient)
algorithm to solve (HQP), enabling to compute an approximation of the optimal value
of (Q[m,k]).

In the partial ellipsoidal approximation process of the above problems, the Dikin
ellipsoid is used as an example to obtain the approximation bound related to the number
of convex quadratic constraints. The Löwner–John ellipsoid can also be constructed
as an ellipsoidal relaxation to obtain an approximation bound that is related to the
dimensionality of the problem instead of the number of convex quadratic constraints. In
specific applications, when the dimensionality of the problem is large, but the number
of convex quadratic constraints is small, the Dikin ellipsoid is selected. Otherwise, the
Löwner–John ellipsoid is a better alternative.

3.2 Improved partial ellipsoidal approximation for (Q[m,0]) and extension

In this subsection, we focus on (Q[m,0]), which have convex quadratic constraints
only. We improve the partial ellipsoidal approximation algorithm by dividing the
convex constraints into T groups and then prove that the approximation bound can be
significantly strengthened.

Algorithm 3 Improved Partial Ellipsoidal Approximation Algorithm
Input: data of (Q[m,0]).
(a) Divide the convex constraints into T groups.
(b) For the convex constraints in each group, construct an inner or outer ellipsoid.
(c) Solve the relaxation problem consisting of the origin objective function, origin indefinite quadratic
constraints and the T newly constructed ellipsoids.
Output: The optimal value of the relaxation problem is an approximate result for (Q[m,k]).

For simplicity, we consider (Q[m,0]) under Assumption 1. We define the feasible
set in (Q[m,0]), (1), as �e and split the constraints into two halves based on their order
(i.e., T = 2), and define the two sets as follows:

�1 := {x ∈ R
n : xT Ai x ≤ 1, i = 1, 2, . . . , �m

2
�},

�2 := {x ∈ R
n : xT Ai x ≤ 1, i = �m

2
� + 1, �m

2
� + 2, . . . ,m}.

Based on the definitions of �e, �1, and �2, it is evident that the analytic centers of
these three sets are all at x∗ = 0. The Dikin ellipsoids defined in (7) of �1 and �2
can be expressed as follows:

E r
D1 := {x ∈ R

n : xT AD1x ≤ r2},
E r
D2 := {x ∈ R

n : xT AD2x ≤ r2},
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where the two matrices are given by

AD1 = 2

�m
2 �∑

i=1

Ai , AD2 = 2
m∑

i=�m
2 �+1

Ai .

Theorem 5 The convex feasible set �e is included and encloses as:

E
√
2

D1

⋂
E

√
2

D2 ⊆ �e ⊆ E

√
2�m

2 �
D1

⋂
E

√
2�m

2 �
D2 .

Proof We prove the two inclusion relations in order. First, by the definition of Dikin

ellipsoids, the vector x belongs to E
√
2

D1

⋂
E

√
2

D2 if and only if

xT AD1x ≤ 2, xT AD2x ≤ 2.

Dividing both sides of the inequalities by 2, we get

�m
2 �∑

i=1

xT Ai x ≤ 1,
m∑

i=�m
2 �+1

xT Ai x ≤ 1.

Since Ai � 0 for i = 1, 2, . . . ,m, we have

xT Ai x ≤
�m
2 �∑

i=1

xT Ai x ≤ 1, i = 1, 2, . . . , �m
2

�,

xT Ai x ≤
m∑

i=�m
2 �+1

xT Ai x ≤ 1, i = �m
2

� + 1, �m
2

� + 2, . . . ,m.

Combining the above two inequalities yields that

xT Ai x ≤ 1, i = 1, 2, . . . ,m,

which means x ∈ �e and the first inclusion relation is proved.
Next, suppose that x ∈ �e, so that xT Ai x ≤ 1 holds for i = 1, 2, . . . ,m. Summing

up these inequalities separately, we obtain

�m
2 �∑

i=1

xT Ai x ≤ �m
2

�,
m∑

i=�m
2 �+1

xT Ai x ≤ �m
2

�.

Therefore, we have

xT AD1x ≤ 2�m
2

�, xT AD2x ≤ 2�m
2

�.
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The second inclusion relation is proved. The proof is complete. ��
Then, according to Theorem5 and based on the following homogeneous relaxation:

(HCDT) max xT A0x

s.t. xT AD1x ≤ �m
2

�,
xT AD2x ≤ �m

2
�,

we obtain an ellipsoidal approximation bound of 1
�m
2 � for (Q[m,0]). The relaxation

(HCDT) is a homogeneous CDT and can be efficiently solved via SDP as shown in
Theorem 4.

Corollary 6 It holds that

1

�m
2 �v(HCDT) ≤ v(Q[m,0]) ≤ v(HCDT). (11)

The approximation bound 1
�m
2 � is nearly twice as large as the bound 1

m reported in

Henrion et al. (2001). Moreover, the bound is tight when m = 2.
Consider (Q[m,k]). If we divide the convex constraints into T ≥ 2 groups, by solving

the quadratic optimization relaxation with T convex constraints and k nonconvex
constraints, the similar approach leads to the approximation bound of 1

�m
T � , which

improves Corollaries 3 and 6. The cost is at the global solvability of the relaxation
problem. If T + k is fixed, there is a polynomial-time (though not efficient) algorithm
for globally solving the relaxation problem, see Bienstock (2016).

4 Numerical experiment

To compare the approximation bounds calculated by the partial ellipsoidal scheme
and the algorithm based on SDP relaxation, we have performed a series of numerical
experimentswith convex constraints. All of the numerical experimentswere conducted
using MATLAB R2015b on a laptop with a 2.2GHz processor and 32GB of RAM.
We used the SDPT3 algorithm to solve v(SDP) within the CVX toolbox (Grant and
Boyd 2013). v(Q[m,0]) and v(CDT ) are solved by the MATLAB function fmincon.

Example 1 Consider a special case of (Q[2,0]), referred to as (TTRS) in Burer and K
(2013). It can be approximately reformulated as the following homogeneous quadratic
programming:

(TTRS) max −xT Qx − cT xt

s.t. xT x ≤ 1,

xT Hx ≤ 1,

t2 ≤ 1.
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With the matrices and vector

H = 1

2

(
3 0
0 1

)
, Q =

(−4 1
1 −2

)
, c =

(
1
1

)
,

one can verify that v(T T RS) = 4 and v(SDP) = 4.25 by computation. Applying He
et al’s approach, we can estimate the lower and upper bound based on SDP relaxation:

0.0764v(SDP) ≤ v(T T RS) ≤ v(SDP).

Adding the first and second constraint together, we obtain a (CDT) relaxation for
(TTRS):

(CDT) max −xT Qx − cT xt

s.t. xT (I + H)x ≤ 2,

t2 ≤ 1.

The optimal value v(CDT ) = 4.25. Applying the improved partial ellipsoidal approx-
imation approach yields the estimated lower and upper bound based on ellipsoidal
relaxation:

0.5v(CDT ) ≤ v(T T RS) ≤ v(CDT ).

It is worth noting that the lower bound estimated by the improved ellipsoid method is
significantly tighter than the bound given by He et al., while the optimal value of the
CDT relaxation remains the same as the SDP relaxation.

Example 2 We used MATLAB scripts to generate the input data with a fixed random
seed in (Q[m,0]), where each matrix of the objective function and quadratic constraints
is randomly generated:

rand( ’ state ’ ,1);

The indefinite matrix A0 in the objective function is generated with the MATLAB
scripts:

A_0=rand(n,n) ; A_0=(A_0+A_0’) /2;

The semidefinite matrices Ai , i = 1, . . . ,m in the constraints are generated with the
MATLAB scripts:

D=diag(rand(n,1) ) ; U=orth(rand(n,n) ) ; A( : , : , i )=U’∗D∗U;
We began by setting the dimension n to 10, 50, 100, and 150 in turn, and the number

of convex constraints m varying from 1 to 70. The reported theoretical results are pre-
sented in Fig. 1, which are consistent with the theoretical deductions. We can observe
that both approximation ratios decrease as the number of constraints m increases, and
the two curves intersect at around m = 50. It suggest that the derived ellipsoidal
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Fig. 1 Approximate ratios when n = 10, 50, 100, 150

approximation algorithm is a promising alternative to the SDP relaxation algorithm,
particularly for problems with a relatively small number of constraints.

Next, we set the number of convex constraintsm to 10, 30, 50, and 70 in turn, and the
dimension n varied from 10 to 150. The results of these experiments are presented in
Fig. 2,which indicate that the derived approximation bound remains relatively stable as
the dimension n increases. By contrast, the approximation ratio calculated by the SDP
relaxation algorithm decreases when n < m and remains constant after n = m. These
observations highlight the superior scalability of the derived ellipsoidal approximation
scheme, which is able to maintain a high level of accuracy even in high-dimensional
settings.

5 Conclusion

We present a partial ellipsoidal approximation scheme for approximating the non-
convex quadratic optimization with m convex quadratic constraints and k nonconvex
quadratic constraints, denoted by (Q[m,k]). By efficiently solving a generalized homo-
geneous relaxation problem CDT, we can establish a 1

m approximation bound for
(Q[m,1]). The derived ellipsoidal approximation bound is tighter than that of the SDP
relaxation when m is relatively small.
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Fig. 2 Approximate ratios when m = 10, 30, 50, 70

Then we introduce the grouping approach for further improvement. In particu-
lar, for (Q[m,0]), we can solve a homogeneous relaxation problem CDT to obtain an
approximation bound of 1

�m
2 � , which is nearly twice as large as the previous ellipsoid

approximation bound. Numerical experiments demonstrate the superiority of derived
ellipsoidal bound when m is relatively small, say m ≤ 50. We have extended the
approach to the general (Q[m,k]). Moreover, we can improve the approximation bound
by increasing the number of constraint groups, although this also increases the com-
plexity of the relaxation problem.

In future research, our attention will be strengthening the partial ellipsoidal relax-
ation. It is unknown whether there is a better approximation bound by combining the
partial ellipsoidal relaxation with the SDP relaxation.
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