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Abstract
The proof of convergence of adaptive discretization-based algorithms for semi-infinite
programs (SIPs) usually relies on compact host sets for the upper- and lower-level
variables. This assumption is violated in some applications, and we show that indeed
convergence problems can arise when discretization-based algorithms are applied to
SIPs with unbounded variables. To mitigate these convergence problems, we first
examine the underlying assumptions of adaptive discretization-based algorithms. We
do this paradigmatically using the lower-bounding procedure of Mitsos [Optimization
60(10–11):1291–1308, 2011], which uses the algorithm proposed by Blankenship and
Falk [J Optim Theory Appl 19(2):261–281, 1976]. It is noteworthy that the consid-
ered procedure and assumptions are essentially the same in the broad class of adaptive
discretization-based algorithms. We give sharper, slightly relaxed, assumptions with
which we achieve the same convergence guarantees. We show that the convergence
guarantees also hold for certain SIPs with unbounded variables based on these sharp-
ened assumptions. However, these sharpened assumptions may be difficult to prove a
priori. For these cases, we propose additional, stricter, assumptions which might be
easier to prove and which imply the sharpened assumptions. Using these additional
assumptions, we present numerical case studies with unbounded variables. Finally,
we review which applications are tractable with the proposed additional assumptions.
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1 Introduction

Adaptive discretization-based algorithms are widely used for the solution of semi-
infinite programs (SIPs), generalized semi-infinite programs, and bilevel programs,
e.g.,Hettich andKortanek (1993),Winterfeld (2008),Mitsos andBarton (2007), López
and Still (2007), Küfer et al (2008). For a recent review of applications and adaptive
discretization-based algorithms for SIPs, the reader may refer to Djelassi et al (2021).
In this paper, we consider SIPs in the form of

f ∗ = min
x∈X

f (x) (SIP)

s.t.∀ y ∈ Y [
g (x, y) ≤ 0

]

with the sets X ⊆ R
nx and Y ⊆ R

ny with |Y| = ∞; the constraint function g :
X × Y → R; and the objective function f : X → R with f ∗ being the optimal
objective value. Note that the semi-infinite constraint ∀ y ∈ Y [

g (x, y) ≤ 0
]
is often

written in literature as ∀ y ∈ Y : g (x, y) ≤ 0.
Conceptually, adaptive discretization-based algorithms for (SIP) replace the infinite

index set Y with a finite one, i.e., Yk
� Y , with k being the iteration index. This, then

finite program, is an approximation of (SIP). Using an adaptive refinement strategy
for the finite index set Yk

� Yk+1... � Y , one obtains an improving approximation
of (SIP), which usually yields a converging lower bound. Hence, one obtains a lower-
bounding procedure.

In this paper, we paradigmatically consider the lower-bounding procedure ofMitsos
(2011). Mitsos applies a convergent lower-bounding procedure as well as proposes a
convergent upper-boundingprocedure to compute infinite time a feasible point of (SIP)
with a certificate of ε f -optimality. The upper-bounding procedure of Mitsos is a slight
adaption of the lower-bounding procedure. The lower-bounding procedure in turn is
equivalent to the algorithmbyBlankenship and Falk (1976)which can be considered as
the main representative of adaptive discretization-based algorithms. Moreover, many
adaptive discretization-based algorithms for (generalized) semi-infinte programs and
bilevel programs have identical predecessors, i.e., the previously mentioned Blanken-
ship and Falk (1976) which itself is based on Remez (1962). These algorithms are
conceptually closely related to, e.g., Reemtsen (1991), Still (1999, 2001), Stein (2003),
Mitsos et al (2008a), Guerra Vázquez et al (2008), Tsoukalas and Rustem (2011), Mit-
sos and Tsoukalas (2015), Djelassi andMitsos (2017, 2021), Seidel and Küfer (2020),
Djelassi et al (2019), Schwientek et al (2021). Therefore, and also based on our addi-
tional findings, c.f., Appendix B, we expect that the results within this paper, i.e.,
convergence guarantees with the sharper, slightly relaxed, assumptions and recovered
convergence guarantees in case of unbounded variables, directly carry over from one
algorithm to the other.

The proof of convergence of algorithms for the global solution of SIPs often relies,
among other assumptions, on compact host sets. This is true both for discretization-
based and other methods as well as local methods allowing nonconvex lower-level
problems (Bhattacharjee et al 2005a, b; Floudas and Stein 2008; Mitsos et al 2008b).
Another popular assumption within literature is the one of a compact lower-level set
(Reemtsen and Görner 1998). This assumption is fulfilled if (SIP) is feasible, the host
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SIPs with unbounded variables

sets are compact, and the functions f and g are continuous. The advantage of this
assumption is that it already allows special cases of SIPs with unbounded sets X .
However, unbounded sets Y are not covered. Typically, the upper- and lower-level
variables x and y have a technical or physical meaning and thus, in most cases, inherit
finite bounds from their physical or technical origin. Furthermore, these finite bounds
are usually attainable yielding closed and therefore compact upper- and lower-level
host sets X and Y .

However, one might not know the finite bounds of the variables. Furthermore,
SIPs stemming from specific applications or reformulations may exhibit unbounded
upper- and/or lower-level variables, and hence unbounded upper- and/or lower-level
host sets. In the following, we give examples of problem classes where SIPs with
unbounded host sets can arise. Note that in some of the applications, finite bounds of
the variables may be computed or generated by additional assumptions. In most of the
following examples, (arbitrary) bounds are usually used in practice. An unbounded
lower-level setY may occur, e.g., in approximation theory where one wants to approx-
imate a function with a minimal estimation error, not only over a compact set, but over
all R

n (Chebyshev approximation). An unbounded upper-level variable host set X
occurs, e.g., in design centering, in epigraph reformulations of min-max programs
or in approximation theory, e.g., classical Chebyshev problem, where the parameter
values are unbounded, or reverse Chebyshev approximation, where the approxima-
tion error is fixed and the region where the approximation is not worse than the fixed
approximation error is computed (Still 1999; Guerra Vázquez et al 2008).

In order to address such applications, we will investigate whether adaptive
discretization-based algorithms are directly applicable to SIPs with unbounded host
sets, i.e., whether the assumption of compact host sets can be relaxed. By relaxing the
assumption of compact host sets, we will also consider SIPs with bounded but non-
compact host sets, e.g., host sets consisting of half-open intervals or open intervals.
For cases where the assumptions are not directly applicable, we will derive additional
assumptions, which are possibly easier to prove, to enable the application.
In Sect. 2, we first introduce the basic notation used throughout this paper and review
the assumptions in Mitsos (2011). Second, we prove convergence of the lower-
bounding procedure. In the proof, we use sharper and slightly relaxed assumptions
compared to Mitsos (2011), which in turn are already relaxed compared to Blanken-
ship and Falk (1976).We show that our relaxed assumptions are implied by the original
assumptions ofMitsos (2011). Section3 shows that the lower-bounding proceduremay
exhibit convergence problems if the host sets are not compact. In Sect. 4, we give addi-
tional assumptions to apply the lower-bounding procedure to SIPs with noncompact
and unbounded host sets. In Sect. 5, we present two case studies as a proof-of-concept
for our findings. Finally, we give a conclusion and outlook in Sect. 6.

2 Preliminaries

In this section, we briefly review the notation, formulation, definitions, algorithm
description, and assumptions of the lower-bounding procedure in Mitsos (2011). Note
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that this procedure can be seen paradigmatically for the class of adaptive discretization-
based algorithms.

2.1 Notation, formulation, definitions and algorithm description

The iterative lower-bounding procedure is illustrated in Fig. 1. At the start of the
procedure the iteration index k is set k ← 0 and a (arbitrary) finite set Y0

� Y is
chosen. Then the discrete lower-bounding problem (LBP) is solved.

Definition 1 (Discrete lower-bounding problem) The discrete lower-bounding prob-
lem (LBP) with Yk

� Y is

f k = min
x∈X

f (x) (LBP)

s.t.∀ y ∈ Yk [
g (x, y) ≤ 0

]
.

In literature, (LBP) is also often called discrete upper-level problem.

Due to Yk
� Y , (LBP) is a relaxation of (SIP) and it holds f k ≤ f ∗. For the optimal

solutions of (LBP), we use the notation

Notation 1 (Optimal solution of (LBP)) Assuming the optimal solution of (LBP)
exists in all iterations, we denote the optimal solution point by xk and the sequence
of optimal solutions by

{
xk

}m
k=0 = {

x0, x1, x2, ..., xm
}
. To simplify the notation, we

omit indexing numbers wherever possible, i.e.,
{
xk

}
.

If (LBP) is determined unbounded, then by Assumption 4 (to follow), also (SIP) is
unbounded. If (LBP) is determined infeasible, also (SIP) is infeasible. Otherwise, the
lower-level problem (LLP) is solved to determine SIP-feasibility of the current iterate.

Definition 2 (Lower-level problem) The lower-level problem (LLP) for fixed upper-
level variables xk is

g∗ (
xk

)
= sup

y∈Y
g

(
xk, y

)
. (LLP)

The iterate xk is SIP-feasible if sup
y∈Y

g
(
xk, y

) ≤ 0. Note that according to the later

used Assumption 3, (LLP) may only be solved approximately. For the optimal and
approximate solution of (LLP), we use the notation

Notation 2 (Optimal solution of (LLP)) Assuming the optimal solution of (LLP)
exists in all iterations, we denote the optimal solution point by y∗,k and the sequence
of optimal solutions by

{
y∗,k

}m
k=0 = {

y∗,0, y∗,1, y∗,2, ..., y∗,m
}
. To simplify the nota-

tion, we omit indexing numbers wherever possible, i.e.,
{
y∗,k

}
.

Notation 3 (Approx. solution of (LLP)) Assuming the approximate solution of (LLP)
exists in all iterations,we denote the approximate solution point by yk and the sequence
of approximate solutions by

{
yk

}m
k=0 = {

y0, y1, y2, ..., ym
}
. To simplify the notation,

we omit indexing numbers wherever possible, i.e.,
{
yk

}
.
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SIPs with unbounded variables

Fig. 1 Algorithm flowchart of the adaptive-discretization based lower-bounding procedure (Blankenship
and Falk 1976; Mitsos 2011)

To ease notation, we also use Notation 1 to 3 for infinite sequences. Note that this is
abuse of notation as in these cases no maximum iteration index m exists.

When (LLP) is solved approximately according to the later used Assumption 3,
it is either determined that g

(
xk, y∗,k

) ≤ 0 or an approximate solution point yk is
furnished which fulfills g

(
xk, yk

) ≥ α · g (
xk, y∗,k

)
for some α ∈ (0, 1]. As finite

termination to a feasible point is not guaranteed, in practice a feasibility tolerance
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εa > 0 is usually introduced as a termination criterion. In this case, the algorithm
may terminate with an SIP-εa-feasible point which suffices g

(
xk, y∗,k

) ≤ εa . If xk

is not SIP-(εa)-feasible, the approximate solution of (LLP) is used to populate the
discretization set Yk for subsequent iterations.

A feasibility tolerance εa > 0 is used in the numerical case studies in Sect. 5. How-
ever, note that in the theoretical considerations, no feasibility tolerance is introduced,
or equivalently the feasibility tolerance is set to zero, i.e., εa = 0. Therefore, in the
following theoretical analysis, especially in the proof of convergence in Sect. 2.3, one
does not terminate early, but considers the full (infinite) sequence of iterates.

The following is a summary of additional notation and the definition of compact
sets used in this work.

Notation 4 (Feasible set) We use for the set of all feasible points in the host set of
(SIP) the notation

X feas := {
x ∈ X : ∀ y ∈ Y [

g (x, y) ≤ 0
]}

. (1)

Notation 5 (Infeasible set) We use for the set of all infeasible points in the host set of
(SIP) the notation

X infeas := {
x ∈ X : ∃ y ∈ Y [

g (x, y) > 0
]}

. (2)

Definition 3 (Compact set) K � R
n is compact if any open cover of K has a finite

subcover. More explicitly, K is compact if whenever K ⊆ ⋃
α∈I Aα , where each

Aα is open, there exists a finite number of indices α1, α2, ..., αm ∈ I such that
K ⊆ ⋃ j=m

j=1 Aα j (c.f., Jänich 2008).

2.2 Assumptions

The existing global discretization-based algorithms use a global solver to compute
the subproblems (LBP) and (LLP) which are (mixed-integer) (non)linear problems
((MI)(N)LP). By considering SIPs with unbounded host sets, we obviously inherit
the need for global solvers that can handle optimization problems with unbounded
host sets. In the case of linear programs, this does not pose a problem as, e.g., the
simplex method can handle unbounded host sets (Nocedal and Wright 1999). In the
more general case of (MI)NLPs, e.g., BARON is able to treat some problems with
unbounded variables systematically by trying to compute appropriate bounds from
problem constraints (Khajavirad and Sahinidis 2018) but substantial theoretical and
practical challenges remain. In what follows, we focus on the SIP algorithm’s conver-
gence properties for unbounded host sets and do not discuss these challenges.
The presented lower-bounding procedure in Mitsos (2011), which is equivalent to the
procedure proposed by Blankenship and Falk (1976), relies on the following assump-
tions (c.f., Lemma 2.2 inMitsos (2011), revised in Lemma 2 in Harwood et al (2021)):

Assumption 1 (Compactness of sets) The sets X � R
nx and Y � R

ny are compact.
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SIPs with unbounded variables

Assumption 2 (Continuous functions) The functions f and g are continuous on X
and X × Y , respectively.

Assumption 3 (Appr. solution of (LLP)) At each iteration k, (LLP) is solved
approximately for the solution of the lower-bounding problem xk either establishing
sup
y∈Y

g
(
xk, y

) ≤ 0, or furnishing a point yk such that g
(
xk, yk

) ≥ αg
(
xk, y∗,k

)
> 0.

With α being constant over all iterations and α ∈ (0, 1].

Assumption 3 is relaxed compared to the assumption in Blankenship and Falk (1976),
where the exact solution of (LLP) is assumed. It is also slightly relaxed to Harwood
et al (2021) wherein α is restricted to

(0, 1). However, as will be shown below, the problems associated with unbounded
host sets persist even if the (LLP) is solved exactly.

2.3 Proof of convergence of the lower-bounding procedure

The proof presented in this paper relies on slightly relaxed assumptions compared to
those made by Mitsos (2011) and Reemtsen and Görner (1998). Basically, we split
the assumptions made byMitsos (2011) and some properties, which result from them,
into multiple sharpened assumptions. Additionally, we use the idea of level sets by
Reemtsen and Görner (1998). These sharpened assumptions are often challenging
to prove a priori. In these cases, we later present alternative, stricter, assumptions,
which are easier to prove and that imply the sharpened assumptions. The sharpened
assumptions motivate the additional, stricter, assumptions, which might be easier to
prove, for SIPs with unbounded host sets in Sect. 4.

Section 1 is relaxed to

Assumption 4 It holds (a) cl
(
�

(Y0
)) ⊆ X and (b) �

(Y0
)
is bounded with the set

�
(Y0

)
defined as

�
(
Y0

)
= {

x ∈ X : f (x) ≤ f ∗}

∩
{
x ∈ X : y ∈ Y0 [

g (x, y) ≤ 0
]}

∩ X infeas (3)

whereas f ∗ is the optimal objective value of (SIP).

Remark 1 Assumption 4 builds on the consideration that the algorithm must only
exclude points which

• are super-optimal, i.e., points which belong to the lower level-set
{
x ∈ X :

f (x) ≤ f ∗},
• are feasible within the initially chosen discretization Y0, and
• belong to X infeas.

If the iterate is not an element of�
(Y0

)
, the iterate is feasible and optimal by assump-

tion. Note that if (SIP) is infeasible we have by convention f ∗ = +∞ and therefore
�

(Y0
) = {

x ∈ X : y ∈ Y0
[
g (x, y) ≤ 0

]} ∩ X infeas.
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Assumption 4 allows for unbounded host sets and also for bounded but not closed sets.
In Sect. 4 we give examples of stronger assumptions or checks which can be performed
since the assumption is difficult to verify a priori. The property of uniform continuity
of f and g on X and X × Y , respectively, follow from Assumptions 1 and 2. In the
following we relax these two assumptions.

Assumption 5 The function f is lower semi-continuous at all x ∈ ∂�
(Y0

)
.

Assumption 6 It holds

∀ε > 0 ∃δ1 > 0 : ∀xk ∈
{
xk

}
∩ �

(
Y0

)
, x ∈ �

(
Y0

) [∥∥∥xk − x
∥∥∥ < δ1

]

⇒
∣∣∣g

(
xk, yk

)
− g

(
x, yk

)∣∣∣ < ε.
(4)

We first prove that the proposed assumptions are indeed relaxed compared to the
original assumptions, i.e., the latter imply the former.

Lemma 1 Assumptions 4 to 6 hold if Assumptions 1 and 2 are satisfied.

Proof First,we show thatAssumption1 impliesAssumption4.X is compact according
to Assumption 1. Since �

(Y0
) ⊆ X , we directly get cl

(
�

(Y0
)) ⊆ X . X is bounded

by compactness and, therefore, �
(Y0

)
is also bounded.

Second, according to Assumption 2, f is continuous on X and hence lower semi-
continuous on ∂�

(Y0
) ⊆ X , or Assumption 5 holds.

Third, from Assumptions 1 and 2 follows uniform continuity of g on X × Y and
we have

∀ε > 0 ∃δ1 > 0 : ∀xk, x ∈ X
[∥∥∥xk − x

∥∥∥ < δ1

]

⇒
∣∣∣g

(
xk, yk

)
− g

(
x, yk

)∣∣∣ < ε. (5)

Then, it also holds

∀ε > 0 ∃δ1 > 0 : ∀xk ∈
{
xk

}
∩ �

(
Y0

)
, x ∈ �

(
Y0

) [∥∥∥xk − x
∥∥∥ < δ1

]

⇒
∣∣∣g

(
xk, yk

)
− g

(
x, yk

)∣∣∣ < ε
(6)

because
{
xk

} ∩ �
(Y0

) ⊆ X and �
(Y0

) ⊆ X . ��
Next, we prove convergence of the lower-bounding procedure usingAssumption 3 and
the relaxed Assumptions 4 to 6. Recall, that no feasibility tolerance εa is introduced
and, hence, the full (infinite) sequence of iterates is considered.

Theorem 1 If Assumptions3 to6are satisfied, the adaptive discretization-based lower-
bounding procedure in Mitsos (2011) terminates finitely with the optimal objective
value or converges to the optimal objective value, i.e., f k → f ∗ for k → ∞. If the
SIP is infeasible or unbounded, the lower-bounding procedure terminates finitely with
proof of infeasibility or unboundedness, respectively.
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Note that Reemtsen and Görner (1998) and Mitsos (2011) exclude infeasible SIPs by
assumption, c.f., Assumption 12 in Appendix B.

Proof We first show that we move away from any compact set of infeasible points
within finitely many iterations. Second, we consider the case of an infeasible SIP.
We show that the algorithm terminates finitely with proof of infeasibility. Third, we
consider the case of a feasible SIP and show that the algorithm terminates finitely with
a globally optimal solution, or the algorithm produces the optimal solution in the limit.

1. Consider a compact set of infeasible points Kinfeas ⊆ �
(Y0

)
. In the following,

we restrict the iterations to be in this set, i.e., xk ∈ {
xk

} ∩ Kinfeas. Recall that
g

(
xk, y∗,k

) ≤ 0 would imply that xk is feasible, xk is not a member of Kinfeas,
and we have left Kinfeas. Due to Assumption 3, we have

∃μ > 0 : ∀xk ∈
{
xk

}
∩ Kinfeas

[
g

(
xk, yk

)
≥ α · g

(
xk, y∗,k

)
≥ μ > 0

]
.(7)

Since Assumption 6 holds for all ε > 0, it also holds

∃δ1 > 0 : ∀xk ∈
{
xk

}
∩ Kinfeas, x ∈ Kinfeas

[∥∥∥xk − x
∥∥∥ < δ1

]

⇒
∣∣
∣g

(
xk, yk

)
− g

(
x, yk

)∣∣
∣ < μ.

(8)

We obtain for the deduction in (8) the two cases for x ∈ Kinfeas

Case 1: g
(
xk, yk

) − g
(
x, yk

) ≥ 0:

⇒ g
(
xk, yk

)
− g

(
x, yk

)
< μ

(7)�⇒μ − g
(
x, yk

)
≤ g

(
xk, yk

)
− g

(
x, yk

)
< μ

⇒0 < g
(
x, yk

)
(9)

Case 2: g
(
xk, yk

) − g
(
x, yk

)
< 0:

⇒ g
(
xk, yk

)
< g

(
x, yk

)

(7)�⇒0 < μ ≤ g
(
xk, yk

)
< g

(
x, yk

) (10)

Therefore, it holds

∃δ1 > 0 : ∀xk ∈
{
xk

}
∩ Kinfeas, x ∈ Kinfeas

[∥∥∥xk − x
∥∥∥ < δ1

]

⇒ 0 < g
(
x, yk

)
.

(11)
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Thus, with each iteration, the open neighborhood Nδ1

(
xk

) ∩ Kinfeas is infeasible
for the following iterations (and therefore we do not (re)visit points in this neigh-
borhood). Since the excluded neighborhoods cannot be revisited and Kinfeas is
compact, after at most finitely many iterations, these neighborhoods form a finite
cover of Kinfeas. Therefore, we only need a finite number of iterations until we
have covered Kinfeas (c.f., Definition 3), i.e., we prove infeasibility of all points in
Kinfeas after a finite number of iterations.

2. Consider now an infeasible SIP. �
(Y0

)
is compact by Assumption 4. The proof

of finite termination with proof of infeasibility directly follows from the proof for
case 1. above with Kinfeas = �

(Y0
)
. It follows that (LBP) is infeasible after a

finite number of iterations.
3. Finally, consider a feasible SIP.

(a) If (SIP) is unbounded, the problem will be determined to be unbounded in the
first iteration. (LBP) is a valid relaxation of (SIP), i.e., f k ≤ f ∗. As (SIP) is
by assumption unbounded, also (LBP) is in the first iteration unbounded, i.e.,
‖x∗‖ = ∞. By Assumption 4, ‖x∗‖ /∈ X infeas and the unbounded solution is
feasible.

(b) If the optimal solution is finite, i.e., ‖x∗‖ < ∞, we will show by contradiction
that a feasible and optimal point is generated in the limit.
By Assumption 4, there exists a compact set X̃ � �

(Y0
)
containing the

optimal point. By compactness of X̃ , we can choose an infinite subsequence{
xk

}
that converges to x̂ ∈ X̃ .

Now, assume the limit point is infeasible x̂ ∈ X infeas. There exists a compact
setKinfeas � x̂. By proof fromcase 1. above,wemove away fromany infeasible
set Kinfeas within finite time. Therefore, the infeasible point x̂ is not a limit
point that gives us the desired contradiction.
It remains to show that the feasible limit point is optimal. (LBP) is a valid
relaxation of (SIP). Hence, we have f k ≤ f ∗. The limit point x̂ is feasible,
i.e., f

(
x̂
) ≥ f ∗ and in the boundary of �

(Y0
)
. With lower semi-continuous

of f at all ∀x ∈ ∂�
(Y0

)
and with f k ≤ f ∗ follows f

(
x̂
) = f ∗. ��

Following the proof of Lemma 1 and Theorem 1, we can also prove that the lower-
boundingprocedure inMitsos (2011) converges in the infeasible case under the original
Assumptions 1 to 3. The proof is also applicable with slight changes for a lower-
semicontinuous constraint function g on X for all y ∈ Y . This property might be of
interest in cases where the constraint function resembles the solution of an embedded
optimization problem. The reader may refer to Appendix A.1 for the corresponding
proposition and proof.

The upper-bounding procedure in Mitsos (2011) is conceptually similar to the
lower-boundingprocedure.Theproof of convergence and the slightly changed assump-
tions for the case of unbounded host sets of the upper-bounding procedure are shown
in Appendix B.3. This particular supports our claim that the results of our work can
be directly transferred to other conceptually similar procedures.
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3 Illustrative examples of SIPs with unbounded host sets

We first show examples where Assumptions 3 to 6 do not hold and discuss how
the lower-bounding procedure may fail. All examples follow the same pattern. They
contain an upper- or lower-level variable that i) has an unbounded host set and ii) can
be chosen arbitrarily in the sense that the variable does not affect the (LBP) or (LLP)
objective, respectively. Using this property, we can choose a sequence of points that
generates arbitrarily weak discretization cuts, thus violating Assumption 6. This leads
to a convergence to an infeasible point in the limit with no proof of infeasibility

3.1 Illustrative example forX compact andY unbounded

Consider the SIP

f ∗ = min
x∈X

− x (E1)

s.t.∀ y ∈ Y
[
−y21 (y2 − x)2 + 1 ≤ 0

]

X = [0, 2]
Y = R

2.

Note that the corresponding LLP has infinitely many solutions. The optimal solutions
of (LLP) are y∗ (x̄) = (ỹ, x̄)T or y∗ (x̄) = (0, ỹ)T with arbitrary ỹ ∈ R. We have
∀x ∈ X [

g (x, y∗) = 1 > 0
]
. Therefore, (E1) is infeasible.

Now, we show that the lower-bounding procedure may converge to an infeasible
point. We start with an empty discretization Y0 = ∅. The optimal solution of the
(LBP) is x0 = 2 with an optimal objective value of f 0 = −2. Then, y∗,0 = (2, 2)T

is a globally optimal solution of (LLP). Using y∗,k = (
2k+1, xk

)T
for all subsequent

iterations and considering the (LBP) objective, the last introduced discretization point
determines the optimal solution in the next iteration. See also Fig. 2 for graphical
illustration. xk+1 can be computed by

g
(
xk+1, y∗,k

)
≤ 0

−
(
y∗,k
1

)2 (
y∗,k
2 − xk+1

)2 + 1 ≤ 0

−
(
2k+1

)2 (
xk − xk+1

)2 + 1 ≤ 0

⇒ xk+1 = xk − 1

2k+1 .

Therefore, we have for any iteration k ≥ 1

xk = x0 −
k∑

i=1

1

2i
.
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Fig. 2 Illustrative example (E1) forX compact and Y unbounded with parametric solutions of (LLP). (E1)
is infeasible.

With
∑k

i=1
1
2i

being the geometrical series, we obtain limk→∞ x0 − ∑k
i=1

1
2i

= 1

with an objective value of f k=∞ = −1. Therefore, the lower-bounding procedure
converges to an infeasible point in the limit, and no proof of infeasibility is given
within finite time.

The same convergence issues arise when we consider an SIP with X compact
and Y bounded but not closed, c.f., Appendix A.2.1. For the sake of simplicity, we
considered the infeasible SIP (E1). Recall that Mitsos (2011), Reemtsen and Görner
(1998) exclude infeasible SIPs. Therefore, (E1) would not be considered (assuming
the extension to unbounded host sets). The reader may refer to the Appendix A.2.2 for
a feasible but conceptually equivalent SIP that exhibits the same convergence issues.

We show in (E1) that in certain cases the lower-bounding procedure can converge
to an infeasible point. Similarly, also, the upper-bounding procedure in Mitsos (2011)
may never produce a SIP-feasible point, supporting our claim that our results carry
over to other related adaptive discretization-based procedures. For a detailed example,
the reader may refer to Appendix B.2.

3.2 Illustrative example forX unbounded andY compact

Consider the SIP

f ∗ =min
x∈X

{
− 1, x2 ≥ 1

− x2, x2 < 1
(E3)

s.t.∀y ∈ Y
[
−x1 (x2 − y)2 + 1 ≤ 0

]
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Fig. 3 Illustrative example (E3) for X unbounded and Y compact with parametric solutions of LLP. (E3)
is infeasible.

X = [0,+∞) × [0, 2]
Y = [0, 2].

The optimal value function of the corresponding (LLP) is g (x̄, y∗) = 1 > 0, ∀x̄ ∈
X with the optimal solution y∗ (x̄) = x̄2. Therefore, (E3) is infeasible. Note that the
objective function only depends on x2 and is constant in the interval x2 ∈ [1, 2].
Again, we show below that the lower-bounding procedure can converge to an infea-
sible point in the limit. First, start with an empty discretization set Y0 = ∅. For
iteration k = 0, choose x0 = (4, 2)T as the optimal solution, with an objective
value of f 0 = −1. For the corresponding (LLP), we have y∗,0 = 2. Using for
iteration k ≥ 1 and all following iterations xk1 = 2k+2 and considering the (LBP)
objective, we can choose xk2 = 2 − ∑k

i=1
1
2i
, see Fig. 3 for graphical illustra-

tion.

With
∑k

i=1
1
2i
being the geometrical series, we obtain limk→∞ x2 = limk→∞ x02 −

∑k
i=1

1
2i

= 1 with an objective value of f ∗ = −1. Therefore, the lower-bounding
procedure does not prove infeasibility of (E3) within finite time.

Again, for the sake of simplicity, an infeasible SIP with a non-differentiable func-
tion f has been considered. Similar adaptations as in Appendix A.2.2 can be made
to obtain a feasible SIP with n-times differentiable functions, which exhibit the same
convergence issues. Furthermore, similar adaptions as in Appendix A.2.1 can be made
to obtain an SIP with compact Y and bounded but non-compact X , which exhibits the
same convergence issues.
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4 Examples of assumptions that are easier to prove than
assumptions 4 to 6

As already shown in Sect. 2, the often encountered assumptions in literature for SIPs
imply our slightly relaxed assumptions. However, for SIPs with unbounded host sets
the former assumptions do not hold. In these cases, it is often not obvious whether the
relaxed Assumptions 4 to 6 hold. This section, discusses additional (stricter) assump-
tions and criteria for different cases of SIPs with unbounded host sets which can be
often checked a priori or during run-time to enable application.

4.1 Case 1:X unboundedY compact

First, note that if the lower-bounding procedure produces a point outside �
(Y0

)
, the

algorithm terminates (Remark 1). Hence, we restrict our discussion to the following
cases:

1.1 �
(Y0

)
is unbounded

1.2 �
(Y0

)
is bounded

Feasible SIPs can belong to cases 1.1 or 1.2. Infeasible SIPs usually belong to case
1.1 if the initial discretization does not directly lead to an infeasible (LBP). If this is
not the case, it follows from X unbounded and X feas = ∅ that �

(Y0
)
is unbounded.

In the general case 1.1, the existence of a finite cover of the set �
(Y0

)
cannot be

guaranteed. Even if we exclude an open neighborhood of points whose size tends to
infinity in each iteration, we cannot guarantee convergence. A different perspective
offer Reemtsen and Görner (1998) who note that due to unboundness the proof of
convergence fails as no limit point of

{
xk

}
may exist.

As a counterexample, revisit (E3) and replace g with the piecewise-defined function

g (x, y) =
{

− x2 (x1 − y)2 + 1, x1 ≤ y

1, x1 > y
(12)

In this case, the open ball we exclude in each iteration is infinite. However, the same
convergence issues arise when using the same sequence of (LLP) solutions given in
(E3).

The function g in Eq.12 is continuous but not differentiable on X × Y . Similar
to Remark 2, we can obtain a function belonging to differentiability class Cn that
produces the same convergence issues.

Therefore, we concentrate in the following on case 1.2, i.e.,�
(Y0

)
is bounded. We

will discuss stricter assumptions or checks which can often be applied to verify that
case 1.2 holds irrespectively of X unbounded. In detail, we will discuss

1.2.1 X feas �= ∅ and f is continuous and coercive on X , i.e., lim‖x‖→+∞ f (x) =
+∞.
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1.2.2 the (SIP) stems from the min-max program

f ∗ =min
x∈X

max
y∈Y

q (x, y)

Y � R
ny

X ⊆ R
nx ,

(13)

with q : X × Y → R and q being coercive in x for all y. In this case, we
consider in the following the epigraph reformulation of this min-max program,
which reads

f ∗ = min
x∈X ,μ∈R

μ

s.t.∀ y ∈ Y [
q (x, y) ≤ μ

]

Y � R
ny

X ⊆ R
nx .

(14)

1.2.3 additional computational checks

4.1.1 Case 1.2.1: f is continuous and coercive onX andX feas �= ∅

If f is continuous and coercive on X and X feas �= ∅, we can prove convergence of
the lower-bounding procedure.

Assumption 7 The set Y � R
ny is compact and cl

(X infeas
) ⊆ X ⊆ R

nx . f is
continuous and coercive on X and X feas �= ∅
Proposition 1 Under Assumptions 2, 3 and 7, the lower-bounding procedure con-
verges.

Proof Because f is coercive on X and X feas �= ∅, we have f ∗ < +∞ and the set
{x ∈ X : f (x) ≤ f ∗} is bounded. Hence, also �

(Y0
)
is bounded irrespective of

Y0. From boundness of �
(Y0

)
and Assumption 7 follows cl

(
�

(Y0
)) ⊆ X . First,

Assumption 4 is therefore satisfied. Second, fromAssumption 7 followsAssumption 5.
Third, from continuity of g (Assumption 2) and cl

(
�

(Y0
)) ⊆ X and compactness

of Y follow uniform continuity of g and Assumption 6 is satisfied. By Theorem 1, the
lower-bounding procedure converges. ��

4.1.2 Case 1.2.2: SIP has the form of a epigraph reformulation

In the special case that (SIP) is the epigraph reformulation of a min-max problem with
a coercive objective function, we can show that Assumption 4 holds irrespectively of
unboundness of X .

Assumption 8 (SIP) has the form of (14), q is continuous and coercive in x for all y,
and Y is compact.
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Proposition 2 Under Assumptions 3 and 8, the lower-bounding procedure converges.

Proof From continuity and coerciveness of q in x ∀ y follows the optimal point
exists, is finite, and attainable. It also follows, ∃M such that ∀ y, x : ‖x‖ >

M
[
q (x, y) ≥ max

y∈Y
q (x∗, y) = μ∗

]
. Because of the epigraph form of (14), the

construction of (LBP), and the global solution of the subproblems, we also have
∀k, l : k > l

[
μ∗ ≥ q

(
xk, yl

)]
. Combining these results above, there exists a com-

pact K such that
{
xk

} ⊆ K � X and x∗ ∈ K.
Using K instead of X in (14), we obtain a new SIP, called S̃IP. From compactness

ofK follows Assumptions 4 is satisfied. From Assumptions 8 follows Assumptions 5.
Fromcontinuity ofq and compactness ofK andY followsAssumptions 6. ByAssump-
tions 1, the lower-bounding procedure converges.

It remains to show that the solution of S̃IP and of the original SIP are equivalent.
S̃IP is a restriction of (14) because K � X . Since the optimal point of (14) is also
feasible in S̃IP, the optimal solutions are equivalent. ��

4.1.3 Case 1.2.3: Additional computational checks

In some instances, one can show (analytically) that Assumptions 4 is satisfied by
proving that lim‖x‖→+∞ sup

y
g (x, y) < 0 holds for any sequence

{
xk

}
with

∥∥xk
∥∥ →

∞ for k → ∞. This can also be done in some cases computationally by solving the two
problems (15) and (16) a priori. The computational burden is in most cases tractable
because the problems are adaptions of (LLP). However, one must assume that g is
continuous on cl (X ).

x infeas,UBD = sup
x∈X , y∈Y

‖x‖

s.t. g (x, y) ≥ 0

∀ ȳ ∈ Y0 [
g (x, ȳ) ≤ 0

]
.

(15)

If x infeas,UBD is bounded, �
(Y0

)
is also bounded (Assumption 4(b)). We now verify

if Assumption 4(a) holds. If the optimal objective value of

sup
x∈cl(cl(X )\X ), y∈Y

g (x, y)

s.t.∀ ȳ ∈ Y0 [
g (x, ȳ) ≤ 0

]
.

(16)

is greater than zero, there exist no points that belong to cl
(X infeas

)
but not to X .

Because cl
(X infeas

) ⊇ �
(Y0

)
, Assumption 4(a) holds.

4.2 Case 2:X compact andY unbounded

If one of the following assumptions holds instead of Assumption 1, no convergence
issues occur.
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Assumption 9 The set X � R
nx is compact and ∀ε > 0 ∃δ2 > 0 : ∀xk ∈ {

xk
}
, x ∈

X [∥∥xk − x
∥∥ < δ2

]
holds

∣∣g
(
xk, yk

) − g
(
x, yk

)∣∣ < ε.

Assumption 10 The optimal solution yk of (LLP) exists for all iterates xk , and the
sequence

{
yk

}
does not diverge, i.e., limk→∞

∥∥ yk
∥∥ < ∞.

As shown before, Assumption 5 is satisfied if f is continuous on X . Furthermore,
Assumption 9 holds if g is uniformly continuous on X × Y and X is compact.

Proposition 3 Under Assumptions 3, 5 and 9, the lower-bounding procedure con-
verges.

Proof First, from Assumption 9 follows Assumption 4. Second, Assumption 5 is
fulfilled by proposition 3. Third, Assumption 6 is fulfilled by Assumption 9. By The-
orem 1, the lower-bounding procedure converges. ��
Proposition 4 Under Assumptions 2, 3 and 10, the lower-bounding procedure con-
verges.

Proof Consider

min
x̃∈X̃

f (x̃) (S̃IP)

s.t.∀ ỹ ∈ Ỹ [
g (x̃, ỹ) ≤ 0

]

with X̃ = X and the compact interval Ỹ ⊆ Y such that
{
yk

} ∈ Ỹ . With Assumption 2
follows uniform continuity of g on Ỹ×X̃ . (S̃IP) fulfills Assumptions 1 to 3. Therefore,
Theorem 1 and its proof are applicable.
We will show by contradiction that the optimal objective value of the limit point of
(S̃IP) and the original SIP are equivalent, i.e., f

(
x̃∗) = f (x∗).

First, assume f
(
x̃∗) < f (x∗). Since the functions g and f are the same for (S̃IP)

and the original SIP, we have ∃ y ∈ Y : g (
x̃∗, y

)
> 0, i.e., x̃∗ is infeasible in the

original SIP. Assumption 10 and limk→∞ g
(
x̃∗, ỹk

)
> 0 prove x̃∗ infeasible which

gives us the desired contradiction. Second, assume f
(
x̃∗) > f (x∗) which gives

us (due to the same functions g and f ) X̃ feas
� X feas. But from Ỹ ⊆ Y , follows

X̃ feas ⊇ X feas which gives us the desired contradiction. From f
(
x̃∗)

≮ f (x∗) and
f
(
x̃∗)

≯ f (x∗) follows f
(
x̃∗) = f (x∗). ��

Assumption 10 generally cannot be proven a priori. Therefore, it is not directly appli-
cable. However, stronger conditions than required for Assumption 10 can be checked
a priori. For example, one may choose some large number M a priori and check during
runtime whether

∥∥ yk
∥∥ < M holds. One way to achieve this may be to require the

solver to minimize the magnitude of the variable values among all global solutions of
(LLP). The auxiliary problem

inf
y∈Y

‖ y‖max (AUX)

s.t. g (x̄, ȳ) = g (x̄, y) .
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is solvedwith ȳ being the optimal solution of the (LLP). Note that only an approximate
solution of the (LLP) is required, c.f., Assumption 3. Therefore, a relaxation of the
equality constraint is possible. The optimal solution of (AUX) is then used to populate
the set Yk .
We must point out that if one chooses a too large M in combination with a too
restrictive maximum number iteration, the test may be inconclusive. Furthermore,
populating the set Yk with the solution of (AUX) may be counterproductive in certain
cases. One could also prove that Assumption 10 holds, by computing upper and lower
bounds for each lower-level variable yi a priori. The following optimization-based
bound tightening based approach computes upper and lower bounds for all yi , i.e.,
yUBDi and yLBDi , respectively. However, there is no guarantee of success.

yLBDi = inf
x∈X , y∈Y

yi

s.t. g (x, y) ≥ 0

∀ ȳ ∈ Y0 [
g (x, ȳ) ≤ 0

]
(17)

yUBDi = sup
x∈X , y∈Y

yi

s.t. g (x, y) ≥ 0

∀ ȳ ∈ Y0 [
g (x, ȳ) ≤ 0

]
(18)

Note the direction of the inequality in (17) and (18) as we want to compute the maxi-
mumandminimumvalue of yi on

(
cl

(X infeas
) ∩ {

x∈ X : y ∈ Y0
[
g (x, y) ≤ 0

]})

× Y .

4.3 Case 3:X unbounded andY unbounded

For SIPs with unconstrained upper- and lower-level hosts, convergence can be guar-
anteed if a suitable combination of the assumptions presented in Sect. 4.2 and Sect. 4.1
are adopted. Note that this is possible, as none of the corresponding pairs are mutually
exclusive.

5 Numerical case studies

We present two illustrative case studies from Chebyshev approximation. These are
a proof-of-concept for our findings rather than a complete numerical study which
is beyond the scope of this paper. The corresponding (LBP) and (LLP) of the con-
sidered cases studies are written in the domain specific language libALE (Djelassi
and Mitsos 2020). The implementation of the lower-bounding procedure is provided
by the library for discretization-based semi-infinite programming solvers (libDIPS)
(Djelassi 2020). The termination tolerance of the lower-bounding procedure is set to
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εa = 10−3. The default values for BARON are used with the exception of the opti-
mality tolerances EpsA and EpsR which are set to 10−9. The numerical case studies
are carried out on a Windows Server 2016 Standard with an Intel(R) Xeon(R) CPU
E5-2640 v3 @2.60GHz processor and 128GB of RAM. All subproblems are solved
using BARON version 19.12.7., accessed through GAMS version 30.2.0 (Khajavirad
and Sahinidis 2018; GAMS Development Corporation 2019). Note that BARON can-
not handle trigonometric functions, which limits the applicability, and does not give
certificate of global optimality for complex subproblems.

5.1 Case study forX unbounded andY compact

Consider the min-max problem inspired by Chebyshev-approximation

f ∗ =min
x∈X

max
y∈Y

∥∥
∥h (x) − p (x, y)

∥∥
∥
2

X = R
5

Y = [1, 5]

(19)

with the auxiliary functions p and h defined as

h (x) = − exp
(
− (y − 3)2

)
+ 0.2 exp (y − 3) + 1

p (x, y) = x1 + x2y + x3y
2 + x4y

3 + x5y
4.

We reformulate (19) to

f ∗ = min
x∈X ,μ∈E

μ

s.t.∀ y ∈ Y
[
(h (x) − p (x, y))2 ≤ μ

]

X = R
5

Y = [1, 5]

E = [0,+∞) .

(20)

Note that we have in this example the case of Sect. 4.1.2, i.e., the SIP has
the form of an epigraph reformulation. The lower-bounding procedure terminates
after 11 iterations (total CPU time 19.5s) with an optimal solution of x∗ =
(−2.111, 6.471,−4.377, 1.091,−0.088)T andwith amaximal error of the fit of 0.028
(Fig. 4).
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Fig. 4 Case study for X unbounded and Y compact. The original function is plotted as a green dashed line
and the approximation function as a red solid line

5.2 Case study forX compact andY unbounded

Consider

f ∗ = min
(μ,x)T ∈X

μ

s.t.∀ y ∈ Y
[((

3

y2
− 2

y3

)
−

(
exp

(
x1 (x2y + x3)

2
)))2

≤ μ

]

X = [0, 100] × [−10, 10]3
Y = [1,+∞) .

(21)

(21) corresponds to a reformulated min-max Chebyshev-approximation problem,

where
(

3
y2

− 2
y3

)
is approximated by exp

(
x1 (x2y + x3)2

)
over [1,+∞)with x being

the parameters to be estimated. For (21), Assumption 10 holds. The lower-bounding
procedure terminates after 8 iterations (total CPU time 23.3s) with the optimal param-
eters x∗ = (−0.010,−4.285, 1.248)T (Fig. 5).

6 Conclusion and outlook

Unconstrained upper and/or lower variable host sets in SIPsmay arise, e.g., in (inverse)
Chebyshev approximation, epigraphic reformulations, or design centering. In this

123



SIPs with unbounded variables

Fig. 5 Case study for X compact and Y unbounded. The original function is plotted as a green dashed line
and the approximation function as a red solid line

paper, we showed that adaptive discretization-based algorithms are not suitable for
all SIPs with unbounded host sets since convergence problems may arise.

Therefore, we investigated under which circumstances adaptive discretization-
based algorithms are applicable to SIPs with unbounded host sets. The study was
carried out using the lower-bounding procedure ofMitsos (2011) which can be consid-
ered representative of the class, since the procedure is equivalent to the one proposed by
Blankenship and Falk (1976). First, we briefly reviewed the assumptions of the lower-
bounding procedure. Instead of the original assumptions, we used sharper, (slightly)
relaxed, assumptions for our proof of the convergence of the lower-bounding proce-
dure. In essence, the sharpened, slightly relaxed, assumptions establish a weaker form
of uniform continuity of the constraint function on the set of all infeasible points in the
host set of the SIP. In addition, the objective function must be at least semi-continuous
on the boundary of a subset of the infeasible points.

For SIPs with unbounded host sets, it is often not obvious whether the relaxed
assumptions hold. We discusse additional (stricter) assumptions and criteria for dif-
ferent cases of SIPs with unbounded host sets which can be often checked a priori or
during run-time to enable application. The criteria are expected to be, at most, of the
same computational burden as the subproblems of the SIPs. The additional assump-
tions and criteria are expected to apply to many applications. Finally, we give two
numerical case studies of SIPs with unbounded host sets, as a proof of concept.

Moreover, we assume that our results are transferable to conceptually related adap-
tive discretization-based procedures for generalized semi-infinite programs and bilevel
programs, e.g., the algorithms proposed byMitsos and Tsoukalas (2015); Djelassi et al
(2019). We show that this assumption is justified by also considering the conceptu-
ally related upper-bounding procedure of Mitsos (2011) (Appendix B). However, for
future work, we plan to investigate this for the named procedures in detail.
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Appendix A: Lower-bounding procedure

A.1: Lower semi-continuous constraint function g

Falk and Hoffman (1977) note that the lower-bounding procedure is still applicable if
g is lower-semicontinuous on X for all y ∈ Y and lower-semicontinuous in X for all
y ∈ Y . However, upper-semicontinuity on X is not necessary.

Assumption 11 The function f is continuous on X and g is lower semi-continuous
on X for all y ∈ Y .

Proposition 5 Under Assumptions 3 to 5 and 11, the lower-bounding procedure con-
verges.

Proof We first show that the first part of of the proof in Sect. 2.3 also holds under
Proposition 5. Consider a compact set of infeasible points Kinfeas ⊆ �

(Y0
)
. In the

following, we restrict the iterations to be in this set, i.e., xk ∈ {
xk

} ∩ Kinfeas.
Recall that g

(
xk, y∗,k

) ≤ 0 would imply that xk is feasible, xk is not a member
of Kinfeas, and we have left Kinfeas. Due to Assumption 3, we have

∃μ > 0 : ∀xk ∈
{
xk

}
∩ Kinfeas

[
g

(
xk, yk

)
≥ αg∗ (

xk
)

≥ μ > 0
]
. (A1)
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g
(·, yk) is lower semi-continuous in X iff

∀μ > 0 ∃δ1 > 0 : ∀xk, x ∈ X
[∥∥∥xk − x

∥∥∥ < δ1

]

⇒ g
(
xk, yk

)
− g

(
x, yk

)
< μ.

(A2)

Therefore, it also holds

∀μ > 0 ∃δ1 > 0 : ∀xk ∈
{
xk

}
∩ Kinfeas, x ∈ Kinfeas

[∥∥∥xk − x
∥
∥∥ < δ1

]

⇒ g
(
xk, yk

)
− g

(
x, yk

)
< μ.

(A3)

Now, we consider the two cases for x ∈ Kinfeas:

Case 1: g
(
xk, yk

) − g
(
x, yk

) ≥ 0:

⇒ g
(
xk, yk

)
− g

(
x, yk

)
< μ

(A1)���⇒μ − g
(
x, yk

)
≤ g

(
xk, yk

)
− g

(
x, yk

)
< μ

⇒0 < g
(
x, yk

)
(A4)

Case 2: g
(
xk, yk

) − g
(
x, yk

)
< 0:

⇒ g
(
xk, yk

)
< g

(
x, yk

)

(A1)���⇒0 < μ ≤ g
(
xk, yk

)
< g

(
x, yk

) (A5)

Therefore, it holds

∃δ1 > 0 : ∀xk ∈
{
xk

}
∩ Kinfeas, x ∈ Kinfeas

[∥∥∥xk − x
∥∥∥ < δ1

]

⇒ 0 < g
(
x, yk

)
.

(A6)

Note, the equivalence between (A6) and (11). The rest of the proof in Sect. 2.3 is
conceptually the same and therefore omitted. ��
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A.2: Additional illustrative examples

A.2.1: Illustrative example forX compact andY bounded and not closed

The same convergence issues as in (E1) (Sect. 3.1) arise when we consider (E1.1) with
X compact and Y bounded but not closed.

f ∗ = min
x∈X

− x (E1.1)

s.t.∀ y ∈ Y
[
− 1

y1
(y2 − x)2 + 1 ≤ 0

]

X = [0, 2]
Y = (0, 0.5] × [0, 2] .

The optimal solutions of (LLP) are y∗ (x̄) = (ỹ, x̄)T with ỹ ∈ (0, 0.5] or y∗ (x̄) =
(0, ỹ)T with ỹ ∈ [0, 2]. Starting with an empty discretization Y0 = ∅ and using

y∗,k = (
2−(k+1), xk

)T
for all iterations, the same issues arises.

In general, one could use the closure of the non-compact host sets. However, this
is not possible here.

A.2.2: Illustrative example forX compact andY unbounded: feasible SIP

Consider the feasible SIP with unbounded host sets.

f ∗ =min
x∈X

− x

s.t. ∀ y ∈ Y
[{ − y21 (y2 − x)2 + 1 ≤ 0, x ≥ 1

− y21 (y2 − x)2 + 3x − 2 ≤ 0, x < 1

]

X = [0, 2]
Y = R

2

(E2)

Remark 2 The function g is continuous but not differentiable on X × Y . This is not
required according to Assumptions 1to 3. The non-differentiability of g is of no rele-
vance in this example, as we receive the same convergence properties when using the
function

g (x, y) =
{ − y21 (y2 − x)2 + 1 ≤ 0, x ≥ 1

− y21 (y2 − x)2 + 3x2n − 2 ≤ 0, x < 1

with n ∈ N>0 (A7)

belonging to the differentiability class Cn instead.
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Fig. 6 Illustrative example (E2) forX compact and Y unbounded with parametric solutions of (LLP). (E2)
is feasible

The optimal value function of (LLP) of (E2) is

g∗ (x̄) =
{
1, x ≥ 1

3x̄ − 2, x < 1
(A8)

with the optimal value y∗ (x̄) = (ỹ, x̄)T or y∗ (x̄) = (0, ỹ)T with ỹ ∈ R. The feasible
set is X feas = [

0, 2
3

]
. The optimal solution of (E2) is x∗ = 2

3 with f ∗ = − 2
3 . Using

the same sequence of points as in (E1), we converge to the same infeasible point x = 1
in the limit, c.f., Fig. 6. We do not converge to the globally optimal solution, again
failing our expectations.

Appendix B: Upper-bounding procedure of Mitsos (2011)

B.1: Definitions and assumptions of the upper-bounding procedure of Mitsos
(2011)

Wefirst review the discrete upper-bounding problem. For a detailed algorithm descrip-
tion of the upper-bounding procedure, we ask the reader to refer to the original
publication.

Definition 4 (Discrete upper-bounding problem) The discrete upper-bounding prob-
lem (UBP) with YUBD,k

� Y is

f UBD,k = min
x∈X

f (x) (UBP)

s.t.∀ y ∈ YUBD,k [
g (x, y) ≤ −εg

]
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with some εg > 0. For convencience we define gUBD (x, y) = g (x, y) − εg .

In the following, we use the same Notation 1 to 3 as for the lower-bounding pro-
cedure. The proof of convergence of the upper-bounding procedure in Mitsos (2011)
relies on the existence of an ε f -optimal SIP-Slater point.

Definition 5 (SIP-Slater Point) A point xs is called a SIP-Slater point if ∀ y ∈
Y [

g (xs, y) < 0
]
.

Assumption 12 (Existence of ε f -optimal SIP-Slater Point) An ε f -optimal SIP-Slater
point xs exists such that f (xs) ≤ f ∗ + ε f and ∀ y ∈ Y [

g (xs, y) ≤ −εs
]
.

B.2: Illustrative example forX compact andY unbounded

Mitsos (2011) states

at each iteration of the upper-bounding procedure, there are three potential out-
comes, namely (i) (UBP) is infeasible, (ii) (UBP) is feasible and furnishes a
SIP-feasible point and (iii) (UBP) is feasible but furnishes a SIP-infeasible point.
In the former two cases the restriction parameter εg is reduced and in the latter
case YUBD,k is populated.

and shows that after a finite number of updates of εg , the upper-bounding procedure
produces a SIP-feasible point. We show that in the case of unbounded sets, the upper-
bounding procedure may never produce a SIP-feasible point. Consider

f ∗ =min
x∈X

− x

s.t. ∀ y ∈ Y
[{ − y21 (y2 − x)2 + 0.5 ≤ 0, x ≥ 1

− y21 (y2 − x)2 + 3x − 2.5 ≤ 0, x < 1

]

X = [0, 2]
Y = R

2

(E2)

and choose εg = 0.5 in (UBP). With the chosen εg , (UBP) of (E2) is equivalent to the
(LBP) of (E2). Figure 7 depicts the objective function f , f UBD,k , g∗,UBD, g∗ and the
feasible set of (UBP) and (E2), i.e., and XUBD,feas X feas, respectively.

Note that the (LLP) solution point of (E2) is independent of to εg . Using the same
sequence of points as in (E2), the outcome is always (iii), i.e., no SIP-feasible point is
furnished.Therefore, εg is never reduced, and theupper-boundingprocedure converges
to the infeasible point x = 1 in the limit.

B.3: Proof of convergence of the upper-bounding procedure in Mitsos (2011)

In Mitsos (2011) follows with the existence of a SIP-Slater point xs , compactness of
Y , and continuity of g (c.f, Assumptions 1 and 2), there exists a εs > 0 such that

∀ y ∈ Y [
g

(
xs, y

) ≤ −εs
]
. (B9)
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Fig. 7 Illustrative example (E2) for the upper-bounding procedure with X compact and Y unbounde.
εg = 0.5

This also holds for the case of unbounded X and compact Y but does not hold for
the case of unbounded Y . For example, for y ∈ Y = [1,+∞), g (x, y) = − 1

y there

exists an SIP-Slater point but �εs : ∀ y ∈ Y [
g (xs, y) ≤ −εs

]
). Therefore, for the

case of unbounded Y , we slightly adapt Assumption 12 to

Assumption 13 (Existence of ε f -optimal and strictly feasible Point) An ε f -optimal
and strictly feasible point xs exists such that there exists an εs > 0 and f (xs) ≤
f ∗ + ε f and ∀ y ∈ Y [

g (xs, y) ≤ −εs
]
.

Note that for compactX and Y , Assumption 13 directly follows from Assumption 12.
For the upper-bounding procedure, Assumption 4 has to be slightly stricter because
the upper-bounding procedure visits points with f

(
xk

)
> f ∗.

Assumption 14 It holds (a) cl
(
�

(Y0
)) ⊆ X and �

(Y0
)
is bounded with the set

�
(Y0

)
defined as

�
(
Y0

)
= X infeas. (B10)

To extend the applicability to unbounded SIPs, we adapt the original Lemma to

Theorem 2 Take any YUBD,0
� Y , any ε f and any r > 1. Assume that Assumptions 3

to 6 and 13 hold. Then the upper-bounding procedure in Mitsos (2011) furnishes a
SIP-feasible point x∗ finitely, such that f (x∗) ≤ f ∗ + ε f .

The proof of Theorem 2 is, apart from slight changes, equivalent to the original
proof in Mitsos (2011).

Proof In each iteration one of the following cases hold
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i) (UBP) is infeasible
ii) (UBP) is feasible and a SIP feasible point is furnished
iii) (UBP) is feasible and a SIP infeasible point is furnished

In case i) and ii) εg is reduced. In case iii) YUBD,k is populated with the solution point
of the corresponding (LLP).
We first show that a infinite sequence of infeasible (UBP) is not possible. By
Assumption 13 there exists a point xs such that f (xs) ≤ f ∗ + ε f and ∀ y ∈
Y [

g (xs, y) ≤ −εs
]
. This point is feasible in (UBP) if εg ≤ εs , regardless ofYUBD,k .

Therefore, (UBP) is feasible if εg ≤ εs .
Because of εg = εg,0

ra with a being the number of reductions, after a = �logr εg,0

εs
�

reductions, the (UBP) becomes feasible.
For (UBP) with εg < εs follows f

(
xk

) ≤ f (xs) ≤ f ∗ + ε f . Hence, the solution
point of (UBP) xk is a candidate point with ε f -optimality. If xk is SIP-feasible, the
desired result holds.
It remains to show that an infinite sequence of iii) is not possible, which also means
that εg is no longer updated. It therefore holds for all iterations εg ≥ εg,min ≡ εs

r .
By construction of (UBP) we have

∀l, k : l > k
[
g

(
xl , yk

)
≤ −εg ≤ −εg,min

]
(B11)

Due to Assumption 6, it also holds

∃δ1 > 0 : ∀xl ∈
{
xk

}
∩ X infeas, x ∈ X infeas

[∥∥∥xl − x
∥∥∥ < δ1

]

⇒
∣∣∣g

(
xl , yk

)
− g

(
x, yk

)∣∣∣ <
εg,min

2
.

(B12)

Combining (B11) and (B12), we have

∀l, k : l > k

[
g

(
x, yk

)
< −εg,min

2
< 0

]
(B13)

Due to Assumption 4, the limit point x∗ ∈ cl (X )infeas exists. From xk → x∗, we
have

∀δ1∃K : ∀l, k [l > k ≥ K ]
[∥∥∥xl − xk

∥∥∥ < δ1

]
. (B14)

Substituting x = xk in (B13), we obtain

∃K : g
(
xk, yk

)
< −εg,min

2
< 0. (B15)

Therefore, after a finite number of iterations K the point xk is SIP-feasible which
gives us the desired result.
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Combining the results above, the upper-bounding procedure furnishes a point x∗
that satisfies f (x∗) ≤ f ∗ + ε f after a finite number of iterations. ��
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