
Mathematical Methods of Operations Research
https://doi.org/10.1007/s00186-022-00788-8

ORIG INAL ART ICLE

On the rectangular knapsack problem

Fritz Bökler1 ·Markus Chimani1 ·Mirko H. Wagner1

Received: 17 November 2021 / Revised: 2 May 2022 / Accepted: 5 May 2022
© The Author(s) 2022

Abstract
A recent paper by Schulze et al. (Math Methods Oper Res 92(1):107–132, 2020)
presented the Rectangular Knapsack Problem (Rkp) as a crucial subproblem in the
study on the Cardinality-constrained Bi-objective Knapsack Problem (Cbkp). To this
end, they started an investigation into its complexity and approximability. The key
results are an NP-hardness proof for a more general scenario than Rkp, and a 4.5-
approximation for Rkp, raising the question of improvements for either result. In this
note we settle both questions conclusively: we show that (a) Rkp is indeed NP-hard in
the considered setting (and even in more restricted settings), and (b) there exists both a
pseudopolynomial algorithm and a fully-polynomial time approximation scheme (i.e.,
efficient approximability within any desired ratio α > 1) for Rkp.

Keywords Quadratic optimization · Knapsack problems · Multiobjective
optimization · Approximation

1 Introduction

We mainly consider the Rectangular Knapsack Problem:

Definition 1 Given a, b ∈ N
n and κ ∈ N, the Rectangular Knapsack Problem (Rkp)

is formulated as

max f (x):=
n∑

i=1

n∑

j=1

aib j xi x j =
(
aTx

) (
bTx

)

B Fritz Bökler
fboekler@uos.de
http://tcs.uos.de/staff/boekler

Markus Chimani
markus.chimani@uos.de
http://tcs.uos.de/

Mirko H. Wagner
mwagner@uos.de

1 Department of Computer Science, Osnabrück University, Osnabrück, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-022-00788-8&domain=pdf
http://orcid.org/0000-0002-7950-6965
http://orcid.org/0000-0002-4681-5550
http://orcid.org/0000-0003-4593-8740


F. Bökler et al.

Fig. 1 A graphical representation of an Rkp instance: Given a multiset of (possibly degenerated) rectangles
and an integer κ (left), we ask for a subset of cardinality κ that spans the largest possible area (right). Here,
we are given 9 rectangles (A,B,... I) with κ = 4

s.t. 1Tx ≤ κ

x ∈ {0, 1}n,
where 1 is the all-one vector. We also define a decision version of this problem, where
we are additionally given a θ ∈ N, and ask whether there exists a feasible x ∈ {0, 1}n
with f (x) ≥ θ . �

Rkp allows a nice geometric interpretation, see Fig. 1: We are given an integer
κ ∈ N and a multiset R = {(ai , bi )}i=1,...,n of rectangles, specified by their width and
height. The rectangles are allowed to be degenerated to orthogonal line segments (i.e.,
have width or height 0). For a subset of rectangles, we may lay them out in the plane
connectedly such that the (axis-parallel) bounding-box has maximum area. Clearly,
this is achieved by placing the rectangles in a linear sequence such that the bottom-left
corner of a rectangle is the top-right corner of its predecessor. In Rkp we thus ask for
a rectangle subset of cardinality at most κ that maximizes this area.

Rkp arises naturally in the study of the Cardinality-constrained Bi-objective Knap-
sack problem (Cbkp), as observed by Schulze et al. (2020):

Definition 2 Given a, b ∈ N
n and κ ∈ N, the Cardinality-constrained Bi-objective

Knapsack Problem (Cbkp) is formulated as

max aTx �
max bTx

s.t. 1Tx ≤ κ

x ∈ {0, 1}n .

In this problem, we ask for the Pareto-front of two linear profit functions, subject to a
cardinality constraint. As the Pareto-front can be exponential in the size of the input,
Schulze et al. (2020) consider approximative methods to find a good respresentation
of it; this can be achieved by iteratively solving Rkp instances. The approach has also
been evaluated experimentally by Paquete et al. (2022). Schulze et al. (2020) give

123



On the rectangular knapsack problem

a 4.5-approximation for Rkp and conjecture that it is NP-hard. However, they can
only show NP-hardness of two more general cases of the Rkp, namely when the a
and b vectors may consist of general integer values (i.e., negative components are
allowed) or when the cardinality constraint is a more general Knapsack constraint.
The complexity status of the actual Rkp remained open.

Rkp is a special case of theQuadratic Knapsack Problem (Qkp) first introduced by
Gallo et al. (1980); see (Pisinger 2007) for a comprehensive survey. Thereby we want
to optimize a quadratic function over binary variables, i.e., f q(x) = xTQx , subject to
a knapsack constraint.Qkp is known to be stronglyNP-complete even if the Knapsack
constraint is a cardinality constraint, by reduction from Clique (Garey and Johnson
1979). Recall that strong NP-hardness means that the problem remains NP-hard even
when all values of the numbers in the input are bounded by a polynomial in the input
size; thus, such problems do not allow a pseudopolynomial algorithm unless P=NP.

Qkp with a general integral weight matrix Q does not allow a constant-factor
approximation unless P=NP (Rader and Woeginger 2002). For non-negative Q, a
constant-factor approximation can currently not be ruled out, but the best known
approximation guarantees only a ratio of O(

n2/5+ε
)
in O(

n9/ε
)
time (Taylor 2016).

Recall that, for a given quality requirement ε > 0, a (fully) polynomial-time approx-
imation scheme, abbreviated as PTAS (FPTAS), achieves a (1 − ε)-approximation
while its running time is bounded by a polynomial in the input size and an arbitrary
(polynomial, respectively) function in ε−1. A weight-matrix Q induces an n-vertex
graph G that has an edge (i j) if and only if Qi, j �= 0. There is an FPTAS if G
has bounded tree-width and a PTAS if G is H -minor-free, for any fixed minor H
(see (Pferschy and Schauer 2016) for both results). However, the problem remains
strongly NP-hard even if G is guaranteed to be 3-book-embeddable (Pferschy and
Schauer 2016) or vertex series-parallel (Rader andWoeginger 2002). Furthermore, an
FPTAS exists for a special symmetric quadratic knapsack problem, where the knap-
sack constraint coefficients are dependent on the matrix Q (Kellerer and Strusevich
2010; Xu 2012).
Our contribution. Our first result is to settle NP-hardness for Rkp in Sect. 3.

Next, we show that we can use an FPTAS from the literature to construct an FPTAS
for Rkp in Sect. 4, concluding that Rkp is in fact only weakly NP-hard. Interestingly,
we multi-objectivize the Rkp, i.e., turn the Rkp into a multi-objective optimization
problem, to apply an FPTAS from the muliobjective literature.

In Sect. 5, we describe an exact pseudopolynomial time algorithm for Rkp. Our
algorithm can also be used to directly and exactly solve the original Cbkp, the starting
point of the investigation of Rkp by Schulze et al. (2020). Finally, in Sect. 6 we
show how to use our algorithm as a building block to develop an FPTAS for Rkp and
Cbkp.We show that both our pseudopolynomial algorithm and FPTAS yield improved
running times compared to the FPTAS used in Sect. 4.

2 Preliminaries

Let an Rkp instance be given by a, b ∈ N
n and κ ∈ N. For x ∈ N

n ,
we have ‖x‖∞ :=maxi=1,...,n xi . Let α:= ‖a‖∞, β:= ‖b‖∞, W↑:=max{α, β}, and

123



F. Bökler et al.

W↓:=min{α, β}. W.l.o.g., we assume α ≥ β and, thus, W↑ = α and W↓ = β. Let
N be the encoding length of the Rkp instance; we observe in particular that n ≤ N
and logα ≤ N . We may use these observations when showing running time bounds
depending solely on the input length. Whenever we compare two vectors, e.g. x ≤ y
for x, y ∈ N

n , this is understood to be component-wise.
Consider amore general version of theCbkp: themultiobjective Knapsack problem

with general knapsack constraints and an arbitrary number of objective functions.

Definition 3 Given C ∈ N
d×n , w ∈ N

n , and κ ∈ N, the Multiobjective Knapsack
Problem (Mokp) is formulated as

max Cx

s.t. wTx ≤ κ

x ∈ {0, 1}n . �

The rows c1, . . . , cd ∈ N
n of the objective function matrixC can be seen as individual

objective functions (ci )Tx meant to be maximized. A vector x dominates another
vector y, if x ≥ y and x �= y. Let Y := {

Cx : wTx ≤ κ, x ∈ {0, 1}n} be the set of
value vectors of an Mokp instance. A value vector y ∈ Y is non-dominated if there
is no other y′ ∈ Y that dominates it. We call the set of non-dominated value vectors
the non-dominated set or YN . A solution x ∈ {0, 1}n is Pareto-optimal, if Cx ∈ YN .
Computing the non-dominated set forMokp is known to be NP-hard, since it contains
the single-objective knapsack problem as a special case.

An FPTAS for a multiobjective problem is an algorithm that computes, for any
given quality guarantee ε ∈ (0, 1), a set S ⊆ Y , such that for every y ∈ YN , there
is an x ∈ S with x ≥ (1 − ε)y in time polynomial in the input size and 1/ε. While
for many multiobjective optimization problems it is known that the size of YN can
be exponential in the input size, e.g., multiobjective versions of the shortest path,
spanning tree, or knapsack problems, there also always exists a set S as above of size
bounded polynomially in the input size and 1/ε (cf. Papadimitriou and Yannakakis
(2000)).

3 NP-Hardness

Before we proceed with the hardness proof, we start with an initial observation. Con-
sider an arbitrary Rkp instance and any two vectors x, x ′ ∈ {0, 1}n . If x ′ ≤ x , we have
f (x ′) ≤ f (x) since a, b ≥ 0. We can therefore deduce:

Observation 4 If there is an optimal solution (or a witness to a yes-instance) x ′ with
1Tx ′ < κ for some Rkp instance, then there also exists another optimal solution
(yes-witness) x with 1Tx = κ . It thus suffices to search for solutions with the latter
property.

The next problem is known to be (weakly)NP-hard for decades (Garey and Johnson
1979). Intuitively, it asks whether we can partition the components of a vector c into
two subsets of equal size such that the sum of the components of each subsets coincide.

123



On the rectangular knapsack problem

Definition 5 (Cardinality- Constraint Partition (Ccp)) Given a vector c ∈ N
n ,

is there a vector x ∈ {0, 1}n such that 1Tx = n/2 and cTx = cT(1 − x)? �

Ccpwas also used by Schulze et al. (2020) to showNP-hardness for the problem that
arises from Rkp problemwhen a, b are allowed to include negative components. How-
ever, for the trueRkp (whichwas tackled by the algorithmic approximation by Schulze
et al. (2020)), no hardness result was shown. By massaging Ccp-instances further, we
can in fact show NP-hardness for strictly non-negative (or even strictly positive) vec-
tors a, b.

Theorem 6 Rkp is NP-hard.

Proof We reduce from Ccp to the decision variant of Rkp, establishing that the latter
is NP-complete as NPmembership is trivial. Let c ∈ N

n be a Ccp instance. We define
the sum of all c-components C :=1Tc and a sufficiently large constant M := ‖c‖∞ · n/2.
Let C:=C · 1 andM:=M · 1 be the n-dimensional vectors with uniform components
C and M , respectively. We construct an Rkp instance (a, b, κ, θ) with

κ := n/2,

a :=M + κ · c,
b :=M + C − κ · c,
θ := κ2 ·

(
M2 + CM + (C/2)2

)
.

Wecan assumew.l.o.g. that n andC are even numbers (as cwould otherwise be a trivial
no-instance for Ccp) and non-zero. Thus we have integrality for all our constructed
numbers. Since c ∈ N

n , all constructed numbers (except for perhaps the components
of b) are trivially positive and thus elements of N+. Since M = κ ‖c‖∞ is at least as
large as any component of κ · c, also every component of b is in fact positive and thus
from N+. The tuple (a, b, κ, θ) is hence a legal Rkp instance.

We now show that (a, b, κ, θ) is an Rkp yes-instance if and only if the original
c ∈ N

n is a Ccp yes-instance by proving the equivalence directly. Assume (a, b, κ, θ)

is a yes-instance for Rkp, and consider a solution vector x̄ ∈ {0, 1}n . ByObservation 4,
we can assume w.l.o.g. that 1T x̄ = κ and thus MT x̄ = κM and CT x̄ = κC = κ · cT1.
We examine the objective f (x̄):

f (x̄) = aT x̄ · bT x̄
= (M + κ · c)T x̄ · (M + C − κ · c)T x̄
= (MT x̄ + κ · cT x̄) · (MT x̄ + CT x̄ − κ · cT x̄)
= (κM + κ · cT x̄) · (κM + κ · cT(1 − x̄))

= κ2 ·
(
M2 + M · cT x̄ + M · cT(1 − x̄) + (cT x̄)

(
cT(1 − x̄)

))

= κ2 ·
(
M2 + MC + (cT x̄)

(
cT(1 − x̄)

))

123



F. Bökler et al.

Therefore, f (x̄) ≥ θ reduces to
(
cT x̄

) (
cT(1 − x̄)

) ≥ (C/2)2. This inequality holds
if and only if cT x̄ = cT(1− x̄) = C/2. Thus (a, b, κ, θ) is a yes-instance for Rkp if and
only if c is a yes-instance for Ccp (both witnessed by the identical solution vector x̄).

�
Ccp remains NP-hard even if all components of c are positive (in contrast to only

being non-negative) and distinct (Garey and Johnson 1979). By the above construction
we naturally obtain:

Observation 7 Rkp remains NP-hard even if all components of a and all components
of b are positive and distinct.

4 An FPTAS via MOKP

TheMokp admits an FPTAS proposed by Erlebach et al. (2002). To apply this FPTAS,
we first establish a connection between Rkp and Mokp. To this end, we define for
a given Rkp instance with a, b ∈ N

n and κ ∈ N a Cbkp instance and thus a Mokp
instance of the following form:

max aTx

max bTx

s.t. 1Tx ≤ κ

x ∈ {0, 1}n .

Lemma 8 Any optimal solution to Rkp is a Pareto-optimal solution to the respective
Mokp instance.

Proof Let x̂ be an optimal solution to Rkp and assume its value vector is dominated
in the Mokp instance by some other value vector. Let x be a solution corresponding
to the latter. Clearly, f (x) = (

aTx
) (
bTx

)
>

(
aT x̂

) (
bT x̂

) = f (x̂). As both solutions
are feasible w.r.t. the cardinality constraint, x̂ cannot be an optimal solution to Rkp. �
Algorithm 1 Given an Rkp instance (a, b, κ) and ε > 0, we solve it as an Mokp
instance using the FPTAS by Erlebach et al. (2002). The latter algorithm is thereby
started with a quality requirement ε′:=ε/2 to compute an approximate solution set S.
Our Rkp solution is an x ∈ S with maximum

(
aTx

) (
bTx

)
. �

Theorem 9 Algorithm 1 is an FPTAS for Rkp with running time bounded by
O(ε−2n3 log(nα) log(nβ)) ⊆ O(ε−2n3 log(nW↑)2) ⊆ O(ε−2N 5).

Proof We first prove the approximation ratio. Let x̂ be an optimal solution to Rkp. We
also know that (a, b)T x̂ is a non-dominated point to the Mokp instance by Lemma 8.
Thus, the FPTAS computes at least one solution x̊ with aT x̊ ≥ (1 − ε′)aT x̂ and
bT x̊ ≥ (1 − ε′)bT x̂ . The chosen solution x̄ ∈ S has maximum

(
aT x̄

) (
bT x̄

)
and thus

we have

123



On the rectangular knapsack problem

f (x̄) =
(
aT x̄

) (
bT x̄

)
≥

(
aT x̊

) (
bT x̊

)

≥ (
1 − ε′)2 (

aT x̂
) (

bT x̂
)

≥ (1 − ε)
(
aT x̂

) (
bT x̂

)
= (1 − ε) f (x̂).

The running time of the FPTAS by Erlebach et al. (2002) is in �
(
ε−dnd+1(logU1)

· · · (logUd)
)
, where Ui is an upper bound on the respective objective function val-

ues. Since ε/2 ∈ �(ε), we can bound the running time in the above algorithm by

O
(
ε−2n3(log nα)(log nβ)

)
. �

Corollary 10 Algorithm 1 is an FPTAS for Cbkp with running time bounded by
O(ε−2n3 log(nα) log(nβ)) ⊆ O(ε−2n3 log(nW↑)2) ⊆ O(ε−2N 5).

While these results, based on using the FPTAS from the literature as a black box,
already improve on the known 4.5-approximation for Rkp, we show below that we
can further improve the results in terms of running time by attacking the problemmore
directly.

5 Exact pseudopolynomial algorithm

We describe an exact pseudopolynomial algorithm for Rkp. It is also based on a multi-
objective optimization decomposition. Given a solution x ∈ {0, 1}n , we map it to its
evaluation tuple via

x �→
〈
aTx, bTx, 1Tx

〉
.

These tuples form the corner stone of our enumeration procedure below. Observe
that multiple solutions may attain the same evaluation tuple. A tuple t = 〈t1, t2, t3〉
dominates a tuple t ′ = 〈

t ′1, t ′2, t ′3
〉
if t1 ≥ t ′1, t2 ≥ t ′2, t3 ≤ t ′3, and t �= t ′. Recall that we

can assume w.l.o.g. that β ≤ α.

Algorithm 2 We maintain a set of tuples T . It is initialized with T = {〈0, 0, 0〉}, the
corresponding solution would be the n-dimensional all-zeros vector. The algorithm
now runs in n iterations. In iteration i , we consider every current tuple t = 〈t1, t2, t3〉 ∈
T and obtain a new tuple t ′ = 〈

t ′1, t ′2, t ′3
〉 := 〈t1 + ai , t2 + bi , t3 + 1〉. In solution space,

this corresponds to setting the i-th component of the associated solution to 1. We
discard t ′ if t ′3 > κ , or there is another tuple

〈
s, t ′2, t ′3

〉 ∈ T with s ≥ t ′1. We denote
these pruning strategies by P1 and P2, respectively.

After all n iterations, we attain the optimal objective value as max〈t1,t2,t3〉∈T {t1 · t2}.
�

If we are also interested in optimal solutions, we can use standard techniques to
keep track of one solution per tuple. This incurs an additional factor of �(n) in the
running time later.

We observe that the computed solution is feasible.Moreover, the final set T contains
every possible non-dominated tuple—and possibly some more:

123



F. Bökler et al.

Lemma 11 Algorithm 2 finds all non-dominated evaluation tuples of a given instance.

Proof The algorithm is essentially a brute-force enumeration, computing all possible
evaluation tuples. However, the algorithm uses two pruning strategies.

Pruning P1 is correct since the algorithm never decreases the number of non-zero
components in any considered solution. Pruning P2 only deletes (some) dominated
evaluation tuples: The tuples in iteration i correspond to subsolutions only considering
the first i components. It is well-known, see e.g. (Nemhauser and Ullmann 1969),
that any non-dominated solution x cannot contain any dominated subsolutions. If it
contained a dominated subsolution x ′, let y′ denote the subsolution dominating x ′; we
could substitute x ′ by y′ in x to achieve a new solution that then dominates x . �

We now establish how the non-dominated tuples given by Algorithm 2 help us in
solving Rkp. We have to be a bit more careful than in the proof of Lemma 8.

Lemma 12 The evaluation tuple of any optimal solution to Rkp is non-dominated.

Proof Let x̂ be an optimal solution toRkp and assume its evaluation tuple is dominated
by some other evaluation tuple. Let x be a solution corresponding to the latter. Then
aTx ≥ aT x̂ , bTx ≥ bT x̂ , and 1Tx ≤ 1T x̂ , with at least one of these inequalities being
strict. If one of the first two is strict, x attains a better objective value than x̂—a
contradiction. If only the thirds is strict, we have 1Tx < κ and could set a further
component in x to 1, obtaining a yet better objective value—again a contradiction. �
Theorem 13 Algorithm 2 is a pseudopolynomial exact algorithm for Rkp. Its running
time is bounded by O(n3β) = O(n3W↓).

Proof The fact that Algorithm 2 computes all non-dominated evaluation tuples
together with Lemma 12 establishes correctness, and it remains to discuss the running
time. We can encode T as a two-dimensional array A with κβ rows and κ columns.
A tuple 〈t1, t2, t3〉 is stored as A[t2, t3] = t1; we have A[t ′2, t ′3] = −∞ if there is no
tuple

〈·, t ′2, t ′3
〉 ∈ T . Thus each pruning test can be trivially performed in constant time.

For later reference, let τ denote the maximum number of tuples ever in T . We have
τ ≤ κ2β ≤ n2β. Over the n iterations this yields a running time ofO(nτ) ⊆ O(n3β).

�
Corollary 14 Algorithm 2 yields a pseudopolynomial exact algorithm for Cbkp. Its
running time is bounded by O(n3β) = O(n3W↓).

6 FPTAS

Algorithm 3 For a given ε ∈ (0, 1), let

δ:= n
√

1/(1−ε) > 1

and for y ∈ N let


(y):=
{⌈

logδ y
⌉

if y ≥ 1

−1 else.

123



On the rectangular knapsack problem

Given a solution x ∈ {0, 1}n , we map it to its scaled evaluation tuple via

x �→
〈
aTx,


(
bTx

)
, 1Tx

〉
.

We reuse Algorithm 2 but modify it slightly: Instead of working on evaluation tuples,
we let Algorithm 2 now work on scaled tuples. Observe that we thus initialize T with
the tuple 〈0,−1, 0〉 that corresponds to x = 0.

The only algorithmic part we need to change is the computation of new scaled
evaluation tuples from a predecessor. In Algorithm 2, we were able to deduce a new
candidate tuple t ′ using only the predecessor tuple t ∈ T and not an actual solution x ,
since only linear functions were involved. To also achieve the same running time in
the new algorithm, we also shall not store a full solution for each tuple. Instead, for
each scaled tuple t ∈ T , we additionally store a single value B(t): Let x be a solution
that yields tuple t ; we want B(t):=bTx to be the value we would store as the second
entry in an unscaled evaluation tuple of x . The initial tuple has B(〈0,−1, 0〉) = 0.
For a scaled evaluation tuple t = 〈t1, t2, t3〉 ∈ T in iteration i , we can then efficiently
generate a new tuple t ′:= 〈t1 + ai ,
(B(t) + bi ), t3 + 1〉with B(t ′):=B(t)+bi . Tuple
t ′ is added to T subject to the same pruning strategies as described in Algorithm 2,
working purely on the scaled evaluation tuples.

The final objective value is naturally computed as maxt=〈t1,t2,t3〉∈T t1 · B(t). �
Lemma 15 The running time of Algorithm 3 is bounded by O(ε−1 n3 log(nβ)) ⊆
O(ε−1 n3 log(nW↓)) ⊆ O(ε−1N 4).

Proof The second entry in any scaled evaluation tuple is comprised by the 
 function
that can attain at most �logδ κβ� + 2 different values. Thus, we can let our array A
have �logδ κβ� + 2 rows and κ columns. Again, let τ denote the size of A. We have:

τ ≤ κ(2 + �logδ κβ�) ≤ n(3 + logδ nβ) ∈ O
(
n log nβ

log δ

)
= O

(
n2 log nβ

log 1/(1−ε)

)
.

The B(t) values can be perceived as an additional entry in every cell of A and thus
contributing as a constant factor to the size of A. Considering 1/ε → ∞, we have

1

log 1/(1−ε)
= −1

log(1 − ε)
= 1

ε + ε2/2 + ε3/3 + . . .
∈ �

(
1

ε

)

by Taylor expansion. Thus, τ ∈ O(ε−1n2 log nβ). The algorithm’s overall running
time is thus understood to be bounded by O(nτ) = O(ε−1n3 log nβ). �
Theorem 16 Algorithm 3 is an FPTAS for Rkp.

Proof Consider anRkp instance (a, b, κ)with an optimal solution x̂ . Lemma 15 settles
the running time requirement. It remains to show that for every ε > 0, Algorithm 3
finds a feasible solution x̊ with f (x̊) ≥ (1 − ε) f (x̂).

Let Xi be a set of solutions corresponding to T after iteration i ∈ {1, . . . n}, and
X0 = {0}. Recall that in any solution x ∈ Xi , only the first i components of x may be

123



F. Bökler et al.

non-zero. At any point in the algorithm, we may consider a final best solution x̌ that
we could still hope to find; initially set x̌ :=x̂ .

If the algorithm finds an optimal solution, the claim is true. Suppose an optimal
solution is not found; let � be the smallest iteration index, such that there is no solution
in X� that has the same first � components as x̌ . We define x̌� ∈ {0, 1}n such that
x̌�
i :=x̌i for 1 ≤ i ≤ � and x̌�

i :=0 for � < i ≤ n. That is, x̌� is equal to x̌ on the first
� components and 0 in all further components. Since x̌� /∈ X�, there must be some
solution x̄� ∈ X� that dominates x̌�.

Since x̄� dominates x̌� we have

aT x̄� ≥ aT x̌�,



(
bT x̄�

)
≥ 


(
bT x̌�

)
, and

1T x̄� ≤ 1T x̌�.

Focusing on the second inequality, if 

(
bT x̄�

) = −1, we have bT x̄� = bT x̌� = 0.
Otherwise, if


(
bT x̌�

) = −1, clearly bT x̄� ≥ bT x̌�. If neither
-evaluation yields−1,
we have for ν:= logδ b

T x̄� and μ:= logδ b
T x̌�, that ν ≥ μ − 1 and thus

bT x̄� = δν ≥ δμ−1 = 1/δ · bT x̌�.

Consequently, in all cases the inequality

bT x̄� ≥ 1/δ · bT x̌�

holds.
We now define x̌r :=x̌ − x̌�, i.e., x̌r matches x̌ on the last n − � components and is

0 on the first � components. Let x̃ :=x̄� + x̌r . We see that

aT x̃ = aT x̄� + aT x̌r ≥ aT x̌� + aT x̌r = aT x̌,

bT x̃ = bT x̄� + bT x̌r ≥ 1/δ · bT x̌� + bT x̌i ≥ 1/δ · bT x̌, and

1T x̃ = 1T x̄� + 1T x̌r ≤ 1T x̌� + 1T x̌r = 1T x̌ .

Intuitively, while x̌ is no longer attainable after iteration �, solution x̃ is still attain-
able as it can arise from x̄ . At the same time, x̃ is a solution with an objective value
that is at most a factor of 1/δ worse than x̌ in the second component.

We can iterate the above consideration with x̃ assuming the role of x̌ . We again
look for an iteration index �, such that the new x̌ does not agree with some solution in
X� on its first � components. If such an index is not present then the new x̌ is actually
computed by the algorithm. If such an index is present, this new index � is now strictly
larger than the index considered before. As there are only n possible indices, we repeat
this argument at most n times. For each repetition, we lose a factor of at most 1/δ in
the second component.

123



On the rectangular knapsack problem

Let x̊ be the final solution by the algorithm. We conclude that bT x̊ ≥ 1/δn · bT x̂ =
(1 − ε)bT x̂ , while aT x̊ ≥ aT x̂ and 1T x̊ ≤ 1T x̂ ≤ κ . Consequently, x̊ is feasible and
f (x̊) = (

aT x̊
) (
bT x̊

) ≥ (
aT x̂

)
(1 − ε)

(
bT x̂

) = (1 − ε) f (x̂). �

Corollary 17 Algorithm 3 yields an FPTAS for Cbkp with running time in
O(ε−1 n3 log nβ) ⊆ O(ε−1 n3 log(nW↓)) ⊆ O(ε−1N 4).

7 Conclusion

We answered all open questions from Schulze et al. (2020) regarding the complexity
and approximability of Rkp: while the problem is indeed NP-hard, it allows not only
a pseudopolynomial exact algorithm, but also an FPTAS—the theoretically strongest
kind of approximation algorithm. Furthermore, our techniques in fact also allow us to
directly tackle the Cbkp, achieving the equivalent algorithmic results.

Comparing Algorithms 1 and 3, our approach achieves a better running time in
all cases: O(ε−2n3 log(nW↓) log(nW↑)) ⊆ O(ε−2N 5) vs. O(ε−1 n3 log

(
nW↓)

) ⊆
O(ε−1N 4). Especially, our pseudopolynomial algorithm shows that Rkp can be solved
in polynomial time even if only W↓ (but not W↑) is bounded by a polynomial in the
input size.

Furthermore, it should be understood that our algorithms (and proofs) can trivially
be extended to any fixed arbitrary number of objective functions.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Erlebach T, Kellerer H, Pferschy U (2002) Approximating multiobjective knapsack problems. Manag Sci
48(12):1603–1612

Gallo G, Hammer P, Simeone B (1980) Quadratic knapsack problems. In: Padberg M (ed) Combinatorial
optimization, mathematical programming studies, vol 12. Springer, Berlin

Garey MR, Johnson DS (1979) Computers and intractability; a guide to the theory of NP-completeness.
Series of books in the mathematical sciences. W. H. Freeman & Co, New York

Kellerer H, Strusevich VA (2010) Fully polynomial approximation schemes for a symmetric quadratic
knapsack problem and its scheduling applications. Algorithmica 57(4):769–795

Nemhauser GL, Ullmann Z (1969) Discrete dynamic programming and capital allocation. Manag Sci
15(9):494–505

Papadimitriou CH, Yannakakis M (2000) On the approximability of trade-offs and optimal access of web
sources. In: FOCS. IEEE Computer Society, pp 86–92

Paquete L, SchulzeB, StiglmayrMet al (2022)Computing representationswith hypervolume scalarizations.
Comput Oper Res 137:105349

123

http://creativecommons.org/licenses/by/4.0/


F. Bökler et al.

Pferschy U, Schauer J (2016) Approximation of the quadratic knapsack problem. INFORMS J Comput
28(2):308–318

Pisinger D (2007) The quadratic knapsack problem–a survey. Discrete Appl Math 155(5):623–648
Rader DJJ, Woeginger GJ (2002) The quadratic 0− 1 knapsack problem with series-parallel support. Oper

Res Lett 30(3):159–166
Schulze B, Stiglmayr M, Paquete L et al (2020) On the rectangular knapsack problem: approximation of a

specific quadratic knapsack problem. Math Methods Oper Res 92(1):107–132
Taylor R (2016) Approximation of the quadratic knapsack problem. Oper Res Lett 44(4):495–497
Xu Z (2012) A strongly polynomial FPTAS for the symmetric quadratic knapsack problem. Eur J Oper Res

218(2):377–381

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On the rectangular knapsack problem
	Abstract
	1 Introduction
	2 Preliminaries
	3 NP-Hardness
	4 An FPTAS via MOKP
	5 Exact pseudopolynomial algorithm
	6 FPTAS
	7 Conclusion
	References




