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Abstract
Finding the stability number of a graph, i.e., themaximum number of vertices of which
no two are adjacent, is a well known NP-hard combinatorial optimization problem.
Since this problem has several applications in real life, there is need to find efficient
algorithms to solve this problem. Recently, Gaar andRendl enhanced semidefinite pro-
gramming approaches to tighten the upper bound given by the Lovász theta function.
This is done by carefully selecting some so-called exact subgraph constraints (ESC)
and adding them to the semidefinite program of computing the Lovász theta function.
First, we provide two new relaxations that allow to compute the bounds faster without
substantial loss of the quality of the bounds. One of these two relaxations is based on
including violated facets of the polytope representing the ESCs, the other one adds
separating hyperplanes for that polytope. Furthermore, we implement a branch and
bound (B&B) algorithm using these tightened relaxations in our bounding routine.We
compare the efficiency of our B&B algorithm using the different upper bounds. It turns
out that already the bounds of Gaar and Rendl drastically reduce the number of nodes
to be explored in the B&B tree as compared to the Lovász theta bound. However, this
comes with a high computational cost. Our new relaxations improve the run time of
the overall B&B algorithm, while keeping the number of nodes in the B&B tree small.
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1 Introduction

The stable set problem is a fundamental combinatorial optimization problem. It is
capable of modeling other combinatorial problems as well as real-world applications
and is therefore widely applied in areas like operations research or computer science.
We refer to the survey (Wu and Hao 2015) for more information and a review of exact
and heuristic algorithms. Most of the exact algorithms are based on branch and bound
(B&B) and differ mainly by different upper and lower bound computations. A recent
paper using a MIP solver is e.g. (Letchford et al. 2020). The models used in that paper
yield computation times from less than a second up to half an hour on a selection of
DIMACS instances.

Outstanding results are obtained by an algorithm of Depolli et al. (2013). They
introduced an algorithm using parallel computing for finding maximum cliques in the
context of protein design. The algorithm consists of carefully implemented algorithmic
building blocks such as an approximate coloring algorithm, an initial vertex ordering
algorithm and the use of bit-strings for encoding the adjacency matrix.

In the 2015 survey (Wu and Hao 2015), no exact algorithms using semidefinite
programming (SDP) are mentioned. One reason for the rare literature on SDP based
B&B algorithms is the high computational cost for computing these bounds. In this
work we introduce an SDP based B&B algorithm. We formulate new SDP relaxations
anddevelop solution algorithms to compute these boundswithmoderate computational
expense, making them applicable within a B&B scheme.

Before introducing the stable set problem, sometimes also referred to as vertex
packing problem, we give the definition of a stable set. Let G = (V , E) be a simple
undirected graph with |V | = n vertices and |E | = m edges. A set S ⊆ V is called
stable if no vertices in S are adjacent. S is called amaximal stable set if it is not possible
to add a vertex to S without losing the stability property. The stability number α (G)

denotes the maximum size of a stable set in G, where size means the cardinality of
the set. A stable set S is called a maximum stable set if it has size α(G).

For convenience, fromnowonwe always label the vertices of a graphwith n vertices
from 1 to n. Computing α(G) can be done by solving the following optimization
problem.

α(G) =max
n∑

i=1

xi (1)

s. t. xi + x j ≤ 1 ∀{i, j} ∈ E(G)

x ∈ {0, 1}n

For a graph G = (V , E), the set of all stable set vectors S(G) and the stable set
polytope STAB(G) are defined as
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S(G) = {
s ∈ {0, 1}n : si s j = 0 ∀{i, j} ∈ E

}
and

STAB(G) = conv {s : s ∈ S(G)} .

Determining α(G) is NP-complete and the decision problem is among Karp’s
21 NP-complete problems (Karp 1972). Furthermore, Håstad (1999) proved that α(G)

is not approximable within n1−ε for any ε > 0 unless P=NP. A well known upper
bound on α(G) is the Lovász theta function ϑ(G). Grötschel et al. (1988) proved that

ϑ(G) =max 1T
n x (2)

s. t. diag(X) = x

Xi, j = 0 ∀{i, j} ∈ E
(
1 xT

x X

)
� 0

X ∈ Sn , x ∈ R
n

and hence provided a semidefinite program (SDP) to compute ϑ(G). We define the
feasible region of (2) as

TH2(G) = {
(x, X) ∈ R

n × Sn : diag(X) = x,

Xi, j = 0 ∀{i, j} ∈ E, X − xxT � 0
}

.

Clearly for each element (x, X) of TH2(G) the projection of X onto its main diagonal
is x . The set of all projections

TH(G) =
{

x ∈ R
n : ∃X ∈ Sn : (x, X) ∈ TH2(G)

}

is called theta body.More information on TH(G) can be found for example in Conforti
et al. (2014). It is easy to see that STAB(G) ⊆ TH(G) holds for every graph G, see
(Grötschel et al. 1988). Thus ϑ(G) is a relaxation of α(G).

This paper is structured as follows. In Sect. 2 we introduce two new relaxations
using the concept of exact subgraph constraints. A branch and bound algorithm that
uses these relaxations is described in Sect. 3, followed by the discussion of numerical
results in Sect. 4. Sect. 5 concludes this paper.

2 New relaxations of the exact subgraph constraints

In this section we present two new approaches to find upper bounds on the stability
numberα(G) of a graph G starting from the Lovász theta functionϑ(G)with so-called
exact subgraph constraints, one based on violated facets and one based on separating
hyperplanes. After introducing these approaches, we compare them both theoretically
and practically.

123



144 E. Gaar et al.

2.1 Basic setup for exact subgraph constraints

Our approach is based on the idea of exact subgraph constraints that goes back to
Adams, Anjos, Rendl andWiegele (Adams et al. 2015) for combinatorial optimization
problems that have an SDP relaxation and was recently computationally investigated
by Gaar and Rendl (2019, 2020) for the stable set, the Max-Cut and the coloring
problem as a basis. Starting from this, we present two relaxations of including exact
subgraph constraints into the SDP for calculating ϑ(G) that are computationally more
efficient.

We first recapitulate the basic concepts of exact subgraph constraints with the
notation from Gaar (2020). An upper bound on α(G) is given by the Lovász theta
functionϑ(G). Due to the SDP formulation (2) it can be computed in polynomial time.
Adams, Anjos, Rendl and Wiegele (Adams et al. 2015) proposed to improve ϑ(G) as
an upper bound by adding so-called exact subgraph constraints. These exact subgraph
constraints can be used to strengthen SDP relaxations of combinatorial optimization
problems with a certain property by including subgraph information. For the stable
set problem we need the following definitions in order to introduce the exact subgraph
constraints. For a graph G the squared stable set polytope STAB2(G) is defined as

STAB2(G) = conv
{

ssT : s ∈ S(G)
}

andmatrices of the form ssT for s ∈ S(G) are called stable set matrices. Let G I denote
the subgraph induced by the vertex set I ⊆ V (G) with |I | = kI . With X I we denote
the submatrix of X that results when we delete each row and column corresponding
to a vertex that is not in I . In other words, X I is the submatrix of X where we only
choose the rows and columns corresponding to the vertices in I . Then the constraint
that asks the submatrix X I of (2) for an induced subgraph G I to be in the squared
stable set polytope STAB2(G I ) is called exact subgraph constraint (ESC).

The k-th level of the exact subgraph hierarchy introduced in Adams et al. (2015)
is the Lovász theta function (2) with additional ESC for each subgraph of order k. In
Gaar and Rendl (2019, 2020) this hierarchy is exploited computationally by including
the ESC only for a set J of subgraphs and then considering

z J (G) = max
{
1T

n x : (x, X) ∈ TH2(G), X I ∈ STAB2(G I ) ∀I ∈ J
}

. (3)

Clearly, α(G) ≤ z J (G) holds for every set J of subsets of V (G), so z J (G) is an
upper bound on α(G). One of the key remaining questions is how to solve (3). We
will compare different implementations and relaxations of this problem in the rest of
the paper and start by considering existing methods.

The most straightforward way to solve (3) is to include the ESCs in a convex
hull formulation as presented in Gaar and Rendl (2019, 2020); Gaar (2020). We now
recall the basic features and follow the presentation from Gaar (2020). As the ESC for
a subgraph G I makes sure that X I ∈ STAB2(G I ) holds and the polytope STAB2(G I )

is defined as the convex hull of the stable set matrices, the most intuitive way to
formulate the ESC is as a convex combination. Towards that end, for a subgraph G I
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of G induced by the subset I ⊆ V , let |S(G I )| = tI and let S(G I ) = {
s I
1 , . . . , s I

tI

}
.

Then the i-th stable set matrix SI
i of the subgraph G I is defined as SI

i = s I
i (s I

i )T . As
a result, the ESC X I ∈ STAB2(G I ) can be rewritten as

X I ∈ conv
{

SI
i : 1 ≤ i ≤ tI

}

and it is natural to implement the ESC for the subgraph G I as

X I =
tI∑

i=1

[λI ]i S I
i , λI ∈ �tI ,

where �tI is the tI -dimensional simplex.
This means that when including the ESC for the subgraph G I into (2) we have tI

additional non-negative variables, one additional linear equality constraint for λI and
the matrix equality constraint which couples X I and λI . We denote the number of
equality constraints that are induced by the matrix equality constraint by bI and note
that bI ≤ (kI +1

2

)
holds. With this formulation (3) can equivalently be written as

zC
J (G)=max

{
1T

n x : (x, X) ∈ TH2(G), X I =
tI∑

i=1

[λI ]i S I
i , λI ∈ �tI ∀I ∈ J

}
,

(4)

so z J (G) = zC
J (G) holds. In practice, this SDP can be solved by interior pointmethods

as long as the number of ESC constraints is of moderate size.
Due to the fact that (4) becomes a huge SDP as soon as the number of ESCs |J |

becomes large, Gaar and Rendl (2019, 2020) proposed to use the bundle method to
solve this SDP. The bundle method is an iterative procedure to find a global minimum
of a non-smooth convex function and has been adapted for SDPs by Helmberg and
Rendl (2000). As we use the bundle method only as a tool and do not enhance it any
further, we refrain from presenting details here.

2.2 Relaxation based on inequalities that represent violated facets

We will see later on that the computational costs of a B&B algorithm are enormous in
the original version with the convex hull formulation (4) and they are still substantial
with the bundle approach from Gaar and Rendl (2019, 2020). Therefore, we suggest
two alternatives.

First, we present a relaxation of calculating the Lovász theta function with ESCs (3)
that has already been mentioned in Gaar (2020), but has never been computationally
exploited so far. The key ingredient for this relaxation is the following observation. The
polytope STAB2(G I ) is given by its extreme points, which are the stable set matrices
of G I . Due to Weyl’s theorem (see for example (Nemhauser and Wolsey 1988)) it can
also be represented by its facets. This means that there are (finitely many) inequalities,
such that the constraint X I ∈ STAB2(G I ) can be represented by these inequalities.
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146 E. Gaar et al.

However, the facets and hence the inequalities depend on the stable set matrices and
therefore on the subgraph G I . Thus different subgraphs need different calculations
that will lead to different inequalities. Gaar (2020)[Lemma 3] showed that adding
the ESC X I ∈ STAB2(G I ) to the SDP calculating the Lovász theta function (2) is
equivalent to adding the constraint X I ∈ STAB2(G0

kI
) where G0

kI
= (V 0

kI
, E0) with

V 0
kI

= {1, . . . , kI } and E0 = ∅.
This implies that it is enough to calculate the facets of STAB2(G0

kI
) and include

these facets for each subgraph G I on kI vertices, instead of calculating the facets
of STAB2(G I ) for each subgraph G I separately. Let rkI be the number of facets of
STAB2(G0

kI
) and let FkI

i ∈ R
kI ×kI , f kI

i ∈ R for 1 ≤ i ≤ rkI such that

STAB2(G0
kI

) =
{

X ∈ R
kI ×kI :

〈
FkI

i , X
〉
≤ f kI

i ∀1 ≤ i ≤ rkI

}
,

so (FkI
i , f kI

i ) is an inequality representing the i-th facet of STAB2(G0
kI

). We obtained

rkI , FkI
i and f kI

i for kI ≤ 6 in the way suggested in Gaar (2020). For kI ≥ 7 this
computation is beyond reach, as r7 is conjectured to be 217093472 (Christof (2020)).

If we would include all facets of STAB2(G0
kI

) for each subgraph G I to replace the
ESCs in (3), then we would include a huge number of inequalities (r5 = 368 and
r6 = 116764) and reach the limits of computing power rather soon. In order to reduce
the number of inequalities, for each subgraph we include only those inequalities that
represent facets that are violated by the current solution X∗. To be more precise, let X∗
be the optimal solution of (3) for J = ∅, i.e., the optimal solution of calculating the
Lovász theta function. Then we define the indices of significantly violated facets of
G I , i.e., facets where the corresponding inequalities are violated at least by εF , as

V ′
I =

{
1 ≤ i ≤ rkI :

〈
FkI

i , X∗
I

〉
> f kI

i + εF

}
,

where εF is a small constant to take care of numerical inaccuracies of calculating X∗.
Now we can further reduce the number of included inequalities in the following

way. Although all (FkI
i , f kI

i ) are different for different values of i , it could happen that

for a subgraph G I there exist 1 ≤ i �= i ′ ≤ rkI such that (FkI
i , f kI

i ) and (FkI
i ′ , f kI

i ′ )

induce the same inequality. This is possible because they might differ only in positions
( j, j ′)with j, j ′ ∈ I and { j, j ′} ∈ E . Therefore, these different entries are multiplied
with zero due to [X∗

I ] j, j ′ = 0. Hence, let VI ⊆ V ′
I be a set such that only one index

among all indices in V ′
I which induce the same inequality is in VI . Then we obtain

the following relaxation of (3), in which we include only inequalities that induce
significantly violated facets of G I
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zF
J (G) = max

{
1T

n x : (x, X) ∈ TH2(G),
〈
FkI

i , X I

〉
≤ f kI

i ∀i ∈ VI ∀I ∈ J
}

.

(5)

Unfortunately for kI ≥ 7 it is not possible to store and check the facets of
STAB2(G0

kI
) for violation in reasonable memory and time due to the huge number of

facets. Hence, we can perform this relaxation only for subgraphs G I of order kI ≤ 6.

2.3 Relaxation based on separating hsyperplanes

Next we consider another approach to implement a relaxation of (3) which can also
be used for subgraphs G I of order kI ≥ 7 and which is based on including separating
hyperplanes.

It uses the following fact. Let X̃ be any matrix in ∈ Sn and let PI be the projec-
tion of X̃ I onto STAB2(G I ). Then we can calculate the projection distance of X̃ to
STAB2(G I ) as

∥∥∥PI − X̃ I

∥∥∥
2

F
= min

λI ∈�tI

∥∥∥∥∥

( tI∑

i=1

[λI ]i S I
i

)
− X̃ I

∥∥∥∥∥

2

F

= min
λI ∈�tI

∥∥∥∥∥

tI∑

i=1

[λI ]i (SI
i − X̃ I )

∥∥∥∥∥

2

F

= min
λI ∈�tI

kI∑

j=1

kI∑

j ′=1

( tI∑

i=1

[λI ]i

[
SI

i − X̃ I

]

j, j ′

)2

= min
λI ∈�tI

kI∑

j=1

kI∑

j ′=1

( tI∑

i=1

tI∑

i ′=1

[λI ]i [λI ]i ′
[

SI
i − X̃ I

]

j, j ′

[
SI

i ′ − X̃ I

]

j, j ′

)

= min
λI ∈�tI

tI∑

i=1

tI∑

i ′=1

[λI ]i [λI ]i ′

⎛

⎝
kI∑

j=1

kI∑

j ′=1

[
SI

i − X̃ I

]

j, j ′

[
SI

i ′ − X̃ I

]

j, j ′

⎞

⎠

= min
λI ∈�tI

λT
I QI λI , (6)

where QI ∈ R
tI ×tI and [QI ]i,i ′ =

〈
SI

i − X̃ I , SI
i ′ − X̃ I

〉
. QI is symmetric and positive

semidefinite because it is a Gram matrix, so (6) is a convex-quadratic program with
tI variables, a convex-quadratic objective function and one linear equality constraint.
With the optimal solution λI of (6) the projection of X̃ I onto STAB2(G I ) can be
obtained by PI = ∑tI

i=1[λI ]i S I
i . By defining

HI = 1∥∥∥X̃ I − PI

∥∥∥
F

(
X̃ I − PI

)
and hI = 1∥∥∥X̃ I − PI

∥∥∥
F

〈
X̃ I − PI , PI

〉
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148 E. Gaar et al.

due to the separating hyperplane theorem (see for example Boyd and Vandenberghe
2004)

〈HI , X I 〉 ≤ hI (7)

is a hyperplane that separates X̃ I from STAB2(G I ) such that X I = PI fulfills the
inequality with equality. Obviously (7) is a relaxation of the ESC X I ∈ STAB2(G I ),
so

zH
J (G) = max

{
1T

n x : (x, X) ∈ TH2(G), 〈HI , X I 〉 ≤ hI ∀I ∈ J
}

(8)

is another relaxation of (3) that depends on the chosen X̃ .

2.4 Theoretical comparison of the relaxations

We briefly comment on some theoretical properties of zC
J (G), zF

J (G) and zH
J (G). We

start by analyzing the upper bounds we obtain. Due to the fact that zF
J (G) and zH

J (G)

are relaxations of zC
J (G), we know that

α(G) ≤ zC
J (G) ≤ zF

J (G), zH
J (G) ≤ ϑ(G)

holds for every graph G and every set J .
Another important observation is the following. Whenever we include the ESC of

the subgraph G I into the SDP computing zC
J (G), the stable set problem is solved

exactly on this subgraph G I . However, when computing zF
J (G) and zH

J (G) we do
not include the ESC but only a relaxed version of it. Hence, in the optimal solutions
of these two relaxations, it could still be the case that the ESC is not fulfilled, i.e.,
for the subgraph G I we do not have an exact solution. Hence, it is possible that we
still find violated inequalities (representing facets or hyperplanes) in these cases. As
a consequence, for zC

J (G) it does not make sense to include the ESC for the same
subgraph twice, but for zF

J (G) and zH
J (G) it is possible that we want to include a

relaxation of the very same ESC twice with different facets or a different separating
hyperplane.

Finally let us consider the sizes of the SDPs to solve. In all three versions zC
J (G),

zF
J (G) and zH

J (G) we solve the SDP of the Lovász theta function (2) with additional
constraints, so in all three SDPswe have amatrix variable of dimension n+1which has
to be positive semidefinite (psd) and n+m+1 linear equality constraints. Additionally
to that we have

∑
I∈J tI non-negative variables and |J | + ∑

I∈J bI equality con-
straints for zC

J (G),
∑

I∈J |VI | inequalities for zF
J (G), and |J | inequalities for zH

J (G).
Table 1 gives an overview of the different sizes of the SDPs.
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Table 1 Sizes of the SDPs to compute zC
J (G), zF

J (G) and zH
J (G)

zC
J (G) zF

J (G) zH
J (G)

Dimension psd matrix variable n + 1 n + 1 n + 1

# Non-negative variables
∑

I∈J tI 0 0

# Linear equality constraints n + m + 1 + |J | + ∑
I∈J bI n + m + 1 n + m + 1

# Linear inequality constraints 0
∑

I∈J |VI | |J |

Table 2 The values of zC
J (G),

zF
J (G) and zH

J (G) for
G = G100,15 for different sets
Jq

J221 J443 J664 J886 J1107

zC
J (G) 26.9905 26.9299 26.8684 26.8496 26.8278

zF
J (G) 26.9975 26.9393 26.8807 26.8602 26.8397

zH
J (G) 27.0104 26.9741 26.9215 26.8992 26.8898

2.5 Computational comparison of the relaxations

Before we perform a large scale comparison of zC
J (G), zF

J (G) and zH
J (G) within a

B&B algorithm, we investigate a small example.

Example 1 We consider a random graph G = G100,15 from the Erdős-Rényi model
G(n, p) with n = 100 and p = 0.15. A random graph from this model has n vertices
and every edge is present with probability p independently from all other edges. For
the chosen graph, ϑ(G100,15) = 27.2003 and α(G100,15) = 24 holds, so

24 ≤ zC
J (G) ≤ zF

J (G), zH
J (G) ≤ 27.2003

holds for every set J .
All the computations were performed on an Intel(R) Core(TM) i7-7700 CPU @

3.60GHz with 32 GB RAM with the MATLAB version R2016b and with MOSEK
version 8. In the computations, we use εF = 0.00005 and we include a separating
hyperplane for a subgraph whenever the projection distance is greater or equal to
0.00005.

We compute zC
J (G), zF

J (G) and zH
J (G) for different sets J , which all consist of

subsets of vertices of size kI = 5 and only differ in the number q = |J | of included
ESCs. To be more precise, we consider five different sets J = Jq with q = |Jq | ∈
{221, 443, 664, 886, 1107}. These values of q are chosen in such away that the number
of linear equality constraints which are induced by thematrix equalities from the ESCs
in the convex hull formulation, i.e.,

∑
I∈Jq

bI , is in {3000, 6000, 9000, 12000, 15000}.
To choose the subsets in Jq , we first determine X∗ as the optimal solution of (3) for
J = ∅, i.e., the optimal solution of calculating the Lovász theta function (2). Then we
generated 3q subgraphs G I of order kI randomly and included those q subsets I into
Jq , where the corresponding X∗

I have the largest projection distances to STAB
2(G I ).

For computing zH
J (G) we choose X̃ = X∗.
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150 E. Gaar et al.

Table 3 The running times in
seconds for computing zC

J (G),

zF
J (G) and zH

J (G) of Table 2

J221 J443 J664 J886 J1107

zC
J (G) 8.14 29.30 66.95 139.64 279.11

zF
J (G) 0.61 1.15 1.94 2.72 3.81

zH
J (G) 0.75 1.25 1.93 2.57 3.34

Table 4 The average projection distances of X I to STAB2(G I ) over all I ∈ Jq before (i.e., X = X∗ is the

optimal solution of (2)), and after (i.e., X ∈ {XC∗, X F∗, X H∗} is the optimal solution of zC
J (G), zF

J (G)

and zH
J (G)) including the ESCs

J221 J443 J664 J886 J1107

Before including ESCs 0.03095 0.03014 0.03057 0.02982 0.03032

After computing zC
J (G) 0.00005 0.00004 0.00004 0.00004 0.00004

After computing zF
J (G) 0.00151 0.00087 0.00115 0.00080 0.00051

After computing zH
J (G) 0.00290 0.00256 0.00252 0.00196 0.00183

If we consider Table 2 with the improved upper bounds then we see that if q
increases, all upper bounds zC

J (G), zF
J (G) and zH

J (G) improve. Furthermore, one
can observe that for a fixed set Jq the obtained bounds of zC

J (G) are best, those of
zF

J (G) are a little bit worse and those of zH
J (G) are even a little bit more worse, i.e.,

empirically the bounds obtained by using zF
J (G) are better than those coming from

zH
J (G) in our example.
Next we consider the running times for computing zC

J (G), zF
J (G) and zH

J (G) in
Table 3. Here we see that the time it takes so solve zC

J (G) is extremely high and
increases drastically if the number of included ESCs gets larger. Both our relaxations
zF

J (G) and zH
J (G) reduce the running times enormously. The running times for zF

J (G)

and zH
J (G) are comparable, but computing zH

J (G) is slightly faster for including a large
number of ESCs as we only include one additional inequality in zH

J (G) whereas we
may include several inequalities that represent facets in zF

J (G).
As a next step we investigate the projection distances. Recall that X∗ is the optimal

solution of calculating the Lovász theta function (2). Let XC∗, X F∗ and X H∗ be the
optimal solution of calculating zC

J (G), zF
J (G) and zH

J (G), respectively. In Table 4
we see that the average projection distance of X∗ is significantly larger than 0 before
including the ESCs, so there are several violated ESCs. As soon as the ESCs are
included the average projection distance for XC∗ is almost zero, so the ESCs are
almost satisfied. In theory they should all be zero, but as MOSEK is not an exact
solver, the optimal solution is subject to numerical inaccuracies. If we turn to zF

J (G),
then the projection distances of X F∗

I are not as close to zero as those for XC∗, because
zF

J (G) is only a relaxation of zC
J (G). Also the average projection distance of X H∗

I
after solving zH

J (G) is greater than the one obtained with zF
J (G). This is in tune with

the fact that the upper bounds obtained in the latter case are better for this instance.
Furthermore, note that the average projection distances for X F∗

I and X H∗
I decrease as
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Table 5 The average number of
violated facets |VI | over all
subgraphs G I with I ∈ Jq
before and after including the
ESCs and computing zF

J (G)

J221 J443 J664 J886 J1107

Before including ESCs 1.53 1.56 1.57 1.56 1.56

After computing zF
J (G) 0.23 0.14 0.16 0.15 0.09

q increases. This is not surprising, as more ESCs mean that a bigger portion of the
graph is forced into the stable set structure.

Finally we present in Table 5 the average number of violated facets. As one can see
the average number of violated facets before including the ESCs is already very low.
This means that we do not include too many inequalities that represent facets in the
computation of zF

J (G). Furthermore, the average number of facets that are violated
by X F∗ decreases significantly compared to the average number of violated facets
before including the relaxations of the ESCs. This is very encouraging because one
could imagine a scenario where we iteratively add violated facets of one subgraph and
then the optimal solution violates different facets. However, the computations suggest
that this does not happen too often. Like before in Table 4 we see that the more ESCs
are included, the more stable set structure is captured and therefore the less facets are
violated after including the relaxations of the ESCs. ©

Let us briefly summarize the key points of Example 1. Usually the upper bounds
obtained by zF

J (G) are only slightly worse than those of zC
J (G), but the running times

are only a fraction. Unfortunately, this approach works only for subgraphs of order
at most 6. Also zH

J (G) yields good upper bounds in slightly better running time than
zF

J (G), but the bounds are a little bit worse. A major benefit of this approach is that it
can be used for subgraphs of any order.

In a nutshell, both zF
J (G) and zH

J (G) are relaxations of zC
J (G) that reduce the

running times drastically by worsening the bounds only a little bit. As a result these
bounds are very promising for including them into a B&B algorithm for stable set.

3 Branch and bound for the stable set problem

The aim of this section is to present our implementation of an exact branch and bound
(B&B) algorithm for the stable set problem (1).

3.1 Our branch and bound algorithm

We start by detailing the general setup of our B&B algorithm. Towards this end, keep
in mind that in a solution of (1) the binary variable xi is equal to 1 if vertex i is in the
stable set, and xi = 0 otherwise.

For our B&B algorithm for the stable set problem we choose a vertex i ∈ V (G)

and divide the optimization problem in a node of the B&B tree into the subproblem
where vertex i is in the stable set (i.e., set the branching variable xi = 1) and a second
subproblem where i is not in the stable set (i.e., set the branching variable xi = 0).
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It turns out that in each node of the B&B tree the optimization problem is of the
form

P(G, c) = c + max
∑

i∈V (G)

xi (9)

s. t. xi + x j ≤ 1 ∀{i, j} ∈ E(G)

xi ∈ {0, 1} ∀i ∈ V (G)

for some graph G, so in each node we have to solve a stable set problem and add a
constant term c to the objective function value. Indeed, by fixing a branching variable
xi to 0 or 1, we shrink the graph and create subproblems that are again stable set
problems of the form (9) but with a smaller graph and some offset c. To be more
precise, for the subproblem with xi = 1 the objective function value of (1) increases
by 1 because there is one more vertex in the stable set. Furthermore, all neighbors
of i can not be in the maximum stable set because i is already in the stable set. So
we can set x j = 0 for all j ∈ NG(i) if NG(i) = { j ∈ V (G) | {i, j} ∈ E(G)}
denotes the set of neighbors of the vertex i in G. Furthermore, we can delete i and
all neighbors of i in the current graph G and search for a maximum stable set in the
new graph G ′ of smaller order, where G ′ = G[U ′] is the subgraph of G induced by
U ′ = V (G) \ ({i} ∪ NG(i)

)
. Hence, the subproblem to solve in the new node has the

form P(G ′, c + 1).
In the subproblem for xi = 0 the vertex i is not in the stable set. We can remove the

vertex i from the graph and search for a maximum stable set in the induced subgraph
G ′′ = G[U ′′] with U ′′ = V (G) \ {i}. This boils down to solving P(G ′′, c) in the new
node of the B&B tree.

Note that whenever we delete a vertex i from the graph in the branching process,
we set the according variable xi to a fixed value. Consequently, in every node, all
vertices of the original graph G are either still present, or the value of the variable
corresponding to them is implicitly fixed. Furthermore, we exclude all non-feasible
solutions by deleting all neighbors in case of setting the branching variable to 1. Hence,
every time we set a variable of a vertex to 1 the set of all vertices of which the variable
is set to 1 remains stable and we only obtain feasible solutions of (1). Therefore, from
a feasible solution of (9) in any node we can determine a feasible solution of (1) with
the same objective function value.

The order of the graph to consider in a node shrinks whenever we branch. As
a consequence the B&B tree is of finite size. Whenever we reach a node with a
suproblem on a graph with less or equal to 23 vertices, we solve the problem by a
fast enumeration procedure that can be employed whenever the subproblems become
sufficiently small. To do so, we iterate easily—and especially fast—over all subsets
of V in descending order with an implementation of Hinnant (2011) in C++.

Bounds We do not want to solve the subproblems (9) in each node to optimality,
but only compute an upper and a lower bound on the optimal objective function value.
This boils down to obtaining bounds on the stability number of the graph considered
in (9). We present details on lower bounds obtained by heuristics in Sect. 3.2.

123



An SDP-based approach... 153

As upper bounds we use the relaxations based on ESCs in four different versions,
namely the convex hull formulation or the bundle method as detailed in Sect. 2.1, the
violated facets version as described in Sect. 2.2 or the separating hyperplanes version
as presented in Sect. 2.3. For choosing the subset J of ESCs, we follow the approach of
Gaar and Rendl (2020) in our computations and perform several cycles, i.e., iterations
of the repeat until loop, of solving (a relaxation of) (3) and then adjusting the set J ,
as illustrated in Algorithm 1.

In particular, we start with J = ∅, as preliminary computations have shown that
carrying over ESCs to subproblems does not pay off, and in each cycle we update
J depending on the current optimal solution X∗ of the SDP solved. We remove all
previously added ESCs where the associated dual variables of the optimal solution
have absolute value less than 0.01. For finding violated subgraphs (i.e., subgraphs for
which the ESC does not hold in X∗) we use the methods presented in Gaar and Rendl
(2020), so we use a local search heuristic to find submatrices of X∗ that minimize
the inner product with some matrices. We let the local search heuristic run for 9n
times and add random subgraphs to obtain 9n subgraphs without duplicates. From
these subgraphs we add the 3n most violated ones (subsets I with largest projection
distance of X∗

I to STAB
2(G I )) to J .

To reduce computational effort, we stop cycling as soon as we do not expect to be
able to prune within the next 5 cycles assuming that the decrease of the upper bound
z∗ in each future cycle is 0.75 of the average decrease we had in the previous cycles.

Algorithm 1: Upper bound computation at a B&B node
Input: Graph G at current node, method convex-hull, bundle-method, violated-factes, or

separating-hyperplanes
Output: Upper bound z∗

1 J = ∅
2 repeat
3 if convex-hull then let X∗ be an optimal solution of (4) with objective function value z∗

if bundle-method then let X∗ be the solution of approximately solving (4) using the bundle
method with objective function value z∗
if violated-facets then let X∗ be an optimal solution of (5) with objective function value z∗
if separating-hyperplanes then let X∗ be an optimal solution of (8) with objective function
value z∗,
where we choose X̃ as X∗ of the last cycle
remove ESCs from J if associated dual variables have small absolute value

4 search for ESCs violated by X∗ and add them to J
5 until optimistic forecast does not suggest pruning
6 return z∗

For our computations we use the implementation of the bundle method as it is
detailed in Gaar and Rendl (2020), in particular with all specifications given in Sec-
tion 6.3 therein and we let the bundle method run for at most 15 iterations in each
cycle.

Branching Rule An important question in the B&B algorithm is how to choose the
branching variable. In our implementation we follow the approach to first deal with
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vertices, for which we know least whether they will be in a maximum stable set or not
(“difficult first”) in order to find an optimal solution soon.

All our upper bounds are based on the Lovász theta function (2), so we can use the
intuition that the closer an entry xi is to 1 in an optimal solution of (2), the more likely
it is that this vertex i is in a maximum stable set. Hence, we choose the variable xi

with value closest to 0.5 as branching variable.
More on branching rules for the stable set problem can for example be found in

Fondzefe (2016); Xiao (2009).
Diving Strategy We implemented a best first search strategy, where we always

consider the open subproblem with the largest upper bound next. We expect that we
find a large stable set in this branch of the B&B tree because the difference between
the global lower bound and the upper bound for this branch is the highest of all.

3.2 Heuristics to find large stable sets

It is crucial to find a good lower bound on α(G) early in the B&B algorithm to
prevent the growth of the B&B tree and therefore solve the stable set problem more
efficiently. In Singh and Pandey (2015) andWu and Hao (2015), for example, one can
find references to some heuristics to find a large stable set. In our implementation we
use several different heuristics.

The first heuristic makes use of the vector x from the SDP formulation (2) of
ϑ(G), which is available from the upper bound computation. This vector consists of
n elements between 0 and 1. The value xi gives us some intuition about the i-th vertex
of the graph, namely the closer it is to 1, the more likely it is that the vertex is in
a maximum stable set. Hence, we sort the vertices in descending order according to
their value in x and then add the vertices in this order to a set S, such that the vertices
of S always remain a stable set. In the following we refer to this heuristic as (HT).

Furthermore, we use a heuristic introduced by Khan and Khan (2013) based on
vertex covers and vertex supports. A subset C of the vertices of a graph is called
vertex cover if for each edge at least one of the two incident vertices is in C . The
vertex support of a vertex is defined as the sum of the degrees of all vertices in the
neighborhood of this vertex. If C is a vertex cover, then clearly V (G) \ C is a stable
set, so instead of searching for a maximum stable set we can search for a vertex cover
of minimum cardinality. In a nutshell, the heuristic of Khan and Khan (2013) searches
for a vertex with maximum vertex support in the neighborhood of the vertices with
minimum vertex support. If there is more than one vertex with maximum support, one
with maximum degree is chosen. This vertex is added to the vertex cover C and all
incident edges are removed. The above steps are repeated until there are no edges left
in the graph. In the end we obtain a hopefully large stable set with V (G) \ C . We
denote this heuristic by (HVC).

Finally we use a heuristic proposed by Burer et al. (2002). Their heuristic is based
on the SDP formulation of the Lovàsz theta function with additional restriction to the
matrix variable to be of low rank. With rank one, a local maximizer of the problem
yields a maximal stable set, whereas with rank two the stable set corresponding to
the local maximizer does not necessarily have to be maximal, but one can escape to
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a higher local maximizer which corresponds to a maximal stable set. The C source
code of this heuristic is online available at Burer and Monteiro (2014). We use this
code with the parameters rank set to 2 and the number of so-called escapes set to 1
in a first version and set to 5 in a second version. Both parameter settings are among
the choices that were tested in Burer et al. (2002). We will refer to this versions with
(H21) and (H25).

In the B&B algorithm we perform the heuristic (H25) in the root node with a time
limit of 20 seconds. Then we only perform the heuristics in every third node of the
B&B tree. (HT) and (HVC) are very fast, so we let them run in each node we run
heuristics. Furthermore, in the first 10 nodes of the B&B tree we perform (H25) with
the hope to find a stable set of cardinality α(G) as soon as possible, but we do not
allow the heuristic to iterate longer than 7 seconds. For graphs with less than 200
vertices we additionally perform (H21) with the running time limited to 1 second. On
graphs withmore vertices we performwith probability 0.05 (H25) and a time limit of 7
seconds and in the other cases (H21) with a time limit of 3 seconds. In a computational
comparison in the master’s thesis of Siebenhofer (2018), this turned out to be the best
combination of heuristics.

4 Computational experiments

In this sectionwefinally compare theB&Balgorithms using the different upper bounds
presented so far. In Table 6 and Fig. 1 we compare the number of nodes generated in
the B&B algorithm as well as the CPU time and the final gap. The abbreviations refer
to the following bounds used.

(CH) We consider the upper bound obtained by the ESCs in the convex hull formula-
tion (CH) described in Sect. 2.1,

(BD) solving this formulation with the bundle method (BD) as presented in Sect. 2.1,
(VF) relaxing this formulation by considering only violated facets (VF) as described

in Sect. 2.2,
(SH) and using only separating hyperplanes (SH) as presented in Sect. 2.3.
(TH) For better comparability we also consider our B&B algorithm with only the

Lovász theta function (2) as an upper bound and denote this version with (TH).
Note that this boils down to solving (3) with J = ∅.

If we are not able to solve an instance within the timelimit, we indicate this in
Table 6 by a cell that is colored . Whenever a cell is colored it means that
the run did not finish correctly, for example because MOSEK produced an error or ran
out of memory. Before discussing the results, we give the details on the instances as
well as on the soft- and hardware.

4.1 Benchmark set and experimental setup

We consider several different instances. First, we consider the instances used in Gaar
and Rendl (2020), i.e., torus graphs, random near-r -regular graphs and random graphs
from theErdős-Rényimodel and also several instances from the literature.Additionally
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(a) (b)

Fig. 1 The performance comparison of the bounds (CH), (BD), (VF) and (SH)

we consider all instances from theDIMACSchallenge forwhich the gap betweenϑ(G)

and α(G) is larger than one (i.e., all instances which are not solved in the root node of
our B&B algorithm) and that have at most 500 vertices. Moreover, we consider spin
graphs, which are produced with the command ./rudy -spinglass3pm x x
x 50 xxx1 (for x ∈ {5, 7, 9, 11}) by the graph generator rudy, which was written
by Giovanni Rinaldi.1

We implemented our B&B algorithm with different upper bounds in C++. All com-
putations were performed on an Intel(R) Core(TM) i7-7700 CPU@ 3.60GHz with 32
GB RAM. All programs were compiled with gcc version 5.4.0 with the optimization
level -O3 and the CPU time was measured with std::clock. We set the random
seed to zero. We use MOSEK [22] 8.1 in the methods (CH), (VF), and (SH) to solve
the SDPs (4), (5), and (8), respectively. Furthermore, we use it within the method (BD)
for solving the subproblems within the bundle method for computing an approximate
solution of (4). Moreover, we use it to solve the QP (6) to compute the projection dis-
tance in (SH) and when updating J , i.e., while searching for subgraphs with violated
ESCs and adding these subgraphs to J . The execution time of our B&B algorithm is
limited to 4 hours, i.e., after this computation time we allow the B&B to finish solving
the SDP of the already started node in the B&B tree and then stop.

4.2 First computational experiments

We first want to compare the two different versions of the B&B algorithm that use
(CH) and (BD) to compute upper bounds, i.e., we compare those versions that have
already been established as upper bounds in the literature, but are now for the first
time used within a B&B algorithm.

First, by looking at Table 6 we observe that 20 instances were not solved correctly
with (CH), which is due to the fact that the SDPs to solve are huge and therefore
MOSEK runs out of memory very often. Indeed, by using (BD) and hence not having

1 Available at www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
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Table 6 The number of nodes in our B&B algorithm
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to solve that large SDPs only 10 instances are not solved correctly, most of them
due to other MOSEK errors. When we compare the number of B&B nodes for the
instances where both (CH) and (BD) finished we see that typically the number is the
same, or there are slightly more nodes for (BD). This is plausible, as we only have an
approximate solution of (3) when using (BD), but an exact solution of (3) with (CH).

We next take a closer look on the lines labeled (CH) and (BD) in the performance
profiles in Fig. 1. The B&B code using (BD) as bounding routine can solve muchmore
instances within a given time than when (CH) is used. Once the time limit is reached,
the gap is typically much lower for (BD) than it is for (CH).

In a nutshell, even though (BD) solves only a relaxation of (3), using it is much
faster than using (CH) while it does not increase the number of B&B nodes a lot. This
justifies considering only a relaxation of (3).

4.3 Computational experiments with new relaxations

Up to now we have used the exact subgraph approach of Adams et al. (2015) with
the implementation proposed by Gaar and Rendl (2019, 2020) in order to get tight
upper bounds on the stability number within a B&B algorithm for solving the stable
set problem. So far we have proven the strength of the bounds by showing that the
number of nodes in a B&B algorithm reduces drastically by using these bounds,
however the computational costs are enormous in the original version with the convex
hull formulation (CH) and they are still substantial with the bundle approach (BD)
from Gaar and Rendl (2019, 2020). Therefore, we now discuss the numerical results
of the B&B algorithm using the new relaxations (VF) and (SH).

Looking at Table 6, the first thing we observe is that both (VF) and (SH) never lead
to aMOSEK error, hence they aremore robust than the other versions, presumably due
to their smaller size of the SDPs to solve in the B&B nodes. For 9 instances both (VF)
and (SH) and in 13 instances at least one of (VF) and (SH) is able to finish within the
time limit for an instance where both (CH) and (BD) were not able to finish.

If we compare the number of B&B nodes in Table 6 for the finished instances, then
we see that typically the number of B&B nodes for (VF) is smaller than those of (BD),
which makes sense because in (BD) we only approximately solve (3) whereas in (VF)
we solve a possibly very tight relaxation of (3) exactly. The number of B&B nodes
needed by (SH) is typically a little bit larger than the one of (VF), which is in tune
with the empirical finding that (5) gives better bounds than (8) in the small example
considered in Sect. 2.5. In a nutshell, for finished runs typically (CH) and (VF) need
roughly the same number of nodes, (SH) needs a little bit and (BD) needs many more
nodes in the B&B tree.

As for the running times, in Fig. 1 we see that both (VF) and (SH) are faster than
(BD) and considerably faster than (CH). (VF) is a little bit slower than (SH). For those
instances that cannot be solved to optimality, the gap when the time limit is reached
is roughly the same for (VF) and (SH), and it is considerably tighter than for (BD).

We have demonstrated that within a B&B algorithm both our relaxations (VF)
and (SH) work better than already existing SDP based methods. In particular
using (SH) allows to keep the majority of the strength of the upper bound (3) (i.e.,
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keeping the number of vertices in the B&B tree low) by reducing the running time
so that within the time limit almost 60% of the instances are solved, as compared to
(CH) that only manages to solve a bit more than 20%.

5 Conclusions

We introduced an algorithm for computing the stability number of a graph using
semidefinite programming.While there exist several exact solutionmethods for finding
the stability number, those based on semidefinite programming are rather rare.

We implemented a B&B algorithm using the SDP relaxations introduced in Gaar
and Rendl (2019, 2020) together with heuristics from the literature. Moreover, we
further relaxed the SDPs, getting more tractable SDPs still producing high-quality
upper bounds. This is confirmed by the numerical experiments where we compare the
number of nodes to be explored in the B&B tree as well as the CPU times.

While SDPs produce strong bounds, the computational expense for solving the
SDPs is sometimeshuge. In particular, there is potential for improvement of the running
time for solving SDPs with many constraints. We use MOSEK as a solver, which uses
the interior point method to solve an SDP. For large instances it would be beneficial
to use a solver based on the boundary point method (Povh et al. 2006; Malick et al.
2009) or DADAL (De Santis et al. 2018). Moreover, the solver computing ϑ+ as an
upper bound (Cerulli et al. 2020) combined with the relaxations above, may push the
performance of the B&B solver even further. Also, these other solvers are capable of
doing warm starts, that can have big advantages within a B&B framework. Since all
these implementations are available as MATLAB source code only, they need to be
translated to C or C++ first. This will be part of our future work.

Another line of future research is working out different strategies for identifying
violated subgraphs, that should also lead to a more efficient overall algorithm.
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