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Abstract
We consider a portfolio optimization problem for a utility maximizing investor who is
simultaneously restricted by convex constraints on portfolio allocation and upper and
lower bounds on terminal wealth. After introducing a capped version of the Legendre–
Fenchel-transformation, we use it to suitably extend the well-known auxiliary market
framework for convex allocation constraints to derive equivalent optimality conditions
for our setting with additional bounds on terminal wealth. The considered utility does
not have to be strictly concave or smooth, as long as it can be concavified.

Keywords Dynamic portfolio optimization · Allocation constraints · Terminal
wealth constraints · Utility maximization · HJB · Concavification

Mathematics Subject Classification 91G10 · 91B70 · 49L20

1 Introduction

We consider a finite-horizon portfolio optimization problem for an expected utility
maximizing investor whose portfolio choice is simultaneously restricted by convex
allocation constraints (such as no-shortselling constraints, non-traded asset constraints
or borrowing constraints) as well as a lower and upper bound on terminal wealth. The
asset universe considered consists of a generalized Black–Scholes (B.S.) market with
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one risk-free asset and d risky assets with possibly random but bounded coefficients.
All of the uncertainty enters the market through a d dimensional Brownian motion
which drives the diffusion component of the risky assets.

The basis for this portfolio optimization problem goes back to Merton (1969),
Merton (1971), who considered an unconstrained portfolio optimization problem in a
multi-asset B.S.market with constantmarket coefficients and a smooth concave utility.
This set-up has been extended to general complete market models through the works
of Pliska (1986), Karatzas et al. (1987) and Cox and Huang (1989). Further exten-
sions were achieved trough the addition of transaction costs in Davis and Norman
(1990), Shreve and Soner (1994), Cuoco and Liu (2000) and Kallsen and Muhle-
Karbe (2010), illiquid assets in Desmettre and Seifried (2016), Choi (2020) as well
as stochastic volatility in Liu and Pan (2003), Kraft (2005) and Branger et al. (2008).
Moreover, general optimality results for incomplete markets were derived in Karatzas
et al. (1991), Kramkov and Schachermayer (1999) and Larsen and Žitkoviç (2013).
Despite these extensions on the model dynamics, the existence of most closed-form
solutions to the portfolio optimization problem remained closely linked to the smooth-
ness and concavity of the underlying utility function.Using concavification techniques,
Carpenter (2000) expanded the existing literature in regards to non-concave and non-
smooth utility functions. In light of the growing reception towards Kahnemann and
Tversky’s presentation of CPT in Tversky and Kahneman (1992), continuous-time
portfolio optimization under non-concave, non-smooth preferences has been exten-
sively studied since, for example in Berkelaar et al. (2004), Cuoco and Kaniel (2011),
Jin and Yu Zhou (2008), Reichlin (2013), Rásonyi and Rodrigues (2013) and Rásonyi
and Rodríguez-Villarreal (2016). Due to the thorough treatment in the literature, the
classical unconstrained portfolio optimization problem can be consideredwell-studied
and well-understood.
Once the investor faces constraints that restrict his investment decisions, for example
imposed by a regulator, the problem complexity quickly increases. One natural exam-
ple for this is a lower bound on terminal wealth, which forces the investor to ensure
that his wealth must not fall below a predetermined level at the end of his investment
horizon. Such a bound is very natural as it directly limits the investor’s downside risk.
A portfolio optimization problem, which includes a (possibly stochastic) lower bound
was solved by Tepla (2001) and Korn (2005). Shortly thereafter, more complex wealth
constraints were considered in the context of portfolio optimization. Notable exam-
ples include constraints on Value-at-Risk, expected shortfall or more general risk
measures in Basak and Shapiro (2001), Kraft and Steffensen (2013), Pirvu (2007),
Moreno-Bromberg et al. (2013), Chen et al. (2013) and Chen et al. (2020), which do
not impose a strict lower bound on terminal wealth while still limiting the investor’s
downside. Further, a more uncommon constraint, an additional upper bound on termi-
nalwealth,was considered inDonnelly et al. (2015). This additional restriction reduces
the probability of large losses at the cost of limiting the upside. However, solutions
to portfolio problems including the preceding constraints were mostly obtained for
smooth and concave utility functions and are heavily dependent on the underlying
market being complete.
Once the investor’s portfolio allocation is restricted, this is not the case anymore. For
an investor facing convex portfolio allocation constraints, but no direct constraints on
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terminal wealth, Cvitanic and Karatzas (1992) embedded this allocation constrained
portfolio optimization problem into a family of unconstrained portfolio optimization
problems formulated for an auxiliary market with changed market coefficients. Given
that the right market coefficients are found, one can can derive an optimal portfo-
lio for the original allocation constrained portfolio optimization problem. Notably,
the approach presented in Cvitanic and Karatzas (1992) generalizes the methods for
incomplete markets presented in Karatzas et al. (1991). While Cvitanic and Karatzas
(1992) considered constraints on the fraction ofwealth invested in the individual assets,
Zariphopoulou (1994) and Cuoco (1997) considered a portfolio optimization problem
with constraints on the absolute amount of wealth invested in the individual assets.
Further advancements in the area of allocation constrained portfolio optimization have
since been made by Zariphopoulou (1994), Bouchard et al. (2004), Bian et al. (2011),
Larsen and Žitkoviç (2013) and Li and Zheng (2018). All of these advances required
that no additional constraints on terminal wealth are present.

So far, the literature on portfolio optimization under simultaneous terminal wealth
and allocation constraints has been scarce and, if existent, did not aim to create a holis-
tic approach to treating these types of problems. Notable examples include Bardhan
(1994), Dong and Zheng (2019), Escobar et al. (2019) and Dong and Zheng (2020).
We aim to fill this gap in the literature by:

– Introducing the intuitive concept of a capped Legendre–Fenchel transformation,
which allows us to solve a portfolio optimization problem under simultaneous
lower and upper bounds on terminal wealth.

– Extending the auxiliary market framework to include lower and upper bounds
on terminal wealth as well as a large class of non-smooth, non-concave utility
functions.

– Deriving explicit solutions to portfolio optimization problems with non-concave,
non-smooth utility functions, with lower and upper bounds on terminal wealth
and simultaneous convex cone constraints on allocation via the extended auxiliary
market framework.

The paper is structured as follows: Section 2 introduces the market model and the
portfolio optimizationproblemwith simultaneous constraints onwealth and allocation.
Beforewe solve this fully constrainedproblem,wefirst review the solution technique to
a fully unconstrained portfolio optimization problem and a wealth-constrained port-
folio optimization problem, which we proceed to solve by introducing the capped
Legendre–Fenchel transformation in Sect. 3. Afterwards we extend the auxiliary
market from Cvitanic and Karatzas (1992) framework to include constraints on the
allocation and treat the fully constrained portfolio optimization problem in Sect. 4.
Section 5 introduces and solves a related dual optimization problem, which can be
used to explicitly solve the fully constrained portfolio optimization problem for con-
cave utility functions as well as for not necessarily concave utility functions. Section
6 concludes the paper.
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104 M. Escobar-Anel et al.

2 The portfolio optimization problemwith constraints on wealth and
allocation

We consider a finite time horizon T > 0 and a complete, filtered probability space
(Ω,FT ,F = (Ft )t∈[0,T ], Q), where the filtration F is generated by a d-dimensional
Wiener process W = (W (t))t∈[0,T ]. We employ this setting to define a market model
Mwith d risky assets (e.g. stocks) P = (P1, ..., Pd)′ and a risk-free asset (e.g. a bank
account) P0, which evolve according to the following dynamics:

dP(t) = P(t)
(
μ(t)dt + σ(t)dW (t)

)

dP0(t) = P0(t)r(t)dt

Pi (0) = 1 for i = 0, ..., d.

The market coefficients μ, σ, and r are assumed to be progressively measurable pro-
cesses w.r.t. F and uniformly bounded in (t, ω) ∈ [0, T ] × Ω . Moreover, we assume
that the volatility matrix L[0, T ] ⊗ Q − a.s. satisfies the strong nondegeneracy con-
dition

‖σ(t)′x‖2 ≥ ξ‖x‖2, ∀x ∈ Rd (2.1)

for some constant ξ > 0. This condition ensures that the inverse σ(t)−1 exists for
every t ∈ [0, T ] and is uniformly bounded in (t, ω), too. These conditions imply that
the considered market is complete (e.g. see Cvitanic and Karatzas (1992), Proposition
7.3). Note that market completeness is not a prerequisite for the theory developed in
this paper, but instead an instrument to facilitate the exposition. Just as in Karatzas
et al. (1991), in the case of an incomplete market, one can add additional fictitious
assets to complete the market and use the theory developed in Sect. 4 to rule out
investments into these assets through an allocation constraint.

Under these conditions we are allowed to define the market price of risk γ , the
corresponding Doléans-Dade-exponential Z and pricing Kernel Z̃ as

γ (t) := σ−1(t)
(
μ(t) − r(t)1

)

Z(t) := exp
{

− 1

2

∫ t

0
‖γ (s)‖2ds −

∫ t

0
γ (s)′dW (s)

}

Z̃(t) := Z(t)

P0(t)
= exp

{
−

∫ t

0
r(s) + 1

2
‖γ (s)‖2ds −

∫ t

0
γ (s)′dW (s)

}

for t ∈ [0, T ]. Note that Z and Z̃ satisfy the SDEs

dZ(t) = −Z(t)γ (t)′dW (t)

d Z̃(t) = −Z̃(t)
(
r(t)dt + γ (t)′dW (t)

)
.

In particular, due to the uniform boundedness of the market coefficients (and thus γ ),
Z satisfies Novikov’s condition and is a martingale.
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We consider a single investor who trades in M. Provided he has initial wealth
v0 > 0 at time t = 0, his wealth process inM satisfies the SDE

dV v0,π (t) = V v0,π (t)
(
[r(t) + (μ(t) − r(t)1)′π(t)]dt + π(t)′σ(t)dW (t)

)
∀t ∈ [0, T ]

(2.2)

with V v0,π (0) = v0. The d-dimensional portfolio process π is chosen by the
investor and determines the fraction of wealth πi (t) that is allocated to the risky asset
Pi (t) at time t , while the remaining fraction 1 − ∑d

i=1 πi (t) is allocated to the risk-
free asset. Note that 1− ∑d

i=1 πi (t) may be negative, in which case the investor goes
short the risk-free asset, or more intuitively, borrows from the bank account. To ensure
that the investor allocates his wealth solely based on past price developments and to
ensure that (2.2) is well-defined, we restrict the admissible portfolio processes π to
the following set:

Λ =
{
π = (

(π1(t), ..., πd(t))
′)
t∈[0,T ] progr. measurable

∣∣∣
∫ T

0

(
V v0,π (t)‖π(t)‖)2dt < ∞ Q − a.s.

}
(2.3)

Note that despite v0 appearing in the integrability condition in (2.3), Λ is independent
of the specific value of v0 because the initial wealth is just a constant multiplier to any
wealth process V v0,π (t) and hence does not affect the integrability condition in (2.3).
Apart from these mathematical restrictions, investors in the real-world often face addi-
tional constraints when allocating their wealth. We incorporate two general classes of
such constraints into our model: allocation constraints and bounds on terminal wealth.
Both types of constraints have been discussed extensively in the existing literature, (see
e.g. Cvitanic and Karatzas (1992) for allocation constraints and Donnelly et al. (2015)
for upper and lower bounds on terminal wealth), but to the best of our knowledge a
general mathematical theory that handles both types of constraints simultaneously in
the context of portfolio optimization is still absent from the literature.

From now on, let K ⊂ Rd be a closed convex set, which we call allocation con-
straints. Further, let 0 ≤ B1 < B2 ≤ ∞ be two constants, which we call bounds on
terminal wealth (note that B2 may be infinite). The set of admissible portfolio pro-
cesses under allocation constraints K and bounds on terminal wealth B1, B2 is given
as

Λ(v0, K , B1, B2) =
{
π ∈ Λ

∣∣∣ π ∈ K , B1 ≤ V v0,π (T ) ≤ B2

}
,

where both the statement about π and V v0,π (T ) are interpreted in an a.e. sense, i.e.
π(t) ∈ K L[0, T ] ⊗ Q-a.e. and B1 ≤ V v0,π (T ) ≤ B2 Q-a.s.. Note that due to the
additional bounds on terminal wealth, Λ(v0, K , B1, B2) is in general not independent
of v0.
The investor’s risk preferences are incorporated through the choice of an appropriate
utility function, which derives utility from terminal wealth.
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For this purpose we define the class of utility functions U(B1, B2), which contains
all functions U : (0,∞) → R, which satisfy:

(i) U is upper semi-continuous

(i i) U is non-decreasing and non-constant

(i i i) lim
x→∞

U (x)

x
= 0

(iv) U (B2) > U (x) and U (x) > −∞ for all x ∈ (B1, B2).

(2.4)

If U is finite on (B1, B2), differentiable and strictly increasing (as in Cvitanic and
Karatzas (1992)), then (iv) holds automatically and (iii) is equivalent to the condition
limx→∞ U ′(x) = 0. We set U (0) = limx↓0U (x) and U (∞) = limx→∞ U (x).
For Sects. 3 and 4 we will restrict ourselves to concave utility functions U ∈
Uconc(B1, B2) := {u ∈ U(B1, B2) | u is concave}.
Note that we do not put any restrictions regarding continuity on (B1,∞) or differentia-
bility on the functions in U(B1, B2). However, any U ∈ Uconc(B1, B2) is continuous,
where it is finite (as it is concave) and is even twice differentiable Lebesgue a.e. (due to
Alexandrov’s Theorem, e.g. Theorem 14.25 in Villani (2009)). Keeping this in mind,
we may refer to the first or second derivative of a U ∈ Uconc(B1, B2) in an Lebesgue
a.e.-sense.

We are now able to formulate the portfolio optimization problem (P) for the utility-
maximizing investor with a given utility U : (0,∞) → R:

(P)

{
Φ(v0) = sup

π∈Λ(v0,K ,B1,B2)
E

[
U (V v0,π (T ))

]

Clearly, we can rewrite (P) directly as a maximization over all attainable terminal
wealths:

(P)

⎧
⎨

⎩

Φ(v0) = sup
D∈C(v0,K ,B1,B2)

E
[
U (D)

]

C(v0, K , B1, B2) = {
V v0,π (T )

∣∣ π ∈ Λ(v0, K , B1, B2)
}

This may seem trivial at first, but since C(v0, K , B1, B2) can often be simplified
substantially (depending on the choice of K , B1 and B2), it is more convenient to
write (P) this way.

Note that there are many instances for which Λ(v0, K , B1, B2) is an empty set
(for example for B1 := v0 · P0(T ) + 1)1 or for which any π ∈ Λ(v0, K , B1, B2) is

1 It is straightforward to show that for any π ∈ Λ, the process V v0,π · Z̃ is a Q-supermartingale. Hence,
if B1 = v0 · P0(T ) + 1, any π ∈ Λ(v0, K , B1, B2) must satisfy

v0 ≥ E
[
V v0,π (T )
︸ ︷︷ ︸

≥B1

·Z̃(T )
] ≥ E

[
B1 · Z̃(T )

] = E
[
v0 · P0(T ) · Z̃(T )

︸ ︷︷ ︸
=Z(T )

+ Z̃(T )
︸ ︷︷ ︸
>0

]
> v0E

[
Z(T )

] = v0.

This is a contradiction, therefore Λ(v0, K , B1, B2) must be empty.
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optimal for (P) (i.e. if U is constant on [B1, B2]). Hence, we need to make suitable
assumptions on K , B1, B2 and U to rule out these instances.

Assumption 2.1 (i) K is a closed convex set, which contains the origin 0 ∈ Rd .
(ii) B1 < v0P0(T ) < B2 Q − a.s.
(iii) U ∈ U(B1, B2).

Unless otherwise stated, Assumption 2.1 is always assumed throughout this paper. It
guarantees that the risk-neutral strategy π ≡ 0 is admissible, but not an immediate
solution to (P), as the investor’s utility is maximized at the upper bound B2. Further, it
guarantees that the utility U does not impose an artificial constraint on the investor’s
terminal wealth beside the bounds B1, B2.

(P) is the most general portfolio optimization problem solved in this paper. In the
following section, we start off by solving the well-known unconstrained portfolio
optimization problem (with K = Rd , B1 = 0, B2 = ∞) for concave utility functions
U and gradually increase the problem complexity, by adding constraints on terminal
wealth and portfolio allocation step-by-step.

3 The capped Legendre–Fenchel-transformation

For the entirety of this section we assume that no allocation constraints are present,
i.e. K = Rd and the considered utility U is concave.

3.1 Fully unconstrained portfolio optimization

Let us first consider the by now well-understood unconstrained portfolio optimization
problem, i.e. K = Rd , B1 = 0 and B2 = ∞ (see. e.g. Pliska 1986 or Karatzas et al.
1987). Then, (P) simplifies to

(Punc)

⎧
⎨

⎩

Φ(v0) = sup
D∈C(v0)

E
[
U (D)

]

C(v0) = C(v0,R
d , 0,∞) = {

V v0,π (T )
∣
∣ π ∈ Λ

}

It is a well-known fact (see e.g. Cvitanic and Karatzas 1992, Proposition 7.3) that
under the present assumptions on market coefficients and admissible portfolio pro-
cesses π , the considered market is complete and C(v0) simplifies to

C(v0) = {
D ≥ 0 FT − measurable

∣∣ E[DZ̃(T )] = v0
}
. (3.1)

The requirementE[DZ̃(T )] = v0 for any admissible terminalwealth D is also referred
to as budget condition.

The classic approach to solving (Punc) now introduces the Legendre–Fenchel trans-
formation (LFT) U∗ : (0,∞) → R of the investor’s utility U as

U∗(y) := sup
x≥0

(
U (x) − yx

)
= U (I(y)) − yI(y)
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with

I(y) := inf
{
x ≥ 0

∣∣ U∗(y) = U (x) − yx
}
.

We further introduce the help function H : (0,∞) → R as

H(y) := E[I(y Z̃(T ))Z̃(T )].

Lemma 3.1 Assume that H(y) < ∞ ∀y > 0. Then, H is strictly decreasing, contin-
uous and satisfies

lim
y↓0 H(y) = lim

y↓0 E[I(y Z̃(T ))Z̃(T )] = ∞
and lim

y→∞ H(y) = lim
y→∞ E[I(y Z̃(T ))Z̃(T )] = 0.

In particular, there exists a continuous and strictly decreasing bijection

Y : (0,∞) → (0,∞)

such that

H(Y (v)) = v ∀v ∈ (0,∞).

Proof A more general version of this lemma, Lemma 4.4, is proved in the appendix.
��

This convenient construction of U∗, I, and H enables us to solve (Punc) fairly
easily:

Theorem 3.2 (Optimal Terminal Wealth of the Fully Unconstrained Portfolio Opti-
mization Problem) Let U be concave, K = Rd , B1 = 0, B2 = ∞ and assume that
H(y) < ∞ ∀y > 0. Then,

D∗ := I(y Z̃(T )),

with y = Y (v0), is the optimal terminal wealth for (Punc).

Proof By definition of I and y, D∗ is non-negative and E[D∗ Z̃(T )] = v0. Thus,
D∗ ∈ C(v0) is admissible for (Punc). Further, let D̂ ∈ C(v0) be any other admissible
terminal wealth for (Punc). Then,

E[U (D̂)] = E[U (D̂) − y Z̃(T )D̂] + yv0 ≤ sup
D∈C(v0)

(
E[U (D) − y Z̃(T )D]) + yv0

≤ E[sup
x≥0

(
U (x) − y Z̃(T )x

)] + yv0

= E[U (I(y Z̃(T ))
︸ ︷︷ ︸

=D∗
)] − yE[Z̃(T )I(y Z̃(T ))]

︸ ︷︷ ︸
=v0

+yv0 = E[U (D∗)].

��
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Remark 3.3 Theorem 3.2 is a well-known result in the mathematical finance literature.
To name a few sources, the theorem can be found with varying degrees of generality
as Theorem 4 in Pliska (1986), Theorem 5.2 in Karatzas et al. (1987) and Proposition
B.1 in Reichlin (2013).

Now that we have solved the fully unconstrained portfolio optimization problem
(Punc), we turn to upper and lower bounds on terminal wealth.

3.2 Wealth-constrained portfolio optimization

We now consider the wealth-constrained portfolio optimization problem, i.e. K = Rd

and B1, B2 are constants satisfyingAssumption 2.1.A similar problemwas considered
in Donnelly et al. (2015) for d = 1 with constant market coefficients. In our setting,
(P) reduces to the form

(PVcons)

⎧
⎪⎪⎨

⎪⎪⎩

Φ(v0) = sup
D∈C(v0,B1,B2)

E
[
U (D)

]

C(v0, B1, B2) = C(v0,R
d , B1, B2)

= {
V v0,π (T )

∣
∣ π ∈ Λ, B1 ≤ V v0,π (T ) ≤ B2

}

Since C(v0, B1, B2) ⊂ C(v0) and all D ∈ C(v0) with B1 ≤ D ≤ B2 are
necessarily in C(v0, B1, B2), we obtain the following simplified characterization of
C(v0, B1, B2):

C(v0, B1, B2) = {
D ∈ C(v0) | B1 ≤ D ≤ B2}

(3.1)= {
D ≥ 0 FT − measurable

∣∣ E[DZ̃(T )] = v0, B1 ≤ D ≤ B2
}

Let us now recall the proof of optimality in the fully unconstrained setting, from
Theorem 3.2. Two points were critical in this argument:

(i) The change frommaximizing overC(v0) to a pointwisemaximization over (0,∞)

within the expectation.
(ii) The convenient construction of the LFT U∗ and the help function H .

The first point was possible because the non-negativity “constraint” on terminal wealth
works pointwise. The construction of U∗ and H was specifically chosen to exploit
this as well as the concavity of U .
Since the bounds B1, B2 on terminal wealth are pointwise constraints, too, (i) is still
valid as long as we restrict the maximization to the interval [B1, B2]. The construction
of U∗ and H has to be adjusted accordingly. This leads to a natural extension of the
LFT:

We define the capped Legendre–Fenchel transformation (capped LFT)
U∗(·, B1, B2) : (0,∞) → R of the investor’s utility U as

U∗(y, B1, B2) := sup
B1≤x≤B2

(
U (x) − yx

)
= U (I(y, B1, B2)) − yI(y, B1, B2)
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110 M. Escobar-Anel et al.

y

capped vs. uncapped LFT

y

B1

B2

capped vs. uncapped maximizer

Fig. 1 In the “capped” areas, the capped LFT U∗(y, B1, B2) is an affine, decreasing function while the
maximizer I(y, B1, B2) is constant

with

I(y, B1, B2) := inf
{
B1 ≤ x ≤ B2

∣∣ U∗(y, B1, B2) = U (x) − yx
}

U concave= B1 + (I(y) − B1)
+ − (I(y) − B2)

+.

The defined capped LFT U∗(·, B1, B2) is convex and strictly decreasing (Fig. 1).
Moreover, one can show that themaximizer I(·, B1, B2) is non-increasing, has at most
countably infinite points of discontinuity and its limits satisfy limy↓0 I(y, B1, B2) =
B2 and limy→∞ I(y, B1, B2) = B1.2

Analogous to the previous section, we introduce the capped help function
H(·, B1, B2) : (0,∞) → R as

H(y, B1, B2) := E[I(y Z̃(T ), B1, B2)Z̃(T )].

Lemma 3.4 Assume that H(y, B1, B2) < ∞ ∀y > 0. Then, H(·, B1, B2) is strictly
decreasing, continuous and satisfies

lim
y↓0 H(y, B1, B2) = lim

y↓0 E[I(y Z̃(T ), B1, B2)Z̃(T )] = E[B2 Z̃(T )] =: v(B2)

and

lim
y→∞ H(y, B1, B2) = lim

y→∞ E[I(y Z̃(T ), B1, B2)Z̃(T )]
= E[B1 Z̃(T )] =: v(B1)

In particular, there exists a continuous and strictly decreasing bijection

Y (v, B1, B2) : (v(B1), v(B2)) → (0,∞)

2 These statements are proven as part of Lemma 8.1 in the supplementary Technical Document.
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Portfolio optimization: not necessarily concave… 111

such that

H(Y (v, B1, B2), B1, B2) = v ∀v ∈ (v(B1), v(B2)).

Proof A more general version of this lemma, Lemma 4.4, is proved in the appendix.
��

By virtue of the properties of the capped LFT and capped help function, we are
now in a position to solve (PVcons).

Theorem 3.5 (Optimal Terminal Wealth of the Wealth-Constrained Portfolio Opti-
mization Problem)

Let U be concave and assume that H(y, B1, B2) < ∞ ∀y > 0. Let K = Rd , and
0 ≤ B1 < B2 ≤ ∞ be constants. Then,

D∗ := I(y Z̃(T ), B1, B2) = B1 + (I(y Z̃(T )) − B1)
+ − (I(y Z̃(T )) − B2)

+,

with y = Y (v0, B1, B2), is the optimal terminal wealth for (PVcons).

Proof Bydefinition ofI(·, B1, B2), B1 ≤ D∗ ≤ B2 and y, we haveE[D∗ Z̃(T )] = v0.
Thus, D∗ ∈ C(v0, B1, B2) is admissible for (PVcons). Further, let D̂ ∈ C(v0, B1, B2)

be any other admissible terminal wealth for (PVcons). Then,

E[U (D̂)] = E[U (D̂) − y Z̃(T )D̂] + yv0 ≤ sup
D∈C(v0,B1,B2)

(
E[U (D) − y Z̃(T )D]) + yv0

≤ E[ sup
B1≤x≤B2

(
U (x) − y Z̃(T )x

)] + yv0

= E[U (I(y Z̃(T ), B1, B2)︸ ︷︷ ︸
=D∗

)] − yE[Z̃(T )I(y Z̃(T ), B1, B2)]︸ ︷︷ ︸
=v0

+yv0 = E[U (D∗)].

��

4 Auxiliary markets with bounds on terminal wealth

In this section we finally consider the original fully constrained portfolio optimization
problem with general allocation constraints K ⊂ Rd , simultaneous lower and upper
bounds on terminal wealth B1, B2 and concave utility function U . The aim of this
section is the generalization of the well-known auxiliary market framework from
Cvitanic and Karatzas (1992) to include terminal wealth constraints B1 and B2.

4.1 Formulation of the auxiliary markets

For setting up the auxiliary markets we need to introduce the support function δ and
barrier cone XK of K as

δ : Rd → R, δ(x) = − inf
y∈K(x ′y), XK := {

x ∈ Rd
∣∣ δ(x) < ∞}

.

123



112 M. Escobar-Anel et al.

Note that due to Assumption 2.1, 0 ∈ K and thus δ(x) ≥ 0 for all x ∈ Rd . Moreover,
the support-function δ is positive homogenous of order 1, sub-additive and is zero for
all x ∈ XK if and only if K is a convex cone.3 Further, wemay use the notions of δ and
XK to characterize K (see e.g. Rockafellar 1970, Theorem 13.1), as for any x ∈ Rd

x ∈ K ⇔ δ(λ) + λ′x ≥ 0 ∀λ ∈ XK . (4.1)

Remark 4.1 By scaling any non-zero λ ∈ XK , to have norm ‖λ‖ ≤ 1, one can see

x ∈ K ⇔ δ(λ) + λ′x ≥ 0 ∀λ ∈ XK , ‖λ‖ ≤ 1.

Further,we introduce the set ofRd -valued dual processesD, whichwill parametrize
the auxiliary markets.

D :=
{
λ = (

(λ1(t), ..., λd(t))
′)
t∈[0,T ] prog. measurable

∣∣∣

E
[ ∫ T

0
‖λ(t)‖2dt

]
< ∞, E

[ ∫ T

0
δ(λ(t))dt

]
< ∞

}

For any λ ∈ D, the latter integrability condition guarantees λ(t) ∈ XK L[0, T ] ⊗ Q-
a.e..

Finally, for a given λ ∈ D we define the auxiliary marketMλ as the asset universe
with d risky assets Pλ = (Pλ

1 , ..., Pλ
d ) and one risk-free asset Pλ

0 , which evolve
according to the following dynamics:

dPλ(t) = Pλ(t)
(
μ(t) + λ(t) + δ(λ(t))1
︸ ︷︷ ︸

=: μλ(t)

dt + σ(t)dW (t)
) = Pλ(t)

(
μλ(t)dt + σ(t)dW (t)

)

dPλ
0 (t) = Pλ

0 (t)
(
r(t) + δ(λ(t))
︸ ︷︷ ︸

=: rλ(t)

)
dt = Pλ

0 (t)rλ(t)dt

Pλ
i (0) = 1 for i = 0, ..., d.

The risk-free asset Pλ
0 still represents the same bank account, whereas the assets

Pλ
i represent the same risky assets from our original setting but with changed drift

coefficients.
Moreover, in Mλ, the market price of risk γλ, the corresponding Doléans-Dade-

exponential Zλ and pricing kernel Z̃λ are given as

γλ(t) := σ−1(t)
(
μλ(t) − rλ(t)1

) = σ−1(t)(μ(t) − r(t)1 + λ(t))

Zλ(t) := exp
{

− 1

2

∫ t

0
‖γλ(s)‖2ds −

∫ t

0
γλ(s)′dW (s)

}

Z̃λ(t) := Zλ(t)

Pλ
0 (t)

= exp
{

−
∫ t

0
rλ(s) + 1

2
‖γλ(s)‖2ds −

∫ t

0
γλ(s)′dW (s)

}

3 These statements are proven as part of Lemma 8.1 in the supplementary Technical Document.
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for t ∈ [0, T ]. Again, Zλ and Z̃λ satisfy the SDEs

dZλ(t) = −Zλ(t)γλ(t)′dW (t)

d Z̃λ(t) = −Z̃λ(t)
(
rλ(t)dt + γλ(t)′dW (t)

)
.

Since λ ∈ D need not be uniformly bounded, the market coefficients in Mλ need
not be uniformly bounded either. Hence, it is not clear if the local martingale Zλ is
indeed a true martingale. However, since Zλ is non-negative, it is a supermartingale.

In the auxiliary market, we accordingly adjust the definition of V v0,π
λ , the wealth

process of an investor trading according to π ∈ Λ in the market Mλ to

dV v0,π
λ (t) = V v0,π

λ (t)
([rλ(t) + (μλ(t) − rλ(t)1)′π(t)]dt + π(t)′σ(t)dW (t)

)

= V v0,π
λ (t)

([r(t) + (μ(t) − r(t)1)′π(t)] + π(t)′σ(t)dW (t)
)

+ V v0,π
λ (t)[δ(λ(t)) + λ(t)′π(t)]

︸ ︷︷ ︸
(∗)

dt
(4.2)

∀t ∈ [0, T ]. This is the same SDE as in the original market M, apart from the
additional drift term (∗). Due to (4.1), (∗) is non-negative as long π(t) ∈ K . Hence,
for an investor who abides by the allocation constraints, the wealth process in Mλ,
will be larger or equal than the wealth process inM, i.e. V v0,π

λ (t) ≥ V v0,π (t).
In particular, we need to restrict an investor’s portfolio choice in Mλ to the set

Λλ =
{
π = (

(π1(t), ..., πd(t))
′)
t∈[0,T ] progr. measurable

∣∣∣
∫ T

0

(
V v0,π

λ (t)‖π(t)‖)2dt < ∞ Q − a.s.
}

The allocation-unconstrained, wealth-constrained portfolio optimization problem
(PVcons

λ ) inMλ is defined as

(PVcons
λ )

⎧
⎨

⎩

Φλ(v0) = sup
π∈Λλ(v0,B1,B2)

E
[
U (V v0,π

λ (T ))
]

Λλ(v0, B1, B2) = {
π ∈ Λλ

∣∣ B1 ≤ V v0,π
λ (T ) ≤ B2

}

Note that (PVcons
λ ) is a similar optimization problem as (PVcons), but formulated in a

different marketMλ, rather thanM. Our program is now to derive a similar slackness
condition to Condition (B) from Cvitanic and Karatzas (1992). Since B1 and B2 not
only constrain the downside of the portfolio value, but also its upside, such a condition
is not straightforward. An increase of the terminal wealth in an auxiliary marketMλ

(due to the added positive drift in (4.2)) may now lead to a violation of the terminal
wealth constraints and may even lead to (PVcons

λ ) being infeasible. Therefore, we need
to do a small work-around first.
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For every λ ∈ D, we bypass the upper bound B2, by formulating an auxiliary
problem (P̃λ) with capped utility function Ũ (x) := U (x − (x − B2)

+)

(P̃λ)

⎧
⎨

⎩

Φ̃λ(v0) = sup
π∈Λλ(v0,B1)

E
[
Ũ (V v0,π

λ (T ))
]

Λλ(v0, B1) = {
π ∈ Λλ

∣∣ B1 ≤ V v0,π
λ (T )

}

We use Ũ ∈ Uconc(B1, B2) to remove the “hard” upper bound B2, but cap the
utility gain at B2 to ensure that we don’t gain any additional utility from having more
terminal wealth than B2. The optimal terminal wealth for (P̃λ) should not take on any
unrewarded risk and thus should automatically abide by the upper bound B2. Similarly,
one could have removed the lower bound B1, by setting Ũ (x) = −∞ for x < B1. We
arrive at the following optimality Condition (B̃):

Lemma 4.2 (Condition (B̃)) Let λ∗ ∈ D, πλ∗ be the optimal portfolio process for
(P̃λ∗) and Dλ∗ = V v0,πλ∗ (T ). If further

πλ∗ ∈ Λ(v0, K , B1, B2) and δ(λ∗(t)) + πλ∗(t)′λ∗(t) = 0 L[0, T ) ⊗ Q − a.s.,

(4.3)

then πλ∗ is admissible and optimal for the primal problem (P) and Φ̃λ∗(v0) =
Φ(v0).

Proof The argument goes along the lines of Cvitanic and Karatzas (1992), Proposition
8.3. Anyπ ∈ Λ(v0, K , B1, B2) satisfiesπ(t) ∈ K L[0, T )⊗Q−a.e. and the terminal
wealth in M satisfies B1 ≤ V v0,π (T ) ≤ B2 Q − a.s.. Further, for any λ ∈ D the
terminal wealth process of the same portfolio process π inMλ satisfies

B1 ≤ V v0,π (T ) ≤ V v0,π
λ (T ),

due to (4.2). Hence, Λ(v0, K , B1, B2) ⊂ Λλ(v0, B1) and Φ(v0) ≤ Φ̃λ(v0).
For the choice of λ = λ∗, we know that πλ∗ is optimal for (P̃λ∗), πλ∗ ∈
Λ(v0, K , B1, B2) and V v0,πλ∗ (T ) = V v0,πλ∗

λ∗ (T ), due to (4.3). Hence,

Φ̃λ∗(v0) = E[Ũ (V v0,πλ∗
λ∗ (T ))] = E[Ũ (V v0,πλ∗ (T ))] ≤ E[U (V v0,πλ∗ (T ))] ≤ Φ(v0).

Therefore, Φ̃λ∗(v0) = Φ(v0) and πλ∗ is optimal for (P). ��
Condition (B̃) allows us to relate the solutions of the allocation unconstrained

auxiliary problem (P̃λ) and the original problem (P). We now know, provided we
have chosen the right auxiliary marketMλ∗ , the solutions to both problems coincide.
Correspondingly, it makes sense to first study the simpler problem (P̃λ) for all λ ∈ D
and try to find λ∗ afterwards.

Similar to the previous sections, we can alternatively express (P̃λ) as an optimiza-
tion over admissible terminal wealths. Again, due to the market completeness ofMλ,
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this optimization simplifies to

(P̃λ)

⎧
⎨

⎩

Φ̃λ(v0) = sup
D∈Cλ(v0,B1)

E
[
Ũ (D)

]

Cλ(v0, B1) = {
D ≥ 0 FT − measurable

∣∣ E[DZ̃λ(T )] = v0, B1 ≤ D
}

As we have seen in the previous section, the form of the solution to a wealth-
constrained problem depends on the market’s pricing kernel and the maximizing
argument of the capped LFT. The key observation for obtaining the solution to (P̃λ)

is that even though U and Ũ are different utility functions, their capped LFT, as well
as the corresponding maximizing arguments, can be related nicely.

Lemma 4.3

Ũ∗(y, B1,∞) = U∗(y, B1, B2)

In particular, the corresponding maximizing arguments coincide:

Ĩ(y, B1, B2) = inf
{
B1 ≤ x ≤ B2

∣∣ Ũ∗(y, B1, B2) = Ũ (x) − yx
}

= inf
{
B1 ≤ x ≤ B2

∣∣ U∗(y, B1, B2) = U (x) − yx
} = I(y, B1, B2)

Proof For any y > 0, x ≥ B2

Ũ (x) − yx = U (B2) − yx ≤ U (B2) − yB2

and since Ũ ≡ U on [0, B2]

Ũ∗(y, B1,∞) = sup
B1≤x

(
Ũ (x) − yx

)
= sup

B1≤x≤B2

(
Ũ (x)︸ ︷︷ ︸
=U (x)

−yx
)

= U∗(y, B1, B2)

��
Due to Lemma 4.3, it is sensible to define the capped help function in Mλ as

Hλ(·, B1, B2) : (0,∞) → R

Hλ(y, B1, B2) := E[I(y Z̃λ(T ), B1, B2)Z̃λ(T )]

The capped help function in Mλ inherits similar properties as in the original market
M.

Lemma 4.4 Let U ∈ U(B1, B2), λ ∈ D and assume that Hλ(y, B1, B2) < ∞ ∀y > 0.
Then, Hλ(·, B1, B2) is strictly decreasing, continuous and satisfies

lim
y↓0 Hλ(y, B1, B2) = lim

y↓0 E[I(y Z̃λ(T ), B1, B2)Z̃λ(T )] = E[B2 Z̃λ(T )] =: vλ(B2)
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and

lim
y→∞ Hλ(y, B1, B2) = lim

y→∞ E[I(y Z̃λ(T ), B1, B2)Z̃λ(T )]
= E[B1 Z̃λ(T )] =: vλ(B1)

In particular, there exists a continuous and strictly decreasing bijection

Yλ(·, B1, B2) : (vλ(B1), vλ(B2)) → (0,∞)

such that

Hλ(Yλ(v, B1, B2), B1, B2) = v ∀v ∈ (vλ(B1), vλ(B2))

Proof The proof of this lemma can be found in the appendix. ��
This naturally leads to the following assumption:

Assumption 4.5

v0 < E[B2 Z̃λ(T )] = vλ(B2).

Theorem 4.6 (Optimal Terminal Wealth for (P̃λ))
Let U be concave, let λ ∈ D and Hλ(y, B1, B2) < ∞ ∀y > 0. If λ ∈ D satisfies

Assumption 4.5, then

D∗
λ := I(y Z̃λ(T ), B1, B2) = B1 + (I(y Z̃λ(T )) − B1)

+ − (I(y Z̃λ(T )) − B2)
+

with y = Yλ(v0, B1, B2), is the optimal terminal wealth for (P̃λ). If λ ∈ D does not
satisfy Assumption 4.5, then

D∗
λ = B2 + v0 − vλ(B2)

E[Z̃λ(T )]

is an optimal terminal wealth for (P̃λ) and λ does not satisfy Condition (B̃).

Proof Case : λ ∈ Dsatisfies Assumption4.5. By Assumption 4.5 and

vλ(B1) = E[B1 Z̃λ(T )] Asm.2.1
< v0E[P0(T )Z̃λ(T )] δ≥0≤ v0 E[Zλ(T )]︸ ︷︷ ︸

≤ 1

≤ v0,

we know that Yλ(v0, B1, B2) is well-defined. Further, by definition of I(·, B1, B2) and
y, we have B1 ≤ D∗

λ and E[D∗
λ Z̃λ(T )] = v0. Thus, D∗

λ ∈ Cλ(v0, B1) is admissible
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for (P̃λ). Further, let D̂ ∈ Cλ(v0, B1) be any other admissible terminal wealth for
(P̃λ). Then,

E[Ũ (D̂)] =E[Ũ (D̂) − y Z̃(T )D̂] + yv0 ≤ sup
D∈Cλ(v0,B1)

(
E[Ũ (D) − y Z̃λ(T )D]) + yv0

≤E[ sup
B1≤x

(
Ũ (x) − y Z̃λ(T )x

)] + yv0 ≤ E[ sup
B1≤x≤B2

(
U (x) − y Z̃λ(T )x

)] + yv0

=E[U (I(y Z̃λ(T ), B1, B2)︸ ︷︷ ︸
=D∗

λ

)] − yE[Z̃λ(T )I(y Z̃λ(T ), B1, B2)]︸ ︷︷ ︸
=v0

+yv0

=E[U (D∗
λ)] D∗

λ≤B2= E[Ũ (D∗
λ)].

Case : λ ∈ Ddoes not satisfy Assumption4.5. Clearly, D∗
λ ≥ B2 > B1 and

E[D∗
λ Z̃λ(T )] = v0 and therefore D∗

λ is admissible for (P̃λ). Further,

E[Ũ (D∗
λ)] ≥ E[Ũ (B2)] = U (B2) ≥ sup

D∈Cλ(v0,B1)
E[Ũ (D)] = Φ̃λ(v0),

as Ũ (x) ≤ U (B2) for all x ≥ 0. Hence, D∗
λ must be an optimal terminal wealth for

(P̃λ). Assume now that λ satisfies Condition (B̃). Then, by (4.3), there exists a πλ ∈
Λ(v0, K , B1, B2), which is optimal for (P̃λ) and satisfies δ(λ(t)) + πλ(t)′λ(t) = 0
L[0, T ] ⊗ Q−a.s.. In particular, this implies

D := V v0,πλ
λ (T ) = V v0,πλ(T )

πλ∈Λ(v0,K ,B1,B2)≤ B2 Q − a.s.

and E[DZ̃λ(T )] D∈Cλ(v0,B1)= v0
D∈C(v0,B1,B2)= E[DZ̃(T )].

Moreover, we have

v0 ≥ vλ(B2) = E[ B2︸︷︷︸
≥D

Z̃λ(T )] ≥ E[DZ̃λ(T )] = v0,

i.e. v0 = vλ(B2). This implies

0 = vλ(B2) − v0 = E[(B2 − D)︸ ︷︷ ︸
≥0

Z̃λ(T )︸ ︷︷ ︸
>0

] ⇒ D = B2 Q − a.s..

However, using Assumption 2.1 we get

v0 = E[DZ̃(T )] = E[B2 Z̃(T )] Asm.2.1
> v0 E[Z(T )]︸ ︷︷ ︸

=1

= v0,

which is a contradiction. Hence, λ cannot satisfy Condition (B̃). ��
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The underlying observation is simple: as long as the capital necessary to perfectly
hedge B2 in Mλ vλ(B2) is larger than v0, the optimal wealth corresponding to (P̃λ)

will be smaller or equal than B2. This is in line with our previous intuition.
We restrict the definition ofD′ to additionally enforce that for every λ ∈ D′ we can

solve (P̃λ) and Assumption 4.5 is satisfied

D′ := {
λ ∈ D ∣∣ v0 < vλ(B2), Hλ(y, B1, B2) < ∞ ∀y > 0

}

and summarize our findings in a corollary:

Corollary 4.7 Let U be concave and λ∗ ∈ D′, let πλ∗ be the optimal portfolio process
for (P̃λ∗). If λ∗ and πλ∗ satisfy

δ(λ∗(t)) + πλ∗(t)′λ∗(t) = 0 and πλ∗(t) ∈ K L[0, T ) ⊗ Q − a.e.,

then πλ∗ is admissible and optimal for (P).

We are now in a position to formulate the analog to the equivalent optimality
conditions from Cvitanic and Karatzas (1992).

Remark 4.8 If K is a convex cone, then δ(x) = 0 on XK and any uniformly bounded
λ ∈ D satisfies Assumption 4.5. In particular, this is true for short-selling constraints
(K = [0,∞)d ), non-traded asset constraints (K = {0}m × Rd−m , for 0 < m <

d) and any combination thereof. If B2 is finite, then Hλ(·, B1, B2) ≤ B2 and thus
Hλ(y, B1, B2) < ∞, ∀y > 0 holds for all λ ∈ D.
Hence, if K is a convex cone and B2 is finite, any uniformly bounded λ ∈ D is in D′.
This slightly technical observation will be useful when verifying λ∗ ∈ D′ for a given
candidate λ∗ in Sect. 5.

4.2 Equivalent optimality conditions

Fix some initial wealth v0 > 0, let π∗ ∈ Λ(v0, K , B1, B2), let λ∗ ∈ D′ and y =
Yλ∗(v0, B1, B2). Define conditions:

( Ã) ∀π ∈ Λ(v0, K , B1, B2) we have

E[U (V v0,π (T ))] ≤ E[U (V v0,π
∗
(T ))]

(B̃) The optimal portfolio process πλ∗ ∈ Λλ∗(v0, B1) for (P̃λ∗) inMλ∗ satisfies:

πλ∗ ∈ K and [δ(λ∗) + πλ∗(t)′λ∗(t)] = 0 L[0, T ] ⊗ Q − a.s.

(C̃) ∀λ ∈ D we have

Φ̃λ(v0) ≥ Φ̃λ∗(v0)
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(D̃) ∀λ ∈ D we have

E
[
U∗(y Z̃λ(T ), B1, B2)

] ≥ E
[
U∗(y Z̃λ∗(T ), B1, B2)

]

(Ẽ) ∀λ ∈ D we have

E
[I(y Z̃λ∗(T ), B1, B2) · Z̃λ(T )

] ≤ v0

Theorem 4.9 Let U be concave and let λ∗ ∈ D′. The Conditions (B̃), (C̃), (D̃) and
(Ẽ) are equivalent for λ∗ and imply ( Ã) with π∗ := πλ∗ .

Proof The proof of this theorem can be found in the appendix. ��
Remark 4.10 Due to Remark 4.1, it is sufficient in the proof of (D̃) ⇒ (B̃) to consider
only ρ ∈ Dwith ‖ρ(t)‖ ≤ 1L[0, T ]⊗Q−a.s. and ρ(t) = −λ∗(t)/max(1, ‖λ∗(t)‖).
Even though, this does not affect the proof of Theorem 4.9 in any meaningful way, it
has the satisfying consequence that any local minimizer λ∗ of Conditions (C̃) or (D̃)

is indeed a global minimizer over the whole spaceD and satisfies Condition (B̃). This
will be useful in a verification theorem in the upcoming section.

The optimality conditions (B̃) − (Ẽ) offer alternative ways to find and verify the
optimality of a portfolio process π∗ for the fully constrained portfolio optimization
problem (P) in M. The central underlying assumption is that we can find a different
market with adjusted market coefficients Mλ∗ , where the optimal portfolio πλ∗ for
the wealth-constrained problem (P̃λ∗) coincides with π∗.

According to Condition (B̃), π∗ and πλ∗ coincide if the wealth processes V v0,πλ∗

in M and V v0,πλ∗
λ∗ in Mλ∗ are equal. Hence, the change in market coefficients from

the originalM toMλ∗ must not have any impact on the portfolio performance of π∗.
Following Condition (C̃), we additionally know that Mλ∗ yields the least expected
utility under all Mλ, λ ∈ D, if the investor follows an optimal strategy. In this
sense,Mλ∗ has the least favorable market coefficients from the investor’s perspective.
Condition (D̃) is in fact just a dual reformulation of Condition (C̃), where the duality
is now induced not by the allocation constraints K , but by the bounds on terminal
wealth B1, B2 and the budget condition. As we will see in Sect. 5, Condition (D̃)

proves to be particularly useful in explicitly determining λ∗ and π∗. Lastly, Condition
(Ẽ) states that there exists no marketMλ, where hedging the optimal terminal wealth
D∗

λ∗ := V v0,πλ∗
λ∗ (T ) = I(y Z̃λ∗(T ), B1, B2) for (P̃λ∗) is more expensive than in

Mλ∗ . Again, the market coefficients of Mλ∗ can be regarded as least favorable for
the investor. This is a special case of more general results about hedging contingent
claims under allocation constraints, which is discussed in great detail in Cvitanic and
Karatzas (1993).

5 Solving the fully constrained portfolio optimization problem

In this section we illustrate how one can make use of the equivalent optimality
conditions derived in the previous section to solve the fully constrained portfolio
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optimization problem (P). This will be achieved by introducing a dual optimization
problem (D) in Sect. 5.1, which arises from condition (D̃) from the previous section.
In Sect. 5.2, we then proceed to solve (D) explicitly for convex cone constraints K
and concave utility functions, for which the capped LFT satisfies a polynomial growth
condition. For logarithmic utility and power utility we determine the optimal terminal
wealth for (P) explicitly. Furthermore, in Sect. 5.3 we are able to show that the equiv-
alent optimality conditions from the previous section hold true for not necessarily
concave utility functions, as long as Assumption 2.1 holds, i.e. U ∈ U(B1, B2). We
illustrate this result by determining the optimal terminal wealth for (P) with S-shaped
utility functions explicitly.

Throughout the whole of Sect. 5 we make the following additional assumptions
about the market coefficients and bounds on terminal wealth:

Assumption 5.1 The market coefficients r , μ and σ as well as the bounds on terminal
wealth 0 < B1 < v0erT < B2 < ∞ are constants and δ is continuous on XK .

Note however that a generalization to deterministic and continuous r(t), μ(t)
and σ(t) is straightforward. To include the case B1 = 0 or B2 = ∞ one has to
make additional growth assumptions on I. Assumption 5.1 allows the use of the
ensuing dynamic programming techniques, which lead to closed-form solutions to the
primal, fully constrainedportfolio optimizationproblem (P) for convex cone allocation
constraints K . In contrast, the extension of the theoretical results from Sect. 4 to non-
concave utility functions in Sect. 5.3 holds irrespective of 5.1. In particular, Lemma
5.13, Theorem 5.14 and Theorem 5.15 do not require Assumption 5.1.

5.1 Dual optimization problem

For any t ∈ [0, T ], we define the dual optimization problem (D) as

(D)
{
Ψ (t, y) = inf

λ∈D
E

[
U∗(y Z̃λ(t, T ), B1, B2)

∣
∣ Ft

]
,

with

Z̃λ(t, T ) = exp
{

−
∫ T

t
r + δ(λ(s)) + 1

2
‖γλ(s)‖2ds −

∫ T

t
γλ(s)′dW (s)

}
for any λ ∈ D.

Note that besides the fact that (D) is dynamic in time, there is a subtle difference
between the optimization Problem (D) and the statement of Condition (D̃).

Condition (D̃) is formulated for t = 0 and a specific y = Yλ∗(v0, B1, B2), which
already depends on the optimal λ∗ = λ∗(v0) ∈ D′, satisfying condition (B) for a
given initial wealth v0. Hence, we cannot directly use Condition (D̃) to compute λ∗
as the minimizer of an optimization problem.

However, given t = 0 and y > 0, if we manage to compute an optimal λ∗ =
λ∗(0, y) ∈ D for the dual problem (D) and this optimal λ∗ is an element of D′, then
this λ∗ satisfies Condition (B̃) for the initial wealth vy = Hλ∗(y)(y, B1, B2). Hence,
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we can reconnect the solution to the dual problem (D) with the primal problem (P), if
we can find a y > 0 such that

v0 = vy = Hλ∗(y)(y, B1, B2).

Our goal will be now to compute the minimizer λ∗(y) for arbitrary y > 0.

Remark 5.2 In particular, the existence of such a y can be guaranteed by virtue of
Lemma 4.4, if λ∗(y) ∈ D′ is independent of y > 0. Conveniently, this will be the case
for the combination of a large class of utility functionsU and convex cone constraints
K .

The HJB equation associated with (D) and the value function Ψ is

0 = Gt (t, y) − r yGy(t, y)

+ inf
x∈XK

(
− δ(x)yGy(t, y) + 1

2
‖γ + σ−1x‖2y2Gyy(t, y)

)

G(T , y) = U∗(y, B1, B2).

(5.1)

For the remainder of this section, we focus on the pointwise HJB equation (5.1) and
will show that its solution, provided it satisfies some regularity conditions, induces a
solution to the dual optimization problem (D).

Assuming that G solves (5.1) and is strictly decreasing and convex in y, there
exists a minimizer λ∗(t, y), which attains the infimium in (5.1). By slightly rewriting
the PDE, one can see that λ∗(t, y) actually minimizes

λ∗(t, y) = argmin
x∈XK

( y2

2
‖γ + σ−1x‖2Gyy(t, y) − δ(x)yGy(t, y)

)

= argmin
x∈XK

(
−1

2

yGyy(t, y)

Gy(t, y)︸ ︷︷ ︸
≥0

‖γ + σ−1x‖2 + δ(x)
)
. (5.2)

This means that the (non-negative) relative risk aversion RRA(t, y) = − yGyy(t,y)
Gy(t,y)

of G serves as a weighting factor in the minimization between the non-negative com-
ponents ‖γ + σ−1x‖2 and δ(x).

Lemma 5.3 Let G ∈ C (1,2)((0, T ] × (0,∞)) be a convex and strictly decreasing
solution to the HJB equation (5.1). Then there exists a corresponding minimizing
argument λ∗(t, y) (as in (5.2)), which is uniformly bounded in (t, y).

Proof Due to G being convex and strictly decreasing, RRA(t, y) ≥ 0. Furthermore,
since σ−1 is non-singular, there exists a constant c− > 0 such that ‖σ−1x‖ ≥ c−‖x‖
for all x ∈ Rd .

For a given minimizer λ∗(t, y) ∈ XK , define

ν(t, y) := λ∗(t, y) · 1{‖λ∗(t,y)‖≤ 2
c− ‖γ ‖}
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Then, ν ∈ XK and ν coincides with λ∗ whenever ‖λ∗(t, y)‖ ≤ 2
c− ‖γ ‖. Otherwise let

‖λ∗(t, y)‖ > 2
c− ‖γ ‖. Then, ν(t, y) = 0 and

1

2
RRA(t, y)‖γ + σ−1λ∗(t, y)‖2 + δ(λ∗(t, y))

≥ 1

2
RRA(t, y)

(‖γ ‖2 − 2‖γ ‖‖σ−1λ∗(t, y)‖ + ‖σ−1λ∗(t, y)‖2) + δ(λ∗(t, y))

= 1

2
RRA(t, y)

(‖γ ‖2 + ‖σ−1λ∗(t, y)‖(−2‖γ ‖ + ‖σ−1λ∗(t, y)‖)
︸ ︷︷ ︸

≥c−‖λ∗(t,y)‖≥2‖γ ‖

) + δ(λ∗(t, y))
︸ ︷︷ ︸

≥0

≥ 1

2
RRA(t, y)‖γ ‖2 ν(t,y)=0= 1

2
RRA(t, y)‖γ + σ−1ν(t, y)‖2 + δ(ν(t, y)).

Hence, ν(t, y) is also a minimizer of (5.2) and ‖ν(t, y)‖ ≤ 2
c− ‖γ ‖, for all (t, y) ∈

[0, T ] × (0,∞), which concludes the proof. ��
Using this observation and assuming polynomial growth, convexity andmonotonic-

ity conditions (which are plausible given the properties of the terminal condition), we
are able to locally prove a verification theorem for the HJB equation (5.1). Having
the minimization property locally is sufficient for our purposes as noted in Remark
4.1. Note that this verification theorem is only applicable if G is a smooth solution to
(5.1) and not a viscosity solution. In general, this requirement cannot be guaranteed
(see e.g. Fleming and Soner 2006 for a thorough discussion of the topic). However,
we will be able to derive an explicit, smooth solution to (5.1) in Subsection 5.2, if K
is a convex cone.

Theorem 5.4 rm (Verification Theorem) Let Assumption 5.1 hold and let G ∈
C (1,2)([0, T ) × (0,∞)) be a solution to the HJB equation (5.1), be convex, strictly
decreasing and satisfy the polynomial growth condition

G(t, y) ≤ C
(
y−α + yα), for some α > 0, C > 0.

Further, let

λ∗(t, y) := argmin
x∈XK

( y2

2
‖γ + σ−1x‖2Gyy(t, y) − δ(x)yGy(t, y)

)
,

be uniformly bounded in (t, y) ∈ [0, T ]×(0,∞). Then,∀λ ∈ Dwith ‖λ(s)−λ∗(s)‖ ≤
1

G(t, y) ≤ E[U∗(y Z̃λ(t, T ), B1, B2)|Ft ]

and

G(t, y) = E[U∗(y Z̃λ∗(t, T ), B1, B2)|Ft ],
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for all (t, y) ∈ [0, T ] × (0,∞), with λ∗(s) = λ∗(s, ω) := λ∗(s, y Z̃λ∗(t, s)) ∈ D
defined in feedback-form.

Proof The proof of this theorem can be found in the appendix. ��
Remark 5.5 Note that Theorem 5.4 does not provide verification for the fully con-
strained portfolio optimization problem (P), but only for the dual optimization problem
(D). We still need to show that the obtained λ∗ is indeed an element ofD′. For convex
cone constraints, this will be shown in Sect. 5.2.

5.2 Concave utility functions

In this section we solve the HJB equation (5.1) associated with the dual optimization
problem (D) for general convex cone constraints, given a concave utility function
U ∈ Uconc(B1, B2), whose capped LFT satisfies a polynomial growth condition.
Provided that 0 < B1 < B2 < ∞, this growth condition is always satisfied. We then
use theVerificationTheorem from the previous section to link the solution to optimality
Condition (D̃) and finally solve the fully constrained portfolio optimization problem
(P).

The allocation constraints K form a convex cone if and only if δ(x) = 0 for all
x ∈ XK . In this special case the HJB equation (5.1) simplifies to

0 = Gt (t, y) − r yGy(t, y) + y2

2
inf

x∈XK

(
‖γ + σ−1x‖2Gyy(t, y)

)

G(T , y) = U∗(y, B1, B2). (5.3)

The infimum here can in general only be attained if G is convex, as XK is typically
unbounded and so is ‖γ + σ−1x‖2. If G is convex however, the infimum is attained
by the pointwise minimizer

λ∗ = λ∗(y) := argmin
x∈XK

‖γ + σ−1x‖2.

The resulting PDE reduces to a linear PDE, which can be solved through a transfor-
mation to the well-studied heat equation (see e.g. Bian et al. 2011). For this purpose,
recall the following result about the heat equation:

Lemma 5.6 Consider a real function f : R → R for which exist constants C0, α0
such that

| f (z)| ≤ C0e
α0z2 ∀z ∈ R. (5.4)

Then, for all 0 < T < 1
4α0

the function F : (0, T ] × R → R defined by

F(τ, z) = 1√
4πτ

∫

R
e− (z−x)2

4τ f (x)dx = 1√
4πτ

∫

R
e− x2

4τ f (z − x)dx,
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is in C (1,2)((0, T ] × R) and is a solution to the heat equation

Fτ (τ, z) = Fzz(τ, z) ∀(τ, z) ∈ (0, T ] × R
F(0, z) := limτ↓0 F(τ, z) = f (z) for almost all z ∈ R.

(5.5)

Proof Follows immediately from Chapter 5, Theorem 6.1 in DiBenedetto (2009). ��
Lemma 5.7 Let U ∈ Uconc(B1, B2) and let U∗(·, B1, B2) satisfy the polynomial
growth condition

|U∗(y, B1, B2)| ≤ C
(
y−α + yα

)
, ∀y ∈ (0,∞) (5.6)

for some constants C, α > 0. Further, let the allocation constraints K be a convex
cone. Then,

G(t, y) := 1√
4π(T − t)

∫

R
e− x2

4(T−t)U∗(ye−(r+ 1
2 ‖γλ∗‖2)(T−t)− ‖γλ∗ ‖√

2
x
, B1, B2

)
dx

is in C (1,2)([0, T ) × (0,∞)), is convex, strictly decreasing and satisfies the HJB
equation (5.1) with

λ∗(t, y) := λ∗ := argmin
x∈XK

‖γ + σ−1x‖2 and γλ∗ := γ + σ−1λ∗.

Further, G satisfies the polynomial growth condition

|G(t, y)| ≤ C̃
(
y−α + yα

) ∀y ∈ (0,∞) (5.7)

and for some constant C̃ > 0.

Proof The proof of this lemma can be found in the appendix. ��
Remark 5.8 It is important to emphasize that the previous techniques heavily relied on
K being a convex cone (hence δ(λ∗) = 0) as this simplifies the HJB equation (5.1) to
a linear PDE. For more general allocation constraints with δ(λ∗) �= 0, the PDE may
become non-linear and extremely difficult to solve. We leave this type of problem as
an area for future research.

Remark 5.9 Note that under Assumption 5.1 the growth condition (5.6) is satisfied for
anyU ∈ U(B1, B2), with α := 1 and C := |U (B2)| + B1 + B2, because for all y > 0

U∗(y, B1, B2) = sup
B1≤x≤B2

(
U (x) − yx

) ≥ U (B2) − yB2

and U∗(y, B1, B2)= sup
B1≤x≤B2

(
U (x)︸︷︷︸
≤U (B2)

−yx
) ≤ U (B2)+ inf

B1≤x≤B2
(yx)=U (B2)−yB1

⇒ |U∗(y, B1, B2)| ≤ |U (B2)|+ y(B1 + B2) ≤ |U (B2)| 1
y

+ (|U (B2)| + B1+B2
)
y

≤ C · (
yα + y−α

)
.
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Corollary 5.10 Let U be concave, let K be a convex cone, and let Assumption 5.1 hold.
Then λ∗ ∈ D′ defined by,

λ∗ := argmin
x∈XK

‖γ + σ−1x‖2

satisfies condition (D̃) and the optimal portfolio for the wealth-constrained portfolio
optimization problem (P̃λ∗) is optimal for the fully constrained portfolio optimization
problem (P).

Proof First of all, K is a convex cone, λ∗ and B2 are constant and finite, and therefore
λ∗ ∈ D′ according to Remark 5.2. Further, since all prerequisites of Lemma 5.7 are
satisfied, G (as defined in Lemma 5.7) satisfies the HJB equation (5.1), is convex,
strictly decreasing in y and satisfies a polynomial growth condition. According to
Theorem 5.4, since the minimizing λ∗(t, y) = λ∗ is independent of y > 0, this
implies for all y > 0:

G(0, y) = E[U∗(y Z̃λ∗(T ), B1, B2)]
≤ E[U∗(y Z̃λ(T ), B1, B2)], ∀λ ∈ D with ‖λ∗ − λ(t)‖2 L[0, T ] ⊗ Q-a.s..

As realized in Remark 4.10, this implies for all y > 0

G(0, y) = E[U∗(y Z̃λ∗(T ), B1, B2)] ≤ E[U∗(y Z̃λ(T ), B1, B2)], ∀λ ∈ D.

In particular, this holds for the choice of y = Yλ∗(v0, B1, B2), which is guaranteed
to exist due to Lemma 4.4 and thus λ∗ satisfies Condition (D̃). The statement of the
Corollary now follows due to the equivalence of Condition (B̃) and Condition (D̃) by
virtue of Theorem 4.9. ��
Example 5.11 (Optimal Terminal Wealth for Logarithmic Utility) Consider a logarith-
mic utility function U with

U (x) := log(x)

Let K be a convex cone, let Assumption 5.1 hold and define λ∗ ∈ D′ as

λ∗ := argmin
x∈XK

‖γ + σ−1x‖2.

Then, the optimal terminal wealth for (P) is given as

D∗ = B1 +
( 1

y Z̃λ∗(T )
− B1

)+ −
( 1

y Z̃λ∗(T )
− B2

)+
,

for y := Yλ∗(v0, B1, B2).
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Proof As U ∈ Uconc(B1, B2) and

I(y, B1, B2) = B1 +
(1
y

− B1

)+ −
( 1
y

− B2

)+
,

the remaining statements follow immediately from Corollary 5.10 and Theorem 4.6.
��

Example 5.12 (Optimal Terminal Wealth for Power Utility) Consider a power utility
function U with

U (x) := 1

b
xb, b ∈ (−∞, 1)\{0}.

Let K be a convex cone, let Assumption 5.1 hold and define λ∗ ∈ D′ as

λ∗(t, ω) := argmin
x∈XK

‖γ + σ−1x‖2.

Then, the optimal terminal wealth for (P) is given as

D∗ = B1 +
((

y Z̃λ∗(T )
) 1
b−1 − B1

)+ −
((

y Z̃λ∗(T )
) 1
b−1 − B2

)+
,

for y := Yλ∗(v0, B1, B2).

Proof As U ∈ Uconc(B1, B2) and

I(y, B1, B2) = B1 +
(
y

1
b−1 − B1

)+ −
(
y

1
b−1 − B2

)+
,

the remaining statements follow immediately from Corollary 5.10 and Theorem 4.6.
��

5.3 Not necessarily concave utility functions

So far we have only considered concave utility functionsU in our portfolio optimiza-
tion problems. However, there exists extensive theory on portfolio optimization for
non-concave utility functions in the literature. Specifically, one approach, presented
in Reichlin (2013) uses concavification arguments, which allow to transform the opti-
mization problem for a non-concave utility functionU into an equivalent optimization
problem for a concave utility function Û , which is the smallest concave function larger
or equal than U (i.e. the concavification of U ). The equivalence of the optimization
problems is meant in the sense that the optimal portfolio process, optimal terminal
wealth and optimal expected utility coincide for both U and Û .
In this section we will slightly adjust the theory presented in Reichlin (2013) to fit our
needs, prove that the equivalence between Conditions (B̃) − (Ẽ) holds for general,
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not necessarily concave U ∈ U(B1, B2) and illustrate this finding on the example of
an S-shaped utility.
Even though we have so far only introduced the (capped) LFT U∗(·, B1, B2) for
concave utility functions, the definition of the capped LFT and its properties carry
over to general U ∈ U(B1, B2) as well.

For U ∈ U(B1, B2), we define its concavification on [B1, B2] as the smallest
function Û , with

– Û is concave on [B1, B2].
– Û (x) ≥ U (x) ∀x ∈ [B1, B2]
– Û (x) = U (B1) + h−(x − B1) ∀x ∈ [0, B1), with h− := limx↓B1 Û ′(x)
– Û (x) = U (B2) ∀x ∈ (B2,∞)

We derive some important properties of this new construction.

Lemma 5.13 Let U ∈ U(B1, B2) and Û be its concavification on [B1, B2]. Then,
Û ∈ Uconc(B1, B2) and for all y > 0,

U∗(y, B1, B2) = U (I(y, B1, B2)) − yI(y, B1, B2)

= Û (I(y, B1, B2)) − yI(y, B1, B2) = Û∗(y, B1, B2),

and

I(y, B1, B2) := inf{x ∈ [B1, B2] | U∗(y, B1, B2) = U (x) − yx}
= inf{x ∈ [B1, B2] | Û∗(y, B1, B2) = Û (x) − yx} =: Î(y, B1, B2),

(5.8)

which is decreasing, has at most countably infinite points of discontinuity and satisfies

U (I(y, B1, B2)) = Û (I(y, B1, B2)), ∀y > 0. (5.9)

Proof The proof of this lemma can be found in the appendix. ��
In our setting, since any admissible terminal wealth can only take values within
[B1, B2], the values of the utility function U (and for Û ) outside of [B1, B2] do
not affect the optimization. We chose the values of Û outside of [B1, B2] in such a
way that Û is concave on (0,∞) and therefore Û ∈ Uconc(B1, B2) by Lemma 2.1 and
Lemma 5.13.

Recall that the optimal terminal wealth corresponding to the wealth-constrained
portfolio optimization problem (P̃λ), for any λ ∈ D, only depends on the underlying
utility U through the maximizer of the capped LFT I(y, B1, B2). Using the previous
Lemma, we are able to solve (P̃λ) for non-concave utility functions U .

Theorem 5.14 (Optimal Terminal Wealth for (P̃λ) for non-concaveU ) Let λ ∈ D and
let Assumption 4.5 hold. Then,

D∗
λ := I(y Z̃λ(T ), B1, B2) with y = Yλ(v0, B1, B2)
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is the optimal terminal wealth for (P̃λ) and Q
(
U (D∗

λ) = Û (D∗
λ)

) = 1.

Proof From Assumption 2.1, U ∈ U(B1, B2). Therefore, we may define Û ∈
Uconc(B1, B2) as the concavification of U on [B1, B2] and Î(y, B1, B2) be the
maximizing arguments of its capped LFT. Due to Lemma 5.13, Î(y, B1, B2) =
I(y, B1, B2) and U (I(y, B1, B2)) = Û (I(y, B1, B2)) for all y > 0. Thus,

Q
(
U (D∗

λ) = Û (D∗
λ)

) = 1.

Further, by virtue of Theorem 4.6

D∗
λ = I(y Z̃λ∗(T ), B1, B2) = Î(y Z̃λ∗(T ), B1, B2)

is the optimal terminal wealth for (P̃λ)with utility Û ∈ Uconc(B1, B2). However, since
Û (x) ≥ U (x) for all x ∈ [B1, B2],U (D∗

λ) = Û (D∗
λ) Q-a.s. and the set of admissible

terminal wealths Cλ(v0, B1) is independent of the choice of utility, D∗
λ must be the

optimal terminal wealth for (P̃λ) with utility U . ��
Using the statements of Lemma 5.13 and Theorem 5.14, we realize that any of the

Conditions (B̃) − (Ẽ) holds for a utility U ∈ U(B1, B2) if and only if they hold for
its concavification on [B1, B2] Û ∈ Uconc(B1, B2). This leads to a generalization of
Theorem 4.9.

Theorem 5.15 Let λ∗ ∈ D′. Then, Conditions (B̃), (C̃), (D̃) and (Ẽ) are equivalent
for λ∗ and imply ( Ã) with π∗ := πλ∗ .

Proof Implication(B̃) ⇒ ( Ã): The argument is analogous the proof of Corollary 4.2,
as non-decreasingness is the only necessary property of U for this proof.

Condition(B̃): πλ∗ is optimal for (P̃λ∗) with utility U if and only if it is optimal

for (P̃λ∗) with utility Û , due to Theorem 5.14. Therefore, πλ∗ satisfies Condition (B̃)

for U if and only if it satisfies Condition (B̃) for Û .
Condition(C̃): For any λ ∈ D, Q(U (D∗

λ) = Û (D∗
λ)) = 1, as per Theorem 5.14.

Hence, for any λ ∈ D the value functions of (P̃λ∗) coincide for U and Û . Therefore,
πλ∗ satisfies Condition (C̃) for U if and only if it satisfies Condition (C̃) for Û .

Condition(D̃): From Lemma 5.13 we know that U∗(y, B1, B2) = Û∗(y, B1, B2)

for all y > 0. Therefore, πλ∗ satisfies Condition (D̃) for U if and only if it satisfies
Condition (D̃) for Û .

Condition(Ẽ): From Lemma 5.13 we know that I(y, B1, B2) = Î(y, B1, B2) for

all y > 0 Therefore, πλ∗ satisfies Condition (Ẽ) for U if and only if it satisfies
Condition (Ẽ) for Û .

Since Conditions (B̃) − (Ẽ) are equivalent for the concave utility function Û ∈
Uconc(B1, B2), this concludes the proof of the Theorem. ��

The Verification Theorem 5.4 and Lemma 5.7 from the previous sections did not
rely on the underlying utilityU being concave, but only needed its capped LFTU∗ to
satisfy a polynomial growth condition. Hence, Corollary 5.10 can be generalized for
non-concave utility U .
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Corollary 5.16 Let K be a convex cone and let Assumption 5.1 hold.
Then, λ∗ ∈ D′ defined by

λ∗(t, ω) := argmin
x∈XK

‖γ + σ−1x‖2

satisfies condition (D̃) and the optimal portfolio for the wealth-constrained portfolio
optimization problem (P̃λ∗) is optimal for the fully constrained portfolio optimization
problem (P).

Proof The proof is analogous to the proof of Corollary 5.10. The only difference is
that we reference Theorem 5.15 instead of Theorem 4.9 in the last step of the proof. ��
Example 5.17 (Optimal Terminal Wealth for S-Shaped Utility) Let the utility U ∈
U(B1, B2) be an S-shaped utility function, i.e. U : (0,∞) → R,

U (x) =
{

−U1(θ − x), x ≤ θ

U2(x − θ), x > θ,

for some reflection point θ ≥ 0, strictly increasing U1, U2 ∈ Uconc(0,∞) with
U1(0) = U2(0) and I2 denoting the (capped) minimizer of the (capped) LFT of U2.

Let K be a convex cone, let Assumption 5.1 hold and define λ∗ ∈ D′ as

λ∗(t, ω) := argmin
x∈XK

‖γ + σ−1x‖2.

Consider the fully constrained portfolio optimization problem (P) with utility U .
Then, λ∗ satisfies condition (D̃) for (P). We make a distinction between the possible
orderings of B1, B2 and θ (Fig. 2):

(i) If B1 < B2 ≤ θ , then the optimal terminal wealth for (P) is given as

D∗ =
{
B1, if U (B2)−U (B1)

B2−B1
≤ y Z̃λ∗(T )

B2, if U (B2)−U (B1)
B2−B1

> y Z̃λ∗(T ).

(ii) If θ ≤ B1 < B2, then the optimal terminal wealth for (P) is given as

D∗ = I2(y Z̃λ∗(T ), B1 − θ, B2 − θ) + θ.

(iii) If B1 < θ < B2, define

h = sup{x ≥ θ | ∀z ∈ [B1, x] : U (z) ≤ U (B1) + U (x) −U (B1)

x − B1
(z − B1)}.

(iii).a If h ≥ B2, then the optimal terminal wealth for (P) is given as

D∗ =
{
B1, if U (B2)−U (B1)

B2−B1
≤ y Z̃λ∗(T )

B2, if U (B2)−U (B1)
B2−B1

> y Z̃λ∗(T ).
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Fig. 2 Illustration of the concavification of an S-shaped utility function on [B1, B2], depending on the
ordering of B1, B2 and θ

(iii).b If h < B2, then the optimal terminal wealth for (P) is given as

D∗ =
{
B1, if U (h)−U (B1)

h−B1
≤ y Z̃λ∗(T )

I2(y Z̃λ∗(T ), h − θ, B2 − θ) + θ, if U (h)−U (B1)
h−B1

> y Z̃λ∗(T ),

where y > 0 is chosen such thatE[D∗ Z̃λ∗(T )] = v0 (i.e. y = Yλ∗(v0, B1, B2)) in
each of the above cases.

Proof The proof of this example can be found in the appendix. ��
Figures 3 and 4 illustrate the effect of different values for B1, B2 on the optimal

portfolio allocation π∗ for an investor who follows an S-shaped utility function from
Example 5.17 and does not face any allocation constraints. We created the figures
using a similar setting as in Berkelaar et al. (2004), with a market consisting of one
stock and one bond (i.e. d = 1), constant market coefficients r = 0.05, μ = 0.13,
σ = 0.2, which result in a constant market price of risk γ = 0.4. Moreover, we chose
U1(x) = 2.25x0.12 andU2(x) = x0.12, i.e. bothU1 andU2 are power utility functions
(see Example 5.12) with b = 0.12. In this market, we estimate the optimal portfolio
for an investor, who allocates from time t = 0 until time T = 0.5, with initial wealth
v0 = 1 and observe how the investor’s allocation changes with respect to different
reflection points θ and different constraints B1, B2.

We approximated these portfolios numerically, by simulating 106 optimal termi-
nal wealths D∗ as determined in Example 5.17, estimating the corresponding value
function Φ and its first and second derivatives ΦV , ΦVV to determine the corre-
sponding optimal portfolio process as the minimizer of the primal HJB equation (see
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Fig. 3 Varying levels of B1 and B2 = ∞
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Fig. 4 B1 = 0 and varying levels of B2

e.g. Karatzas and Shreve 1998, Chapter 3, equation (8.38)). Due to estimation errors
from the underlyingMonte-Carlo simulations, the estimated optimal portfolios did not
appear to be a completely smooth functions of B1, B2. However, we did observe that
the smoothness increased with an increasing number of simulations. For this reason,
we additionally used smoothing splines on the estimated portfolios that are displayed
in Figs. 3 and 4.

Overall, both an increase of the lower bound B1 and adecrease of the upper bound B2
tends to lead to a reduction of the optimal allocation to the risky asset. This reduction
and its monotonicity are not surprising, as now the investor’s constrained optimal
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terminal wealth is bounded by deterministic constants, which enforce an allocation to
the risk-free asset if the investor’s wealth becomes too large or too small.

In particular, the optimal allocation approaches the optimal unconstrained alloca-
tion for small lower bounds B1 and large upper bounds B2. Vice-versa, the optimal
allocation approaches 0, as B1 approaches the maximal feasible lower bound and B2
approaches the minimal feasible upper bound v0 exp(rT ) ≈ 1.0253. The reduction in
allocation to the risky asset from the presence of lower bounds B1 on terminal wealth
appears to be strongest, when the investor’s initial wealth is in the gambling area, i.e.
when θ ≥ v0 = 1. The reduction is less extreme when considering upper bounds on
terminal wealth B2.

Only for upper bounds B2 close to the corresponding concavification point h (i.e.
when the investor’s initial wealth transitions to the gambling area) do we not observe
a general reduction of the allocation to the risky asset: A small increase in allocation
to the risky-asset can be clearly seen for θ = 1 (with h = 1.0276) and is still slightly
visible for θ = 1.2 (with h = 1.2332). For θ ∈ {0, 0.5, 0.8}, the concavification point
h is not visible in the plot and for θ = 1.5, the effect is too small to be visible.

6 Conclusion

In this paper we have seen how the capped Legendre–Fenchel transformation can be
used to naturally extend the auxiliary market framework from Cvitanic and Karatzas
(1992) for portfolio optimization under allocation constraints to include lower and
upper bounds on terminal wealth and non-concave, non-smooth utility functions. In
our setting, the solution to the fully constrained portfolio optimization problem (P)

can be found by solving the corresponding dual optimization problem (D). In the case
of convex-cone allocation constraints a solution to (D) can be found explicitly by
solving an associated HJB equation. For more general cases, we were able to prove
a verification theorem which guarantees that the solution to the HJB equation indeed
induces a solution to (D), hence (P).
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7 Appendix A

Proof of Lemma 4.4 Since I is non-constant, non-increasing and Z̃λ has a continu-
ous distribution, which takes arbitrarily small and large real values with positive
probability, the capped help function is strictly decreasing in y. Moreover, since
I(·, B1, B2) is continuous Lebesque-a.e., we can conclude the limiting behavior
of Hλ(·, B1, B2) for y → ∞ and y ↓ 0 from the monotone convergence theo-
rem and limy↓0 I(y, B1, B2) = B2 and limy→∞ I(y, B1, B2) = B1. Finally, as
Hλ(y, B1, B2) < ∞ ∀y > 0, Lebesgue’s dominated convergence theorem can be
utilized to follow the continuity of Hλ(·, B1, B2) from the Lebesgue-a.e. continuity
of I (·, B1, B2).

4 ��

Proof of Theorem 4.9 The implication (B̃) ⇒ ( Ã) is the statement of Corollary 4.7.
The implications (B̃) ⇒ (C̃), (B̃) ⇒ (Ẽ), (Ẽ) ⇒ (B̃) and (C̃) ⇒ (D̃) can be shown
by following the arguments in the proof of Theorem 10.1 in Cvitanic and Karatzas
(1992), disregarding consumption and replacing the LFT and its maximizer by the
capped LFT and its capped maximizer.

It remains to consider the implication (D̃) ⇒ (B̃). By replacing the LFT with the
capped LFT and its maximizer with the capped maximizer, we can carefully follow
the steps of the proof of Theorem 9.1 and Theorem 10.1 in Cvitanic and Karatzas
(1992)5 to show that

E
[
U∗(y Z̃λ(T ), B1, B2)

] ≤ E
[
U∗(y Z̃λ+ρ(T ), B1, B2)

] ∀ρ ∈ D, (∗)

implies

0 ≤ π(t)′ρ(t) + δ(ρ(t)) Q ⊗ L[0, T ] − a.e. ∀ρ ∈ D, (∗∗)

4 An extended versions of these proofs can be found in the supplementary Technical Document.
5 In comparison to Cvitanic and Karatzas (1992), we have only changed our setting by changingU∗ and I.
However, the only used properties ofU∗, I in the proof of Theorem 9.1 and 10.1 in Cvitanic and Karatzas
(1992) are

(i) U∗(y) ≥ U (x) − yx ∀x ≥ 0
(ii) I(y) is non-increasing in y
(iii) lim

ε↓0 I
(
ye−3εn Z̃λ(T )

) = I(
y Z̃λ(T )

)
Q-a.s. ∀n ∈ N.

In our case it is sufficient to limit (i) to all B1 ≤ x ≤ B2. Then properties (i) and (i i) hold for the capped LFT
and its capped maximizer, too. Moreover, the capped maximizer I(·, B1, B2) is continuous Lebesgue-a.e.
and thus (iii) holds, too.
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as well as

0 ≥ π(t)′λ∗(t) + δ(λ∗(t)) Q ⊗ L[0, T ] − a.e.. (∗ ∗ ∗)

Hence, we have

π(t) ∈ K L[0, T ] ⊗ Q − a.e.

and [π(t)′λ∗(t) + δ(λ∗(t))] = 0 L[0, T ] ⊗ Q − a.e.,

i.e. Condition (B̃) is satisfied. Analogously, if (∗) holds for all ρ ∈ D with ‖ρ(t)‖ ≤ 1
L[0, T ] ⊗ Q − a.e., then we obtain (∗∗) restricted to all such ρ as well as (∗ ∗ ∗), if
we choose ρ(t) = −λ∗(t)/max(1, ‖λ∗(t)‖). ��
Proof of Theorem 5.4 First, note that the uniform boundedness of λ∗(t, y) ∈ XK and
the continuity of δ guarantee that the corresponding stochastic process λ∗(s, ω) satis-
fies the integrability conditions from the definition ofD. Due to measurable selection
theorems (for example Corollary 3.48 in Rockafellar andWets (1984)) wemayw.l.o.g.
assume the mapping (t, y) → λ∗(t, y) to be Borel-measurable. Hence, the corre-
sponding stochastic process λ∗(s, ω) is progressively measurable and thus an element
of D.

For convenience, we define the characteristic operator Hλ of G with respect to
λ ∈ D as

Hλ(t, y) = Gt (t, y) − (
r + δ(λ(t))

)
yG(t, y) + 1

2
‖γ + σ−1λ(t)‖2y2Gyy(t, y).

Note that Hλ(t, y) ≥ 0 for any λ ∈ D and Hλ(t, y) = 0 if λ(t) = λ∗(t, y).
Let now λ ∈ D with ‖λ(t) − λ∗(t)‖ ≤ 1 L[0, T ] ⊗ Q-a.s., be arbitrary but fixed.

Due to Lemma 5.3, we can assume that C > 0 from the polynomial growth condition
was chosen large enough such that

max
(‖γλ(t)‖2, δ(λ∗(t)), δ(λ(t))

) ≤ C L[0, T ] ⊗ Q-a.s..

Finally, for any p > 0, we define the stopping times

τ̄p = inf
{
S ∈ [t, T ] ∣∣

∫ S

t

(
Gy(s, y Z̃λ(t, s))y Z̃λ(t, s)‖γλ(s)‖)2ds ≥ p

}

τp = min
(
τ̄p, T

)

This choice of τp ensures that

E
[ ∫ τp

t
Gy(s, y Z̃λ(t, s))y Z̃λ(t, s)γλ(s)′dW (s)|Ft

] = 0.

Therefore,

E[G(τp, y Z̃λ(t, τp))|Ft ]
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Itô= G(t, y) + E
[ ∫ τp

t
Hλ(s, y Z̃λ(t, s))
︸ ︷︷ ︸

≥0

ds|Ft
]

+ E
[ ∫ τp

t
Gy(s, y Z̃λ(t, s))y Z̃λ(t, s)γλ(s)′dW (s)|Ft

]

︸ ︷︷ ︸
=0

≥ G(t, y) (7.1)

Clearly, τp → T , for p → ∞ and hence G(τp, y Z̃λ(t, τp)) → G(T , y Z̃λ(t, T )) =
U∗(y Z̃λ(t, T ), B1, B2) for p → ∞.

Inequality (7.1) holds with equality for λ = λ∗. Further, the polynomial growth
condition for G gives us a dominating random variable for G(τp, y Z̃λ(t, τp)):

|G(τp, y Z̃λ(t, τp)| ≤ C |(y Z̃λ(t, τp))
−α + (y Z̃λ(t, τp))

α|
≤ C

(
sup

t≤s≤T

(
(y Z̃λ(t, s))−α

︸ ︷︷ ︸
=:X−

) + sup
t≤s≤T

(
(y Z̃λ(t, s))α

)

︸ ︷︷ ︸
=:X+

)
.

As λ and the remaining market coefficients are bounded, we can use Novikov’s condi-
tion andDoob’smartingale inequality to show that X− and X+ have finite expectation.
This allows us to apply the dominated convergence Theorem to conclude the proof:

G(t, y) = E[G(t, y)|Ft ]
(7.1)≤ lim

p→∞E[G(τp, y Z̃λ(t, τp))|Ft ]
dominated=
convergence

E[ lim
p→∞

(
G(τp, y Z̃λ(t, τp))

)|Ft ] = E[G(T , y Z̃λ(t, T ))|Ft ]
= E[U∗(y Z̃λ(t, T ), B1, B2)|Ft ],

with equality if λ = λ∗. ��

Proof of Lemma 5.7 Note that for any given constant β > 0, we have

βz2 + 1

β
≥ |z| ∀z ∈ R. (7.2)

For z ∈ R, define f (z) := U∗( exp
( ‖γλ∗‖√

2
z
)
, B1, B2

)
. Then f satisfies the prerequi-

sites of Lemma 5.6, since for any z ∈ R and any β > 0

| f (z)| = |U∗( exp
(‖γλ∗‖√

2
z
)
, B1, B2

)| (5.6)≤ C(e
−α

‖γλ∗ ‖√
2

z + e
α

‖γλ∗ ‖√
2

z
)

≤ 2Ce
α

‖γλ∗ ‖√
2

|z| (7.2)≤ 2Ce
α

‖γλ∗ ‖√
2

(βz2+ 1
β
)
.
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Choosing β small enough such that α
‖γλ∗‖√

2
β < 1

4T guarantees that F , as in (5.5),

defines a C (1,2)((0, T ] × R)-function, which satisfies the heat equation Fτ (τ, z) =
Fzz(τ, z) for all (τ, z) ∈ (0,∞) × R with initial condition F(0, z) = f (z). We
substitute

t := T − τ and z :=
√
2

‖γλ∗‖
(
log(y) − (r + 1

2
‖γλ∗‖2)(T − t)

)

and define G ∈ C (1,2)([0, T ) × (0,∞)) as

G(t, y) :=F(τ, z) = F
(
T − t,

√
2

‖γλ∗‖
(
log(y) − (r + 1

2
‖γλ∗‖2)(T − t)

))

= 1√
4π(T − t)

∫

R
e− x2

4(T−t)U∗(ye−(r+ 1
2 ‖γλ∗‖2)(T−t)− ‖γλ∗ ‖√

2
x
, B1, B2

)
dx .

As U∗(y, B1, B2) is convex and strictly decreasing on (0,∞), G is convex and
strictly decreasing in y. Further, by expressing the derivatives of G in terms of deriva-
tives of Q, one can easily show that G satisfies the HJB PDE (5.3). Moreover, by
using the fact that G is defined as an integral ofU∗(·, B1, B2) weighted by a Gaussian
density over R and U∗(·, B1, B2) satisfies (5.6), one can easily show that G satisfies

the polynomial growth condition (5.7) with C̃ := Ceα|r+ 1
2 ‖γλ∗‖2|T+ 1

2α2‖γλ∗‖2T . ��
Proof of Lemma 5.13 Û is defined as the smallest concave function larger than

f (x) := (
U (B1) + h−(x − B1)

)
1[0,B1)(x) +U (x)1[B1,B2](x) +U (B2)1(B2,∞)(x).

This corresponds to Û being the concave envelope (as in Reichlin (2013)) of f . Then,
as f ∈ U(B1, B2) and f (x) is constant for x ≥ B2 , Lemma 2.8 from Reichlin (2013)
implies:

(i) Û ∈ Uconc(B1, B2)

(ii) {x > 0 | f (x) < Û (x)} = ⋃
n∈N In , for a collection of bounded, disjoint and

open intervals
(
In

)
n∈N.

(iii) Û is locally affine on In for each n ∈ N.

Due to (ii) and (iii), the supremum in the definition of Û∗(y, B1, B2) can only be
attained by x∗ ∈ In if x∗ ∈ {B1, B2} or Û (x) − yx is constant for all x ∈ In .
However, in the latter case, as Î(y, B1, B2), is defined as an infimum, In is open and
as Û ∈ Uconc(B1, B2) (hence Û is continuous), Î(y, B1, B2) will not take values in
In . Thus, in both cases

Î(y, B1, B2) /∈ {x > 0 | f (x) < Û (x)} ∀y > 0

⇒ Û (Î(y, B1, B2)) = f (Î(y, B1, B2)) ∀y > 0.

However, as Û (x) ≥ f (x) = U (x) for x ∈ [B1, B2], (5.8) and (5.9) follow. Since Û ∈
Uconc(B1, B2), the maximizer Î(y, B1, B2) is decreasing and has at most countably
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infinite points of discontinuity. By (5.8) the maximizer I(y, B1, B2) has the same
properties. ��
Proof of Example 5.17 U ∈ U(B1, B2), as U1,U2 ∈ Uconc(0,∞) are strictly increas-
ing. Hence, by virtue of Corollary 5.16 and Theorem 4.6, the optimal terminal wealth
for (P) is givenby D∗ = I(y Z̃λ∗(T ), B1, B2).Our task is now to computeI(·, B1, B2)

in the cases (i)-(iii).
Case (i): B1 < B2 ≤ θ : In this caseU (x) = −U1(θ − x) is convex and increasing

on [B1, B2]. Therefore, its concavification on [B1, B2] is given by

Û (x) = U (B1) + U (B2) −U (B1)

B2 − B1
(x − B1), for x ∈ [B1, B2].

Hence,

I(y, B1, B2) = Î(y, B1, B2) =
{
B1, if U (B2)−U (B1)

B2−B1
≤ y

B2, if U (B2)−U (B1)
B2−B1

> y
.

Case (ii): θ ≤ B1 < B2: In this caseU (x) = U2(x − θ) is concave and increasing
on [B1, B2]. Therefore, U (x) is equal to its concavification Û (x) on [B1, B2], for
x ∈ [B1, B2]. Hence, for any given y > 0 its capped LFT can be expressed as

U∗(y, B1, B2) = sup
B1≤x≤B2

(
U (x) − yx

) = sup
B1≤x≤B2

(
U2(x − θ) − yx

)

z=x−θ= sup
B1−θ≤z≤B2−θ

(
U2(z) − yz

) − yθ

= U2(I2(y, B1 − θ, B2 − θ)) − y(I2(y, B1 − θ, B2 − θ) + θ)

= U (I2(y, B1 − θ, B2 − θ) + θ) − y(I2(y, B1 − θ, B2 − θ) + θ)

Hence,

I(y, B1, B2) = I2(y, B1 − θ, B2 − θ) + θ

Case (iii): B1 < θ < B2: Define the set M as

M = {
x ≥ θ | ∀z ∈ [B1, x] : U (z) ≤ U (B1) + U (x) −U (B1)

x − B1
(z − B1)

}
.

Then θ ∈ M , since U is convex on [B1, B2] and h = supM < ∞, as
limx→∞ U (x)

x = 0. Due to the concavity of U on [θ,∞) one can alternatively write
M as M = [θ, h].

(iii).a: B2 ≤ h: In this case, the concavification of U on [B1, B2] is given by

Û (x) = U (B1) + U (B2) −U (B1)

B2 − B1
(x − B1), for x ∈ [B1, B2].
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Hence,

I(y, B1, B2) = Î(y, B1, B2) =
{
B1, if U (B2)−U (B1)

B2−B1
≤ y

B2, if U (B2)−U (B1)
B2−B1

> y
.

(iii).b: B2 > h: In this case, the concavification of U on [B1, B2] is given by

Û (x) =
{
U (B1) + U (h)−U (B1)

h−B1
(x − B1), if B1 ≤ x ≤ h

U (x), if h ≤ x ≤ B2
.

Therefore,

I(y, B1, B2) = Î(y, B1, B2) =
{
B1, if U (h)−U (B1)

h−B1
≤ y

I2(y, h − θ, B2 − θ) + θ if U (h)−U (B1)
h−B1

> y
.

��
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