
Mathematical Methods of Operations Research
https://doi.org/10.1007/s00186-020-00718-6

ORIG INAL ART ICLE

Solutions for subset sum problems with special digraph
constraints

Frank Gurski1 · Dominique Komander1 · Carolin Rehs1

Received: 24 June 2019 / Revised: 22 May 2020
© The Author(s) 2020

Abstract
The subset sum problem is one of the simplest and most fundamental NP-hard prob-
lems in combinatorial optimization. We consider two extensions of this problem: The
subset sum problem with digraph constraint (SSG) and subset sum problem with
weak digraph constraint (SSGW). In both problems there is given a digraph with sizes
assigned to the vertices. Within SSG we want to find a subset of vertices whose total
size does not exceed a given capacity and which contains a vertex if at least one of
its predecessors is part of the solution. Within SSGW we want to find a subset of
vertices whose total size does not exceed a given capacity and which contains a vertex
if all its predecessors are part of the solution. SSG and SSGW have been introduced
recently by Gourvès et al. who studied their complexity for directed acyclic graphs
and oriented trees. We show that both problems are NP-hard even on oriented co-
graphs and minimal series-parallel digraphs. Further, we provide pseudo-polynomial
solutions for SSG and SSGW with digraph constraints given by directed co-graphs
and series-parallel digraphs.

Keywords Subset sum problem · Digraph constraint · Directed co-graphs ·
Series-parallel digraphs

Mathematics Subject Classification 05C85 · 90C39 · 05C69

1 Introduction

The subset sum problem is one of the most fundamental NP-hard problems in com-
binatorial optimization. Within the subset sum problem (SSP) there is given a set
A = {a1, . . . , an} of n items. Every item a j has a size s j and there is a capacity c. All

B Frank Gurski
frank.gurski@hhu.de

1 Institute of Computer Science, Algorithmics for Hard Problems Group, University of Düsseldorf,
40225 Düsseldorf, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-020-00718-6&domain=pdf

F. Gurski et al.

values are assumed to be positive integers and s j ≤ c for every j ∈ {1, . . . , n}. The
task is to choose a subset A′ of A, such that the sum of the sizes of the items in A′ is
maximized and is at most c.

In this paper we consider the following two sum problems which additionally have
given a digraph on the item set. Both problems have been introduced recently by
Gourvès et al. (2018). Within the subset sum problem with digraph constraint (SSG)
we want to find a subset of vertices whose total size does not exceed a given capacity
and which contains a vertex if at least one of its predecessors is part of the solution.
Within the subset sum problem with weak digraph constraint (SSGW) the goal is
to find a subset of vertices whose total size does not exceed a given capacity and
which contains a vertex if all its predecessors are part of the solution. Since SSG and
SSGW generalize SSP, they are NP-hard. Both problems are integer-valued problems,
which motivates to observe whether they are weakly NP-hard, i.e. the existence of
pseudo-polynomial algorithms.

For related works we refer to Gourvès et al. (2018, Section 3). In Gourvès et al.
(2018) it has been shown that on directed acyclic graphs (DAGs) SSG is strongly NP-
hard and SSGW is evenAPX-hard. Further, they showed that the restriction to oriented
trees allows to give a pseudo-polynomial algorithmusing dynamic programming along
the tree.

In this paper we consider SSG and SSGW on further special digraph classes. First,
we consider co-graphs (short for complement reducible graphs), which can be gener-
ated from the single vertex graph by applying disjoint union, order composition and
series composition (Bechet et al 1997). They can also be characterized by excluding
eight forbidden induced subdigraphs. Directed co-graphs are exactly the digraphs of
directed NLC-width1 1 and a proper subset of the digraphs of directed clique-width
at most 2 (Gurski et al. 2016). Directed co-graphs are interesting from an algorithmic
point of view since several hard graph problems can be solved in polynomial time by
dynamic programming along the tree structure of the input graph, see Bang-Jensen and
Maddaloni (2014), Gurski (2017), Gurski and Rehs (2018), Gurski et al. (2019a, b).
Moreover, directed co-graphs are very useful for the reconstruction of the evolution-
ary history of genes or species using genomic sequence data (Hellmuth et al. 2017;
Nojgaard et al. 2018).

Further, we look at SSG and SSGW on series-parallel digraphs, which are exactly
the digraphs whose transitive closure equals the transitive closure of some minimal
series-parallel digraph.Minimal series-parallel digraphs can be generated from the sin-
gle vertex graph by applying the parallel composition and series composition (Valdes
et al. 1982). Series-parallel digraphs are also interesting from an algorithmic point of
view since several hard graph problems can be solved in polynomial time by dynamic
programming along the tree structure of the input graph, see Monma and Sidney
(1977), Steiner (1985) and Rendl (1986).

We show pseudo-polynomial solutions for SSG and SSGW on directed co-graphs
and minimal series-parallel digraphs and deduce a pseudo-polynomial time solution
for SSG on series-parallel digraphs. Our results are based on dynamic programming

1 The abbreviation NLC results from the node label controlled embedding mechanism originally defined
for graph grammars (Engelfriet and Rozenberg 1997).

123

Solutions for subset sum problems with special digraph constraints

Table 1 Known running times for SSG and SSGW with digraph constraints restricted to special graph
classes

SSG SSGW

Transitive tournaments O(n2) Remark 2 O(n · c4 + m) Theorem 3

Bioriented cliques O(n) Remark 3 O(n · c4 + m) Theorem 3

DAGs Strongly NP-hard Gourvès et al. (2018) APX-hard Gourvès et al. (2018)

Oriented trees O(n · c3) Gourvès et al. (2018) O(n · c2) Gourvès et al. (2018)

Directed co-graphs O(n · c2 + m) Theorem 2 O(n · c4 + m) Theorem 3

Minimal series-parallel O(n · c2 + m) Theorem 5 O(n · c4 + m) Theorem 7

Series-parallel O(n · c2 + n2.37) Theorem 6 Open

Let n be the number of vertices and m the number of directed edges of the input digraph and c be the
capacity

along the tree-structure of the considered digraphs. The considered digraph classes
are incomparable w.r.t. inclusion to oriented trees considered in Gourvès et al. (2018),
see Fig. 7. Moreover, the digraphs of our interest allow to define dense graphs, i.e.
graphs where the number of directed edges is quadratic in the number of vertices. In
Table 1 we summarize the known results from Gourvès et al. (2018) and the results of
this work about subset sum problems with special digraph constraints.

2 Preliminaries

2.1 Digraphs

A directed graph or digraph is a pairG = (V , E), where V is a finite set of vertices and
E ⊆ {(u, v) | u, v ∈ V , u �= v} is a finite set of ordered pairs of distinct vertices called
arcs or directed edges. For a vertex v ∈ V , the sets N+

G (v) = {u ∈ V | (v, u) ∈ E}
and N−

G (v) = {u ∈ V | (u, v) ∈ E} are called the set of all successors and the set of
all predecessors of v in G. The outdegree of v, outdegreeG(v) for short, is the number
of successors of v and the indegree of v, indegreeG(v) for short, is the number of
predecessors of v. We may omit indices if the graph under consideration is clear from
the context. A vertex v ∈ V is out-dominating (in-dominated) if it is adjacent to every
other vertex in V and is a source (a sink, respectively).

A digraph G ′ = (V ′, E ′) is a subdigraph of digraph G = (V , E) if V ′ ⊆ V and
E ′ ⊆ E . If every arc of E with start- and end-vertex in V ′ is in E ′, we say that G ′ is
an induced subdigraph of digraph G and we write G ′ = G[V ′].

For n ≥ 2 we denote by

−→
Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)})

a directed path on n vertices. Vertex v1 is the start vertex and vn is the end vertex of−→
Pn . For n ≥ 2 we denote by

123

F. Gurski et al.

−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)})

a directed cycle on n vertices.
A directed acyclic graph (DAG for short) is a digraph without any

−→
Cn , for n ≥ 2,

as subdigraph. A vertex v is reachable from a vertex u in G, if G contains a
−→
Pn as a

subdigraph having start vertex u and end vertex v.
A weakly connected component of G is a maximal subdigraph, such that the corre-

sponding underlying graph is connected. A strongly connected component of G is a
maximal subdigraph, in which every vertex is reachable from every other vertex.

An out-rooted-tree (in-rooted-tree) is an orientation of a tree with a distinguished
root such that all arcs are directed away from (to) the root.

2.2 Problems

Let A = {a1, . . . , an} be a set of n items, such that every item a j has a size s j . For a
subset A′ of A we define

s(A′) :=
∑

a j∈A′
s j

and the capacity constraint by

s(A′) ≤ c. (1)

Name: Subset sum (SSP)
Instance: A set A = {a1, . . . , an} of n items. Every item a j has a size s j and there

is a capacity c.
Task: Find a subset A′ of A that maximizes s(A′) subject to (1).

The parameters n, s j , and c are assumed to be positive integers. See Kellerer et al.
(2010, Chapter 4) for a survey on the subset sum problem. In order to consider gen-
eralizations of the subset sum problem we will consider constraints for a digraph
G = (A, E) with objects assigned to the vertices.

The digraph constraint ensures that A′ ⊆ A contains a vertex y, if it contains at
least one predecessor of y, i.e.

∀y ∈ A
(
N−(y) ∩ A′ �= ∅) ⇒ y ∈ A′. (2)

Theweak digraph constraint ensures that A′ contains a vertex y, if it contains every
predecessor of y, i.e.

∀y ∈ A
(
N−(y) ⊆ A′ ∧ N−(y) �= ∅) ⇒ y ∈ A′. (3)

This allows us to state the following optimization problems given in Gourvès et al.
(2018).

123

Solutions for subset sum problems with special digraph constraints

Name: Subset sum with digraph constraint (SSG)
Instance: A set A = {a1, . . . , an} of n items and a digraph G = (A, E). Every

item a j has a size s j and there is a capacity c.
Task: Find a subset A′ of A that maximizes s(A′) subject to (1) and (2).

Name: Subset sum with weak digraph constraint (SSGW)
Instance: A set A = {a1, . . . , an} of n items and a digraph G = (A, E). Every

item a j has a size s j and there is a capacity c.
Task: Find a subset A′ of A that maximizes s(A′) subject to (1) and (3).

In our problems the parameters n, s j , and c are assumed to be positive integers.2

Further, in the defined problems a subset A′ of A is called feasible, if it satisfies the
prescribed constraints of the problem. By OPT (I) we denote the value of an optimal
solution for input I .

Observation 1 Every feasible solution for SSG is also a feasible solution for SSGW,
but not vice versa.

Observation 2 A′ = ∅ and A′ = A for s(A) ≤ c are feasible solutions for every
instance of SSG and for every instance of SSGW.

In order to give equivalent characterizations for SSG and SSGW we use binary
integer programs.

Remark 1 To formulate SSG and SSGW as a binary integer program, we introduce a
binary variable x j ∈ {0, 1} for each item a j ∈ A, 1 ≤ j ≤ n. The idea is to have
x j = 1 if and only if item a j ∈ A′.
1. SSG corresponds to maximizing

∑n
j=1 s j x j subject to

∑n
j=1 s j x j ≤ c, xi ≤ x j

for every j ∈ {1, . . . n} and for every ai ∈ N−(a j), and x j ∈ {0, 1} for every
j ∈ {1, . . . n}.

2. SSGW corresponds to maximizing
∑n

j=1 s j x j subject to
∑n

j=1 s j x j ≤ c,∑
{i |ai∈N−(a j)} xi ≤ x j + indegree(a j)−1 for every j ∈ {1, . . . n}, and x j ∈ {0, 1}

for every j ∈ {1, . . . n}.
The complexity for SSG and SSGW restricted to DAGs and oriented trees was

considered in Gourvès et al. (2018).

Theorem 1 (Gourvès et al. 2018) On DAGs SSG is strongly NP-hard and SSGW is
APX-hard.

2.3 Basic results

Let G = (V , E) be a digraph and x ∈ V . By Rx we denote the vertices of V which
are reachable from x and by Sx we denote the vertices of V which are in the same
strongly connected component as x . Thus, it holds that {x} ⊆ Sx ⊆ Rx ⊆ V .

2 The results in Gourvès et al. (2018) also consider null sizes, which are excluded in our work. All our
solutions can be extended to pseudopolynomial solutions which solve SSG and SSGW using null sizes, see
Sect. 5.

123

F. Gurski et al.

Lemma 1 Let A′ be a feasible solution for SSG on a digraph G = (A, E) and x ∈ A.
Then, it holds that x ∈ A′ if and only if Rx ⊆ A′.

Lemma 2 Let A′ be a feasible solution for SSG on a digraph G = (A, E) and x ∈ A.
Then, it holds that x ∈ A′ if and only if Sx ⊆ A′.

Lemma 3 SSG is solvable inO(2t · (n+m)) time on digraphs with n vertices, m arcs,
and t strongly connected components.

Proof By Lemma 2 for every feasible solution A′ and every strongly connected com-
ponent S, it either holds that S ⊆ A′ or S ∩ A′ = ∅. Since all strongly connected
components are vertex disjoint, we can solve SSG by verifying 2t possible feasible
solutions. Verifying the capacity constraint can be done in O(n) time and verifying
the digraph constraint can be done in O(n + m) time. ��

In the condensation con(G) of a digraph G = (V , E) every strongly connected
component C of G is represented by a vertex vC and there is an arc between two
vertices vC and vC ′ if there exist u ∈ C and v ∈ C ′, such that (u, v) ∈ E . For every
digraph G it holds that con(G) is a directed acyclic graph.

In order to solve SSG it is useful to consider the condensation of the input digraph
G = (A, E). By defining the size of a vertex vC of con(G) by the sum of the sizes of
the vertices inC , the following result has been shown in Gourvès et al. (2018, Lemma
2).

Lemma 4 (Gourvès et al. 2018) For a given instance of SSG on digraph G, there is a
bijection between the feasible solutions (and thus the set of optimal solutions) of SSG
for G and the feasible solutions (and thus the set of optimal solutions) for con(G).

Thus, in order to solve SSG we can restrict ourselves to DAGs by computing the
condensation of the input graph in a first step. The next example shows that Lemma 4
does not hold for SSGW.

Example 1 We consider the digraph G in Fig. 1. For SSGW with c = 2 and all sizes
s j = 1 we have among others {a4} as a feasible solution. Since con(G) is a path of
length one, formally

con(G) = ({v{a1,a2,a3,a4}, v{a5}}, {(v{a1,a2,a3,a4}, v{a5})}),

the only feasible solution is {a5}, which implies that {a4} is not a feasible solution for
SSGW using con(G).

The transitive closure td(G) of a digraph G has the same vertex set as G and for
two distinct vertices u, v there is an arc (u, v) in td(G) if and only if there is a directed
path from u to v in G. The transitive reduction tr(G) of a digraph G has the same
vertex set as G and as few arcs of G as possible, such that G and tr(G) have the same
transitive closure. The transitive closure is unique for every digraph. The transitive
reduction is unique for directed acyclic graphs. However, for arbitrary digraphs the
transitive reduction is not unique. The time complexity of the best known algorithm

123

Solutions for subset sum problems with special digraph constraints

Fig. 1 Digraph in Example 1 a1

a3

a4 a5
a2

Fig. 2 Digraph in Example 2 a1

a2

a3 a4

for finding the transitive reduction of a graph is the same as the time to compute
the transitive closure of a graph or to perform Boolean matrix multiplication (Aho
et al. 1972). The best known algorithm to perform Boolean matrix multiplication has
running time O(n2.3729) by Le Gall (2014).

Lemma 5 For a given instance of SSG on a directed acyclic graph G, the set of feasible
solutions and thus the set of optimal solutions of SSG for G and for tr(G) are equal.

Proof Since a transitive reduction is a subdigraph of the given graph, every feasible
solution A′ for G is also a feasible solution for the transitive reduction tr(G). To show
the reverse direction, let A′ be a feasible solution for tr(G). By the definition of tr(G)

we know that for every vertex v, every predecessor u of v in G is also a predecessor
of v in tr(G) or there is a path from u to v in tr(G). By Lemma 1 we know that A′ is
also a feasible solution for G. ��

Thus, in order to solve SSG we can restrict ourselves to transitive reductions. The
next example shows that Lemma 5 does not hold for SSGW.

Example 2 We consider the digraph G in Fig. 2. For SSGW with c = 2 and all sizes
s j = 1 we have among others {a2} as a feasible solution. Since tr(G) is a path,
formally

tr(G) = ({a1, a2, a3, a4}, {(a1, a2), (a2, a3), (a3, a4)}),

a2 implies by (3) that a3 and a4 must be part of the solution, which implies that {a2}
is not a feasible solution for SSGW using tr(G).

In the correctness proofs of our algorithms in Sects. 3 and 4wewill use the following
lemmata.

Lemma 6 Let G = (VG , EG) be a digraph and let H = (VH , EH) be an induced
subdigraph of G. If A′ is a feasible solution for SSG on G, then A′ ∩ VH is a feasible
solution for SSG on H.

123

F. Gurski et al.

Proof If A′ is a feasible solution for SSG on G, then it holds that

∀y ∈ VG
(
N−
G (y) ∩ A′ �= ∅) ⇒ y ∈ A′.

By restricting to y having no predecessors from VG \ VH , we obtain

∀y ∈ VG
(
N−
G (y) ∩ A′ ∩ VH �= ∅) ⇒ y ∈ A′.

By restricting y to VH ⊆ VG we obtain

∀y ∈ VH
(
N−
H (y) ∩ A′ ∩ VH �= ∅) ⇒ y ∈ A′ ∩ VH ,

i.e., A′ ∩ VH is a feasible solution for SSG on H . ��
The reverse direction of Lemma 6 does not hold, since vertices with predecessors

in A′ ∩ (VG \ VH) are not considered by the feasible solutions for SSG on H . By
considering the induced subdigraph H = ({a2, a3, a4}, {(a2, a3), (a3, a4)}) of digraph
G in Example 2 we observe that Lemma 6 does not hold for SSGW. Next, we give
two weaker forms of Lemma 6 which also hold for SSGW.

Lemma 7 Let G = (VG , EG) be a digraph and let H = (VH , EH) be a weakly
connected component of G. If A′ is a feasible solution for SSGW on G, then A′ ∩ VH

is a feasible solution for SSGW on H.

Proof If A′ is a feasible solution for SSGW on G, then it holds that

∀y ∈ VG
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅) ⇒ y ∈ A′.

By restricting y to VH ⊆ VG we obtain

∀y ∈ VH
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅) ⇒ y ∈ A′ ∩ VH .

Since H is a weakly connected component of G for all y ∈ VH it holds that N−
H (y) =

N−
G (y) such that

∀y ∈ VH
(
N−
H (y) ⊆ A′ ∩ VH ∧ N−

H (y) �= ∅) ⇒ y ∈ A′ ∩ VH ,

i.e., A′ ∩ VH is a feasible solution for SSGW on H . ��
Lemma 8 Let G = (VG , EG) be a digraph and let H = (VH , EH) be an induced
subdigraph of G, such that no non-source of H has a predecessor in VG \ VH . If A′
is a feasible solution for SSGW on G, then A′ ∩ VH is a feasible solution for SSGW
on H.

Proof If A′ is a feasible solution for SSGW on G, then it holds that

∀y ∈ VG
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅) ⇒ y ∈ A′.

123

Solutions for subset sum problems with special digraph constraints

By restricting y to VH ⊆ VG we obtain that

∀y ∈ VH
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅) ⇒ y ∈ A′ ∩ VH .

By restricting y to be a non-source of H , we obtain

∀y ∈ VH
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅ ∧ N−
H (y) �= ∅) ⇒ y ∈ A′ ∩ VH .

Since no non-source of H has a predecessor in VG \ VH , we obtain

∀y ∈ VH
(
N−
G (y) ⊆ A′ ∧ N−

H (y) �= ∅) ⇒ y ∈ A′ ∩ VH .

Then it holds in H that

∀y ∈ VH
(
N−
H (y) ⊆ A′ ∩ VH ∧ N−

H (y) �= ∅) ⇒ y ∈ A′ ∩ VH ,

i.e., A′ ∩ VH is a feasible solution for SSGW on H . ��
Lemma 9 Let G = (VG , EG) be a digraph such that there is a 2-partition (V1, V2) of
VG with {(u, v) | u ∈ V1, v ∈ V2} ⊆ EG. If A′ is a feasible solution for SSGW on G
such that V1 ⊆ A′, then A′ ∩ V2 is a feasible solution for SSGW on G[V2].
Proof If A′ is a feasible solution for SSGW on G, then it holds that

∀y ∈ VG
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅) ⇒ y ∈ A′.

By restricting y to V2 ⊆ VG we obtain

∀y ∈ V2
(
N−
G (y) ⊆ A′ ∧ N−

G (y) �= ∅) ⇒ y ∈ A′ ∩ V2.

Since V1 ⊆ A′ it holds that

∀y ∈ V2
(
N−
G (y) ⊆ V1 ∪ A′ ∩ V2 ∧ N−

G (y) �= ∅) ⇒ y ∈ A′ ∩ V2.

Thus, it holds that

∀y ∈ V2
(
N−
G[V2](y) ⊆ A′ ∩ V2 ∧ (N−

G[V1](y) ∪ N−
G[V1](y)) �= ∅

)
⇒ y ∈ A′ ∩ V2.

Since V1 = N−
G[V1](y) �= ∅ it holds that

∀y ∈ V2
(
N−
G[V2](y) ⊆ A′ ∩ V2

)
⇒ y ∈ A′ ∩ V2.

By the properties of the logical implication it also holds that

∀y ∈ V2
(
N−
G[V2](y) ⊆ A′ ∩ V2 ∧ N−

G[V2](y) �= ∅
)

⇒ y ∈ A′ ∩ V2,

123

F. Gurski et al.

i.e., A′ ∩ V2 is a feasible solution for SSGW on G[V2]. ��
Further, we will use the following result for solutions of SSP on digraphs with sizes

assigned to the vertices.

Observation 3 Let G = (VG , EG) be a digraph with sizes assigned to the vertices
and let H = (VH , EH) be an induced subdigraph of G. If A′ ⊆ VG satisfies (1), then
A′ ∩ VH satisfies (1).

3 SSG and SSGW on directed co-graphs

3.1 Directed co-graphs

LetG1 = (V1, E1) andG2 = (V2, E2) be two vertex-disjoint digraphs. The following
operations have already been considered by Bechet et al (1997).

– The disjoint union of G1 and G2, denoted by G1 ⊕G2, is the digraph with vertex
set V1 ∪ V2 and arc set E1 ∪ E2.

– The series composition of G1 and G2, denoted by G1 ⊗ G2, is defined by their
disjoint union plus all possible arcs between vertices of G1 and G2.

– The order composition of G1 and G2, denoted by G1 � G2, is defined by their
disjoint union plus all possible arcs from vertices of G1 to vertices of G2.

We recall the definition of directed co-graphs from Crespelle and Paul (2006).3

Definition 1 (Directed co-graphs, Crespelle and Paul 2006) The class of directed co-
graphs is recursively defined as follows.

1. Every digraph with a single vertex ({v},∅), denoted by v, is a directed co-graph.
2. If G1 and G2 are vertex-disjoint directed co-graphs, then

(a) the disjoint union G1 ⊕ G2,
(b) the series composition G1 ⊗ G2, and
(c) the order composition G1 � G2 are directed co-graphs.

The class of directed co-graphs is denoted by DC.

Every expression X using the four operations of Definition 1 is called a di-co-
expression and digraph(X) is the defined digraph.

Example 3 The di-co-expression

X = ((v1 ⊕ v3) � (v2 ⊗ v4)) (4)

defines digraph(X) shown in Fig. 3.

3 In Crespelle and Paul (2006) directed co-graphs are defined by disjoint union, series composition, and
order composition combining an arbitrary number of digraphs. We restrict ourselves to binary operations,
which is possible since these operations are associative.

123

Solutions for subset sum problems with special digraph constraints

Fig. 3 Digraph in Example 3
1v

3v

2v

4v

As undirected co-graphs can be characterized by forbidding the P4, directed co-
graphs canbe characterized likewise by excluding eight forbidden induced subdigraphs
(Crespelle and Paul 2006). For every directed co-graph we can define a tree structure
denoted as di-co-tree. It is a binary ordered rooted tree whose vertices are labeled by
the operations of the di-co-expression.

Definition 2 (Di-co-tree) The di-co-tree for some directed co-graph G is recursively
defined as follows.

– The di-co-tree T for di-co-expression v consists of a single vertex r (the root of
T) labeled by v.

– The di-co-tree T for di-co-expression G1 ⊕G2 consists of a copy T1 of the di-co-
tree for G1, a copy T2 of the di-co-tree for G2, an additional vertex r (the root of
T) labeled by ⊕ and two additional arcs from vertex r to the roots of T1 and T2.
The root of T1 is the first child of r and the root of T2 is the second child of r .

– The di-co-tree T for di-co-expressions G1 ⊗ G2 and G1 � G2 are defined analo-
gously to G1 ⊕ G2.

For every directed co-graph one can construct a di-co-tree in linear time, see Cre-
spelle and Paul (2006). Due to their recursive structure there are problems that are hard
in general but which can be solved efficiently on directed co-graphs, see Bang-Jensen
andMaddaloni (2014), Gurski (2017), Gurski et al. (2019a, b); Gurski et al (2020) and
Gurski and Rehs (2018).

Observation 4 Let G be a directed co-graph and T be a di-co-tree for G. For every
vertex u of T which corresponds to a series operation, the subtree rooted at u defines
a strongly connected subdigraph of G. Further, for every vertex u of T representing a
series operation, such that no predecessor of u corresponds to a series operation, the
leaves of the subtree rooted at u correspond to a strongly connected component of G.

By omitting the series composition within Definition 1 we obtain the class of all
oriented co-graphs. The class of oriented co-graphs is denoted by OC.

Example 4 The di-co-expression

X = ((v1 ⊕ v3) � (v2 � v4)) (5)

defines digraph(X) shown in Fig. 4.

The class of oriented co-graphs has already been analyzed by Lawler in Lawler
(1976) and Corneil et al. (1981, Section 5) using the notation of transitive series-
parallel (TSP) digraphs. A digraph G = (V , E) is called transitive if for every pair

123

F. Gurski et al.

Fig. 4 Digraph in Example 4
1v

3v

2v

4v

(u, v) ∈ E and (v,w) ∈ E of arcs with u �= w the arc (u, w) also belongs to E . For
oriented co-graphs the oriented chromatic number and also the graph isomorphism
problem can be solved in linear time (Gurski et al. 2019b).

Observation 5 Every oriented co-graph is a directed co-graph and every oriented
co-graph is a DAG.

Since SSP corresponds to SSG and also to SSGW on a digraph without arcs, which
is an oriented co-graph, we obtain the following result.

Proposition 1 SSG and SSGW are NP-hard on oriented co-graphs.

Next, we will show pseudo-polynomial solutions for SSG and SSGW restricted
to directed co-graphs. The main idea is a dynamic programming along the recursive
structure of a given directed co-graph.

3.2 Subset sumwith digraph constraint (SSG)

By Lemma 4 in order to solve SSGwe can restrict ourselves to directed acyclic graphs.
This can be done by replacing every strongly connected component S by a new vertex
xS whose size is the sumof the sizes of the vertices in S. In order to identify the strongly
connected components of directed co-graphs using a di-co-tree we apply Observation
4. We perform a breadth first search on a di-co-tree T starting at the root and for every
vertex u of T which corresponds to a series operation we substitute the subtree rooted
at u by a single vertex whose size is the sum of the sizes of the vertices corresponding
to the leaves of the subtree rooted at u. This does not reduce the size of the digraph
or its di-co-tree in general, e.g. for oriented co-graphs we have no non-trivial strongly
connected component.

We consider an instance of SSG such that G = (A, E) is a directed co-graph which
is given by some di-co-expression X . For some subexpression X ′ of X let F(X ′, s) = 1
if there is a solution A′ in the graph defined by X ′ satisfying (1) and (2) such that
s(A′) = s, otherwise let F(X ′, s) = 0. We use the notation s(X ′) = ∑

a j∈X ′ s j .

Lemma 10 Let 0 ≤ s ≤ c.

1. F(a j , s) = 1 if and only if s = 0 or s j = s.
In all other cases F(a j , s) = 0.

2. F(X1 ⊕ X2, s) = 1, if and only if there are some 0 ≤ s′ ≤ s and 0 ≤ s′′ ≤ s such
that s′ + s′′ = s and F(X1, s′) = 1 and F(X2, s′′) = 1.
In all other cases F(X1 ⊕ X2, s) = 0.

3. F(X1 � X2, s) = 1, if and only if

123

Solutions for subset sum problems with special digraph constraints

– F(X2, s) = 1 for 0 ≤ s ≤ s(X2)
4 or

– there is an s′ > 0, such that s = s′ + s(X2) and F(X1, s′) = 1.

In all other cases F(X1 � X2, s) = 0.
4. F(X1 ⊗ X2, s) = 1, if and only if s = 0 or s = s(X1) + s(X2).

In all other cases F(X1 ⊗ X2, s) = 0.

Proof We show the correctness of the stated equivalences. Let 0 ≤ s ≤ c.

1. The only possible solutions in digraph(a j) are ∅ and {a j } which have size 0 and
s j , respectively.

2. If F(X1 ⊕ X2, s) = 1, then by Lemma 6 there are s′ and s′′ such that s′ + s′′ = s
and solutions in digraph(X1) and in digraph(X2) which guarantee F(X1, s′) = 1
and F(X2, s′′) = 1.
Further, for every s′ and s′′, such that s′+s′′ = s, F(X1, s′) = 1, and F(X2, s′′) =
1, it holds that F(X1 ⊕ X2, s) = 1 since the operation (disjoint union) does not
create new edges.

3. If F(X1 � X2, s) = 1, then we distinguish two cases. If the solution of size s in
digraph(X1 � X2) contains no vertices of digraph(X1), then by Lemma 6 there is
a solution in digraph(X2) which guarantees F(X2, s) = 1.
If the solution A′ of size s in digraph(X1 � X2) contains at least one vertex of
digraph(X1), then by (2) solution A′ has to contain all vertices of digraph(X2)

and by Lemma 6 there is a solution in digraph(X1) which guarantees F(X1, s −
s(X2)) = 1.
Further, for every 0 ≤ s ≤ s(X2)where F(X2, s) = 1we have F(X1�X2, s) = 1
since the solutions from digraph(X2) do not contain any predecessors of vertices
from digraph(X1) in digraph(X1 � X2).
Also for every 1 ≤ s′ ≤ s(X1) where F(X1, s′) = 1 for s = s′ + s(X2) we have
F(X1 � X2, s) = 1 since every solution in digraph(X1) has to be extended by X2
since at least one predecessor of digraph(X2) is part of the solution and thus, all
vertices of digraph(X2) have to belong to the solution.

4. If F(X1 ⊗ X2, s) = 1, then we distinguish two cases. If the solution of size s is
empty, then s = 0.
Otherwise, s = s(X1)+ s(X2) since digraph(X1 ⊗ X2) is strongly connected and
thus, all vertices of digraph(X1) and all vertices of digraph(X2) have to be part of
the solution.
Further, if s = 0 or s = s(X1)+ s(X2), it holds that F(X1 ⊗ X2, s) = 1 since the
empty and the complete vertex set both satisfy (2).

��
Corollary 1 There is a solution with sum s for an instance of SSG such that G is a
directed co-graph which is given by some di-co-expression X if and only if F(X , s) =
1. Therefore, OPT (I) = max{s | F(X , s) = 1}.
Theorem 2 SSG can be solved in directed co-graphs with n vertices and m arcs in
O(n · c2 + m) time and O(n · c) space.
4 The value s = 0 is for choosing an empty solution in digraph(X1 � X2).

123

F. Gurski et al.

Proof Let G = (A, E) be a directed co-graph and T be a di-co-tree for G with root
r . For some vertex u of T we denote by Tu the subtree rooted at u and Xu the co-
expression defined by Tu . In order to solve the SSG problem for an instance I on
graph G, we traverse di-co-tree T in a bottom-up order. For every vertex u of T and
0 ≤ s ≤ cwe compute F(Xu, s) following the rules given in Lemma 10. By Corollary
1 we can solve our problem by F(Xr , s) = F(X , s).

A di-co-tree T can be computed in O(n + m) time from a directed co-graph with
n vertices and m arcs, see Crespelle and Paul (2006). All s(Xi) can be precomputed
in O(n) time. Our rules given in Lemma 10 show the following running times.

– For every a j ∈ A and every 0 ≤ s ≤ c value F(a j , s) is computable inO(1) time.
– For every 0 ≤ s ≤ c, every F(X1 ⊕ X2, s) and every F(X1 � X2, s) can be
computed in O(c) time from F(X1, s′) and F(X2, s′′).

– For every 0 ≤ s ≤ c, every F(X1 ⊗ X2, s) can be computed in O(1) time from
s(X1) and s(X2).

Since we have n leaves and n−1 inner vertices in T , the running time is inO(nc2+m).
��

A tournament is a digraph G = (A, E) where for each two different vertices
u, v ∈ A it holds that exactly one of the two pairs (u, v) and (v, u) belongs to E .
The class of transitive tournaments is denoted by TT. Transitive tournaments are
characterized in several ways, see Gould (2012, Chapter 9).

Lemma 11 (Gould 2012)For every digraphG the following statements are equivalent.

1. G is a transitive tournament.
2. G is an acyclic tournament.
3. G is a tournament with exactly one Hamiltonian path.
4. G is a tournament and every vertex in G has a different outdegree, i.e.

{outdegree(v) | v ∈ V } = {0, . . . , |V | − 1}.
5. G can be constructed from the one-vertex graph by repeatedly adding an out-

dominating vertex.
6. G canbe constructed from theone-vertex graph repeatedly addingan in-dominated

vertex.

In Gourvès et al. (2018, Lemma 4) it is shown that SSG is polynomial on acyclic
tournaments without stating a running time. Since acyclic tournaments, and equiva-
lently transitive tournaments, are a subclass of oriented co-graphs, we reconsider the
following result.

Remark 2 Every transitive tournament G can be defined from a single vertex graph
v1 by repeatedly adding a vertex of maximum indegree and outdegree 0, i.e. an in-
dominated vertex v2, . . . , vn (cf. Lemma 11). This order can be defined inO(n2) time
fromG. The feasible solutions w.r.t. the digraph constraint (2) are ∅ and for 1 ≤ k ≤ n
the set {vi | k ≤ i ≤ n}. This leads to at most n + 1 possible solutions for SSG for
which we have to check the capacity constraint (1) and among those satisfying (1)
we select one set with largest sum of sizes. Thus, SSG is solvable in O(n2) time on
transitive tournaments with n vertices.

123

Solutions for subset sum problems with special digraph constraints

A bioriented clique is a digraph G = (A, E) where for each two different vertices
u, v ∈ A it holds that both of the two pairs (u, v) and (v, u) belong to E . The class of
bioriented cliques is denoted by BC.

Remark 3 Within a bioriented clique G = (A, E) the whole vertex set is a strongly
connected component. By Lemma 2 the only possible solutions are A and ∅. Thus,
SSG is solvable in O(n) time on bioriented cliques with n vertices.

3.3 Subset sumwith weak digraph constraint (SSGW)

Next, we consider SSGW on directed co-graphs. In order to get useful informations
about the sources within a solution, we use an extended data structure. We consider an
instance of SSGW such thatG = (A, E) is a directed co-graphwhich is given by some
di-co-expression X . For some subexpression X ′ of X let H(X ′, s, s′) = 1 if there is a
solution A′ in the graph defined by X ′ satisfying (1) and (3) such that s(A′) = s and
the sum of sizes of the sources in A′ is s′, otherwise let H(X ′, s, s′) = 0. We denote
by o(X) the sum of the sizes of all sources in digraph(X).

Remark 4 Aremarkable difference betweenSSGWandSSGw.r.t. co-graph operations
is the following. When considering X1 � X2 we can combine solutions A1 of X1
satisfying (1) and (3) which do not contain all items of X1 with solutions A2 of X2
satisfying only (1) to obtain solution A1 ∪ A2 of X1 � X2 satisfying (1) and (3), if
s(A1) + s(A2) ≤ c. Furthermore, within X1 ⊗ X2 we can combine solutions A1 of
X1 satisfying (1) which do not contain all items and solutions A2 of X2 satisfying (1)
which do not contain all items to obtain solution A1 ∪ A2 of X1 ⊗ X2 satisfying (1)
and (3), if s(A1) + s(A2) ≤ c.

Thus, in order to solve SSGW on a directed co-graph G, we use solutions for SSP
on subexpressions for G. We consider an instance of SSP such that G = (A, E) is a
directed co-graph which is given by some di-co-expression X . For a subexpression X ′
of X let H ′(X ′, s) = 1 if there is a solution A′ in the digraph defined by X ′ satisfying
(1) such that s(A′) = s, otherwise let H ′(X ′, s) = 0.

Lemma 12 Let 0 ≤ s ≤ c.

1. H ′(a j , s) = 1 if and only if s = 0 or s = s j .
In all other cases H ′(a j , s) = 0.

2. H ′(X1 ⊕ X2, s) = 1, if and only if there are some 0 ≤ s′ ≤ s and 0 ≤ s′′ ≤ s
such that s′ + s′′ = s and H ′(X1, s′) = 1 and H ′(X2, s′′) = 1.
In all other cases H ′(X1 ⊕ X2, s) = 0.

3. H ′(X1 � X2, s) = H ′(X1 ⊕ X2, s)
4. H ′(X1 ⊗ X2, s) = H ′(X1 ⊕ X2, s)

Proof We show the correctness of the stated equivalences. Let 0 ≤ s ≤ c.

1. The only possible solutions in digraph(a j) are ∅ and {a j } which have size 0 and
s j , respectively.

123

F. Gurski et al.

2. If H ′(X1⊕X2, s) = 1, then byObservation 3 there are s′ and s′′ such that s′+s′′ = s
and solutions in digraph(X1) and in digraph(X2) which guarantee H ′(X1, s′) = 1
and H ′(X2, s′′) = 1.
Further, for every s′ and s′′, such that s′+s′′ = s, H ′(X1, s′) = 1, and H ′(X2, s′′) =
1, we can combine these two solutions into one solution of size s in digraph(X1 ⊕
X2). Thus, it holds that H ′(X1 ⊕ X2, s) = 1.

3. Since the arcs are irrelevant for the capacity constraint (1), it holds that H ′(X1 �
X2, s) = H ′(X1 ⊕ X2, s).

4. Since the arcs are irrelevant for the capacity constraint (1), it holds that H ′(X1 ⊗
X2, s) = H ′(X1 ⊕ X2, s).

��
This allows us to compute the values H(X ′, s, s′) as follows.

Lemma 13 Let 0 ≤ s, s′ ≤ c.

1. H(a j , s, s′) = 1 if and only if s = s′ = 0 or s j = s = s′.
In all other cases H(a j , s, s′) = 0.

2. H(X1 ⊕ X2, s, s′) = 1, if and only if there are 0 ≤ s1 ≤ s, 0 ≤ s2 ≤ s,
0 ≤ s′

1 ≤ s′, 0 ≤ s′
2 ≤ s′, such that s1 + s2 = s, s′

1 + s′
2 = s′, H(X1, s1, s′

1) = 1,
and H(X2, s2, s′

2) = 1.
In all other cases H(X1 ⊕ X2, s, s′) = 0.

3. H(X1 � X2, s, s′) = 1, if and only if

– H(X1, s, s′) = 1 for 1 ≤ s < s(X1) or
– H ′(X2, s) = 1 for 0 ≤ s ≤ s(X2)

5 and s′ = 0 or
– there are 1 ≤ s2 ≤ s(X2), such that s(X1) + s2 = s, o(X1) = s′, and

H(X2, s2, o(X2)) = 1, or
– s = s(X1) + s(X2) and s′ = o(X1), or
– there are 0 ≤ s1 < s(X1), 0 ≤ s2 ≤ s(X2), such that s1 + s2 = s,

H(X1, s1, s′) = 1, and H ′(X2, s2) = 1.

In all other cases H(X1 � X2, s, s′) = 0.
4. H(X1 ⊗ X2, s, 0) = 1, if and only if

– H ′(X1, s) = 1 for 1 ≤ s < s(X1) or
– H ′(X2, s) = 1 for 0 ≤ s < s(X2)

6 or
– there are 1 ≤ s2 ≤ s(X2), such that s(X1)+ s2 = s, and H(X2, s2, o(X2)) =

1, or
– there are 1 ≤ s1 ≤ s(X1), such that s1 + s(X2) = s, and H(X1, s1, o(X1)) =
1, or

– s = s(X1) + s(X2), or
– there exist 1 ≤ s1 < s(X1) and 1 ≤ s2 < s(X2) such that s1 + s2 = s,

H ′(X1, s1) = 1, and H ′(X2, s2) = 1.

In all other cases H(X1 ⊗ X2, s, s′) = 0.

5 The value s = 0 is for choosing an empty solution in digraph(X1 � X2).
6 The value s = 0 is for choosing an empty solution in digraph(X1 ⊗ X2).

123

Solutions for subset sum problems with special digraph constraints

Proof We show the correctness of the stated equivalences. Let 0 ≤ s, s′ ≤ c.

1. The only possible solutions in digraph(a j) are ∅ and {a j } which have size 0 and
s j , respectively. Further, a single vertex is a source.

2. If H(X1 ⊕ X2, s, s′) = 1, then by Lemma 7 there are s1, s2 and s′
1, s

′
2 such that

s1 + s2 = s, s′
1 + s′

2 = s′ and solutions in digraph(X1) and in digraph(X2) which
guarantee H(X1, s1, s′

1) = 1 and H(X2, s,s′
2) = 1.

Further, for every 0 ≤ s1 ≤ s, 0 ≤ s2 ≤ s, 0 ≤ s′
1 ≤ s′, 0 ≤ s′

2 ≤ s′, such that
s1 + s2 = s, s′

1 + s′
2 = s′, H(X1, s1, s′

1) = 1, and H(X2, s2, s′
2) = 1, it holds that

H(X1 ⊕ X2, s, s′) = 1 since the operation (disjoint union) does not create new
edges.

3. If H(X1 � X2, s, s′) = 1, then we distinguish the following cases. If the solution
of size s in digraph(X1 � X2) is a non-empty proper subset of the vertices of
digraph(X1), then by Lemma 8 there is a solution in digraph(X1)which guarantees
H(X1, s, s′) = 1.
Next, assume that the solution A′ of size s in digraph(X1�X2) contains no vertices
of digraph(X1). Since every solution satisfying constraints (1) and (3) is also a
solution which satisfies only (1), we have H ′(X1 � X2, s) = 1. And since A′
contains no vertices of digraph(X1), Observation 3 implies that there is a solution
in digraph(X2) which guarantees H ′(X2, s) = 1.
If the solution A′ of size s in digraph(X1�X2) contains all vertices of digraph(X1),
then the order composition and the weak digraph constraint (3) imply that the set
A′ can be extended by every solution of digraph(X2) which includes all sources
of digraph(X2). Thus, by Lemma 9, there is a solution in digraph(X2), which
guarantees H(X2, s − s(X1), o(X2)) = 1.
Further, if the solution A′ of size s in digraph(X1 � X2) contains all vertices of
digraph(X1), it is also possible to extend A′ by all vertices of digraph(X2) and thus
s = s(X1) + s(X2).
Finally, if the solution A′ of size s in digraph(X1 � X2) contains some but not all
vertices of digraph(X1) and possibly vertices of digraph(X2), then by Lemma 8 and
Observation 3 there are s1 and s2 such that s1+s2 = s and solutions in digraph(X1)

and in digraph(X2) which guarantee H(X1, s1, s′) = 1 and H ′(X2, s2) = 1.
The solutions of size 1 ≤ s < s(X1) from digraph(X1) remain feasible for
digraph(X1 � X2).
Every subset A′ of size 0 ≤ s ≤ s(X2) from digraph(X2) which satisfies (1) leads
to a solution A′ of size s satisfying (1) and (3) in digraph(X1 � X2) since every
vertex of digraph(X2) gets a predecessor in digraph(X1), which is not in A′.
Further, the set of all vertices of digraph(X1) extended by every solution of
digraph(X2) of size s2 which includes all sources of digraph(X2) leads to a fea-
sible solution for digraph(X1 � X2) of size s(X1) + s2. The size of the sources
has to be updated to o(X1), since the sources of digraph(X1) are the sources of
digraph(X1 � X2).
Moreover, the complete vertex set of digraph(X1 � X2) is obviously a feasible
SSGW solution if it fulfills the capacity constraint.

123

F. Gurski et al.

Furthermore, by Remark 4 we can combine SSGW solutions of size s1 < s(X1)

of digraph(X1) and SSP solutions of size s2 of digraph(X2) to a SSGW solution
of size s1 + s2 of digraph(X1 � X2).

4. First, we want to mention that H(X1 ⊗ X2, s, s′) = 1 is only possible for s′ = 0,
since digraph(X1⊗X2) has no sources. If H(X1⊗X2, s, 0) = 1, we distinguish the
following cases. Assume the solution of size s in digraph(X1 ⊗ X2) is a proper and
non-empty subset of the vertices of digraph(X1). Since H(X1 ⊗ X2, s, 0) = 1, it
holds that H ′(X1⊗X2, s) = 1. And since A′ contains only vertices of digraph(X1),
Observation 3 implies that there is a solution in digraph(X1) which guarantees
H ′(X1, s) = 1.
If the solution of size s in digraph(X1 ⊗ X2) is a proper subset of the vertices of
digraph(X2), then by the same arguments as for digraph(X1) there is a solution in
digraph(X2) which guarantees H ′(X2, s) = 1.
If the solution A′ of size s in digraph(X1⊗X2) contains all vertices of digraph(X1),
then the series composition and the weak digraph constraint (3) imply that the set
A′ can be extended by all solutions of digraph(X2) which include all sources
of digraph(X2). Thus, by Lemma 9, there is a solution in digraph(X2), which
guarantees H(X2, s − s(X1), o(X2)).
If the solution A′ of size s in digraph(X1⊗X2) contains all vertices of digraph(X2),
then by the same arguments as for digraph(X1) there is a solution in digraph(X1),
which guarantees H(X1, s − s(X2), o(X1)).
If the solution A′ of size s in digraph(X1⊗X2) contains all vertices of digraph(X1)

or all vertices of digraph(X2), then by (3) solution A′ can be extended by all
vertices of digraph(X2) or all vertices of digraph(X1), respectively, and thus s =
s(X1) + s(X2).
Finally, if the solution A′ of size s in digraph(X1 ⊗ X2) contains some but not
all vertices of digraph(X1) and some but not all vertices of digraph(X2), then by
Observation 3 there are s1 and s2 such that s1+s2 = s and solutions in digraph(X1)

and in digraph(X2) which guarantee H ′(X1, s1) = 1 and H ′(X2, s2) = 1.
Every subset A′ of size 1 ≤ s < s(X1) from digraph(X1) which satisfies (1) leads
to a solution A′ of size s satisfying constraints (1) and (3) in digraph(X1 ⊗ X2)

since every vertex of digraph(X1) gets a predecessor in digraph(X2), which is not
in A′.
In the same way every subset A′ of size 0 ≤ s < s(X2) from digraph(X2) which
satisfies (1) leads to a solution A′ of size s satisfying (1) and (3) in digraph(X1⊗X2)

since every vertex of digraph(X2) gets a predecessor in digraph(X1), which is not
in A′.
Further, all the set of all vertices of digraph(X1) extended by every solution of
digraph(X2) of size s2 which includes all sources of digraph(X2) leads to a feasible
solution for digraph(X1 ⊗ X2) of size s(X1) + s2 and the set of all vertices of
digraph(X2) extended by every solution of digraph(X1) of size s1 which includes
all sources of digraph(X1) leads to a feasible solution for digraph(X1⊗ X2) of size
s1 + s(X2).
Moreover, the complete vertex set of digraph(X1 ⊗ X2) is obviously a feasible
SSGW solution.

123

Solutions for subset sum problems with special digraph constraints

Furthermore, by Remark 4, we can combine SSP solutions of size s1 < s(X1) and
SSP solutions of size s2 < s(X2) to a SSGW solution of size s1 + s2.

��
In order to solve the SSGW problem we traverse di-co-tree T in a bottom-up order

and perform the following computations depending on the type of operation.

Corollary 2 There is a solution with sum s for some instance of SSGW such that
G is a directed co-graph which is given by some di-co-expression X if and only if
H(X , s, s′) = 1. Therefore, OPT (I) = max{s | H(X , s, s′) = 1}.

The next result can be obtained by similar arguments as given within the proof of
Theorem 2.

Theorem 3 SSGW can be solved in directed co-graphs with n vertices and m arcs in
O(n · c4 + m) time and O(n · c2) space.

4 SSG and SSGW on series-parallel digraphs

4.1 Series-parallel digraphs

We recall the definitions from Bang-Jensen and Gutin (2018) which are based on
Valdes et al. (1982). First, we introduce two operations for two vertex-disjoint digraphs
G1 = (V1, E1) and G2 = (V2, E2). Let O1 be the set of vertices of outdegree 0 (set
of sinks) in G1 and I2 be the set of vertices of indegree 0 (set of sources) in G2.

– The parallel composition of G1 and G2, denoted by G1 ∪ G2, is the digraph with
vertex set V1 ∪ V2 and arc set E1 ∪ E2.

– The series composition of G1 and G2, denoted by G1 × G2 is the digraph with
vertex set V1 ∪ V2 and arc set E1 ∪ E2 ∪ (O1 × I2).

Definition 3 (Minimal series-parallel digraphs) The class of minimal series-parallel
digraphs, msp-digraphs for short, is recursively defined as follows.

1. Every digraph on a single vertex ({v},∅), denoted by v, is aminimal series-parallel
digraph.

2. If G1 and G2 are vertex-disjoint minimal series-parallel digraphs, then

(a) the parallel composition G1 ∪ G2 and
(b) then series composition G1 × G2 are minimal series-parallel digraphs.

The class of minimal series-parallel digraphs is denoted by MSP.

Every expression X using these three operations is called an msp-expression and
digraph(X) the defined digraph.

Example 5 1. The msp-expression

X = ((v1 ∪ v2) × (v3 ∪ v4)) (6)

defines digraph(X) shown in Fig. 5.

123

F. Gurski et al.

Fig. 5 Digraph in Example 5(1.)
1v

4v

3v

2v

Fig. 6 Digraph in Example 5(2.)

1v

2v

v5

v6 4v

3v

2. The msp-expression

X = (((v1 × v2) ∪ (v3 × v4)) × (v5 × v6)) (7)

defines digraph(X) shown in Fig. 6.

For every minimal series-parallel digraph we can define a tree structure, denoted as
msp-tree.7 The leaves of the msp-tree represent the vertices of the graph and the inner
vertices of the msp-tree correspond to the operations applied on the subexpressions
defined by the subtrees. For every minimal series-parallel digraph one can construct
a msp-tree in linear time, see Valdes et al. (1982).

Observation 6 Every in- or out-rooted tree is a minimal series-parallel digraph.

Lemma 14 Let G = (V , E) be a minimal series-parallel digraph. Then, for every
vertex x ∈ V there is a sink xs of G, such that there is a directed path from x to xs in
G and there is a source xo of G, such that there is a path from xo to x in G.

Proof Can be shown by induction on the recursive definition ofminimal series-parallel
digraphs. ��
Lemma 15 Let G = (V , E) be a minimal series-parallel digraph. Then, every non-
empty feasible solution of SSG contains a sink of G.

Proof If a feasible solution A′ contains some x ∈ V , then Lemma 14 implies that
there is a sink xs of G, such that there is a path from x to xs in G which implies by
(2) that xs ∈ A′. ��
Definition 4 (Series-parallel digraphs)Series-parallel digraphs are exactly thedigraphs
whose transitive closure equals the transitive closure of some minimal series-parallel
digraph.

The class of series-parallel digraphs is denoted by SPD.

7 In Valdes et al. (1982) the tree-structure for an msp-digraphs is denoted as binary decomposition tree.

123

Solutions for subset sum problems with special digraph constraints

Theorem 4 (Valdes et al. 1982) An acyclic digraph is series-parallel, if and only if its
transitive closure is N-free, where N = ({u, v, w, x}, {(v,w), (u, w), (u, x)}).

In order to define series-parallel partial order digraphs by series-parallel partial
orders, we introduce two operations. Let (X1,≤) and (X2,≤) be two partially ordered
sets over a set X , such that X1 ⊆ X , X2 ⊆ X , and X1 ∩ X2 = ∅.
– The series composition of (X1,≤) and (X2,≤) is the order with the following
properties. If x and y are of the same set, then their order does not change. If
x ∈ X1 and y ∈ X2, then it holds that x ≤ y.

– The parallel composition of (X1,≤) and (X2,≤) is the order with the following
properties. Elements x and y are comparable if and only if they are both comparable
in X1 or both comparable in X2 and they keep their corresponding order.

Definition 5 (Series-parallel partial order) The class of series-parallel partial orders
over a set X is recursively defined as follows.

1. Every single element ({x},∅), x ∈ X , is a series-parallel partial order.
2. If (X1,≤) and (X2,≤) are series-parallel partial orders over set X , such that X1 ⊆

X , X2 ⊆ X , and X1 ∩ X2 = ∅, then
(a) the series composition of (X1,≤) and (X2,≤) and
(b) the parallel composition of (X1,≤) and (X2,≤) are series-parallel partial

orders.

Example 6 The following partially ordered sets are series-parallel partial orders over
set {x1, x2, x3, x4}.
– The parallel composition of ({x1},∅) and ({x3},∅) leads to the series-parallel
partial order ({x1, x3},∅).

– The series composition of ({x2},∅) and ({x4},∅) leads to the series-parallel partial
order ({x2, x4}, {(x2, x4)}).

– The series composition of ({x1, x3},∅) and ({x2, x4}, {(x2, x4)}) leads to the
series-parallel partial order ({x1, x2, x3, x4}, {(x2, x4), (x1, x2), (x1, x4), (x3, x2),
(x3, x4)}).

Definition 6 (Series-parallel partial order digraphs) A series-parallel partial order
digraph G = (V , E) is a digraph, where (V ,≤) is a series-parallel partial order and
(x, y) ∈ E if and only if x �= y and x ≤ y.

The class of series-parallel partial order digraphs is denoted by SPO.

Example 7 The series-parallel partial orders given in Example 6 show that the digraph
shown in Fig. 4 is a series-parallel partial order digraph.

Comparing the definitions of the order composition of oriented co-graphs with
the series composition of series-parallel partial order digraphs and the disjoint union
composition of oriented co-graphs with the parallel composition of series-parallel
partial order digraphs, see Examples 4 and 6, we obtain the following result.

Observation 7 The sets OC and SPO are equal.

123

F. Gurski et al.

MSP SPO=OC

SPD

DAGs

DC

TT

BC

oriented trees

Fig. 7 The figure shows the inclusions of special graph classes. A directed edge from class A to class B
indicates that B ⊆ A. Two classes A and B are incomparable, if there is neither a directed path from A to
B, nor a directed path from B to A

In Fig. 7 we summarize the relation of directed co-graphs, series-parallel digraphs
and related graph classes. The directed edges represent the existing relations between
the graph classes, which follow by their definitions. For the relations to further graph
classes we refer to Bang-Jensen and Gutin (2018, Figure 11.1).

Since SSP corresponds to SSG and also to SSGW on a digraph without arcs, which
is a minimal series-parallel digraph, we obtain the following result.

Proposition 2 SSG and SSGW are NP-hard on minimal series-parallel digraph.

Next, we will show pseudo-polynomial solutions for SSG and SSGW restricted to
(minimal) series-parallel digraphs. The main idea is a dynamic programming along
the recursive structure of a given (minimal) series-parallel digraph.

4.2 Subset sumwith digraph constraint (SSG)

We consider an instance of SSG such that G = (A, E) is a minimal series-parallel
digraph which is given by some msp-expression X . For some subexpression X ′ of
X let F(X ′, s) = 1 if there is a solution A′ in the graph defined by X ′ satisfying
(1) and (2) such that s(A′) = s, otherwise let F(X ′, s) = 0. We use the notation
s(X ′) = ∑

a j∈X ′ s j .

Lemma 16 Let 0 ≤ s ≤ c.

1. F(a j , s) = 1 if and only if s = 0 or s j = s.
In all other cases F(a j , s) = 0.

2. F(X1 ∪ X2, s) = 1, if and only if there are some 0 ≤ s′ ≤ s and 0 ≤ s′′ ≤ s such
that s′ + s′′ = s and F(X1, s′) = 1 and F(X2, s′′) = 1.
In all other cases F(X1 ∪ X2, s) = 0.

3. F(X1 × X2, s) = 1, if and only if

123

Solutions for subset sum problems with special digraph constraints

– F(X2, s) = 1 for 0 ≤ s ≤ s(X2)
8 or

– there is some 1 ≤ s′ ≤ s(X1) such that s = s′ + s(X2) and F(X1, s′) = 1.

In all other cases F(X1 × X2, s) = 0.

Proof We show the correctness of the stated equivalences. Let 0 ≤ s ≤ c.

1. The only possible solutions in digraph(a j) are ∅ and {a j } which have size 0 and
s j , respectively.

2. If F(X1 ∪ X2, s) = 1, then by Lemma 6 there are s′ and s′′ such that s′ + s′′ = s
and solutions in digraph(X1) and in digraph(X2) which guarantee F(X1, s′) = 1
and F(X2, s′′) = 1.
Further, for every s′ and s′′, such that s′ + s′′ = s, F(X1, s′) = 1, and F(X2, s′′) =
1, it holds that F(X1 ∪ X2, s) = 1 since the parallel composition creates no
additional arcs.

3. If F(X1 × X2, s) = 1, then we distinguish two cases. If the solution of size s in
digraph(X1 × X2) contains no vertex of digraph(X1), then by Lemma 6 there is a
solution in digraph(X2) which guarantees F(X2, s) = 1.
Otherwise, the solution A′ of size s in digraph(X1 × X2) contains at least one
vertex of digraph(X1). By the definition of the series composition and the digraph
constraint (2) every solution from digraph(X1) which contains a sink has to be
extended by every vertex of X2 which is reachable by a source from digraph(X2).
Since byLemma15 every non-empty feasible solution of SSGcontains a sink, every
solution fromdigraph(X1)has to be extendedby everyvertex of X2 which reachable
by a source from digraph(X2). By Lemma 14 every solution from digraph(X1) has
to be extended by all vertices of digraph(X2). Thus, by Lemma 6 there is a solution
in digraph(X1) which guarantees F(X1, s − s(X2)) = 1.
Further, for every 0 ≤ s ≤ s(X2)where F(X2, s) = 1 we have F(X1×X2, s) = 1
since the solutions from digraph(X2) do not contain any predecessors of vertices
from digraph(X1) in digraph(X1 × X2).
For every 1 ≤ s′ ≤ s(X1) where F(X1, s′) = 1 the definition of the series
composition and the digraph constraint (2) imply that for s = s′ + s(X2) it holds
that F(X1 × X2, s) = 1 for reasons given above. ��

Corollary 3 There is a solution with sum s for some instance of SSG such that G is a
minimal series-parallel digraph which is given by some msp-expression X if and only
if F(X , s) = 1. Therefore, OPT (I) = max{s | F(X , s) = 1}.
Theorem 5 SSG can be solved in minimal series-parallel digraphs with n vertices and
m arcs in O(n · c2 + m) time and O(n · c) space.
Proof Let G = (V , E) be a minimal series-parallel digraph and T be an msp-tree for
G with root r . For some vertex u of T we denote by Tu the subtree rooted at u and Xu

the msp-expression defined by Tu . In order to solve the SSG problem for an instance
I graph G, we traverse msp-tree T in a bottom-up order. For every vertex u of T and
0 ≤ s ≤ cwe compute F(Xu, s) following the rules given in Lemma 16. By Corollary
3 we can solve our problem by F(Xr , s) = F(X , s).

8 The value s = 0 is for choosing an empty solution in digraph(X1 × X2).

123

F. Gurski et al.

An msp-tree T can be computed in O(n + m) time from a minimal series-parallel
digraph with n vertices and m arcs, see Valdes et al. (1982). All s(Xi) can be pre-
computed in O(n) time. Our rules given in Lemma 16 show the following running
times.

– For every a j ∈ V and every 0 ≤ s ≤ c value F(a j , s) is computable inO(1) time.
– For every 0 ≤ s ≤ c, every F(X1 ∪ X2, s) can be computed in O(c) time from

F(X1, s′) and F(X2, s′′).
– For every 0 ≤ s ≤ c, every F(X1 × X2, s) can be computed in O(1) time from

F(X1, s′), F(X2, s′′), and s(X2).

Since we have n leaves and n−1 inner vertices in T , the running time is inO(nc2+m).
��

Theorem 6 SSG can be solved in series-parallel digraphs with n vertices and m arcs
in O(n · c2 + n2.3729) time and O(n · c) space.
Proof Let G be some series-parallel digraph. By Lemma 5 we can use the transitive
reduction of G, which can be computed in O(n2.3729) time by Le Gall (2014). ��

4.3 Subset sumwith weak digraph constraint (SSGW)

Next, we consider SSGW on minimal series-parallel digraph. In order to get useful
informations about the sinks within a solution, we use an extended data structure.
We consider an instance of SSGW such that G = (A, E) is a minimal series-parallel
digraph which is given by some msp-expression X . For some subexpression X ′ of X
let H(X ′, s, s′) = 1 if there is a solution A′ in the graph defined by X ′ satisfying (1)
and (3) such that s(A′) = s and the sum of sizes of the sinks in A′ is s′, otherwise let
H(X ′, s, s′) = 0. We denote by i(X) the sum of the sizes of all sinks in digraph(X).

Lemma 17 Let 0 ≤ s, s′ ≤ c.

1. H(a j , s, s′) = 1 if and only if s = s′ = 0 or s j = s = s′.
In all other cases H(a j , s, s′) = 0.

2. H(X1 ∪ X2, s, s′) = 1, if and only if there are 0 ≤ s1 ≤ s, 0 ≤ s2 ≤ s,
0 ≤ s′

1 ≤ s′, 0 ≤ s′
2 ≤ s′, such that s1 + s2 = s, s′

1 + s′
2 = s′, H(X1, s1, s′

1) = 1,
and H(X2, s2, s′

2) = 1.
In all other cases H(X1 ∪ X2, s, s′) = 0.

3. H(X1 × X2, s, s′) = 1, if and only if

– 0 ≤ s ≤ s(X2)
9 and 0 ≤ s′ ≤ s(X2), such that H(X2, s, s′) = 1 or

– there are 1 ≤ s1 ≤ s(X1) and 1 ≤ s′
1 < i(X1), such that s1 = s, 0 = s′, and

H(X1, s1, s′
1) = 1, or

– there are 1 ≤ s1 ≤ s(X1), such that s1 + s(X2) = s, i(X2) = s′, and
H(X1, s1, i(X1)) = 1, or

– there are 1 ≤ s1 ≤ s(X1), 1 ≤ s′
1 < i(X1), 1 ≤ s2 ≤ s(X2), and 1 ≤ s′

2 ≤
s(X2), such that s1+s2 = s, s′

2 = s′, H(X1, s1, s′
1) = 1, and H(X2, s2, s′

2)= 1.

9 The value s = s′ = 0 is for choosing an empty solution in digraph(X1 × X2). The values s > s′ = 0 are
for choosing a solution without sinks in digraph(X1 × X2).

123

Solutions for subset sum problems with special digraph constraints

In all other cases H(X1 × X2, s, s′) = 0.

Proof We show the correctness of the stated equivalences. Let 0 ≤ s, s′ ≤ c.

1. The only possible solutions in digraph(a j) are ∅ and {a j } which have size 0 and
s j , respectively. Further, a single vertex corresponds to a sink.

2. If H(X1 ∪ X2, s, s′) = 1, then by Lemma 7 there are s1, s2 and s′
1, s

′
2 such that

s1 + s2 = s, s′
1 + s′

2 = s′ and solutions in digraph(X1) and in digraph(X2) which
guarantee H(X1, s1, s′

1) = 1 and H(X2, s,s′
2) = 1.

Further, for every 0 ≤ s1 ≤ s, 0 ≤ s2 ≤ s, 0 ≤ s′
1 ≤ s′, 0 ≤ s′

2 ≤ s′, such that
s1 + s2 = s, s′

1 + s′
2 = s′, H(X1, s1, s′

1) = 1, and H(X2, s2, s′
2) = 1, it holds

that H(X1 ∪ X2, s, s′) = 1 since we do not create any new edges by the parallel
composition.

3. If H(X1 × X2, s, s′) = 1, then we distinguish four cases. If the solution of size s
and sink size s′ in digraph(X1 × X2) contains no vertices of digraph(X1), then by
Lemma 8 there is a solution in digraph(X2) which guarantees H(X2, s, s′) = 1.
If the solution of size s and sink size s′ in digraph(X1 × X2) contains only vertices
of digraph(X1) but not all sinks of digraph(X1), then by Lemma 8 there is a solution
in digraph(X1) which guarantees H(X1, s, s′) = 1.
If the solution A′ of size s and sink size s′ in digraph(X1 × X2) contains all sinks
of digraph(X1), the series composition and the weak digraph constraint (3) imply
that the set A′ has to be extended by all sources of digraph(X2). After ignoring the
sources of digraph(X2) (because the graph is acyclic), theremust exist new sources,
which have to be contained in A′, since all their predecessors were sources in the
original graph and so on. Thus, set A′ contains all vertices of X2 and by Lemma 8
there is a solution in digraph(X1)which guarantees H(X1, s− s(X2), i(X1)) = 1.
If the solution A′ of size s and sink size s′ in digraph(X1 × X2) contains vertices
of digraph(X1) but not all sinks of digraph(X1) and vertices of digraph(X2), then
by Lemma 8 there are s1, s′

1 and s2, s′
2 such that s1 + s2 = s, s′

2 = s′ and solu-
tions in digraph(X1) and in digraph(X2) which guarantee H(X1, s1, s′

1) = 1 and
H(X2, s2, s′

2) = 1.
Further, the solutions of size 0 ≤ s ≤ s(X2) from digraph(X2) remain feasible
in digraph(X1 × X2) since the solutions from digraph(X2) do not contain any
predecessors of vertices from digraph(X1) in digraph(X1 × X2).
The solutions from digraph(X1) which do not contain all sinks of X1, i.e. 1 ≤
s′
1 < i(X1) remain feasible in digraph(X1 × X2), but the sizes of sinks have to be
changed to 0 since these sinks are no longer sinks in the digraph(X1 × X2).
Next we consider solutions A′ from digraph(X1) which contain all sinks of
digraph(X1), i.e. s′ = i(X1). As mentioned above, the series composition and
the weak digraph constraint (3) imply that the set A′ has to be extended by all
vertices of X2. The sizes of sinks have to be changed to i(X2), since all sinks of
X2 are also sinks in the digraph(X1 × X2).
Further, we can combine solutions of size 1 ≤ s1 ≤ s(X1) from digraph(X1),
which do not contain all sinks of X1, i.e. 1 ≤ s′

1 < i(X1), and solutions of size
1 ≤ s2 ≤ s(X2) from digraph(X2), to a solution of size s1 + s2 and sizes of sinks
s′
2 in digraph(X1 × X2). ��

123

F. Gurski et al.

Corollary 4 There is a solution with sum s for some instance of SSGW such that G is a
minimal series-parallel digraph which is given by some msp-expression X if and only
if H(X , s, s′) = 1. Therefore, OPT (I) = max{s | H(X , s, s′) = 1}.
Theorem 7 SSGW can be solved in minimal series-parallel digraphs with n vertices
and m arcs in O(n · c4 + m) time and O(n · c2) space.
Proof Let G = (V , E) be a minimal series-parallel digraph and T be an msp-tree for
G with root r . For some vertex u of T we denote by Tu the subtree rooted at u and
Xu the msp-expression defined by Tu . In order to solve the SSGW problem for an
instance I graph G, we traverse msp-tree T in a bottom-up order. For every vertex u
of T and 0 ≤ s, s′ ≤ c we compute H(Xu, s, s′) following the rules given in Lemma
17. By Corollary 4 we can solve our problem by H(Xr , s, s′) = H(X , s, s′).

An msp-tree T can be computed in O(n + m) time from a minimal series-parallel
digraph with n vertices and m arcs, see Valdes et al. (1982). All s(Xi) and all i(Xi)

can be precomputed in O(n) time. Our rules given in Lemma 17 show the following
running times.

– For every a j ∈ A and every 0 ≤ s, s′ ≤ c value H(a j , s, s′) is computable in
O(1) time.

– For every 0 ≤ s, s′ ≤ c, every H(X1 ∪ X2, s, s′) can be computed in O(c2) time
from H(X1, s1, s′

1) and H(X2, s2, s′
2).

– For every 0 ≤ s, s′ ≤ c, every H(X1 × X2, s, s′) can be computed in O(c2) time
from H(X1, s1, s′

1), H(X2, s2, s′
2), and i(X1).

Since we have n leaves and n−1 inner vertices in T , the running time is inO(nc4+m).
��

5 Conclusions and outlook

The presented methods allow us to solve SSG and SSGW with digraph constraints
given by directed co-graphs and (minimal) series-parallel digraphs in pseudo-
polynomial time.

In contrast to Gourvès et al. (2018) we did not consider null sizes. This allows us to
verify whether a solution consists of all vertices or contains all sinks of a subgraph by
using the sum of the sizes of the corresponding items. SSG and SSGW using null sizes
can also be solved in pseudo-polynomial time on directed co-graphs and (minimal)
series-parallel digraphs by additional counting the number of vertices or sinks within
a SSGW solution.

For futurework it could be interesting to find a solution for SSGWfor series-parallel
digraphs in general. Example 2 shows that Lemma 5 and the recursive structure of
minimal series-parallel digraphs cannot be used in this case.

It remains to analyze whether the shown results also hold for other graph classes.
Therefore one could consider edge series-parallel digraphs from Valdes et al. (1982).
Further, it remains to look at more general graph classes, such as graphs of bounded
directed clique-width. Directed clique-width measures the difficulty of decomposing
a graph into a special tree-structure and was defined by Courcelle and Olariu in Cour-
celle and Olariu (2000). An alternative parameter is directed tree-width defined in

123

Solutions for subset sum problems with special digraph constraints

Johnson et al. (2001). Since in the directed case bounded directed tree-width does not
imply bounded directed clique-width, solutions for subset sum problems with digraph
constraints of bounded directed tree-width are interesting as well.

Furthermore, it could be useful to consider related problems. These include the
two minimization problems which are introduced in Gourvès et al. (2018) by adding
a maximality constraint to SSG and SSGW. Moreover, a generalization of the results
for SSG to the partially ordered knapsack problem (Johnson and Niemi 1983; Kellerer
and Pferschy 2004) is still open.

Acknowledgements The work of the second and third author was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – 388221852.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Examples

A.1 SSG on directed co-graphs

Example 8 We consider the SSG instance I with n = 4 items using digraph(X) shown
in Fig. 3 and defined by the expression in (4), c = 7, and the following sizes.

j 1 2 3 4
s j 1 2 2 3

The rules given in Lemma10 lead to the values in Table 2. Thus, the optimal solution
is {a2, a3, a4} with OPT (I) = 7.

Table 2 Table for Example 8 F(X ′, s)

X ′ s 0 1 2 3 4 5 6 7

v1 1 1 0 0 0 0 0 0

v2 1 0 1 0 0 0 0 0

v3 1 0 1 0 0 0 0 0

v4 1 0 0 1 0 0 0 0

v1 ⊕ v3 1 1 1 1 0 0 0 0

v2 ⊗ v4 1 0 0 0 0 1 0 0

(v1 ⊕ v3) � (v2 ⊗ v4) 1 0 0 0 0 1 1 1

123

http://creativecommons.org/licenses/by/4.0/

F. Gurski et al.

Table 3 Table for Example 10 H ′(X ′, s)

X ′ s 0 1 2 3 4 5 6 7

v1 1 1 0 0 0 0 0 0

v2 1 0 1 0 0 0 0 0

v3 1 0 1 0 0 0 0 0

v4 1 0 0 1 0 0 0 0

v1 ⊕ v3 1 1 1 1 0 0 0 0

v2 ⊗ v4 1 0 1 1 0 1 0 0

(v1 ⊕ v3) � (v2 ⊗ v4) 1 1 1 1 1 1 1 1

A.2 SSG on transitive tournaments

Example 9 We consider the SSG instance I with n = 4 items using the transitive
tournament digraph(X) defined by expression

X = (((v1 � v2) � v3) � v4), (8)

c = 7, and the following sizes.

j 1 2 3 4
s j 1 2 2 3

ByRemark 2 for this instance the feasible solutions of SSGw.r.t. the digraph constraint
(2) are ∅, {a4}, {a3, a4}, {a2, a3, a4}, and {a1, a2, a3, a4}. Among these only ∅, {a4},
{a3, a4}, and {a2, a3, a4} satisfy the capacity constraint (1). Thus, the optimal solution
is {a2, a3, a4} with OPT (I) = 7.

A.3 SSGW on directed co-graphs

Example 10 We consider the SSGW instance I with n = 4 items using digraph(X)
shown in Fig. 3 and defined by the expression in (4), c = 7, and the following sizes.

j 1 2 3 4
s j 1 2 2 3

The rules given in Lemma 12 lead to the values in Table 3 and the rules given in
Lemma 13 lead to the values in Table 4. Thus, the optimal solution is {a2, a3, a4} with
OPT (I) = 7.

123

Solutions for subset sum problems with special digraph constraints

Ta
bl
e
4

Ta
bl
e
fo
r
E
xa
m
pl
e
10

H
(
X

′ ,
s,
s′)

s′
=

0
s′

=
1

s′
=

2
s′

=
3

s′
=

4
s′

=
5

s′
=

6
s′

=
7

X
′

s
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7
0

1
2

3
4

5
6

7

v
1

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

v
2

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

v
3

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

v
4

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

v
1

⊕
v
3

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

v
2

⊗
v
4

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

(v
1
⊕v

3
)�

(v
2
⊗v

4
)

1
0

1
1

0
1

0
0

0
1

0
1

1
0

1
0

0
0

1
0

1
1

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

123

F. Gurski et al.

Table 5 Table for Example 11

F(X ′, s)

X ′ s 0 1 2 3 4 5 6 7

v1 1 0 1 0 0 0 0 0

v2 1 1 0 0 0 0 0 0

v3 1 0 0 0 1 0 0 0

v4 1 0 0 1 0 0 0 0

v5 1 0 1 0 0 0 0 0

v6 1 0 0 1 0 0 0 0

v1 × v2 1 1 0 1 0 0 0 0

v3 × v4 1 0 0 1 0 0 0 1

v5 × v6 1 0 0 1 0 1 0 0

(v1 × v2) ∪ (v3 × v4) 1 1 0 1 1 0 1 1

((v1 × v2) ∪ (v3 × v4)) × (v5 × v6) 1 0 0 1 0 1 1 0

A.4 SSG on series-parallel digraphs

Example 11 We consider the SSG instance I with n = 6 items using digraph(X)
defined by the expression in (7), c = 7, and the following sizes.

j 1 2 3 4 5 6
s j 2 1 4 3 2 3

The rules given in Lemma16 lead to the values in Table 5. Thus, the optimal solution
is {a2, a5, a6} with OPT (I) = 6.

A.5 SSGW on series-parallel digraphs

Example 12 We consider the SSGW instance I with n = 6 items using digraph(X)
defined by the expression in (7), c = 7, and the following sizes.

j 1 2 3 4 5 6
s j 2 1 4 3 2 3

The rules given in Lemma17 lead to the values in Table 6. Thus, the optimal solution
is {v3, v4} with OPT (I) = 7.

123

Solutions for subset sum problems with special digraph constraints

Ta
bl
e
6

Ta
bl
e
fo
r
E
xa
m
pl
e
12

H
(
X

′ ,
s,
s′)

s′
=

0
s′

=
1

s′
=

2
s′

=
3

s′
=

4
s′

=
5

s′
=

6
s′

=
7

X
′

s
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7

v
1

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
2

1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
3

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
4

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
5

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
6

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
1

×
v
2

1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
3

×
v
4

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

v
5

×
v
6

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(v
1

×
v
2
)
∪

(v
3

×
v
4
)

1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

((
v
1

×
v
2
)
∪

(v
3

×
v
4
))

×
(v

5
×

v
6
)

1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

123

F. Gurski et al.

References

Aho AV, Garey MR, Ullman JD (1972) The transitive reduction of a directed graph. SIAM J Comput
1(2):131–137

Bang-Jensen J, Gutin G (eds) (2018) Classes of directed graphs. Springer, Berlin
Bang-Jensen J, Maddaloni A (2014) Arc-disjoint paths in decomposable digraphs. J Graph Theory 77:89–

110
Bechet D, de Groote P, Retoré C (1997) A complete axiomatisation of the inclusion of series-parallel partial

orders. Rewriting techniques and applications, volume 1232 of LNCS. Springer, Berlin, pp 230–240
Corneil DG, Lerchs H, Stewart-Burlingham L (1981) Complement reducible graphs. Discrete Appl Math

3:163–174
Courcelle B, Olariu S (2000) Upper bounds to the clique width of graphs. Discrete Appl Math 101:77–114
Crespelle C, Paul C (2006) Fully dynamic recognition algorithm and certificate for directed cographs.

Discrete Appl Math 154(12):1722–1741
Engelfriet J, Rozenberg G (1997) Node replacement graph grammars. Handbook of grammars and com-

puting by graph transformation. World Scientific, Singapore, pp 1–94
Gould R (2012) Graph theory. Dover Publications Inc, New York
Gourvès L, Monnot J, Tlilane L (2018) Subset sum problems with digraph constraints. J Comb Optim

36(3):937–964
Gurski F (2017) Dynamic programming algorithms on directed cographs. Stat Optim Inf Comput 5:35–44
Gurski F, Wanke E, Yilmaz E (2016) Directed NLC-width. Theor Comput Sci 616:1–17
Gurski F, Komander D, Rehs C (2019a) Computing digraph width measures on directed co-graphs. In:

Proceedings of international symposium on fundamentals of computation theory (FCT), vol 11651 of
LNCS. Springer, Berlin, pp 292–305

Gurski F, Komander D, Rehs C (2019) Oriented coloring on recursively defined digraphs. Algorithms
12(4):87

Gurski F, Hoffmann S, Komander D, Rehs C, Rethmann J, Wanke E (2020) Computing directed steiner
path covers for directed co-graphs. In: Proceedings of the conference on current trends in theory and
practice of computer science (SOFSEM), vol 12011 of LNCS. Springer, Berlin, pp 556–565

Gurski F, Rehs C (2018) Directed path-width and directed tree-width of directed co-graphs. In: Proceed-
ings of the international conference on computing and combinatorics (COCOON), vol 10976 LNCS.
Springer, Berlin, pp 255–267

Hellmuth M, Stadler PF, Wieseke N (2017) The mathematics of xenology: di-cographs, symbolic ultramet-
rics, 2-structures and tree-representable systems of binary relations. J Math Biol 75(1):199–237

Johnson DS, Niemi KA (1983) On knapsacks, partitions, and a new dynamic programming technique for
trees. Math Oper Res 8(1):1–14

Johnson T, Robertson N, Seymour PD, Thomas R (2001) Directed tree-width. J Comb Theory Ser B
82:138–155

KellererH,PferschyU (2004)Anew fully polynomial time approximation scheme for the knapsackproblem.
J Comb Optim 8:5–11

Kellerer H, Pferschy U, Pisinger D (2010) Knapsack problems. Springer, Berlin
Lawler EL (1976) Graphical algorithms and their complexity. Math Centre Tracts 81:3–32
Le Gall F (2014) Powers of tensors and fast matrix multiplication. In: Proceedings of the international

symposium on symbolic and algebraic computation (ISSAC). ACM, pp 296–303
Monma CL, Sidney JB (1977) A general algorithm for optimal job sequencing with series-parallel con-

straints. Math Oper Res 4:215–224
Nojgaard N, El-Mabrouk N, Merkle D, Wieseke N, Hellmuth M (2018) Partial homology relations—

satisfiability in terms of di-cographs. In: Proceedings of international computing and combinatorics
conference (COCOON), volume 10976 of LNCS, Springer, New York pp 403–415

Rendl F (1986) Quadratic assignment problems on series-parallel digraphs. Z Oper Res Ser A-B
30(3):A161–A173

Steiner G (1985) A compact labeling scheme for series-parallel graphs. Discrete Appl Math 11(3):281–297

123

Solutions for subset sum problems with special digraph constraints

Valdes J, Tarjan RE, Lawler EL (1982) The recognition of series-parallel digraphs. SIAM JComput 11:298–
313

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Solutions for subset sum problems with special digraph constraints
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Digraphs
	2.2 Problems
	2.3 Basic results

	3 SSG and SSGW on directed co-graphs
	3.1 Directed co-graphs
	3.2 Subset sum with digraph constraint (SSG)
	3.3 Subset sum with weak digraph constraint (SSGW)

	4 SSG and SSGW on series-parallel digraphs
	4.1 Series-parallel digraphs
	4.2 Subset sum with digraph constraint (SSG)
	4.3 Subset sum with weak digraph constraint (SSGW)

	5 Conclusions and outlook
	Acknowledgements

	A Examples
	A.1 SSG on directed co-graphs
	A.2 SSG on transitive tournaments
	A.3 SSGW on directed co-graphs
	A.4 SSG on series-parallel digraphs
	A.5 SSGW on series-parallel digraphs

	References

