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Abstract
We consider an optimal switching problem where the terminal reward depends on the
entire control trajectory. We show existence of an optimal control by applying a prob-
abilistic technique based on the concept of Snell envelopes. We then apply this result
to solve an impulse control problem for stochastic delay differential equations driven
by a Brownian motion and an independent compound Poisson process. Furthermore,
we show that the studied problem arises naturally when maximizing the revenue from
operation of a group of hydro-power plants with hydrological coupling.

Keywords Impulse control · Optimal switching · Real options · Stopping time · Snell
envelope · SDDEs

1 Introduction

The standard optimal switching problem (sometimes referred to as starting and stop-
ping problem) is a stochastic optimal control problem of impulse type that arises when
an operator controls a dynamical system by switching between the different members
in a set of operation modes I = {1, . . . ,m}. In the two-modes setting (m = 2) the
modes may represent, for example, “operating” and “closed” when maximizing the
revenue from mineral extraction in a mine as in Brennan and Schwartz (1985). In
the multi-modes setting the operating modes may represent different levels of power
production in a power plant when the owner seeks to maximize her total revenue
from producing electricity as in Carmona and Ludkovski (2008) or the states “operat-
ing” and “closed” of single units in a multi-unit production facility as in Brekke and
Øksendal (1994).
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466 M. Perninge

In optimal switching the control takes the form u = (τ1, . . . , τN ;β1, . . . , βN ),
where τ1 ≤ τ2 ≤ · · · ≤ τN is a sequence of times when the operator intervenes
on the system and β j ∈ I−β j−1 := I \ {β j−1} is the mode in which the system is
operated during [τ j , τ j+1). The standard multi-modes optimal switching problem in
finite horizon (T < ∞) can be formulated as finding the control that maximizes

E

⎡
⎣
∫ T

0
φξs (s)ds + ψξT −

N∑
j=1

cβ j−1,β j (τ j )

⎤
⎦ ,

where ξt = b01[0,τ1)(t) + ∑N
j=1 β j1[τ j ,τ j+1)(t) is the operation mode (when starting

in a predefined mode b0 ∈ I), φb and ψb are the running and terminal reward in mode
b ∈ I, respectively and cb,b′(t) is the cost incurred by switching frommode b to mode
b′ at time t ∈ [0, T ].

The standard optimal switching problem has been thoroughly investigated in the
last decades after being popularised in Brennan and Schwartz (1985). In Hamadène
and Jeanblanc (2007) a solution to the two-modes problem was found by rewriting
the problem as an existence and uniqueness problem for a doubly reflected backward
stochastic differential equation. In Djehiche et al. (2009) existence of an optimal con-
trol for the multi-modes optimal switching problem was shown by a probabilistic
method based on the concept of Snell envelopes. Furthermore, existence and unique-
ness of viscosity solutions to the related Bellman equation was shown for the case
when the switching costs are constant and the underlying uncertainty is modeled by
a stochastic differential equation (SDE) driven by a Brownian motion. In El Asri
and Hamadéne (2009) the existence and uniqueness results of viscosity solutions was
extended to the case when the switching costs depend on the state variable. Since then,
results have been extended to Knightian uncertainty (Hu and Tang 2008; Hamadène
and Zhang 2010; Chassagneux et al. 2011) and non-Brownian filtration and signed
switching costs in Martyr (2016). For the case when the underlying uncertainty can
be modeled by a diffusion process, generalization to the case when the control enters
the drift and volatility term was treated in Elie and Kharroubi (2014). This was fur-
ther developed to include state constraints in Kharroubi (2016). Another important
generalization is to the case when the operator only has partial information about the
present state of the diffusion process as treated in Li et al. (2015).

In the present work we consider the setting with running and terminal rewards that
depend on the entire history of the control. We also show that a special case of the
type of switching problems that we consider is that of a controlled stochastic delay
differential equation (SDDE), driven by a finite intensity Lévy process.

To motivate our problem formulation we consider the situation when an operator of
two hydro-power plants, located in the same river, wants tomaximize her revenue from
producing electricity during a fixed operation period. We assume that each plant has
its own water reservoir. The power production in a hydropower plant depends on the
drop height from the water level of the reservoir to the outlet and thus on the amount of
water in the reservoir. As water that passes through the upstream plant will eventually
reach the reservoir of the downstream plant we need to consider part of the control
history in the upstream plant when optimizing operation of the downstream plant.
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In this setting our cost functional can be written

J (u) := E

[∫ T

0
φ(s, τ1, . . . , τNs ;β1, . . . , βNs )ds

+ψ(τ1, . . . , τN ;β1, . . . , βN ) −
∑
j

cβ j−1,β j (τ j )

⎤
⎦ , (1)

where Ns := max{ j : τ j ≤ s}. The contribution of the present work is twofold. First,
we show that the problem of maximizing J can be solved under certain assumptions
on φ, ψ and the switching costs c·,· by finding an optimal control in terms of a
family of interconnected value processes, that we refer to as a verification family.
We then show that the revenue maximization problem of the hydro-power producer
can be formulated as an impulse control problem where the uncertainty is modeled
by a controlled SDDE and use our initial result to find an optimal control for this
problem.

The remainder of the article is organized as follows. In the next section we state the
problem, set the notation used throughout the article and detail the set of assumptions
that are made. Then, in Sect. 3 a verification theorem is derived. This verification the-
orem is an extension of the original verification theorem for the multi-modes optimal
switching problem developed in Djehiche et al. (2009) and presumes the existence of
a verification family. In Sect. 4 we show that, under the assumptions made, there exists
a verification family, thus proving existence of an optimal control for the switching
problem with cost functional J . In Sect. 5 we more carefully investigate the example
of the hydro-power producer and show that the case of a controlled SDDE fits into the
problem description investigated in Sects. 3 and 4.

2 Preliminaries

We consider a finite horizon problem and thus assume that the terminal time T is fixed
with T < ∞.

We let (Ω,F ,F,P) be a probability space, with F := (Ft )0≤t≤T a filtration satis-
fying the usual conditions in addition to being quasi-left continuous.

Remark 1 Recall here the concept of quasi-left continuity: A càdlàg process (Xt :
0 ≤ t ≤ T ) is quasi-left continuous if for each predictable stopping time γ and every
announcing sequence of stopping times γk ↗ γ we have Xγ− := lim

k→∞ Xγk = Xγ ,

P-a.s. A filtration is quasi-left continuous ifFγ = Fγ− for every predictable stopping
time γ .

Throughout we will use the following notation:

– PF is the σ -algebra of F-progressively measurable subsets of [0, T ] × Ω .
– For p ≥ 1, we let S p be the set of all R-valued, PF-measurable, càdlàg processes

(Zt : 0 ≤ t ≤ T ) such that, P-a.s., E
[
supt∈[0,T ] |Zt |p

]
< ∞ and let S p

qlc be the
subset of processes that are quasi-left continuous.

123



468 M. Perninge

– We let T be the set of all F-stopping times and for each γ ∈ T we let Tγ be the
corresponding subsets of stopping times τ such that τ ≥ γ , P-a.s.

– We let U be the set of all u = (τ1, . . . , τN ;β1, . . . , βN ), where (τ j )
N
j=1 is a non-

decreasing sequence of F-stopping times (such that lim j→∞ τ j = T , P-a.s.) and
β j ∈ I−β j−1 is Fτ j -measurable (with β0 := b0, the initial operation mode).

– We let U f denote the subset of u ∈ U for which N is finite P-a.s. (i.e. U f :=
{u ∈ U : P [{ω ∈ Ω : N (ω) > k, ∀k > 0}] = 0}) and for all k ≥ 0 we let
Uk := {u ∈ U : N ≤ k}. For γ ∈ T we let Uγ (and U f

γ resp. Uk
γ ) be the subset of

U (and U f resp. Uk) with τ1 ∈ Tγ .
– We define the set D := {(t1, . . . ; b1, . . .) : t1 ≤ t2 ≤ · · · , b j+1 ∈ I−b j } and let
D f be the corresponding subset of all finite sequences.

– For all n ≥ 0, we let Īn := {(b1, . . . , bn) ∈ In : b j ∈ I−b j−1} and T̄ n :=
{(η1, . . . , ηn) ∈ T n : η1 ≤ η2 ≤ · · · ≤ ηn}.

– For l ≥ 0, we let Πl := {0, T 2−l , 2T 2−l , . . . , T } and define the map Γ l :
∪ j≥1T̄ j → ∪ j≥1T̄ j as Γ l(η1, . . . , η j ) := (inf{s ∈ Πl : s ≥ η1}, . . . , inf{s ∈
Πl : s ≥ η j }) for all η ∈ T̄ j .

To make notation more efficient we introduce the FT -measurable function:

Ψ (τ1, . . . , τN ;β1, . . . , βN ) :=
∫ T

0
φ(s, τ1, . . . , τNs ;β1, . . . , βNs )ds

+ ψ(τ1, . . . , τN ;β1, . . . , βN ).

2.1 Problem formulation

In the above notation, our problem can be characterized by two objects:

– A FT ⊗ B(D)-measurable map Ψ : D → R.
– A collection, (cb,b′ : Ω × [0, T ] → R)(b,b′)∈Ī2 , of PF-measurable processes.

We will make the following preliminary assumptions on these objects:

Assumption 1 (i) The functionΨ is P-a.s. right-continuous in the intervention times
and bounded in the sense that:

(a) supu∈U E[|Ψ (τ1, . . . ;β1, . . .)|2] < ∞.
(b) For all (t,b) ∈ D f and any1 b ∈ I−bn wehave supu∈U E[sups∈[tn ,T ] |Ψ (t, s, τ1

∨ s, . . . ;b, b, β1, . . .)|2] < ∞.

(ii) For each (t,b) ∈ D f and any b ∈ I−bn we have Ψ (t;b) > Ψ (t, T ;b, b) −
cbn ,b(T ), P-a.s.

(iii) We assume that (cb,b′)(b,b′)∈Ī2 ∈ (S2
qlc)

m(m−1) are such that:

(a) cb,b′ ≥ 0, P-a.s.

1 Throughout we will use tn and bn to denote that last element in the vector t and b, respectively, whenever
(t, b) ∈ D f .
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(b) There is an ε > 0 such that for each (t1, . . . , tn, b1, . . . , bn) with 0 ≤ t1 ≤
· · · ≤ tn ≤ T and b1 ∈ I−bn , and b j ∈ I−b j−1 for j = 2, . . . , n, we have

cb1,b2(t1) + · · · + cbn ,b1(tn) ≥ ε,

P-a.s.

The above assumptions are mainly standard assumptions for optimal switching
problems translated to our setting. Assumptions (i.a) and (iii.a) together imply that the
expected maximal reward is finite. Assumption (ii) implies that it is never optimal to
switch at the terminal time. We show below that the “no-free-loop” condition (iii.b)
together with (i.a) implies that, with probability one, the optimal control (whenever it
exists) can only make a finite number of switches.

We consider the following problem:

Problem 1 Find u∗ ∈ U , such that

J (u∗) = sup
u∈U

J (u). (2)
��

As a step in solving Problem1weneed the following propositionwhich is a standard
result for optimal switching problems and is due to the “no-free-loop” condition.

Proposition 1 Suppose that there is a u∗ ∈ U such that J (u∗) ≥ J (u) for all u ∈ U .
Then u∗ ∈ U f .

Proof Pick û := (τ̂1, . . . , τ̂N̂ ; β̂1, . . . , β̂N̂ ) ∈ U \ U f and let B := {ω ∈ Ω : N̂ (ω) >

k, ∀k > 0}, then P[B] > 0. Furthermore, if B holds then the switching mode ξ must
make an infinite number of loops and

J (û) ≤ sup
u∈U

E
[|Ψ (τ1, . . . ;β1, . . .)|

] − k − m

m
εP[B] ≤ C − k

m
εP[B],

for all k ≥ 0, by Assumptions 1(iii.b) and 1(i.a). However, again by Assumption 1(i.a)
we have2 J (∅) ≥ −C . Hence, û is dominated by the strategy of doing nothing and
the assertion follows. ��

2.2 The Snell envelope

In this section we gather the main results concerning the Snell envelope that will be
useful later on. Recall that a progressively measurable process U is of class [D] if the
set of random variables {Uτ : τ ∈ T } is uniformly integrable.

Theorem 1 (The Snell envelope) Let U = (Ut )0≤t≤T be an F-adapted, R-valued,
càdlàg process of class [D]. Then there exists a unique (up to indistinguishability),
R-valued càdlàg process Z = (Zt )0≤t≤T called the Snell envelope, such that Z is
the smallest supermartingale that dominates U. Moreover, the following holds (with
ΔUt := Ut −Ut−):

2 Throughout C will denote a generic positive constant that may change value from line to line.
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470 M. Perninge

(i) For any stopping time γ ,

Zγ = ess sup
τ∈Tγ

E
[
Uτ

∣∣Fγ

]
. (3)

(ii) The Doob–Meyer decomposition of the supermartingale Z implies the existence
of a triple (M, Kc, Kd) where (Mt : 0 ≤ t ≤ T ) is a uniformly integrable
right-continuous martingale, (Kc

t : 0 ≤ t ≤ T ) is a non-decreasing, predictable,
continuous process with K c

0 = 0 and (Kd
t : 0 ≤ t ≤ T ) is non-decreasing purely

discontinuous predictable with Kd
0 = 0, such that

Zt = Mt − Kc
t − Kd

t . (4)

Furthermore, {Δt K d > 0} ⊂ {ΔtU < 0} ∩ {Zt− = Ut−} for all t ∈ [0, T ].
(iii) Let θ ∈ T be given and assume that for any predictable γ ∈ Tθ and any

increasing sequence {γk}k≥0 with γk ∈ Tθ and limk→∞ γk = γ , P-a.s, we
have lim supk→∞ Uγk ≤ Uγ , P-a.s. Then, the stopping time τ ∗

θ defined by
τ ∗
θ := inf{s ≥ θ : Zs = Us} ∧ T is optimal after θ , i.e.

Zθ = E

[
Uτ∗

θ

∣∣Fθ

]
.

Furthermore, in this setting the Snell envelope, Z, is quasi-left continuous, i.e.
K d ≡ 0.

(iv) LetUk be a sequence of càdlàg processes converging increasingly and pointwisely
to the càdlàg process U and let Zk be the Snell envelope of Uk. Then the sequence
Zk converges increasingly and pointwisely to a process Z and Z is the Snell
envelope of U.

In the above theorem (i)–(iii) are standard. Proofs can be found inElKaroui (1981) (see
Latifa et al. 2015 for an English version), Appendix D in Karatzas and Shreve (1998),
Hamadène (2002) and in the appendix of Cvitanic and Karatzas (1996). Statement (iv)
was proved in Djehiche et al. (2009).

We will need to following trivial extension of (iv):

Lemma 1 Let Uk be a uniformly bounded sequence in S2 and let Zk be the Snell
envelope of Uk. If there exist a process U ∈ S2 such that supt∈[0,T ] |Uk

t − Ut | → 0,
P-a.s. as k → ∞, then the sequence Zk converges pointwisely to a process Z and Z
is the Snell envelope of U.

Proof Note that U is a càdlàg process by the uniform convergence. Hence, it has
a Snell envelope, Z . Letting (τ kj ) ⊂ Tt be a sequence of stopping times such that

Zk = lim j→∞ E[Uk
τ kj

|Ft ], then
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A finite horizon optimal switching problem with memory and… 471

Zt ≥ lim
j→∞E

[
Uτ kj

∣∣Ft
]

= Zk
t − lim

j→∞E
[
Uk

τ kj
−Uτ kj

∣∣Ft
]

≥ Zk
t − E

[
sup

s∈[0,T ]
|Uk

s −Us |
∣∣Ft

]

But similarly Zk
t ≥ Zt −E[sups∈[0,T ] |Uk

s −Us ||Ft ] and we conclude that |Zk
t −Zt | ≤

E[sups∈[0,T ] |Uk
s −Us ||Ft ] and the assertion follows. ��

The Snell envelope will be the main tool in showing that Problem 1 has a solution.

2.3 Additional assumptions on regularity

From the definition of the Snell envelope it is clear that we need to make some further
assumptions on the regularity of the involved processes. To facilitate this we define,
for each (t,b) = (t1, . . . , tn; b1, . . . , bn) ∈ D f , the value process corresponding to
the control u ∈ U as

V t;b,u
s := E [Ψ (t, tn ∨ s ∨ τ1, . . . , tn ∨ s ∨ τN ;b, β1, . . . , βN )

−
N∑
j=1

cβ j−1,β j (tn ∨ s ∨ τ j )|Fs

⎤
⎦ ,

with β0 := bn .
We make the following additional assumptions:

Assumption 2 (i) For each n ≥ 0 and each (η,b) ∈ T̄ n × Īn and b ∈ I−bn there is
a sequence of maps (U → U : u → ûl)l≥0 such that

lim
l→∞ sup

u∈U
E

[
sup

s∈[0,T ]
|(V η;b,u

s − V Γ l (η);b,ûl
s )+

+(V η,s∨ηn;b,b,u
s − V Γ l (η),s∨Γ l (ηn);b,b,ûl

s )+|2
]

= 0.

Furthermore, we have

lim
l→∞ sup

u∈U
Γ l (ηn )

E

[
sup

s∈[0,T ]
|(V Γ l (η);b,u

s − V η;b,u
s )+

(V Γ l (η),s∨Γ l (ηn);b,b,u
s − V η,s∨ηn;b,b,u

s )+|2
]

= 0.

(ii) For all (t,b) ∈ D f and all b ∈ I−bn , the process (ess supu∈U k V t,s∨tn;b,b,u
s : 0 ≤

s ≤ T ) is in S2
qlc for k = 0, 1, . . .
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3 A verification theorem

The method for solving Problem 1 will be based on deriving an optimal control under
the assumption that a specific family of processes exists, and then showing that the
family indeed does exist.Wewill refer to any such family of processes as a verification
family.

Definition 1 We define a verification family to be a family of càdlàg supermartingales
((Y t;b

s )0≤s≤T : (t,b) ∈ D f ) such that:

(a) The family satisfies the recursion

Y t;b
s = ess sup

τ∈Ts∨tn
E
[
1[τ≥T ]Ψ (t;b)

+1[τ<T ] max
β∈I−bn

{
−cbn ,β(τ ) + Y t,τ ;b,β

τ

} ∣∣∣Fs

]
. (5)

(b) The family is bounded in the sense that sup
u∈U

E[ sup
s∈[0,T ]

|Y τ1,...,τN ;β1,...,βN
s |2] < ∞.

(c) For all n ≥ 1 we have that for every b ∈ Īn and η ∈ T̄ n ,

lim
l→∞E

[
sup

s∈[0,T ]
|YΓ l (η);b

s − Y η;b
s |2

]
= 0 (6)

and for all b ∈ I−bn we have

lim
l→∞E

[
sup

s∈[0,T ]
|YΓ l (η),s∨Γ l (ηn);b,b

s − Y η,s∨ηn;b,b
s |2

]
= 0. (7)

(d) For every (t,b) ∈ D f and every b ∈ I−bn , the process (Y t,s;b,b
s : 0 ≤ s ≤ T ) is

in S2
qlc.

The purpose of the present section is to reduce the solution of Problem 1 to showing
existence of a verification family. This is done in the following verification theorem:

Theorem 2 Assume that there exists a verification family ((Y t;b
s )0≤s≤T : (t, b) ∈ D f ).

Then the family is unique (i.e. there is at most one verification family, up to indistin-
guishability) and:

(i) Satisfies Y0 = supu∈U J (u) (where Y := Y ∅).
(ii) Defines the optimal control, u∗ = (τ ∗

1 , . . . , τ ∗
N∗ ;β∗

1 , . . . , β∗
N∗), for Problem 1,

where (τ ∗
j )1≤ j≤N∗ is a sequence of F-stopping times given by

τ ∗
j := inf

{
s ≥ τ ∗

j−1 : Y
τ∗
1 ,...,τ∗

j−1;β∗
1 ,...,β∗

j−1
s

= max
β∈I−β∗

j−1

{
− cβ∗

j−1,β
(s) + Y

τ∗
1 ,...,τ∗

j−1,s;β∗
1 ,...,β∗

j−1,β

s

}}
∧ T ,
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(β∗
j )1≤ j≤N∗ is defined as a measurable selection of

β∗
j ∈ argmax

β∈I−β∗
j−1

{
− cβ∗

j−1,β
(τ ∗

j ) + Y
τ∗
1 ,...,τ∗

j ;β∗
1 ,...,β∗

j−1,β

τ∗
j

}

and N∗ = max{ j : τ ∗
j < T }, with (τ ∗

0 , β∗
0 ) := (0, b0).

Proof The proof is divided into three steps where we first, in steps 1 and 2, show that
for any 0 ≤ j ≤ N∗ we have

Y
τ∗
1 ,...,τ∗

j ;β∗
1 ,...,β∗

j
s = ess sup

τ∈Ts
E

[
1[τ≥T ]Ψ (τ ∗

1 , . . . , τ ∗
j ;β∗

1 , . . . , β∗
j )

+ 1[τ<T ] max
β∈I−β∗

j

{
−cβ∗

j ,β
(τ ) + Y

τ∗
1 ,...,τ∗

j ,τ ;β∗
1 ,...,β∗

j ,β

τ

} ∣∣∣Fs

]

= E

[
1[τ∗

j+1≥T ]Ψ (τ ∗
1 , . . . , τ ∗

j ;β∗
1 , . . . , β∗

j )

+ 1[τ∗
j+1<T ]

{
−cβ∗

j ,β
∗
j+1

(τ ∗
j+1) + Y

τ∗
1 ,...,τ∗

j+1;β∗
1 ,...,β∗

j+1

τ∗
j+1

} ∣∣∣Fs

]
,

(8)

P-a.s. for s ∈ [τ ∗
j , τ

∗
j+1]. Then in Step 3 we show that u∗ is the optimal control

estabilishing (i) and (ii). A straightforward generalization to arbitrary initial conditions
(t,b) ∈ D f then gives that

Y t;b
s = ess sup

u∈Us∨tn
E

⎡
⎣Ψ (t, τ1, . . . , τN ;b, β1, . . . , βN ) −

N∑
j=1

cβ j−1,β j (τ j )

∣∣∣Fs

⎤
⎦ ,

(9)

by which uniqueness follows.
Step 1We start by showing that for each (t,b) ∈ D f the recursion (5) can be written
in terms of a F-stopping time. From (5) we note that, by definition, Y t;b is the smallest
supermartingale that dominates

U t;b :=
(
1[s=T ]Ψ (t;b) + 1[s<T ] max

β∈I−bn

{−cbn ,β(s ∨ tn)

+Y t,s∨tn;b,β
s

} ∣∣∣ : 0 ≤ s ≤ T
)

. (10)

Now, by Assumption 1(iii) and property (d) in the definition of a verification family
(Definition 1) we note that U t;b is a càdlàg process of class [D] that is quasi-left
continuous on [0, T ). Furthermore, by Assumption 1(ii) and property (d) we get that
for any sequence (ηk)k≥0 ⊂ T such thatηk ↗ T ,P-a.s.we have limk→∞ U t;b

ηk
≤ U t;b

T ,
P-a.s. By Theorem 1(iii) it thus follows that for any θ ∈ T , there is a stopping time
γθ ∈ Ttn∨θ such that:
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Y t;b
θ = E

[
1[γθ=T ]Ψ (t;b) + 1[γθ<T ] max

β∈I−bn

{
−cbn ,β(γθ ) + Y t,γθ ;b,β

γθ

} ∣∣∣Fθ

]
.

Step 2Next, we show that Y0 = J (u∗). We start by noting that Y is the Snell envelope
of

(
1[s=T ]Ψ0 + 1[s<T ] max

β∈I−b0

{−cb0,β(s) + Y s,β
s

} : 0 ≤ s ≤ T

)
,

where Ψ0 := Ψ (∅), and by step 1 we thus have

Y0 = sup
τ∈T

E

[
1[τ=T ]Ψ0 + 1[τ<T ] max

β∈I−b0

{−cb0,β(τ ) + Y τ,β
τ

}]

= E

[
1[τ∗

1 =T ]Ψ0 + 1[τ∗
1 <T ] max

β∈I−b0

{
−cb0,β(τ ∗

1 ) + Y
τ∗
1 ,β

τ∗
1

}]

= E

[
1[τ∗

1 =T ]Ψ0 + 1[τ∗
1 <T ]

{
−cb0,β∗

1
(τ ∗

1 ) + Y
τ∗
1 ,β∗

1
τ∗
1

}]
.

Moving on we pick j ∈ {1, . . . , N∗}. For M ≥ 0, let z−1 = −1 and zk := kT /2M

for k = 0, . . . , 2M . Furthermore, we define the processes (Ŷ M
s : 0 ≤ s ≤ T ) and

(Û M
t : 0 ≤ s ≤ T ) by

Ŷ M
s :=

∑

(k1,...k j )∈Z̄ j

∑

(b1,...,b j )∈Ī j

E
[
1(zk1−1,zk1 ](τ ∗

1 ) · · ·1(zk j−1,zk j ](τ
∗
j )1[β∗

1=b1]

· · ·1[β∗
j =b j ]

∣∣Fs
]
Y
zk1 ,...,zk j ;b1,...,b j

s ,

and

Û M
s :=

∑

(k1,...k j )∈Z̄ j

∑

(b1,...,b j )∈Ī j

E
[
1(zk1−1,zk1 ](τ ∗

1 ) · · ·1(zk j−1,zk j ](τ
∗
j )1[β∗

1=b1]

· · ·1[β∗
j =b j ]

∣∣Fs
](
1[s=T ]Ψ (zk1 , . . . , zk j ; b1, . . . , b j )

+ 1[s<T ] max
β∈I−b j

{
− cb j ,β(s ∨ zk j ) + Y

zk1 ,...,zk j ,s∨zk j ;b1,...,b j ,β

s

})
,

for all s ∈ [0, T ], where Z̄ j := {(k1, . . . , k j ) ∈ {0, . . . , 2M } j : k1 ≤ k2 ≤ · · · ≤ k j }.
Now, for each (k1, . . . , k j , b1, . . . , b j ) ∈ Z̄

j × Ī j we have that

1(zk1−1,zk1 ](τ ∗
1 ) · · ·1(zk j−1,zk j ](τ

∗
j )1[β∗

1=b1] · · ·1[β∗
j =b j ]Y

zk1 ,...,zk j ;b1,...,b j

s ,

is the product of an Fτ∗
j
-measurable positive r.v. and a càdlàg supermartingale, thus,

it is a càdlàg supermartingale for s ≥ τ ∗
j . Hence, Ŷ

M is the sum of a finite number
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of càdlàg supermartingales and thus a càdlàg supermartingale itself. By definition we
find that Ŷ M dominates Û M which is of class [D] by Assumption 1(i) and prop-
erty b). To show that Ŷ M is in fact the Snell envelope of Û M assume that Z is
another càdlàg supermartingale that dominates Û M for all s ∈ [τ ∗

j , T ]. Then for

each (k1, . . . , k j ; b1, . . . , b j ) ∈ Z̄
j × Ī j and s ≥ τ ∗

j , we have

1(zk1−1,zk1 ](τ ∗
1 ) · · ·1(zk j−1,zk j ](τ

∗
j )1[β∗

1=b1] · · ·1[β∗
j =b j ]Zs

≥ 1(zk1−1,zk1 ](τ ∗
1 ) · · ·1(zk j−1,zk j ](τ

∗
j )1[β∗

1=b1]

· · ·1[β∗
j =b j ]

(
Ψ (zk1 , . . . , zk j ; b1, . . . , b j )

+ 1[s<T ] max
β∈I−b j

{
−cb j ,β(s) + Y

zk1 ,...,zk j ,s;b1,...,b j ,β

s

})
,

P-a.s. which by (5) gives that

1(zk1−1,zk1 ](τ ∗
1 ) · · ·1(zk j−1,zk j ](τ

∗
j )1[β∗

1=b1] · · ·1[β∗
j =b j ]Zs

≥ 1(zk1−1,zk1 ](τ ∗
1 ) · · ·1(zk j−1,zk j ](τ

∗
j )1[β∗

1=b1] · · ·1[β∗
j =b j ]Ŷ

zk1 ,...,zk j ;b1,...,b j

s .

Summing over all (k1, . . . , k j ; b1, . . . , b j ) ∈ Z̄
j × Ī j we get Zs ≥ Ŷ M

s , P-a.s.

Noting that Ŷ M = YΓ M (τ∗
1 ,...,τ∗

j );β∗
1 ,...,β∗

j and using (6) of property (c) we find that

sups∈[0,T ] |Y
τ∗
1 ,...,τ∗

j ;β∗
1 ,...,β∗

j
s − Ŷ M

s | → 0 in probability, as M → ∞. Hence, there
is a subsequence (Mk)k≥1 such that the limit taken over the subsequence is 0, P-a.s.
Furthermore, as the convergence is uniform the limit process is càdlàg.

By right-continuity of the switching costs and Ψ and (7) of property (c) we have
that E[sups∈[0,T ] |Us − Û Mk

s |2] → 0 as k → ∞, where for notational simplicity we
abuse the notation in (10) and let

U :=
⎛
⎝1[s=T ]Ψ (τ ∗

1 , . . . , τ ∗
j ;β∗

1 , . . . , β∗
j ) + 1[s<T ] max

β∈I−β∗
j

{
−cβ∗

j ,β
(s)

+Y
τ∗
1 ,...,τ∗

j ,s;β∗
1 ,...,β∗

j ,β

s

}
: τ ∗

j ≤ s ≤ T

)
.

Hence, (Mk)k≥0 has a subsequence (M̃k)k≥0 such that sups∈[0,T ] |Us − Û M̃k
s | → 0,

P-a.s. as k → ∞. This implies that U is a càdlàg process which is of class [D] by
Assumption 1(i) and property (b).

We thus have that Û M̃k is a sequence of càdlàg processes, uniformly bounded in S2

that converges uniformly in t to the càdlàg process U of class [D] and that Ŷ M̃k is the
Snell envelope of Û M̃k , for all k ≥ 0. Then, by Lemma 1 we find that Ŷ M̃k converges
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pointwisely to the Snell envelope Snell envelope of U . Hence,
(
Y

τ∗
1 ,...,τ∗

j ;β∗
1 ,...,β∗

j
s :

τ ∗
j ≤ s ≤ T

)
is the Snell envelope of U .

To arrive at the second equality in (8) we note that the results we obtained in
Step 1 implies that for any sequence (γl)l≥0 ⊂ T with γl ↗ γ ∈ T we have
liml→∞ E[Û M

γl
] ≤ E[Û M

γ ] for all M ≥ 1. Now, for all k ≥ 0 this gives

lim
l→∞E[Uγl ] ≤ lim

l→∞E[Û M̃k
γl

] + lim
l→∞E[|Uγl − Û M̃k

γl
|]

≤ E[Uγ ] + 2E

[
sup

s∈[0,T ]
|Us − Û M̃k

s |
]

,

where the last term can be made arbitrarily small and we, thus, have that
liml→∞ E[Uγl ] ≤ E[Uγ ] and by Theorem 1(iii) we get (8).

By induction we get that for each K ≥ 0,

Y0 = E

⎡
⎣1[N∗≤K ]Ψ (τ ∗

1 , . . . , τ ∗
N∗ ;β∗

1 , . . . , β∗
N∗) −

K∧N∗∑
j=1

cβ∗
j−1,β

∗
j
(τ ∗

j )

+1[N∗>K ]{−cβ∗
K ,β∗

K+1
(τ ∗

K+1) + Y
τ∗
1 ,...,τ∗

K+1;β∗
1 ,...,β∗

K+1
τ∗
K+1

]
.

Now, arguing as in the proof of Proposition 1 and using property (b) we find that
u∗ ∈ U f . Letting K → ∞ and using dominated convergence we conclude that
Y0 = J (u∗).
Step 3 It remains to show that the strategy u∗ is optimal. To do this we pick any other
strategy û := (τ̂1, . . . , τ̂N̂ ; β̂1, . . . , β̂N̂ ) ∈ U f . By the definition of Y0 in (5) we have

Y0 ≥ E

[
1[τ̂1≥T ]Ψ0 + 1[τ̂1<T ] max

β∈I−b0

{
−cb0,β(τ̂1) + Y τ̂1;β

τ̂1

}]

≥ E

[
1[τ̂1≥T ]Ψ0 + 1[τ̂1<T ]

{
−cb0,β̂1(τ̂1) + Y τ̂1;β̂1

τ̂1

}]

but in the same way

Y τ̂1,β̂1
τ̂1

≥ E

[
1[τ̂2≥T ]Ψ (τ̂1, β̂1) + 1[τ̂2<T ]

{
−c

β̂1,β̂2
(τ̂2) + Y τ̂1,τ̂2;β̂1,β̂2

τ̂1

} ∣∣∣Fτ̂1

]
,

P-a.s. By repeating this argument and using the dominated convergence theorem we
find that J (u∗) ≥ J (û) which proves that u∗ is in fact optimal. Repeating the above
procedure with (t,b) ∈ D f as initial condition (9) follows. ��

The main difference between the above proof and the proof of Theorem 1 in the
original work by Djehiche et al. (2009) is that, due to the fact that the future reward at
any time depends on the entire history of the control, we are forced consider a family of
processes indexed by an uncountable set rather than a q-tuple for some finite positive
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q. Hence, we cannot simply write Y τ∗
1 ,...,τ∗

j ;β∗
1 ,...,β∗

j as the sum of a finite number of
Snell envelopes. To arrive at the above verification theorem we therefore impose the
right-continuity constraint assumed in Assumption 2.i. This effectively allowed us to
find the two sequences of processes that approach on the one hand the value process
corresponding to the optimal control and on the other hand the dominated process, in
S2.

4 Existence

Theorem 2 presumes existence of the verification family ((Y t;b
s )0≤s≤T : (t,b) ∈

D f ). To obtain a satisfactory solution to Problem 1, we thus need to establish that a
verification family exists. This is the topic of the present section. We will follow the
standard existence proof which goes by applying a Picard iteration (see Carmona and
Ludkovski 2008; Djehiche et al. 2009; Hamadène and Zhang 2010). We thus define a
sequence ((Y t;b,k

s )0≤s≤T : (t,b) ∈ D f )k≥0 of families of processes as

Y t;b,0
s := E

[
Ψ (t;b)

∣∣∣Fs

]
(11)

and

Y t;b,k
s := ess sup

τ∈Ts∨tn
E

[
1[τ≥T ]Ψ (t;b)

+ 1[τ<T ] max
β∈I−bn

{
−cbn ,β(τ ) + Y t,τ ;b,β,k−1

τ

} ∣∣∣Fs

]
(12)

for k ≥ 1.

Proposition 2 The sequence ((Y t;b,k
s )0≤s≤T : (t, b) ∈ D f )k≥0 is uniformly bounded

in the sense that there is a K > 0 such that,

sup
u∈U

E

[
sup

s∈[0,T ]
|Y τ1,...;β1,...,k

s |2
]

≤ K ,

and for all (t, b) ∈ D f and b ∈ I−bn , we have

E

[
sup

s∈[0,T ]
|Y t,s∨tn;b,b,k

s |2
]

≤ K ,

for all k ≥ 0.

Proof By the definition of Y t;b,k we have that for any u ∈ U f ,

E

[
Ψ (τ1, . . . ;β1, . . .)

∣∣Fs

]
≤ Y τ1,...;β1,...,k

s ≤ ess sup
û∈U

E

[
Ψ (τ̂1, . . . ; β̂1, . . .)

∣∣Fs

]
.
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By Doob’s maximal inequality we have that for any û := (τ̂1, . . . ; β̂1, . . .) ∈ U

E

[
sup

s∈[0,T ]
E

[
|Ψ (τ̂1, . . . ; β̂1, . . .)|

∣∣Fs

]2] ≤ CE

[
|Ψ (τ̂1, . . . ; β̂1, . . .)|2

]
.

Taking the supremum over all û ∈ U on both sides and using that the right hand side
is uniformly bounded by Assumption 1(i.a) the first bound follows.

Concerning the second claim, note that

E

[
sup

s∈[0,T ]
|Y t,s∨tn;b,b,k

s |2
]

≤ sup
u∈U

E

[
sup

s∈[0,T ]
E[ sup

r∈[tn ,T ]
|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|

∣∣Fs]2
]

.

Now, arguing as above we find that

E

[
sup

s∈[0,T ]
|Y t,s∨tn;b,b,k

s |2
]

≤ C sup
u∈U

E

[
sup

r∈[tn ,T ]
|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|2

]

where the right hand side is bounded by Assumption 1(i.b). ��
Proposition 3 The family of processes ((Y t;b,k

s )0≤s≤T : (t, b) ∈ D f ) satisfies:

(i) For every n ≥ 1 and every (η, b) ∈ T̄ n × Īn and b ∈ I−bn we have

E

[
sup

s∈[0,T ]
|YΓ l (η);b,k

s − Y η;b,k
s |2

]
→ 0

and

E

[
sup

s∈[0,T ]
|YΓ l (η),s∨Γ l (ηn);b,bn ,k

s − Y η,s∨ηn;b,bn ,k
s |2

]
→ 0,

as l → ∞ uniformly in k.
(ii) For every (t, b) ∈ D f and every b ∈ I−bn , the process (Y t,s∨tn;b,b,k

s : 0 ≤ s ≤ T )

is in S2
qlc for k = 0, 1, . . .

Proof The proof will follow by induction and we use (i’) to denote the first statement
without the uniformity.

For k = 0, we have Y t,·∨tn;b,b,0· = V t,·∨tn;b,b,∅· ∈ S2
qlc by Assumption 2(ii) and (i’)

follows from Assumption 2(i). Now, assume that there is a k′ ≥ 0 such that (i’) and
(ii) holds for all k ≤ k′. Applying a reasoning similar to that in the proof of Theorem 2
we find that

123



A finite horizon optimal switching problem with memory and… 479

Y t;b,k′+1
s = ess sup

u∈U k′+1
s∨tn

V t;b,u
s .

But then by Assumption 2 we find that (i’) and (ii) hold for k′ + 1. By induction (i’)
and (ii) hold for all k ≥ 0.

It remains to show that (i) holds. By the above reasoning we find that, for each k
we have

E

[
sup

s∈[0,T ]
|YΓ l (η);b,k

s − Y η;b,k
s |2

]

≤ E

[
sup

s∈[0,T ]
|(YΓ l (η);b,k

s − Y η;b,k
s )+|2

]
+ E

[
sup

s∈[0,T ]
|(Y η;b,k

s − YΓ l (η);b,k
s )+|2

]

≤ sup
u∈U

Γ l (ηn )

E

[
sup

s∈[0,T ]
|(V Γ l (η);b,u

s − V η;b,u
s )+|2

]

+ sup
u∈U

E

[
sup

s∈[0,T ]
|(V η;b,u

s − V Γ l (η);b,ûl
s )+|2

]

where the right hand side of the last inequality does not depend on k and tends to zero
as l → ∞ by Assumption 2(i). The second statement in (i) follows by an identical
argument. ��
Corollary 1 For each k ≥ 0 and each s ∈ [0, T ] there is a uk = (τ k1 , . . . , τ k

Nk ;
βk
1 , . . . , β

k
Nk ) ∈ Uk

tn∨s , such that

Y t;b,k
s = E

[
Ψ (t, τ k1 , . . . , τ kNk ; b, βk

1 , . . . , β
k
Nk ) −

Nk∑
j=1

cβk
j ,β

k
j−1

(τ kj )

∣∣∣Fs

]
,

with βk
0 = b0.

Proof Follows from the definition of Y t;b,k and Propositions 2 and 3 by applying the
same argument as in the proof of the verification theorem (Theorem 2). ��
Proposition 4 For each (t, b) ∈ D f , the limit Ȳ t;b := limk→∞ Y t;b,k , exists as an
increasing pointwise limit, P-a.s. Furthermore, the process Ȳ t,·∨tn;b,b· is càdlàg for
each b ∈ I−bn .

Proof Since Uk
t ⊂ Uk+1

t we have that, P-a.s.,

Y t;b,k
s ≤ Y t;b,k+1

s ≤ ess sup
u∈U

E

[
|Ψ (τ1, . . . ;β1, . . .)|

∣∣Fs

]
,

where the right hand side is bounded P-a.s. by Proposition 2. Hence, the sequence
((Y t;b,k

s )0≤s≤T : (t,b) ∈ D) is increasing and P-a.s. bounded, thus, it converges
P-a.s. for all s ∈ [0, T ].
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Concerning the second claim, note that for p ∈ (1, 2), we have

sup
s∈[0,T ]

Y t,s∨tn;b,b,k
s ≤ sup

s∈[0,T ]
sup

r∈[0,T ]
Y t,r∨tn;b,b,k
s

≤ sup
s∈[0,T ]

ess sup
u∈U

E[ sup
r∈[tn ,T ]

|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|
∣∣Fs]

≤ 1 + sup
s∈[0,T ]

ess sup
u∈U

E[ sup
r∈[tn ,T ]

|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|p
∣∣Fs] =: K (ω)

for all k ≥ 0 (where the inequalities hold P-a.s.). Now, arguing as in the proof of
Proposition 2 we have

E

[
sup

s∈[0,T ]
ess sup
u∈U

E[ sup
r∈[tn ,T ]

|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|p
∣∣Fs]2/p

]

≤ C sup
u∈U

E

[
sup

r∈[tn ,T ]
|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|2

]
< ∞.

We thus conclude that there is a P-null set N such that for each ω ∈ Ω \ N we have
K (ω) < ∞.

By the “no-free-loop” condition [Assumption 1(iiib)] and the finiteness of I we get
that for any control (τ1, . . . , τN ;β1, . . . , βN ),

N∑
j=1

cβ j ,β j−1(τ j ) ≥ ε(N − m)/m,

P-a.s. For ω ∈ Ω \N (in the remainder of the proofN denotes a generic P-null set),
we thus have

−K (ω) ≤ Y t,s∨tn;b,b,k
s (ω) ≤ E[Ψ (t, s ∨ tn, τ

k
1 , . . . , τ kNk ;b, b, β1, . . . , β

k
Nk )

− ε(Nk/m − 1)|Fs](ω)

≤ K (ω) + ε − ε/mE[Nk |Fs](ω),

where (τ k1 , . . . , τ k
Nk ;βk

1 , . . . , β
k
Nk ) ∈ Uk

s∨tn is a control corresponding to Y
t,s∨tn;b,b,k
s .

This implies that for k′ > 0 we have,

P[Nk > k′|Fs](ω) ≤ (2K (ω)m/ε + m)/k′.

Now, for all 0 ≤ k′ ≤ k we have,

Y̆ t,s∨tn;b,b,k,k′
s := E

[
Ψ (t, s, τ k1 , . . . , τ kNk∧k′ ;b, b, βk

1 , . . . , β
k
Nk∧k′)

−
Nk∧k′∑
j=1

cβk
j−1,β

k
j
(τ kj )

∣∣∣Fs

]
≤ Y t,s∨tn;b,b,k′

s ≤ Y t,s∨tn;b,b,k
s ,
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where we introduced the process Y̆ b,t,k,k′
corresponding to the truncation (τ k1 , . . . ,

τ k
Nk∧k′ ;βk

1 , . . . , β
k
Nk∧k′) of the optimal control. As the truncation only affects the

performance of the controller when Nk > k′ we have

Y t,s∨tn;b,b,k
s − Y̆ t,s∨tn;b,b,k,k′

s

= E

[
1[Nk>k′]

(
Ψ (t, s ∨ tn, τ

k
1 , . . . , τ kNk ;b, b, βk

1 , . . . , β
k
Nk ) −

Nk∑
j=1

cβk
j−1,β

k
j
(τ kj )

− Ψ (t, s ∨ tn, τ
k
1 , . . . , τ kNk∧k′ ;b, b, βk

1 , . . . , β
k
Nk∧k′) +

Nk∧k′∑
j=1

cβk
j−1,β

k
j
(τ kj )

)∣∣∣Fs

]

≤ E

[
1[Nk>k′]

(
Ψ (t, s ∨ tn, τ

k
1 , . . . , τ kNk ;b, b, βk

1 , . . . , β
k
Nk )

− Ψ (t, s ∨ tn, τ
k
1 , . . . , τ kNk∧k′ ;b, b, βk

1 , . . . , β
k
Nk∧k′)

)∣∣∣Fs

]
.

Applying Hölder’s inequality we get that for ω ∈ Ω \ N ,

Y t,s∨tn;b,b,k
s (ω) − Y̆ t,s∨tn;b,b,k,k′

s (ω)

≤ 2E[1[Nk>k′]|Fs]1/q(ω)

× ess sup
u∈U

E

[
sup

r∈[tn ,T ]
|Ψ (t, r , τ1 ∨ r , . . . ;b, b, β1, . . .)|p

∣∣Fs

]1/p

(ω)

≤ 2((K (ω)m/ε + m)/k′)1/q(K (ω))1/p,

with 1
p + 1

q = 1, there is thus a constant C = C(ω) such that

Y t,s∨tn;b,b,k
s (ω) − Y t,s∨tn;b,b,k′

s (ω) ≤ C(k′)−1/q ,

for all s ∈ [0, T ]. We conclude that for all ω ∈ Ω \ N , the sequence
(Y t,·∨tn;b,b,k· (ω))k≥0 is a sequence of càdlàg functions that converges uniformly which
implies that the limit is a càdlàg function. ��
Proposition 5 The family ((Ȳ t;b

s )0≤s≤T : (t, b) ∈ D f ) is a verification family.

Proof As Ȳ t;b is the pointwise limit of an increasing sequence of càdlàg supermartin-
gales it is a càdlàg supermartingale (see p. 86 in Dellacherie and Meyer (1980)). We
treat each remaining property in the definition of a verification family separately:

(a) Applying the convergence result to the right hand side of (12) and using the fact
that, by Proposition 4,

1[s≥T ]Ψ (t;b) + 1[s<T ] max
β∈I−bn

{
−cbn ,β(s) + Ȳ t,s∨tn;b,β

s

}
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is a càdlàg process, (iv) of Theorem 1 gives

Ȳ t;b
s := ess sup

τ∈Ts
E

[
1[τ≥T ]Ψ (t;b) + 1[τ<T ] max

β∈I−bn

{
−cbn ,β(τ ) + Ȳ t,τ ;b,β

τ

} ∣∣∣Fs

]
.

(b) Uniform boundedness was shown in Proposition 2.
(c) We have

lim
l→∞E

[
sup

s∈[0,T ]
|ȲΓ l (η);b

s − Ȳ η;b
s |2

]
= lim

l→∞E

[
sup

s∈[0,T ]
lim
k→∞ |ȲΓ l (η);b,k

s − Ȳ η;b,k
s |2

]

≤ lim
l→∞ lim

k→∞E

[
sup

s∈[0,T ]
|ȲΓ l (η);b,k

s − Ȳ η;b,k
s |2

]

= lim
k→∞ lim

l→∞E

[
sup

s∈[0,T ]
|ȲΓ l (η);b,k

s − Ȳ η;b,k
s |2

]

= 0

where taking limits is interchangeable due to the uniform convergence property
shown in Proposition 3(i). The second statement in c), that is equation (7), follows
by an identical argument.

(d) Weknow fromProposition 4 that Ȳ t,·∨tn;b,b· is càdlàg andbyProposition 2 it follows
that Ȳ t,·∨tn;b,b· ∈ S2. It remains to show that Ȳ t,·∨tn;b,b· is quasi-left continuous.
Using the notation from the proof of Proposition 4 we have for k ≥ 0,

|Ȳ t,γ j (ω)∨tn;b,b
γ j (ω) (ω) − Ȳ t,γ (ω)∨tn;b,b

γ (ω) (ω)|
≤ |Y t,γ j (ω)∨tn;b,b,k

γ j (ω) (ω) − Y t,γ (ω)∨tn;b,b,k
γ (ω) (ω)| + 2C(ω)k−1/q ,

for all ω ∈ Ω \N with P(N ) = 0. By Proposition 3(ii) the first part tends to zero
P-a.s. as j → ∞. Since k was arbitrary and C is P-a.s. bounded the desired result
follows. This finishes the proof.

��

5 Application to SDDEs with controlled volatility

We now move to the case of impulse control of SDDEs. However, we start by formal-
izing the hydro-power production problem proposed as a motivating example in the
introduction.

5.1 Continuous time hydro-power planning

The increasing competitiveness of electricity markets calls for new operational stan-
dards in electric power production facilities. It has previously been acknowledged that
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optimal switching can be useful in deriving production schedules that maximize the
revenue from electricity production (Carmona and Ludkovski 2008; Djehiche et al.
2009; Kharroubi 2016). Here we will extend the applicability of optimal switching by
introducing a new example, the coordinated operation of hydropower plants intercon-
nected by hydrological coupling.

We consider the situation where a central operator controls the output of two
hydropower stations located in the same river (but note that themodel is easily extended
to consider an entire system of power stations).

We assume that Plant i , for i = 1, 2, has:

– A reservoir containing a volume Zi
t m

3 of water at time t .
– A stochastic inflow V i

t m3/s to the reservoir that is modeled by a jump diffusion
process.

– κi turbines that can be either “in operation”, producing pi (Zi
t ) MW by releasing

αi m3/s of water through the turbine or “idle”.

We assume that the power plants are hydrologically connected in such a way that
the water that passes through Plant 1 will reach the reservoir of Plant 2 after δ ≥ 0
seconds.

We assume that we control the number of turbines in operation in each of the two
plants. We thus let I := {0, 1, . . . , κ1}×{0, 1, . . . , κ2}. The dynamics of the involved
processes is then given by

dVt = a(t, Vt )dt + σ(t, Vt )dWt +
∫
R2\{0}

γ (t, Vt−, z)Γ (dt, dz)

dZ1
t = (V 1

t − α1ξ
1
t )dt

dZ2
t = (V 2

t − α2ξ
2
t + α1ξ

1
t−δ)dt

(V0, Z0) = (v0, z0) ∈ R
4+

and an appropriate reward functional is

J (u) := E

[∫ T

0
Rt (ξ

1
t p1(Z

1
t ) + ξ2t p2(Z

2
t ))dt + q(Z1

T , Z2
T )

]
,

where Rt is the (stochastic) electricity price at time t and q : R2+ → R is the value of
water (per m3) stored in the reservoirs at the end of the operation period.3

5.2 A general SDDEmodel

Motivated by the above example we assume thatF is the completed filtration generated
by an d-dimensional Brownian motion W and an d-dimensional, independent, finite
activity, Poisson random measure Γ with intensity measure ν(ds; dz) = ds ×μ(dz),
where μ is the Lévy measure on Rd of Γ and Γ̃ (ds; dz) := (Γ − ν)(ds; dz) is called
the compensated jump martingale random measure of Γ .

3 Note that we expect the water in Reservoir 1 to have a higher value as it can be used in both plants.
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For u ∈ U , we let Xu,0 solve

dXu,0
t = a(t, Xu,0

t , Xu,0
t−δ)dt + σ(t, Xu,0

t , Xu,0
t−δ)dWt

+
∫
Rd\{0}

γ (t, Xu,0
t− , Xu,0

t−δ, z)Γ̃ (dt, dz), for all t ∈ (0, T ], (13)

Xu,0
s = χ(s), s ∈ [−δ, 0], (14)

where δ > 0 is a constant and χ : [−δ, 0] → R
d is a deterministic càdlàg function

with sups∈[−δ,0] |χ(s)| ≤ C , and define recursively

dXu, j
t = a(t, Xu, j

t , Xu, j
t−δ)dt + σ(t, Xu, j

t , Xu, j
t−δ)dWt

+
∫
Rd\{0}

γ (t, Xu, j
t− , Xu, j

t−δ, z)Γ̃ (dt, dz), for all t ∈ (τ j , T ], (15)

Xu, j
τ j

= hβ j−1,β j (τ j , X
u, j−1
τ j

) (16)

Xu, j
s = Xu, j−1

s , s ∈ [−δ, τ j ). (17)

Finally we define the controlled process4 Xu as Xu := lim j→∞ Xu, j on [0, T ) and

Xu
T := lim sup j→∞Xu, j

T .

Remark 2 Note that by letting χ1 ≡ b0 and taking [hβ j−1,β j ]1(t, x) = β j and letting
the first rows of a, σ and γ equal zeros we get [X ]1 = ξu which implies that the
control enters all terms in the SDDE for Xu .

We consider the situation when the functional J is given by

J (u) := E

⎡
⎣
∫ T

0
f (t, Xu

t )dt + g(Xu
T ) −

N∑
j=1

cβ j−1,β j (τ j )

⎤
⎦ .

We assume that the parameters of the SDDE satisfies the following conditions:

Assumption 3 i) The functions a : [0, T ] ×R
d ×R

d → R
d and σ : [0, T ] ×R

d ×
R
d → R

d × R
d are continuous in t and satisfy

|a(t, x, y) − a(t, x ′, y′)| + |σ(t, x, y) − σ(t, x ′, y′)| ≤ C(|x − x ′| + |y − y′|)

for all (x, x ′, y, y′) ∈ R
4d .

ii) There is a ρ(z), with
∫

ρ4q(z)μ(dz) < ∞ such that γ : [0, T ]×R
d ×R

d ×R
d →

R
d satisfies

|γ (t, x, y, z) − γ (t, x ′, y′, z)| ≤ ρ(z)(|x − x ′| + |y − y′|),
|γ (t, x, y, z)| ≤ ρ(z)(1 + |x | + |y|).

4 Whenever it exists, we refer to the limit process Xu as a solution to the SDDE (15)–(17)
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iii) For all (t, x) ∈ [0, T ]×R
d and all (b, b′) ∈ Ī2, the map hb,b′ : [0, T ]×R

d → R
d

satisfies

|hb,b′(t, x)| ≤ C ∨ |x |.

Furthermore,

|hb,b′(t, x) − hb,b′(t ′, x ′)| ≤ |x − x ′| + C |t − t ′|

for all (x, x ′) ∈ R
2d and (t, t ′) ∈ [0, T ]2.

Remark 3 Note in particular that since a and σ are continuous in t , a(·, 0, 0) and
σ(·, 0, 0) are uniformly bounded and Lipschitz continuity implies that

|a(t, x, y)|4q + |σ(t, x, y)|4q +
∫
Rd\{0}

|γ (t, x, y, z)|4qμ(dz)

≤ C(1 + |x |4q + |y|4q). (18)

We have the following result:

Proposition 6 Under Assumption 3 the SDDE (15)–(17) admits a unique solu-
tion for each u ∈ U . Furthermore, the solution has moments of order 4q, i.e.
supu∈U E

[
supt∈[0,T ] |Xu

t |4q
]

< ∞.

Proof Wefirst note that existence of a unique solution to the SDDE follows by repeated
use of Theorem 3.2 in Agram and Øksendal (2019) (where existence of a unique
solution to a more general controlled SDDE is shown). It remains to show that the
moment estimate holds. We have Xu, j = Xu, j−1 on [−δ, τ j ) and

Xu, j
t = hβ j−1,β j (τ j , X

u, j−1
τ j

) +
∫ t

τ j

a(s, Xu, j
s , Xu, j

s−δ)ds

+
∫ t

τ j

σ(t, Xu, j
s , Xu, j

s−δ)dWs +
∫ t

τ j

∫
Rd\{0}

γ (s, Xu, j
s− , Xu, j

s−δ, z)Γ̃ (ds, dz)

on [τ j , T ]. By Assumption 3(iii) we get, for t ∈ [τ j , T ], using integration by parts,
that

|Xu, j
t |2 = |Xu, j

τ j
|2 + 2

∫ t

τ j+
Xu, j
s− dXu, j

s +
∫ t

τ j+
d[Xu, j , Xu, j ]s

≤ C ∨ |Xu, j−1
τ j

|2 + 2
∫ t

τ j+
Xu, j
s− dXu, j

s +
∫ t

τ j+
d[Xu, j , Xu, j ]s

≤ C ∨ |Xu, j−1
τ j−1

|2 + 2
∫ τ j

τ j−1+
Xu, j−1
s− dXu, j−1

s +
∫ τ j

τ j−1+
d[Xu, j−1, Xu, j−1]s

+ 2
∫ t

τ j+
Xu, j
s− dXu, j

s +
∫ t

τ j+
d[Xu, j , Xu, j ]s .
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By repeated application we find that

|Xu, j
t |2 ≤ C ∨ |Xu,0

0 |2 +
j−1∑
i=0

{2
∫ τi+1

τi+
Xu,i
s−dXu,i

s +
∫ τi+1

τi+
d[Xu,i , Xu,i ]s}

+ 2
∫ t

τ j+
Xu, j
s− dXu, j

s +
∫ t

τ j+
d[Xu, j , Xu, j ]s

≤ C +
j−1∑
j=0

{
2
∫ τi+1

τi+
Xu,i
s−dXu,i

s +
∫ τi+1

τi+
d[Xu,i , Xu,i ]s

}

+ 2
∫ t

τ j+
Xu, j
s− dXu, j

s +
∫ t

τ j+
d[Xu, j , Xu, j ]s,

with τ0 := 0. Now, since Xu,i and Xu, j coincide on [0, τi+1∧ j+1) we have

j−1∑
i=0

∫ τi+1

τi+
Xu,i
s−dXu,i

s +
∫ t

τ j+
Xu, j
s− dXu, j

s

=
∫ t

0
Xu, j
s a(s, Xu, j

s , Xu, j
s−δ)ds +

∫ t

0
Xu, j
s σ(s, Xu, j

s , Xu, j
s−δ)dWs

+
∫ t

0

∫
Rd\{0}

Xu, j
s− γ (s, Xu, j

s− , Xu, j
s−δ, z)Γ̃ (ds, dz)

and

E

⎡
⎣

j−1∑
i=0

∫ τi+1

τi+
d[Xu,i , Xu,i ]s +

∫ t

τ j+
d[Xu, j , Xu, j ]s

⎤
⎦

= E

[∫ t

0
(|σ(s, Xu, j

s , Xu, j
s−δ)|2 +

∫
Rd\{0}

|γ (s, Xu, j
s− , Xu, j

s−δ, z)|2μ(dz))ds

]
.

Finally, using the Burkholder–Davis–Gundy inequality in combination with (18) we
get

E

[
sup

s∈[0,t]
|Xu, j

s |4q
]

≤ C + C
∫ t

0
E

[
sup

r∈[0,s]
|Xu, j

r |4q
]
ds,

where the constant C does not depend on j and it follows by Grönwall’s lemma

that E
[
supt∈[0,T ] |Xu, j

t |4q
]
is bounded uniformly in j . Now, the result follows since

τ j → T , P-a.s., as j → ∞. ��
For each (t,b) ∈ D f and each u ∈ U we let

X t;b,u := Xt1,...,tn ,tn∨τ1,...,tn∨τN ;b1,...,bn ,β1,...,βN
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and

X t;b,u, j := Xt1,...,tn ,tn∨τ1,...,tn∨τN ;b1,...,bn ,β1,...,βN , j .

Proposition 7 For all (t, b) ∈ D f we have

sup
u∈U

E

[
sup

s∈[0,T ]
sup

t∈[tn ,T ]
|X t,t;b,b,u

s |4q
]

< ∞.

Proof For t ∈ [tn, T ] we have, for s ≥ t ,

X t,t;b,b
s = hbn ,b(t, X

t;b
t ) +

∫ s

t
a(r , X t,t;b,b

r , X t,t;b,b
r−δ )dr

+
∫ s

t
σ(r , X t,t;b,b

r , X t,t;b,b
r−δ )dWr

+
∫ s

t

∫
Rd\{0}

γ (r , X t,t;b,b
r− , X t,t;b,b

r−δ , z)Γ̃ (dr , dz).

Arguing as in the proof of Proposition 6 we find that for s ∈ [τ j , T ],

sup
t∈[tn ,T ]

|X t,t;b,b,u,n+1+ j
s |2

≤ C ∨ sup
t∈[tn ,T ]

|X t;b
t |2 + sup

t∈[tn ,T ]

⎧⎨
⎩

j−1∑
i=0

{
2
∫ τi+1

t∨τi+
X t,t;b,b,u,n+1+i
r− dX t,t;b,b,u,n+1+i

r

+
∫ τi+1

τi+
d[X t,t;b,b,u,n+1+i , X t,t;b,b,u,n+1+i ]r

}

+ 2
∫ s

t∨τ j+
X t,t;b,b,u,n+1+ j
r− dX t,t;b,b,u,n+1+ j

r

+
∫ s

τ j+
d[X t,t;b,b,u,n+1+ j , X t,t;b,b,u,n+1+ j ]r

}
.

We thus find that, for each u ∈ U ,

E

[
sup

s∈[0,r ]
sup

t∈[tn ,T ]
|X t,t;b,b,u

s |4q
]

≤ C + CE

[
sup

s∈[0,T ]
|X t;b

s |4q
]

+ C
∫ r

0
E

[
sup

s∈[0,v]
sup

t∈[tn ,T ]
|X t,t;b,b,u

s |4q
]
dv

and the assertion again follows by applyingGrönwall’s lemma and using Proposition 6.
��
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To illustrate that switching does not diverge solutions we have the following useful
lemma:

Lemma 2 For γ ∈ T and each u ∈ Uγ , let (kZu)k≥0 and Xu be processes in S4q (with
E[sups∈[0,γ ] |k Zu |4q ] uniformly bounded) that solve the SDDE (15)–(17) on (γ, T ]
with control u and such that

E

[∫ γ

0
|Xu

s −kZu
s |4ds + |Xu,0

γ −kZu,0
γ |4

]
→ 0, (19)

as k → ∞. Then,

lim
k→∞ sup

u∈Uγ

E

[
sup

s∈[γ,T ]
|Xu

s −kZu
s |2

]
→ 0 (20)

and for all b ∈ I−b0 we have

lim
k→∞ sup

u∈Uγ

E

[
sup

t∈[γ,T ]
sup

s∈[γ,T ]
|Xt,b,u

s −kZ t,b,u
s |2

]
→ 0. (21)

Proof By the contraction property of h.,. we have that |Xu, j
τ j −kZu, j

τ j | < |Xu, j−1
τ j −k

Zu, j−1
τ j |. Using integration by parts we get, for t ∈ [τ j , T ],

|Xu, j
t −kZu, j

t |2 = |Xu, j
τ j

−kZu, j
τ j

|2 + 2
∫ t

τ j+
(Xu, j

s− −kZu, j
s− )(dXu, j

s − dkZu, j
s )

+
∫ t

τ j+
d[Xu, j −kZu, j , Xu, j −kZu, j ]s

≤ |Xu, j−1
τ j−1

−kZu, j−1
τ j−1

|2 + 2
∫ τ j

τ j−1

(Xu, j−1
s− −kZu, j−1

s− )(dXu, j−1
s − dkZu, j−1

s )

+ 2
∫ t

τ j+
(Xu, j

s− −kZu, j
s− )(dXu, j

s − dkZu, j
s )

+
∫ τ j

τ j−1+
d[Xu, j−1 −kZu, j−1, Xu, j−1 −kZu, j−1]s

+
∫ t

τ j+
d[Xu, j −kZu, j , Xu, j −kZu, j ]s .

Repeated application implies that

|Xu
t −kZu

t |2 ≤ |Xu,0
γ −kZu,0

γ |2 + 2
∞∑
j=0

∫ τ j+1∧t

τ j+
(Xu, j

s− −kZu, j
s− )(dXu, j

s − dkZu, j
s )

+
∞∑
j=0

∫ τ j+1∧t

τ j+
d[Xu, j −kZu, j , Xu, j −kZu, j ]s .
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Now, for s ∈ (τ j , T ] we have

dXu, j
s − dkZu, j

s = (a(s, Xu, j
s , Xu, j

s−δ) − a(s,kZu, j
s ,kZu, j

s−δ))ds

+ (σ (s, Xu, j
s , Xu, j

s−δ) − σ(s,kZu, j
s ,kZu, j

s−δ))dWs

+
∫
Rd\{0}

(γ (s, Xu, j
s− , Xu, j

s−δ, z) − γ (s,kZu, j
s− ,kZu, j

s−δ, s))Γ̃ (ds, dz).

Using Lipschitz continuity of a, σ and γ and the Burkholder–Davis–Gundy inequality
we get

E

[
sup

s∈[γ,t]
|Xu

s −kZu
s |4

]
≤ CE

[
|Xu,0

γ −kZu,0
γ |4 +

∫ γ

0
|Xu

s −kZu
s |4ds

]

+ C
∫ t

γ

E

[
sup

r∈[γ,s]
|Xu

r −kZu
r |4

]
ds,

where the constant C does not depend on the control u, and by Grönwall’s inequality
we have

E

[
sup

s∈[γ,t]
|Xu

s −kZu
s |4

]
≤ CE

[
|Xu,0

γ −kZu,0
γ |4 +

∫ γ

0
|Xu

s −kZu
s |4ds

]
.

Now, applying Jensen’s inequality gives (20). Furthermore, we have

sup
r∈[0,T ]

|Xr ,b,u
t −kZr ,b,u

t |2 ≤ sup
r∈[0,T ]

|Xu,0
r −kZu,0

r |2

+ 2 sup
r∈[0,T ]

⎧⎨
⎩

∞∑
j=0

∫ τ j+1∧t

τ j+∨r
(Xr ,b,u, j

s− −kZr ,b,u, j
s− )(dXr ,b,u, j

s − dkZr ,b,u, j
s )

+
∞∑
j=0

∫ τ j+1∧t

τ j+
d[Xr ,b,u, j −kZr ,b,u, j , Xr ,b,u, j −kZr ,b,u, j ]s

⎫⎬
⎭ .

and (21) follows by an identical argument. ��
We add the following assumptions on the components of the cost functional and

the functions h.

Assumption 4 (i) The functions f : [0, T ] × R
d → R and g : Rd → R are both

locally Lipschitz in x . Furthermore, there are constants q > 1 and K > 0 such
that

| f (t, x)| + |g(x)| ≤ K (1 + |x |q)

for all (t, x) ∈ [0, T ] × R
d .
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(ii) For all b ∈ I we have

g(x) > max
b′∈I−b

g(hb,b′(T , x)) − cb,b′(T ),

for all x ∈ R
d .

(iii) There is a constant κ > 0 such that for any sequence (b1, . . . , b j ) ∈ Ī j with
j > κ there is a subsequence 1 = ι1 < · · · < ι j ′ = j with j ′ ≤ κ and
(bι1 , . . . , bι j ′ ) ∈ Ī j ′ for which

hb j−1,b j (t, · · · hb2,b3(t, hb1,b2(t, x)) · · · )
= hbι j ′−1

,bι j ′ (t, · · · hbι2 ,bι3
(t, hbι1 ,bι2

(t, x)) · · · ).

It is straightforward to see that with the above assumptions the Ψ defined by

Ψ (t;b) :=
∫ T

0
f (t, X t;b

t )dt + g(X t;b
T )

satisfies Assumption 1.
The remainder of this section is devoted to showing that Ψ also satisfies

Assumption 2, guaranteeing the existence of an optimal control to the problem of
maximizing J .

Proposition 8 For each n ≥ 1 and each (η, b) ∈ T̄ n × Īn and b ∈ I−bn there is a
map (U → U : u → ûl)l≥1 such that

lim
l→∞ sup

u∈U
E

[
sup

s∈[0,T ]
|(V η;b,u

s − V Γ l (η);b,ûl
s )+|2

]
= 0 (22)

and

lim
l→∞ sup

u∈U
E

[
sup

s∈[0,T ]
|(V η,s∨ηn;b,b,u

s − V Γ l (η),s∨Γ l (ηn);b,b,ûl
s )+|2

]
= 0. (23)

Furthermore, we have

lim
l→∞ sup

u∈U
Γ l (ηn )

E

[
sup

s∈[0,T ]
|(V Γ l (η);b,u

s − V η;b,u
s )+|2

]
= 0 (24)

and

lim
l→∞ sup

u∈U
Γ l (ηn )

E

[
sup

s∈[0,T ]
|(V Γ l (η),s∨Γ l (ηn);b,b,u

s − V η,s∨ηn;b,b,u
s )+|2

]
= 0. (25)
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Proof To simplify notation we let (ζi )1≤i≤n denote Γ l(η) and let X and Z (resp. X j

and Z j ) denote Xη;b,u
t resp. XΓ l (η);b,ûl (resp. Xη;b,u, j and XΓ l (η);b,ûl , j ). Furthermore,

we let U∗
t := sups∈[0,t] |Us | be the running maximum of the process |U |.

We have:

(i) Xt = Zt , for all t ∈ [0, η1), P-a.s.
(ii) On [η1, ζ1) we have |Xt − Zt | ≤ (X)∗T + (Z)∗T .
(iii) If η j ≤ ζ1, then ζ j = ζ j−1 = · · · = ζ1.

Letting M1 := max{ j ≥ 1 : η j ≤ ζ1} we get

XM1
ζM1

− ZM1
ζM1

= XM1
ζM1

+ (hbM1−1,bM1
(ηM1, X

M1−1
ηM1

) − XM1
ηM1

)

− hbM1−1,bM1
(ζM1 , Z

M1−1
ζM1

).

Hence,

|XM1
ζM1

− ZM1
ζM1

| ≤ |XM1
ζM1

− XM1
ηM1

| + C |ηM1 − ζM1 | + |XM1−1
ηM1

− ZM1−1
ζM1

|
≤ C2−l + |XM1

ζM1
− XM1

ηM1
| + |XM1−1

ζM1
− XM1−1

ηM1
|

+ |XM1−1
ζM1

− ZM1−1
ζM1

|.

But X0
ζ1

= Z0
ζ1
and by induction it follows that

|XM1
ζM1

− ZM1
ζM1

| ≤ M1C2−l +
M1∑
j=1

(|X j
ζ j

− X j
η j

| + |X j−1
ζ j

− X j−1
η j

|).

If we iteratively define Mi := max{ j > Mi−1 : η j ≤ ζMi−1+1}, for i = 1, . . . nM
with MnM = n and M0 := 0. Then we get, in the same manner,

|XMi
ζMi

− ZMi
ζMi

| ≤ (Mi − Mi−1)C2−l +
Mi∑

j=Mi−1+1

(|X j
ζ j

− X j
η j

| + |X j−1
ζ j

− X j−1
η j

|)

+ |XMi−1
ζMi

− ZMi−1
ζMi

|.

Now on [ζMi , T ] we have

XMi
t − ZMi

t = XMi
ζMi

− ZMi
ζMi

+
∫ t

ζMi

(a(s, XMi
s , XMi

s−δ) − a(s, ZMi
s , ZMi

s−δ))ds

+
∫ t

ζMi

(σ (s, XMi
s , XMi

s−δ) − σ(s, ZMi
s , ZMi

s−δ))dBs

+
∫ t

ζMi

∫
Rd\{0}

(γ (s, XMi
s− , XMi

s−δ) − γ (s, ZMi
s− , ZMi

s−δ))Γ̃ (ds, dz).
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Put together we find that for t ∈ [ζMi , T ] we have

|XMi
t − ZMi

t | ≤ (Mi − Mi−1)C2−l +
Mi∑

j=Mi−1+1

(|X j
ζ j

− X j
η j

| + |X j−1
ζ j

− X j−1
η j

|)

+ |XMi−1
ζMi

− ZMi−1
ζMi

| +
∫ t

ζMi

|a(s, XMi
s , XMi

s−δ) − a(s, ZMi
s , ZMi

s−δ)|ds

+ |
∫ t

ζMi

(σ (s, XMi
s , XMi

s−δ) − σ(s, ZMi
s , ZMi

s−δ))dBs

+
∫ t

ζMi

∫
Rd\{0}

(γ (s, XMi
s− , XMi

s−δ) − γ (s, ZMi
s− , ZMi

s−δ))Γ̃ (ds, dz)|.

Applying Thm 66, p. 339 in Protter (2004) and Lipschitz continuity iteratively gives

E

[
sup

s∈[ζMi ,t]
|XMi

s − ZMi
s |4

]
≤ C2−l + CE

⎡
⎣

Mi∑
j=1

(|X j
ζ j

− X j
η j

|4

+|X j−1
ζ j

− X j−1
η j

|4) +
∫ t

0
(|XMi

s − ZMi
s |4 + |XMi

s−δ − ZMi
s−δ|4)ds

]
.

By Grönwall’s inequality and point ii) above we find that

E

[
sup

t∈[ζMi ,T ]
|XMi

t − ZMi
t |4

]
≤ C2−l(1 + (X∗

T )4 + (Z∗
T )4)

+ C
Mi∑
j=1

E
[|X j

ζ j
− X j

η j
|4 + |X j−1

ζ j
− X j−1

η j
|4]. (26)

Moving on we consider the possibility of interventions in the period [ηn, ζn). Let
N ′ := max{ j ≥ 0 : τ j < ζn} and note that if N ′ > κ , then there is a subsequence
(ι j )

κ ′
j=1 with 1 ≤ ι1 < · · · < ικ ′ = N ′ with κ ′ ≤ κ and (bn, βι1 , . . . , βικ′ ) ∈ Īκ ′+1

such that, for all (t, x) ∈ [0, T ] × R
d ,

hβN ′−1,βN ′ (t, · · · hbn ,β1(t, x) · · · ) = hβι
κ′−1

,βι
κ′ (t, · · · hbn ,βι1

(t, x) · · · ).

We then let5 ûl = (τ̂1, . . . , τ̂N̂ ; β̂1, . . . , β̂N̂ ) := (ζn1κ ′ , τN ′+1, . . . , τN ;βι1 , . . . , βικ′ ,
βN ′+1, . . . , βN ). Arguing as above, we find that

|Xζn − Zζn | ≤ N ′C2−l +
N ′∑
j=1

(|Xn+ j
ζn

− Xn+ j
τ j

| + |Xn+ j−1
ζn

− Xn+ j−1
τ j

|)

+ |Xn
ζn

− Zn
ζn

|. (27)

5 For k ≥ 1 we denote by 1k the vector of k ones.
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We now turn to the total revenue and let

Λ :=
N̂∑
j=1

c
β̂ j−1,β̂ j

(τ̂ j ) −
N∑
j=1

cβ j−1,β j (τ j ).

By right continuity of the switching costs, we find that

lim
l→∞ Λ ≤

(
κ

2
− N ′ − m

m

)
ρ, (28)

P-a.s. The difference in revenue can then be written

V η;b,u
t − V ζ ;b,ûl

t = E

[∫ T

0
( f (s, Xs) − f (s, Zs))ds + g(XT ) − g(ZT ) + Λ

∣∣Ft

]
.

By local Lipschitz continuity of f and g we get that, for each K > 0 there is a
C > 0 such that | f (t, x) − f (t, x ′)| ≤ C |x − x ′| and |g(x) − g(x ′)| ≤ C |x − x ′| on
|x | + |x ′| ≤ K . This gives us the relation

(V η;b,u
t − V ζ ;b,ûl

t )+

≤ E

[(∫ T

0
C |Xs − Zs |ds + C |XT − ZT | + Λ

)+ ∣∣Ft

]

+ CE[1[X∗
T +Z∗

T >K ](1 + (X∗
T )q + (Z∗

T )q)|Ft ]

≤ E

[
1A

(∫ T

0
C |Xs − Zs |ds + C |XT − ZT | + Λ+

) ∣∣Ft

]

+ CE[1[X∗
T +Z∗

T >K ](1 + (X∗
T )q + (Z∗

T )q)|Ft ],

where A := {ω ∈ Ω : ∫ T
0 C |Xs − Zs |ds + C |XT − ZT | > −Λ}. Doob’s maximal

inequality then gives that

E

[
sup

t∈[0,T ]
((V η;b,u

t − V ζ ;b,ûl
t )+)2

]

≤ CE

[
1A

(∫ T

0
|Xs − Zs |2ds + |XT − ZT |2 + (Λ+)2

)]

+ CE[1[X∗
T +Z∗

T >K ](1 + (X∗
T )2q + (Z∗

T )2q)]

≤ CE

[
1A

(∫ T

0
|Xs − Zs |2ds + |XT − ZT |2 + (Λ+)2

)]

+ CP[X∗
T + Z∗

T > K ]1/2,
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where we have used Hölder’s inequality and the moment estimate in Proposition 6 to
arrive at the last inequality. For any M > 0 we thus have

E

[
sup

t∈[0,T ]
((V η;b,u

t − V ζ ;b,ûl
t )+)2

]

≤ CE

[
1[N ′≤M]

(∫ T

0
|Xs − Zs |2ds + |XT − ZT |2

)]

+ CE

[
1[N ′>M]1A((X∗

T )2 + (Z∗
T )2)

]

+ CE
[
(Λ+)2

] + CP[X∗
T + Z∗

T > K ]1/2, (29)

Concerning the first term, we have that 1[N ′≤M]|Xs − Zs | ≤ |X̃s − Z̃s |, where X̃ = X
and Z̃ = Z on [N ′ ≤ M]. On [N ′ > M] we let X̃ := Xη;b,ũ with

ũ :=
{

(τ1, . . . , τM , ζn, τN ′+1, . . . , τN ;β1, . . . , βM , βN ′ , . . . , βN ), if βM �= βN ′ ,
(τ1, . . . , τM , τN ′+1, . . . , τN ;β1, . . . , βM , βN ′+1, . . . , βN ), if βM = βN ′ .

and Z̃ := Xη;b,ũl where ũl is obtained from ũ as ûl was obtained from u. Now, we
proceed as above and get for each M ≥ κ , that

|X̃ζn − Z̃ζn | ≤ MC2−l +
N ′∧M∑
j=1

(|Xn+ j
ζn

− Xn+ j
τ j

| + |Xn+ j−1
ζn

− Xn+ j−1
τ j

|)

+ |Xn
ζn

− Zn
ζn

|.

By (26) and (20) of Lemma 2 we then find that for each M ≥ κ , the first term on the
right hand side in (29) goes to 0 as l → ∞. Concerning the second term we have,
again by Hölder’s inequality and Proposition 6, that

E

[
1[N ′>M]1A((X∗

T )2 + (Z∗
T )2)

]
≤ CP[[N ′ > M] ∩ A]1/2.

Now, A ⊂ {ω : C(X∗
T + Z∗

T ) > −Λ}, where C > 0 does not depend on l. For l
sufficiently large we thus see, by (28) and Chebyshev’s inequality, that the probability
on the right hand side can be made arbitrarily small by choosing M sufficiently large.
For the third term we note that

E
[
(Λ+)2

] ≤ κ2
∑

(b,b′)∈Ī2

E

[
sup

s∈[ηn ,ζn ]
|cb,b′(ζn) − cb,b′(s)|2

]
,

where the right hand side goes to 0 as l → ∞ by right-continuity of the switching
costs. Finally, the last term of (29) can be made arbitrarily small by choosing K large.

Concerning the second claim we note that with X = Xη,s∨ηn ,b,b,u and Z =
XΓ l (η),s∨Γ l (ηn),b,b,u the relation in (27) is replaced by
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|Xζn − Zζn | ≤ (N ′ + 1)C2−l + sup
r∈[ηn ,ζn ]

N ′+1∑
j=1

(|Xn+ j
ζn

− Xn+ j
r |

+ |Xn+ j−1
ζn

− Xn+ j−1
r |) + |Xn

ζn
− Zn

ζn
|.

Hence, appealing to (21) of Lemma 2, right-continuity and the result in Proposition 7
the first second and last terms in the equivalent to (29) tends to 0 as l → ∞ and (24)
follows.

The last two statements given in equations (24)–(25) follow by a similar reasoning
while noting that in this case N ′ = 0 which implies that Λ = 0, P-a.s. ��
Lemma 3 For all (t, b) ∈ D f and k ≥ 0 we have

sup
u∈U k

E

[
sup

s∈[t ′,T ]
|X t,t ′;b,b,u

s − X t,t;b,b,u
s |∣∣Ft ′

]
→ 0,

P-a.s. as t ′ ↘ t .

Proof Starting with k = 0 we note that for t ′ ≥ t we have

X t,t;b,b
t ′ = hbn ,b(t, X

t;b
t ) + X t,t;b,b

t ′ − X t,t;b,b
t

which gives

|X t,t ′;b,b
t ′ − X t,t;b,b

t ′ | ≤ C |t ′ − t | + |X t;b
t ′ − X t;b

t | + |X t,t;b,b
t ′ − X t,t;b,b

t |.

For k > 0 and u ∈ Uk
t we have, for i ≤ k

X t,t;b,b,u,n+i+1
t ′ = 1[τi≤t ′]{hβi−1,βi (τi , X

t,t;b,b,u,n+i
τi

) + X t,t;b,b,u,n+i+1
t ′

− X t,t;b,b,u,n+i+1
τi

} + 1[τi>t ′]X t,t;b,b,u,n+i
t ′

and

X t,t ′;b,b,u,n+i+1
t ′ = 1[τi≤t ′]hβi−1,βi (t

′, X t,t ′;b,b,u,n+i
t ′ ) + 1[τi>t ′]X t,t ′;b,b,u,n+i

t ′ .

which gives

|X t,t ′;b,b,u,n+i+1
t ′ − X t,t;b,b,u,n+i+1

t ′ |
≤ 1[τi≤t ′]{C |t ′ − τi | + |X t,t;b,b,u,n+i

t ′ − X t,t ′;b,b,u,n+i
t ′ |

+ |X t,t;b,b,u,n+i
t ′ − X t,t;b,b,u,n+i

τi
| + |X t,t;b,b,u,n+i+1

t ′ − X t,t;b,b,u,n+i+1
τi

|}
+ 1[τi>t ′]|X t,t;b,b,u,n+i

t ′ − X t,t ′;b,b,u,n+i
t ′ |.
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Repeated application renders

|X t,t ′;b,b,u
t ′ − X t,t;b,b,u

t ′ |

≤ C(k + 1)|t ′ − t | +
k∑

i=1

1[τi≤t ′]{|X t,t;b,b,u,n+i
t ′ − X t,t;b,b,u,n+i

τi
|

+ |X t,t;b,b,u,n+i+1
t ′ − X t,t;b,b,u,n+i+1

τi
|} + |X t;b

t ′ − X t;b
t | + |X t,t;b,b

t ′ − X t,t;b,b
t |.

Furthermore, we have

∫ t ′

0
|X t,t ′;b,b,u

s − X t,t;b,b,u
s |4ds ≤ |t ′ − t |((X t,t ′;b,b,u)∗T + (X t,t;b,b,u)∗T )4,

where the right hand side tends to zero P-a.s. as t ′ ↘ t by P-a.s. boundedness of
supu∈U supr∈[tn ,T ] |(X t,r;b,b,u)∗T |4. Arguing as in the proof of Lemma 2 we find that

E

[
sup

s∈[t ′,T ]
|X t,t ′;b,b,u

s − X t,t;b,b,u
s |4∣∣Ft ′

]

≤ C(|X t,t ′;b,b,u
t ′ − X t,t;b,b,u

t ′ |4 +
∫ t ′

0
|X t,t ′;b,b,u

s − X t,t;b,b,u
s |4ds),

and the assertion follows by right continuity of X . ��
Lemma 4 For all (t, b) ∈ D f and all b ∈ I−bn we have whenever γ j ↗ γ ∈ Ttn , with
(γ j ) j≥0 ⊂ Ttn , that

lim
j→∞ sup

u∈U k
γ j

E

[
sup

s∈[γ,T ]
|X t,γ j ;b,b,u

s − X t,γ ;b,b,u
s |2

]
= 0,

for all 0 ≤ k < ∞.

Proof Arguing as in the proof of the previous lemma we find that

|X t,γ j ;b,b,u
γ − X t,γ ;b,b,u

γ |

≤ C(k + 1)(γ − γ j ) +
k∑

i=1

1[τi≤γ ]{|X t,γ j ;b,b,u,n+i
γ − X

t,γ j ;b,b,u,n+i
τi |

+ |X t,γ j ;b,b,u,n+i+1
γ − X

t,γ j ;b,b,u,n+i+1
τi |} + |X t;b

γ − X t;b
γ j

|
+ |X t,γ j ;b,b

γ − X
t,γ j ;b,b
γ j |.
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Furthermore, by Hölder’s inequality we have

E

[∫ γ

0
|X t,γ ;b,b,u

s − X
t,γ j ;b,b,u
s |4ds

]

≤ CE[γ − γ j ]1/pE
[
((X t,γ ;b,b,u)∗T + (X t,γ j ;b,b,u)∗T )4q

]1/q
,

where 1
p + 1

q = 1. Now, by definition γ is a predictable stopping time and the jump
part of our SDDE is P-a.s. constant at predictable stopping times. We can, thus, apply
Lemma 2 and the assertion follows. ��

Proposition 9 For all (t, b) ∈ D f and all b ∈ I−bn , the process
(ess supu∈U k V t,s∨tn;b,b,u

s : 0 ≤ s ≤ T ) is in S2
qlc for all k ≥ 0.

Proof Let Y t;b,k
t := ess supu∈U k V t;b,u

t . To show that Y t,·∨tn;b,b,k· has a càdlàg version
we consider

Y t,t ′;b,b,k
t ′ − Y t,t;b,b,k

t = (Y t,t ′;b,b,k
t ′ − Y t,t;b,b,k

t ′ ) + (Y t,t;b,b,k
t ′ − Y t,t;b,b,k

t )

where the second term on the right hand side goes to zero P-a.s. as t ′ ↘ t by uniform
integrability and right continuity of the filtration. Concerning the first term we have

|Y t,t ′;b,b,k
t ′ − Y t,t;b,b,k

t ′ |

≤ sup
u∈U k

E

[ ∫ T

t
| f (s, X t,t ′;b,b,u

s ) − f (s, X t,t;b,b,u
s )|ds

+ |g(X t,t ′;b,b,u
T ) − g(X t,t;b,b,u

T )|

+
N∑
j=1

|cβ j−1,β j (τ j ∨ t ′) − cβ j−1,β j (τ j ∨ t)|
∣∣∣Ft ′

]

≤ sup
u∈U k

E

[ ∫ t ′

t
| f (s, X t,t ′;b,b

s ) − f (s, X t,t;b,b,u
s )|ds

∣∣∣Ft ′
]

+ k sup
s∈[t,t ′]

∑

b,b′∈Ī2

|cb,b′(t ′) − cb,b′(s)|

+ C(K ) sup
u∈U k

E

[ ∫ T

t ′
|X t,t ′;b,b,u

s − X t,t;b,b,u
s | + |X t,t ′;b,b,u

T − X t,t;b,b,u
T |

∣∣∣Ft ′
]

+ C sup
u∈U k

E

[
sup

r∈[tn ,T ]
1[(X t,r;b,b,u)∗T ≥K ](1 + |(X t,r;b,b,u)∗T |q)

∣∣∣Ft ′

]
, (30)
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for each K > 0, by the local Lipschitz property of f and g. Concerning the last term
Doob’s maximal inequality gives, for fixed u ∈ Uk ,

E

⎡
⎣ sup
t∈[0,T ]

E

[
sup

r∈[tn ,T ]
1[(X t,r;b,b,u)∗T ≥K ]|(X t,r;b,b,u)∗T |q

∣∣∣Ft

]2
⎤
⎦

≤ CE

[
sup

r∈[tn ,T ]
1[(X t,r;b,b,u)∗T ≥K ]|(X t,r;b,b,u)∗T |2q

]
,

Applying Hölder’s inequality to the right hand side and taking the supremum over U ,
we get

sup
u∈U

E

⎡
⎣ sup
t∈[0,T ]

E

[
sup

r∈[tn ,T ]
1[(X t,r;b,b,u)∗T ≥K ]|(X t,r;b,b,u)∗T |q

∣∣∣Ft

]2⎤
⎦

≤ sup
u∈U

(
P

[
sup

r∈[tn ,T ]
(X t,r;b,b,u)∗T ≥ K

])1/2

sup
u∈U

(
E

[
sup

r∈[tn ,T ]
|(X t,r;b,b,u)∗T |4q

])1/2

.

Now, by Chebyshev’s inequality and Proposition 7, supu∈U P[supr∈[tn ,T ](X t,r;b,b,u)∗T≥ K ] can be made arbitrarily small by choosing K large. By monotonicity, it follows
that the last term in (30) tends to zero, P-a.s. as K → ∞. We conclude that Y t,t ′;b,b,k

t ′
tends to Y t,t;b,b,k

t , P-a.s. when t ′ ↘ t by right continuity of the switching costs in
combination with Lemma 3 and it follows that Y t,·∨tn;b,b,k· has a càdlàg version.

Arguing as above we have that

Y
t,γ j∨tn;b,b,k
γ j − Y t,γ∨tn;b,b,k

γ

= (Y
t,γ j∨tn;b,b,k
γ j − Y t,γ∨tn;b,b,k

γ j
) + (Y t,γ∨tn;b,b,k

γ j
− Y t,γ∨tn;b,b,k

γ ).

Letting j → ∞ the last term tends to zeroP-a.s. by uniform integrability and quasi-left
continuity of the filtration. Concerning the first term we have (where we for notational
convenience assume that γ, γ j ∈ Ttn )

E
[|Y t,γ j ;b,b,k

γ j − Y t,γ ;b,b,k
γ j

|]

≤ sup
u∈U k

E

[ ∫ γ

γ j

| f (s, X t,γ j ;b,b,u
s ) − f (s, X t,γ ;b,b

s )|ds
]

+ k
∑

b,b′∈Ī2

sup
τ∈Tγ j

E
[|cb,b′(τ ) − cb,b′(τ ∨ γ )|]

+C(K ) sup
u∈U k

E

[ ∫ T

γ

|X t,γ j ;b,b,u
s − X t,γ ;b,b,u

s | + |X t,γ j ;b,b,u
T − X t,γ ;b,b,u

T |
]

+C sup
u∈U k+1

E

[
1[(X t;b,u)∗T ≥K ](1 + |(X t;b,u)∗T |q)

]
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where the right hand side can be made arbitrarily small by Lemma 4 and quasi-left
continuity of the switching costs. We conclude that

lim
j→∞E

[
|Y t,γ j∨tn;b,b,k

γ j − Y t,γ∨tn;b,b,k
γ |

]
= 0,

which implies that Y
t,γ j∨tn;b,b,k
γ j → Y t,γ∨tn;b,b,k

γ in probability. Now since Y t,·∨tn;b,b,k·
has left limits it follows that Y

t,γ j∨tn;b,b,k
γ j → Y t,γ∨tn;b,b,k

γ , P-a.s. and we conclude

that Y t,·∨tn;b,b,k· ∈ S2
qlc. ��

By the above results we conclude that an optimal control for the hydropower plan-
ning problem does exist (under the assumptions detailed in this section). With a few
notable exceptions (see e.g. Aslaksen et al. 1990, 1993 in the case of singular con-
trol problems and Chapter 7 in Øksendal and Sulem (2007) for examples of solvable
impulse control problems) finding explicit solutions to impulse control problems is dif-
ficult. Instead we often have to resort to numerical methods to approximate the optimal
control. A plausible direction for obtaining numerical approximations of solutions to
the hydropower operators problem would be to further develop the Monte Carlo tech-
nique originally proposed for optimal switching problems in Carmona and Ludkovski
(2008) (and later analyzed in Aïd et al. (2014)) to obtain polynomial approximations
of Y t,b. Another possibility would be to apply the Markov-Chain approximations for
stochastic control problems of delay systems developed in Kushner (2008). However,
a thorough investigation of either direction is out of the scope of the present work and
will be left as a topic of future research.
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