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Abstract
In the classical full-information best choice problem a decision maker aims to select
the best opportunity. His decision is based only on the exact values of the observed
sequence. In this paper we consider two modifications of the above problem. We add
a second player who can either propose additional information or block the observed
object and demand an extortion. Our goal is to establish an optimal reward for the
second player and the best moment to interrupt the decision process. The situation
when the number of observations tends to reach infinity has been studied.

Keywords Optimal stopping · Best choice problem · Matrix game · Markov chain ·
Threshold strategy

Mathematics Subject Classification 90C40 · 60G40

1 Introduction and literature review

The best choice problems are the most inspiring problems in modern mathematics. Its
origin is the so-called secretary problem. A comprehensive work on this issue can be
found in Ferguson (1989). Gilbert and Mosteller (1966) considered different variants
of the best choice problems for the very first time and solved by the heuristic arguments.
They categorize the rank-based problem as a no-information case (which includes the
classical secretary problem). On the other hand, we have the so-called full-information
case, where we may base our choice of the stopping time on the true values of the
object. This is a much more complex problem. In other words, we can say that the no-
information problem is a simplified, full-information problem. It is always possible to
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calculate the rank of the currently observed object by counting howmany predecessors
were better. Unfortunately, the opposite operation is not possible. In this work we
focus on the full-information case. A Markovian approach, which is widely used in
this articlewas presented byBojdecki (1978). Exact solutions for initial problemswere
presented by Samuels (1982). Many modifications of the problem have been made.
Porosiński (1987) presented amodel inwhich the randomhorizonwas introduced. The
link between the infinite problem and planar Poisson process was presented in Gnedin
(1996), and following that, the exact results for the initial problem were derived by
Gnedin and Miretskiy (2007). The full-information best choice problem where two
choices are allowed was presented in Porosinski (1992). Petruccelli (1982) allowed
the solicitation in the choice. A modification in which the decision maker can go back
only in some fixed number was considered by Tamaki (1986). Recently, Kuchta (2017)
derived an optimal strategy for the iterated full-information best choice problem.

The game version of the best choice problem was treated by many authors, e.g.
(Porosiński and Szajowski 1996; Sakaguchi and Szajowski 1997; Sakaguchi 1984).
The game with a hint was presented in Dotsenko and Marynych (2014). The authors
considered the problem for the no-information case. In their version, the decision
maker can observe only the ranks of objects.

2 Preliminaries: full-information best choice problem

Consider a probability space (Ω,F , P). By E[·] we denote the usual expectation
with respect to the probability measure P . Fix n ∈ N and consider an i.i.d. sequence
X1, . . . , Xn from continuous distribution F(x). Without loss of generality we can
assume that it is a uniform distribution U(0, 1), i.e. F(x) = x, x ∈ [0, 1]. Define a
filtration

Fk = σ (X1, . . . , Xk) , k = 1, . . . , n.

By T denote a set of all stopping moments with respect to the family (Fk)k=1,...,n .
The aim is to find the stopping moment τ ∗ ∈ T such that

E
[
IXτ∗=max{X1,...,Xn}

] = sup
τ∈T

E
[
IXτ =max{X1,...,Xn}

]
, (1)

where IA(ω) denotes an indicator of the set A

IA(ω) =
{
1, ω ∈ A

0, ω /∈ A.
(2)

The moments of consecutive local maximum (cf. Bojdecki 1978) are given by

τ1 ≡ 1, τ j+1 = inf
{
k : τ j ≤ k ≤ n, Xk = max{X1, . . . , Xk}

}
. (3)
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Full-information best choice game with hint 155

By T0 let us denote the set of the moments defined in (3). Note that T0 ⊂ T . Consider
the following sequence

ξ j = (τ j , Xτ j ) {τ j < ∞} (4)

τ j ∈ T0 for all j . In the case when {τ j = ∞} we introduce a special absorbing
state δ. The sequence in (4) is a homogeneous Markov chain on the state space E =
(1, . . . , n) × (0, 1) ∪ δ with sigma algebra E . One step transition probabilities (i.e.
P(ξ j+1 = b|ξ j = a)) for the above chain are defined as

p(a, b) =

⎧
⎪⎨

⎪⎩

xm−k−1
∫

B dy a = (k, x), b = (m, B) ∈ (k + 1, . . . , n) × (x, 1],
xn−k, a = (k, x), b = δ, k ≤ n

0 otherwise.
(5)

It is sufficient to find the optimal stopping time in the set T0. Knowing that kth object
is relatively the best and its value is Xk = x in case of selecting it we obtain a gain
function given by

g(a) =
{

xn−k, a = (k, x) k = 1, . . . , n; x ∈ (0, 1)

0, a = δ.
(6)

(6) is provided by property of aMarkov chain (4). Let T be an operator of a conditional
expectation and V (·) be the value function of the problem (cf. Shiryayev 1978). From
general theory we know that V satisfies a Bellman equation

V (a) = max {g(a), T V (a)} .

Let Ea[g(ξ1)] be the expected payoff for one step starting from the state a.

Ea[g(ξ1)] = T g(a) =
n−k∑

j=1

x j−1
∫ 1

x
yn−(k+ j)dy = xn−k

n−k∑

m=1

x−m − 1

m
. (7)

Consider the set of states where the inequality g(a) ≥ T g(a) holds. Let

Dk = {x : a = (k, x), g(a) ≥ T g(a)} =
{

x : 1 ≥
n−k∑

m=1

x−m − 1

m

}

. (8)

Since the problem is monotone the One-Step-Look-Ahead rule is optimal (see
Bojdecki 1978 ) and the optimal region is

D = {a = (k, x) : x ≥ dn−k, 1 ≤ k ≤ n} (9)
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where dn−k ∈ (0, 1) is the solution of equality

n−k∑

m=1

x−m − 1

m
= 1. (10)

The optimal stopping rule is given by

τ ∗ = inf {k : 1 ≤ k ≤ n, Xk = max{X1, . . . , Xk}, Xk ≥ dn−k} . (11)

The value of the problem (cf. Sakaguchi 1973) is

V (0, 0) = 1

n

[

1 +
n−1∑

k=1

k∑

l=1

dn−l
k

n − l

]

. (12)

Let i = n − k. Then, di is an increasing sequence: d0 ≤ d1 ≤ · · · ≤ dn−1. We show
some elementary properties of these thresholds. Recall Bernoulli’s inequality.

Theorem 1 For a ≥ −1 and b ≥ 1

(1 + a)b ≥ 1 + ab.

The proof can be found in Bullen (2013) and here it is omitted.

Lemma 1 For any i

di ≥ 1 − 1

i + 1

Proof Since the sum in (10) is monotonically decreasing as a function of x and it is
greater than 1 for all x < di it is sufficient to show that the inequality

i∑

m=1

(
1 + 1

i

)m − 1

m
≥ 1

holds for every i ≥ 1.
By Theorem 1 we have

i∑

m=1

(
1 + 1

i

)m − 1

m
≥

i∑

m=1

1 + m
i − 1

m
= 1

which proves our assertion. 
�
For an upper limit of di we refer to Gilbert and Mosteller (1966). Then, we get

i

i + 1
≤ di ≤ i

i + z
(13)
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Full-information best choice game with hint 157

where z is the unique solution of the equation

∫ z

0

et − 1

t
dt = 1

in the interval (0, 1). z ≈ 0.804354. Let us check some properties of the left hand side
of the function from the Eq. (10). Let fi (x) denote a sequence of functions described
as

fi (x) =
i∑

m=1

x−m − 1

m
, i = 1, 2, . . . . (14)

Let us write the formula in a recursive form

f1(x) = 1 − x

x

fi+1(x) = fi (x) + x−i−1 − 1

i + 1
, i = 2, 3, . . . .

Now, it is easy to verify that

fi (di+1) = i + 2 − d−i−1
i+1

i + 1
,

fi+1(di ) = d−i−1
i + i

i + 1
.

3 The best choice problemwith hint

3.1 Themodel

Suppose that except the decisionmaker (further denoted asDM) in the full-information
best choice problem there is another player. However, he does not make a decision
about stopping and choosing the best object since he has extra information about the
best object, i.e. he knows exactly both position and the value of the current element.
We will call him a prompter or a prophet (further denoted as PR). His aim is to sell this
information in a proper moment and get for it as much as possible. PR must establish
the price α for the hint before the beginning of the game and he can sell his knowledge
only once during the game. The decision maker can accept this proposition, pay a
fixed price and get information whether the current object is the best one or not. He
can also reject the purchase option and then stop or continue observations.

The above game can be presented as a graph, i.e. as a game in an extensive form in
eachmoment k and the actual value of the observed object x , i.e. in the state a = (k, x).
The payoff function for PR is written at the bottom of the graph.
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PR

NOT SELLSELL

DM

NOT BUYBUY

DM DM DM

FWDSTOP FWDSTOP FWD STOP

g(k, x) T v(k, x)1 − α T g(k, x) − α g(k, x) T g(k, x)

The goal is to establish the price of the hint α = α(k, x). Consider a Markov chain
(ξk)

n
k=1 observed by DM as in (4) in the state space (E, E), transition probabilities (5)

and Fk = σ(ξ1, . . . , ξk). Denote by ρ the strategy of PR, i.e. stopping moments with
respect to the family Fk . Let τ, τ̂ denote the stopping moments of DM and let δk be
a random variable which has value 1, if the proposition of the hint is accepted and 0
otherwise. If the offer is accepted, the history of observations will be enriched by the
random variable Hk . If the event {ω : ρ(ω) = k} occurs, the strategies of DM will
change into two dimensional (δρ, τρ), where

τρ = τ̂ δρ + (1 − δρ)τ. (15)

τρ are stopping moments with respect to F̂k = σ(Fk, δ1 · H1, . . . , δk
∏k−1

j=1(1 − δ j ) ·
Hk). Let us introduce the concept of the hint. In fact, the hint is an indicator function
of the absolutely maximal element in the observed sequence. We can denote it as

Hk := I{Xk=max{X1,...,Xn}} =
{
1, Xk = max{X1, . . . , Xn}
0, otherwise

k = 1, . . . , n. (16)

Suppose that we are in the state (k, x), i.e. in amoment k, we observe a locallymaximal
object Xk whose value is x, x ∈ (0, 1). There are two possibilities: x < dn−k and
x ≥ dn−k .

Consider the case Xk = x, x < dn−k . Then, the optimal rule calls for continuing
the observations, so the reward function (win probability) is

T V (k, x) =
n∑

j=k+1

x j−k−1

(∫ dn− j ∨x

x
V ( j, y)dy +

∫ 1

dn− j ∨x
g( j, y)dy

)

(17)

where a ∨ b = max{a, b}. In case of using the hint, the decision maker can get the
information “this is the best object among all” with probability xn−k or the opposite
informationwith probability 1−xn−k . In the first case the decisionmaker will stop and
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Full-information best choice game with hint 159

choose the object. Otherwise, he will continue the observations in an optimal manner.
Thus, the win probability is

E(k,x) [max{Hk, T V (k, Xk)}] = xn−k +
(
1 − xn−k

)
T V (k, x) (18)

We define the value of the hint v1 as a difference between a reward with the hint and
a reward without the hint, i.e the difference between (18) and (17)

v1(k, x) = xn−k (1 − T v(k, x)) (19)

In case of Xk = x, x ≥ dn−k the optimal rule calls for a stop immediately. The
win probability is

g(k, x) = xn−k . (20)

If the decision maker decides to use the hint, the payoff is

E(k,x) [max{Hk, T g(k, Xk)}] = xn−k +
(
1 − xn−k

) n−k∑

j=1

x j−1
∫ 1

x
yn−(k+ j)dy(21)

which gives the value of the hint: the difference between (21) and (20):

v2(k, x) = xn−k
(
1 − xn−k

) n−k∑

m=1

x−m − 1

m
. (22)

Fact 1 Let x ≤ dn−k for k ∈ {1, . . . , n}. The function v1(k, x) is an increasing function
of x.

Proof Since T v(k, x) is decreasing as x goes to the threshold dn−k the whole function
as a multiplication of increasing functions is increasing. 
�
For the function v2(i, x) we have

Fact 2 Let x ≥ dn−k for k ∈ {1, . . . , n}. Then, the function v2(k, x) is a decreasing
function of x.

Proof Let us calculate the derivative of function v2 with respect to x and let i = n −k.
We obtain

d

dx
v2(n − i, x) = i xi−1

(
1 − 2xi

) i∑

m=1

x−m − 1

m
− 1 − 2xi + x2i

x(1 − x)
.

The derivative is negative if

xi (i − i x)

(

1 −
(

xi

1 − xi

)2
)

i∑

m=1

x−m − 1

m
≤ 1 (23)
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for all x from the domain of the function v2(i, x). From the description of the problem
we know that

i∑

m=1

x−m − 1

m
≤ 1

and xi ≤ 1 and

(

1 −
(

xi

1 − xi

)2
)

≤ 1.

The inequality i(1 − x) ≤ 1 holds for all x ≥ 1 − 1
i ≥ di (see Lemma 1), so we

conclude that the derivative is negative and the function v2(k, x) is the decreasing
function of x . 
�

For the fixed index k the maximal value of v1 is

sup
x∈[0,dn−k ]

v1(k, x) = v1 (k, dn−k) = dn−k
n−k

(

1 − dn−k
n−k

n−k∑

m=1

d−m
n−k − 1

m

)

and also

sup
x∈[0,dn−k ]

v2(k, x) = v2 (k, dn−k) = dn−k
n−k

(
1 − dn−k

n−k

) n−k∑

m=1

d−m
n−k − 1

m
.

and since the sum in the above formulas is equal to 1 (see 10 ) we get that

an−k := v1 (k, dn−k) = v2 (k, dn−k) = dn−k
n−k

(
1 − dn−k

n−k

)
. (24)

Lemma 2 Let i = n − k. The sequence ai is decreasing in i and

lim
i→∞ ai = e−z (1 − e−z) ≈ 0.2472308,

where z is given by (13).

Proof A sequence ci = di
i is decreasing and converges to e−z . (cf. Sakaguchi 1973).

It is also bounded since e−z ≤ ci ≤ 0.5. Consider a function f (x) = x(1 − x). For
x < 0.5 it is increasing. Therefore, we get that a product di

i (1 − di
i ) is decreasing.

The product is also bounded and converges to the product of the limits of sequences
ci and 1 − ci .

lim
i→∞ di

i (1 − di
i ) = e−z(1 − e−z) ≈ 0.2472308.


�
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Fig. 1 ai for first 20 observations

Note that this value is greater than the value for the no-information case (where it is
equal to e−1(1 − e−1) ≈ 0.232544). Figure 1 shows first 20 values of ai .

Let us recall the principle of optimality. An optimal policy has the property that
whatever the initial state and the initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision
(cf. Bellman 1957). To find the exact form of the value function v1(k, x) we can
consider the remaining observations as the best choice problem for a random horizon.
To be more specific, let us consider the following

Lemma 3 Suppose in the full information best choice problem with finite horizon n
the current state of the process is (k, x) for some k ∈ {1, 2, . . . , n} and x ∈ (0, 1).
Suppose that the process has not been stopped yet. Then, the optimal strategy is to
stop at the first (if any) state (k +m, u) such that 0 ≤ m ≤ n − k and u ≥ un−k−m(x),
where un−k−m(x) is the solution of the equation

n−k∑

j=m

(
u − x

1 − x

) j−m (1 − x

x

) j
⎡

⎣1 −
n−k− j∑

i=1

(
n − k

i + j

)
(1 − x)i − (u − x)i

i xi

⎤

⎦ = 0.

(25)
The win probability of using the optimal strategy is

P(win) =
n−k∑

m=1

(
n − k

m

)
(1 − x)m xn−k−m

m∑

j=1

Pm( j), (26)

where

P0(0) = xn−k, (27a)

Pm(0) = 0,

Pm(1) = 1 − um
n−k−1(x)

m
,
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Pm( j + 1) =
j∑

i=1

u j
n−k−i (x)

j(m − j)
−

j∑

i=1

um
n−k−i (x)

m(m − j)
− um

n−k− j+1(x)

m

for 1 ≤ j ≤ m − 1. (27b)

Proof Since we observe the current object whose value is x and it is a relative max-
imum, we can truncate the further chain only in those observations that are greater
than x . The probability that observations in moments k + 1, k + 2, . . . , n − k will
be bigger than x is 1 − x . Therefore, from now, we consider a full information best
choice problem with random horizon with observations from the uniform distribution
on the interval (x, 1). The horizon M is binomially distributed, i.e.

P(M = m) =
(

n − k

m

)
(1 − x)m xn−k−m, m = 1, . . . , n − k.

Consider the following sequence

d(m, u) =
(

n − k

m

)
(1 − x)m xn−k−m

−
n−k∑

j=m+1

(
n − k

j

)
(1 − x) j xn−k− j

∫ 1

u−x
1−x

y j−m−1dy.

From Porosiński (1987) we know that if the above sequence changes the sign K -
times, then, the stopping region has no more than K stopping islands. However here
{d(m, u)}n−k

m=0 changes the sign at most one time. When k is close to n its value
decreases to 0. So, the truncated problem is monotone and the optimal strategy is a
threshold strategy. The thresholds un−k−m(x) can be calculated directly from

n−k∑

j=m

(
u − x

1 − x

) j−m (1 − x

x

) j
⎡

⎣1 −
n−k− j∑

i=1

(
n − k

i + j

)
(1 − x)i − (u − x)i

i xi

⎤

⎦ = 0.

(28)
(25). 
�
Remark 1 In the classical version of the best choice problem with random horizon
provided by Porosiński, the payoff function forces the decision maker to make at least
one step. It is not possible to stop at the very beginning or, in the language of Markov
chains, at stage (0,0). However, here in the truncated problem, such a possibility exists
because the payoff for the “initial” stage can be bigger than the expected one. The
“initial” value x of the current object must be bigger than a threshold value. This
threshold is un−k(x). It can be calculated from (25) for m = 0

n−k∑

j=1

(
n − k

j

)
(1 − x) j − (u − x) j

j x j
= 1
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Since in this special state u = x we see that the un−k(x) is the unique solution of

n−k∑

j=1

(
n − k

j

)
(1 − x) j

j x j
= 1

The same situation is in the case of (10) (this equivalence was shown in Samuels
1982). So, un−k(x) = dn−k .

The prompter has two strategies to choose from: to sell the information or not to
sell. Then, the DM has to choose either to buy the hint or not. However, if the price
of the hint is less than the maximum value of the hint, the decision maker without a
doubt will buy the hint. So, the PR has to decide before the game what the price for
the hint will be. He has the following possibilities:

1. Set the constant price α during the whole game
2. Set the vector of the prices depending on the moment of the game: α =

(α1, . . . , αn)

3. Set the price function depending on the value of the current observation: α = α(x)

4. Set the vector of the prices depending on the the moment of the game and the
current value of the observed object: α = (α1(x), . . . , αn(x))

3.2 ˛ = const

Consider the following numbers

xk(α) = inf {x ∈ (0, dn−k) : v1(k, x) ≥ α} , (29a)

xk(α) = sup {x ∈ (dn−k, 1) : v2(k, x) ≥ α} . (29b)

There are three possibilities of the value of the price:

– α ≥ 0.25: then, the hint is not worth buying. The price is higher than its value.
– e−z(1− e−z) < α < 0.25: then, the hint is worth buying for k = k∗, k∗ + 1, k∗ +
2, . . . , n, where

k∗ = min {1 ≤ k ≤ n : an−k ≥ α} . (30)

– α < e−z(1 − e−z): then, the hint is worth buying for k = 1, 2, . . . , n no matter
how big is n. Using the previous symbol we can say that in this case k∗ = 1.

Suppose that α < e−z(1 − e−z). The hint will be sold if the current state of the
process is in the set

S(α) = {(k, x) : 1 ≤ k ≤ n, xk(α) ≤ x ≤ xk(α)
}
. (31)

Suppose that in the moment k we observe a relatively maximal element whose value
is x and it is worth buying a hint. Therefore, the probability of that event is given by

pk(α) = (xk(α) − xk(α))

k−1∏

j=1

(
x j+1(α)

)
(1 − ck(α)) , k = 1, . . . , n
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where

ck(α) =
k∑

l=1

l−1∑

i=1

⎛

⎝
i∏

j=1

x j (α)

⎞

⎠

−1 [
xk(α)

(
(xl−1 ∧ xk)

i − (xl ∧ xk)
i
)

i

− (xl−1 ∧ xk)
i+1 − (xl ∧ xk)

i+1

i + 1

]
,

where a ∧ b = min{a, b}. The average payoff for the hint is equal to

g(α) = α

n∑

k=1

pk(α). (32)

The optimal price is such a minimal number α that maximizes the Eq. (32):

α∗ = inf

{
α > 0 : g(α) = sup

α
g(α)

}
(33)

4 The best choice problemwith extortion

4.1 Themodel

In this case, the prompter who knows the exact value of the hint does not want to sell
the knowledge as it was in Sect. 3. During the whole game he can block the current
element once and demand from the second player to unlock the hidden element. The
decisionmaker has two strategies: to pay an amount of money and stop at the unlocked
element or do not pay and continue observations. The graph belowpresents the possible
strategies of both players.

PR

NOT BLOCKBLOCK

DM

NOT UNLOCK & FWDUNLOCK & STOP

DM

STOP FWD

(T α, T g(k, x))(0, g(k, x))(0, T g(k, x))(α, g(k, x) − α)

Suppose that we are in the state (k, x), i.e. in a moment k we observe an object Xk ,
whose value is x, x ∈ (0, 1). There are two possibilities: x < dn−k and x ≥ dn−k .

Since the DM will not choose the object if x < dn−k let us consider the case when
x ≥ dn−k . The PR can hide the object and demand a fixed price α. Therefore, his
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Full-information best choice game with hint 165

payoff is α. The DM has two possibilities. The first is to pay the tribute and stop at the
object. His payoff is in this case

ϕ1,α(k, x) = g(k, x) − α = xn−k − α. (34)

Otherwise, he will continue the observations and earn

ϕ2(k, x) = T g(k, x) =
n−k∑

j=1

x j−1
∫ 1

x
yn−k− j dy. (35)

The DM will pay the tribute if inequality ϕ1,α(k, x) ≥ ϕ2(k, x) holds. This is equiva-
lent to

α ≤ xn−k

(

1 −
n−k∑

m=1

x−m − 1

m

)

. (36)

Note that the function on the right-hand side of the inequality is increasing as dn−k ≤
x ≤ 1. The set of the states when it is worth to pay the money is defined as

T (α) = {(k, x) : 0 ≤ x ≤ 1, k = 1, . . . , n; x ≥ tn−k(α)}. (37)

where tn−k(α), α ∈ [0, 1] is the solution of the equation

α = xn−k

(

1 −
n−k∑

m=1

x−m − 1

m

)

in [0, 1]. T (α) ⊆ D, where D is defined in (9). The equality holds for α = 0. It
implies that tn−k(α) ≥ dn−k .

Let us assume that the DM does not know that the PR exists until he starts acting.
He will pay the money if the observed chain of maximal elements falls into the set
T (α) but does not fall into the stopping set D earlier. The probability of that event is

p(α) =
n∑

k=1

(1 − tk(α))

k−1∏

l=1

(dn−l) (1 − Ck(α)) (38)

where

Ck(α) =
k∑

l=1

l−1∑

i=1

⎛

⎝
i∏

j=1

x j (α)

⎞

⎠

−1 [
dn−i

(
di

n−l+1 − (dn−l+1 ∧ tn−k(α))i )

i

−di+1
n−l+1 − (dn−l+1 ∧ tn−k)

i+1

i + 1

]
.

The PR’s expected payoff is
g(α) = α p(α). (39)
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Theorem 2 In the full-information best choice problem with a tribute the optimal
strategy ρ∗ for the prompter exists and

ρ∗ = inf{0 < k ≤ n : Xk = max{X1, . . . , Xk}, Xk ≥ tn−k(α
∗)} (40)

where

α∗ = inf{α > 0 : g(α) = sup
a

g(a)}.

4.2 The limiting values

Let us analyze the properties of the payoff function for the PR as the number of
observations tends to infinity. Suppose that i → ∞ andwrite x = 1− t(i)

i , t(i) ∈ [0, i).
We get

lim
i→∞ ϕ1,α(i, x) = ϕ1,α(t) = e−t − α (41)

lim
i→∞ ϕ2,α(i, x) = ϕ2,α(t) = e−t

∫ t

0

eu − 1

u
du. (42)

Then, the price of the hint should satisfy the inequality

α ≤ e−t
(
1 −

∫ t

0

eu − 1

u
du

)
, 0 ≤ t ≤ z.

The threshold limit is
lim

i→∞ ti (α) = tα, (43)

where tα is the unique solution of the equality

α = e−tα

(
1 −

∫ tα

0

eu − 1

u
du

)
, 0 ≤ tα ≤ z. (44)

The graph bellow presents the values of tα as a function of parameter α (Fig. 2).

5 Conclusion

In the world around us, despite the widespread access to information, there are still
cases where certain information is obscured and not accessible. Access to them can
be extremely valuable. This is not always possible, but there may be a kind of special
occasion to buy. In such cases, the profitability of the purchase and the decision should
be seriously considered. As a result of these considerations, the above models were
created. The aim of the work was to construct a mathematical model describing the
mechanism of obtaining additional information in various market situations. Usually,
such information is secret, and the possibility of obtaining it is difficult. Hence, in
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Fig. 2 tα as a function for different values of α

the model, there is one prompter that has exclusive information. The model can be
expanded. One of the possibilities is to introduce more than one decision maker to
the game. Then, the prompter decides which player will offer the most. Another
possibility is the appearance of more people wanting to sell information. In any case,
the knowledge about each other must be considered. In this model, we have found
the formula for the optimal price for the hint. It has been shown that the value of the
hint has its limits. In the second model, the prompter behaves more like a ripper and
blocks the ability to stop. Also here, you can extend the game with additional players.
In the game above we have found an equilibrium price and the optimal strategy for the
prompter. The limit for the tribute as the number of the observations goes to infinity
has been derived.
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