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Abstract
We study a discrete time queueing system where deterministic arrivals have i.i.d.
exponential delays ξi . We describe the model as a bivariate Markov chain, prove its
ergodicity and study the joint equilibrium distribution. We write a functional equation
for the bivariate generating function, finding the solution on a subset of its domain.
This solution allows us to prove that the equilibrium distribution of the chain decays
super-exponentially fast in the quarter plane.We exploit the latter result and discuss the
numerical computation of the solution through a simple yet effective approximation
scheme in a wide region of the parameters. Finally, we compare the features of this
queueing model with the standard M/D/1 system, showing that the congestion turns
out to be very different when the traffic intensity is close to 1.
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1 Introduction

In this paper we consider a single-server queue with deterministic service time, which
is assumed of unitary length for the sake of simplicity. The i th customer arrives to the
system at time

ti = i + ξi , i ∈ N , (1)

where {ξi } are i.i.d. exponential random variables with parameter β.
In the limit β → 0 the point process (1) weakly converges to a Poisson process of

parameter 1, whereas for fixedβ the arrivals are negatively autocorrelated, seeCollings
(1976), Guadagni et al. (2011) and references therein.

We study the system described above for fixed β and we assume that arriving cus-
tomers might balk with independent probability 1− ρ. In other words, each customer
can be deleted independently with probability 1−ρ before joining the queue. Besides
being a mathematical expedient that ensures the existence of a stationary state,1 balk-
ing is a way to model empty intervals in a constant stream of customers. Again, the
point process (1) with balking weakly converges to a Poisson process, but with param-
eter ρ (Guadagni et al. 2011). In what follows, we refer to the balked version of (1)
as Exponentially Delayed Arrivals (EDA).

Service can be delivered by the unique server only at discrete times. The length of
the queue at time t is nt ; it represents the number of customers waiting to be served,
including the customer that will be served precisely at time t , if any. Due to the balking,
it is immediate to see that the traffic intensity of the system is ρ. Using Kendall’s
notation, we hereafter refer to the queue model described so far as EDA/D/1.

The EDA/D/1 model is motivated by the description of public and private
transportation systems, including buses, trains, aircraft (Ball et al. 2001; Guadagni
et al. 2011; Gwiggner and Nagaoka 2010; Iovanella et al. 2011) and vessels (Govier
and Lewis 1963; Jagerman and Altiok 2003), appointment scheduling in outpatient
services ( a; Cayirli and Veral 2003; Mercer 1960, 1973) crane handling in dock oper-
ations (Daganzo 1990; Edmond 1975), and in general any system where scheduled
arrivals are intrinsically subject to random variations. Preliminary results show that
the model described above fits very well with actual data of inbound air traffic over a
large hub (Caccavale et al. 2014; Lancia and Lulli 2017).

The appearance of the stochastic point process (1) can be traced back to Winsten’s
seminal paper (Winsten 1959). Winsten named such a queueing model late process
and obtained results for the special case ξi ∈ [0, 2] and service time exponentially
distributed. At the end of Winsten’s paper there is a discussion by Lindley, Wishart,
Foster, and Takács, stating thatWinsten’s work can be considered as the first treatment
of a queueing model with correlated arrivals (Winsten 1959, pp. 22–28).

The same problem was investigated also by Kendall (1964, page 11). Kendall
remarked the great importance of systems with arrivals like (1): “[...] perhaps too
much attention has been paid to rather uninteresting variations on the fundamental

1 See Lemma 1 below.
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Poisson stream. As soon as one considers variations dictated by the exigencies of the
real world, rather than by the pursuit of mathematical elegance, severe difficulties are
encountered; this is particularly well illustrated by the notoriously difficult problem
of late arrivals.” Kendall also provided the following elegant interpretation: if the
random variables ξi are non-negative then the process defined by (1) is the output of
the stationary D/G/∞ queueing system (Kendall 1964). In particular, if the random
variables ξi are exponentially distributed then EDA/D/1 can be viewed as a 2-stage
tandem queueing network

D/M/∞ → ·/D/1 .

However, this is not the approach followed in this work.
Some years later, under the hypothesis that ξi > 0, Nelsen and Williams (1970)

exactly characterised the distribution of the inter-arrival time intervals and their corre-
lations. They also gave an explicit expression of these quantities in the particular case
of ξi ’s exponentially distributed.

After the ’70s only approximations of the arrival process (1) (Bloomfield and Cox
1972; Sabria and Daganzo 1989) or numerical studies of its output (Almaz and Altiok
2012; Ball et al. 2001; Nikoleris and Hansen 2012) seem to have appeared in the
literature. In particular, Guadagni et al. (2011) presented a self-contained study of
an arrival process like (1), assuming for ξi a compact-support distribution. They also
proposed an approximation scheme that keeps the correlation of the arrivals and is
able to compute in a quite accurate way the quantitative features of the queue. To the
best of our knowledge, a queueing system with arrivals described by (1) still remains
an open problem and the best results obtained so far are due to Winsten (1959).

EDA/D/1 is an example of a queueing system with correlated arrivals, a subject
broadly studied in past years. There are many ways to impose a correlation to the
arrival process. For instance, the parameters of the process may depend on their past
realisation (Drezner 1999), or on some on/off sources (Wittevrongel and Bruneel
1999). Another relevant example of a queue model with correlated arrivals is the so-
calledMarkovModulatedQueueingSystem. InMarkovModulatedQueueingSystems
the parameters are driven by an independent external Markovian process (Adan and
Kulkarni 2003; Asmussen and Kella 2000; Combé and Boxma 1998; Lucantoni 1991;
Pacheco et al. 2009). Ourmodel shareswithMarkovModulatedQueueing Systems the
property that one can define an external and independentMarkovian process that drives
the arrival rates. However, we see in Sect. 2 that the output of this external drive has
also a deterministic effect on the queue length.More precisely, EDA can be interpreted
as an independent drawing from an external pool of customers late at time t , see (3)
below. Due to the memoryless property of the exponential delays, each customer late
at time t will be still in the pool at time t +1 independently with probability q ≡ e−β .
This leads to binomial transitions in the number of late customers.

In Sect. 2 we show that EDA/D/1 can be described as a bivariate Markov chain
representing the queue length and the number of late customers. We show that the
distribution of the late customers is described by a INAR(1) process (Al-Osh and
Alzaid 1987). Then we prove that the bivariate chain is ergodic and write the balance
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equations of the stationary distribution, finding a functional equation for the bivariate
generating function.

There exists an extensive literature about two-dimensional Markov models. Many
methods for attacking the problemare available under two assumptions, namely, spatial
homogeneity and finiteness of at least one marginal chain (Bini et al. 2005; Gail et al.
2000; Grassmann 2002; Latouche and Ramaswami 1999; Mitrani and Chakka 1995;
Neuts 1989, 1995). Unfortunately, theMarkov chain defined in Sect. 2 does not satisfy
any of the mentioned requirements.

When both components of the Markov chain are infinite but space homogeneity
is still ensured, the problem is typically attacked by reduction to a Riemann-Hilbert
Boundary Value Problem. These may be solved, for example, by the uniformisation
technique (Kingman 1961), conformal mappings (Cohen 1988; Cohen and Boxma
1983; Fayolle and Iasnogorodski 1979), the compensation method (Adan et al. 1993),
or the Power Series Approximation (Blanc 1987a, b; Koole 1997; Hooghiemstra et al.
1988). The aforesaid binomial transitions are responsible for the lack of spatial homo-
geneity and are often encountered in Mathematical Biology (Artalejo et al. 2007;
Brockwell et al. 1982; Economou 2004).

To the best of our knowledge, the functional equation (14) below has never pre-
viously appeared in the literature. Yet it is possible to mark some analogies with the
functional equation studied by Economou and Kapodistria (2009), Economou et al.
(2010),or Kapodistria (2011), the most important being that in both equations the
right hand side exhibits the generating function computed in a convex combination
in the parameter q. Adan et al. (2009), Altman and Yechiali (2006), Neuts (1994),
and Yechiali (2007) give other examples of chains with binomial transitions.

In Sect. 3 we list some known results on INAR(1) process in order to describe the
properties of the marginal distribution of the number of late customers and we write
its exact analytical expression, which reveals the rich combinatorial structure of the
problem. This intermediate result allows us to show that the stationary distribution
of the EDA/D/1 queue has a super-exponential decay. Finally, in Sect. 4 we show
that such a super-exponential behaviour enables a simple, yet very effective, numerical
approximation scheme of the system balance equations. For a wide range of the system
parameters, including typical values for real traffic applications of the model, we give
a very good a priori estimate of the total-variation distance between the true and the
approximate solution. Moreover, we compare the queue of EDA/D/1 with that of the
standard M/D/1 system, i.e. with Poissonian arrivals. We show that the two queueing
distributions may be very different, especially for heavy traffic load.

2 Stationary distribution: generating function and balance equations

Let us consider the process nt , which describes the length of the queue at time t . This
process is governed by the stochastic recursion

nt+1 = nt + m(t,t+1] − (1 − δnt ,0) , (2)
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wherem(t,t+1] is the number of arrivals in the interval (t, t+1] according to the arrival
process (1), and δi, j is Kronecker’s delta. The term 1 − δnt ,0 represents the action of
the server in decreasing the queue length by one unit if this is non-empty at time t .
Since the service time is deterministic, we focus on the so-called embedded process
by observing the system at t ∈ N, i.e. at departure instants.

The quantity mt ≡ m(t,t+1] depends in general on the whole previous history of
the system. Indeed, if for some large value of T , ms = 0 for any s ∈ {t − T , t − T +
1, ..., t − 1} then mt is large with great probability. Conversely, if in the recent past
the values of ms have been large then mt is expected to be small. This suggests that
the arrival process is negatively autocorrelated, as proven by Guadagni et al. (2011).
Hence, the recursion (2) does not depend only on the present value of nt , and the
memory of the process is infinite since T can be arbitrarily large.

Let now lt denote the number of customers that are late at time t , i.e.

lt ≡ ∣∣{0 ≤ i ≤ t − 1 such that ξi > t − i}∣∣ , (3)

and let p ≡ ∫ 1
0 fξ (t)dt = ∫ 1

0 βe−βt dt = 1 − e−β and q ≡ e−β . According to the
memoryless property of the exponential delays {ξi }, independently on its scheduled
arrival time, each customer late at time t − 1 will continue to be late at time t with
independent probabilty q, and it will arrive in queue with probabilty p. The process lt
is known in literature as INAR(1), also known as Galton–Watson branching process
with Bernoulli offspring with parameter q and Bernoulli immigration of parameter
qρ. This is equivalently defined as

lt =
lt−1∑

i=1

ζt,i + ηt ,

where ζt,i and ηt are independent Bernoulli variables (of parameters qρ and q, respec-
tively). The variables ζ are interpreted in terms of random offsprings, while the
variables η represent random immigrations.

In our case, at time (t − 1)− we have lt−1 late customers and each of them can
independently arrive in queue in the time interval [t−1, t)with probability p = 1−q.
We interpret the fact that the customer arrives in queue in terms of having no offspring,
while if the customer continues to be late it has an offspring. The immigration variable
represents the new late customer, which is balked with probability 1 − ρ and hence
continues to be late at time t with probability ρq.

We can explicitly write the probability distribution of the quantity mt conditioned
to the value lt : if the customer scheduled in the interval (t, t + 1] has balked, then

P (mt = j | lt = l) =
(
l

j

)

p jql− j ≡ b j,l , (4)

otherwise

P (mt = j | lt = l) =
(
l + 1

j

)

p jql+1− j = b j,l+1 .
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Fig. 1 Transitions of the EDA/D/1 queueing system in the quarter plane. They happen along the lines of
Cartesian equation x + y = nt + lt and x + y = nt + lt − 1 if nt �= 0, and along the lines of Cartesian
equation x + y = nt + lt and x + y = nt + lt + 1 if nt = 0. Green transitions happen with probability ρ

(no balking), red transitions happen with probability 1 − ρ (balking). (Color figure online)

All in all,
P (mt = j | lt = l) = b j,l (1 − ρ) + b j,l+1 ρ . (5)

We describe the EDA/D/1 queue by the embedded process (nt , lt ), t ∈ N, a
discrete-time Markov chain with the following transition probabilities:

For n > 0,

P ((n, l), (n + a − 1, l − a + 1)) = ρ ba,l+1 , 0 ≤ a ≤ l + 1 ,

P ((n, l), (n + a − 1, l − a)) = (1 − ρ) ba,l , 0 ≤ a ≤ l ; (6)

For n = 0,

P ((0, l), (a, l − a + 1)) = ρ ba,l+1 , 0 ≤ a ≤ l + 1 ,

P ((0, l), (a, l − a)) = (1 − ρ) ba,l , 0 ≤ a ≤ l . (7)

Figure 1 displays the transitions of the embedded chain (nt , lt ) in the quarter plane.

Remark 1 The idea of describing the system as a bivariate Markov chain has been
already used by Guadagni et al. (2011). However, they find more convenient to work
with the number of customers that have already arrived at time t rather than the number
of customers late at time t . This is a direct consequence of the assumption that delays
have compact support.

From the theory of INAR(1) processes, lt is an ergodic Markov chain for q < 1.
The existence of the stationary state of the embedded chain (nt , lt ) is guaranteed for
ρ, q < 1 by the following

Lemma 1 The bivariate chain (nt , lt ) is ergodic if and only if q < 1 and ρ < 1.
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Proof If q < 1 and ρ < 1, the bivariate chain (nt , lt ) is irreducible, see Fig. 1. Let us
consider the process αt = nt + lt , which represent the diagonal in the quarter plane
where the point (nt , lt ) lies on, see Fig. 1. The bivariate chain has the property that
|αt+1 − αt | ≤ 1. Equations (6)–(7) yield

P(αt+1 = αt + 1 | nt �= 0) = 0 , (8)

P(αt+1 = αt − 1 | nt �= 0) = (1 − ρ) , (9)

P(αt+1 = αt + 1 | nt = 0) = ρ , (10)

P(αt+1 = αt − 1 | nt = 0) = 0 . (11)

In order to prove the positive recurrence of (nt , lt ), we use Foster’s criterion (Robert
2003, Cor. 8.7) setting f (nt , lt ) ≡ Mαt + lt + 1 with M = 2/(1−ρ) as the Lyapunov
function. Thus, we need to show that there exist suitable positive constants K , γ such
that

1. E [ f (n1, l1) − f (n0, l0) | n0 = N , l0 = L] ≤ −γ for f (N , L) > K ;
2. E [ f (n1, l1) | n0 = N , l0 = L] < ∞ for f (N , L) ≤ K ;
3. the set {n, l ≥ 0 : f (n, l) ≤ K } is finite.
Indeed

E [ f (n1, l1) − f (n0, l0) | n0 = N , l0 = L]

= ME [α1 − α0 | n0 = N , l0 = L] + E [l1 − l0 | l0 = L] ,

≤ MρδN ,0 − M(1 − ρ)(1 − δN ,0) + ρq − L(1 − q) .

Then, using a little algebra, it can be shown that the first point of Foster’s criterion is
satisfied by γ = 1 and K > 1 + (M+1)(1+ρq+Mρ)

1−ρ
(for example, K = 7

(1−ρ)2(1−q)
).

Point 2 of Foster’s criterion holds because

E [ f (n1, l1) | n0 = N , l0 = L] ≤ M(N + L + 1) + L + 2,

where we have used the property that αt has only nearest-neighbour transitions. Point
3 is fulfilled by simply considering the definition of f (nt , lt ). For ρ = 1, the bivariate
chain (nt , lt ) is not ergodic because it is no longer irreducible2. 	


For ρ, q < 1, Lemma 1 guarantees both the existence and the uniqueness of the
stationary distribution

Pn,l ≡ lim
t→∞ P(nt = n, lt = l) . (12)

Let us consider the following bivariate generating function:

P(z, y) ≡
∑

n,l≥0

zn yl Pn,l , |z|, |y| ≤ 1 . (13)

We are now ready to prove the main result of this section.

2 For ρ = 1, the process αt satisfies in fact αt+1 ≥ αt .
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Theorem 1 The bivariate generating function (13) satisfies

P(z, y) = 1 + ρ (υ − 1)

z
[(z − 1) P(0, υ) + P(z, υ)] , (14)

where υ = υ(z, y) ≡ z + q (y − z).

Proof For each n, l ≥ 0, the balance equations of EDA/D/1 are the following:

Pn,l = (1 − ρ)

⎛

⎝

n
∑

j=0

Pj+1,l+n− j bn− j,l+n− j + P0,l+n bn,l+n

⎞

⎠

+ ρ

⎛

⎝

n
∑

j=0

Pj+1,l+n− j−1 bn− j,l+n− j + P0,l+n−1 bn,l+n

⎞

⎠ , (15)

where b j,l are given by (4) and we agree that Pn,l = 0 whenever n, l < 0. The special
cases n = 0 and n = l = 0 respectively lead to

P0,l = (1 − ρ)
(

P1,l + P0,l
)

b0,l + ρ
(

P1,l−1 + P0,l−1
)

b0,l , (16)

P0,0 = (1 − ρ)(P1,0 + P0,0) . (17)

To show that (15)–(17) hold, it suffices to write Pnt+1,lt+1 in terms of Pnt ,lt and then
send t to infinity, in order to obtain the stationary state of the system.
Let us take (15) and multiply both sides by zn yl . Then take (16) and multiply both
sides by yl . Finally consider all such contributions, included the one in (17), and sum
on n, l. The summation of all terms multiplied by (1−ρ) yields, after a bit of algebra,

(1 − ρ)

[

P(0, zp + yq) + 1

z
(P(z, zp + yq) − P(0, zp + yq))

]

.

Analogously, the terms multiplied by ρ yield

ρ(zp + yq)
[

P(0, zp + yq) + 1

z
(P(z, zp + yq) − P(0, zp + yq))

]

.

Summing up the two contributions, we get (14).
	


Remark 2 The functional equation (14) does not admit simple or immediate solutions.
It is radically different from the functional equations typically studied in the liter-
ature (Cohen and Boxma 1983; Fayolle et al. 1999) and it is rather special in this
respect. A simple solution can be found only in the particular case z = 1, see Sect. 3
below.

Remark 3 We end this section with a discussion of the special case q = 0. This means
β → ∞ or, in other words, no delay ξ . In this regime, the right-hand side of Eq. (14)
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does not depend on y anymore, and P(z, y) ≡ Q(z). The number of late customers
is in fact lt = 0 as the i th customer can not have a delay ξi ≥ 1.

Then, Eq. (14) yields directly

Q(z) = 1 + ρ(z − 1)

z
[(z − 1)Q(0) + Q(z)] , (18)

where Q(0) = 1−ρ is the stationary probability of a void queue. Therefore, Eq. (18)
is equivalent to

Q(z) = 1 + ρ(z − 1) ,

which is the classical result of a D/D/1 queue with balking.

3 Asymptotic properties of Pn,l

In this section we first focus on Pl , the marginal distribution of late customers. Starting
from the known expression of the generating function of INAR(1) process in the form
of an infinite product, we find the exact analytical expression of Pl . Then, we derive
the asymptotic behaviour of Pl and use it to infer asymptotics for Pn,l .
The marginal distribution of late customers is

Pl ≡
∑

n≥0

Pn,l

and its generating function is

∑

l≥0

Pl y
l =

∑

n,l≥0

Pn,l y
l = P(1, y) .

Setting z = 1 into Eq. (14) yields

P(1, y) = [1 + ρq(y − 1)]P(1, 1 + q(y − 1)) . (19)

This is exactly the recurrence relation of the INAR(1) generating function, that can be
written in terms of an infinite product as

P(1, y) =
∏

k≥0

[

1 + ρqk+1(y − 1)
]

. (20)

Remark 4 The infinite product (20) has an interesting combinatorial interpretation:

P(1, y) =
∏

k≥0

[

1 + ρqk+1(y − 1)
]

= (ρ(1 − y); q)∞
1 + ρ(y − 1)

, (21)
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where (a; q)∞ ≡ ∏

k≥0[1 − aqk] is the infinite q-Pochhammer symbol, also known
as infinite q-ascending factorial in a. For y = 1 − q/ρ, P(1, y) = φ(q) (1 − q)−1,
where φ(q) is the well-known Euler function.

Remark 5 For q < 1, the right-hand side of (21) is analytic for each y ∈ C. There-
fore, the power series P(1, y) = ∑

l≥0 Pl y
l , convergent for each |y| ≤ 1, can be

analytically continued in the whole complex plane. As such, we expect the marginal
distribution Pl to decrease super-exponentially fast in l.

Following the insight given by Remark 5, we shift now the focus to the asymptotic
behaviour of Pl and Pn,l . Expanding the product and rearranging it in powers of
ρ(y − 1) yields

P(1, y) =
∏

k≥0

(

1 + ρ qk+1(y − 1)
)

= 1 +
∑

k≥1

ρk(y − 1)k

⎡

⎢
⎣

∑

m≥(k+1
2 )

d(m; k)qm
⎤

⎥
⎦ , (22)

where d(m; k) is the number of partitions of m in k distinct parts.
Recall now the following two results from number theory.

Lemma 2 (Yaglom and Yaglom 1964) If m >
(k+1

2

)

then the number of partitions of

m in k distinct parts equals the number of partitions of m − (k+1
2

)

into at most k parts
(not necessarily distinct).

Lemma 3 (Andrews 1998; Hardy and Wright 1979) Let p≤k(m) be the number of
partitions of m in parts that do not exceed k. Then p≤k(m) equals the number of
partitions of m into at most k parts and

P≤k(q) ≡
∑

m≥0

p≤k(m) qm =
k
∏

i=1

1

1 − qi
.

Using Lemmas 2 and 3 we can recast after some algebra (22) as

P(1, y) =
∑

k≥0

ρkq(k+1
2 )(y − 1)k

∏k
i=1[1 − qi ] , (23)

and by differentiation

Pl =
∑

k≥l

(−1)k−lρkq(k+1
2 )
(k
l

)

∏k
i=1[1 − qi ] . (24)

Remark 6 To the best of our knowledge, the explicit expression (24) has been proved in
literature in relatively recent times, see Uchimura and Saitô (2011, 2015). Our proof,
based solely on the combinatorial structure of the generating function and on the two
Lemmas above, is slightly shorter.
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Now we use (24) to obtain an upper bound on Pl . Let (q; q)l = ∏l
i=1

[

1 − qi
]

be
the q-Pochammer symbol of the pair (q, q). The following inequalities hold:

(
m + l

l

)

=
m
∏

k=1

(

1 + l

k

)

≤ (1 + l)m ,

l+m
∏

i=l+1

[

1 − qi
]

≥
m
∏

i=1

[

1 − qi
]

= (q; q)m ,

(q; q)l ≥ (q; q)∞ .

Thus,

Pl = ρl q(l+1
2 )

(q; q)l

∑

m≥0

(−ρ)mq(l+1)mq(m2)
(m+l

l

)

∏l+m
i=l+1[1 − qi ] ,

≤ ρl q(l+1
2 )

(q; q)∞

∑

m≥0

q(m2)[ρ ql+1 (l + 1)]m
(q; q)m

, (25)

= ρl q(l+1
2 )

∏

k≥0

[

1 + qk+l+1ρ(l + 1)
]

(q; q)∞
, (26)

where from (25) to (26) we have used the properties of q-ascending factorials and
q-binomial coefficients (Gasper and Rahman 2004). If l is sufficiently large then
qlρ(l + 1) ≤ 1, and (26) yields

Pl ≤ ρl q(l+1
2 ) (−q; q)∞

(q; q)∞
. (27)

Remark 7 Equations (24) and (27) show that, asymptotically in l, the leading order of

Pl is ρlq(l+1
2 ). This fact can be directly implied from the arrival process (1). In fact,

the most likely way to have l late customers (l large) is that each of the customers
originally scheduled in the interval [t − l, t) do not balk and are late at time t , an event

of probability ρql ρql−1 · · · ρq = ρlq(l+1
2 ).

Since Pn,l ≤ Pl , we have just obtained the following asymptotic result: uniformly in
n, the equilibriumdistribution Pn,l decays super-exponentially fast in l.More precisely,

Pn,l = O
(

ρlq(l+1
2 )
)

for l → ∞ . (28)

As a matter of fact, the super-exponential decay of Pn,l may be proved asymptoti-
cally in n too. Considering the auxiliary process αt = nt + lt , which we have already
encountered in the proof of Lemma 1, we can write
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pa ≡ P(αt = a) =
∑

n,l≥0
n+l=a

Pn,l , a ≥ 0 .

It is straightforward to prove that the generating function of pa is

P(z, z) = 1 + ρ(z − 1)

1 − ρ
P(0, z) . (29)

From (29), it follows immediately that

pa = P0,a + ρ

1 − ρ
P0,a−1 . (30)

For a = n + l, formulas (28) and (30) then yield

Pn,l ≤ pa = P0,a + ρ

1 − ρ
P0,a−1 = O(ρaq(a2)) . (31)

Therefore, the following asymptotic result holds:

Theorem 2 The equilibrium distribution Pn,l decays super-exponentially fast as either
n → ∞ or l → ∞. More precisely,

Pn,l = O
(

ρn+lq(n+l
2 )
)

for n, l → ∞ . (32)

Remark 8 Equation (29) gives an interesting connection between the equilibrium dis-
tribution of the quantity αt = nt + lt and the stationary probability of having l late
customers given that the queue is void. Figure 1 shows that the latter event drives the
dynamic of αt through an independent Bernoulli random variable with parameter ρ,
which explains the factor 1 + ρ(z − 1).

4 Approximate computation of Pn,l

As we have just shown that the joint stationary probability Pn,l decreases super-
exponentially fast in the limit of either n, l → ∞, the natural question arising is
whether a bare truncation of the infinite linear system (15)–(17) is sufficient to obtain
a satisfactory numerical expression of Pn,l . As we will see, in this case the answer is
positive due to (32), and this may prove crucial in contexts where practical solutions
are needed.

Another natural question, once the numerical expressions of the probability distri-
bution of our process are obtained, iswhether the average performance of this queueing
system is comparable with a classical memoryless system, say an M/D/1 with the
same traffic intensity ρ, or if it is definitely different. This question is natural also
because we know, see above, that for q very close to 1 the arrival process converges to
aPoisson process, andwemay askwhat are the actual values ofq such that,with respect
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to the average congestion, the two processes, Poisson and EDA, become indistinguish-
able. As it will be clear, the difference between the average queue lengths remains large
also for q very close to 1, due to the negative autocorrelation of the EDA arrivals. This
can be interesting also in many applications, for instance in the air traffic case.

In order to compute numerically the probability distribution, we truncate the infinite
systemof balance equations (15)–(17) by fixing an integerαmax and imposing Pn,l = 0
for n + l > αmax. Then we map the quarter plane {n, l ∈ N × N} onto the set of non-
negative integers and relabel the unknowns Pn,l as πi , recasting (15)–(17) as π = πQ.
For the details of both mapping and relabeling, see “Appendix A”

Next, we map the set {n, l ∈ N × N such that n + l ≤ αmax} onto the set of non-
negative integers {0, 1, . . . , kmax}, where kmax ≡ (

αmax+1
2

)

. We want to consider the
truncated system

⎧

⎨

⎩

π̃i =∑kmax
j=0 π̃ j Q j,i for i = 1, 2, . . . , kmax − 1 ,

∑kmax
j=0 π̃ j = 1 .

(33)

The idea we present is not new and has been already discussed, for instance by Tijms
(1994) for stationary distributions with geometric tail. “Appendix B” shows that there
exists a sequence {ε j } such that

∑

i>kmax

πi Qi, j ≤ ε j , j = 0, 1, . . . , kmax − 1 ,

∑

i>kmax

πi ≤ εkmax .

An a priori estimate of the error introduced by the truncation can be obtained from
perturbation theory (Golub and Loan 2012, § 2.6.2):

kmax∑

j=0

|π j − π̃ j | ≤ κ(A)

kmax∑

i=0

εi , (34)

where A is the kmax × kmax matrix

Ai j ≡
{

δi, j − Qi, j , i = 0, 1, . . . , kmax − 1 ,

1 i = kmax ,
(35)

δi, j is the usual Kronecker’s delta, and

κ(A) ≡ ‖A‖1‖A−1‖1
is the norm-1 condition number of the matrix A.

From “Appendix B”,

kmax∑

j=0

ε j ≤ 2αmax
(−q; q)∞
(q; q)∞

ραmax+1q(αmax+1
2 ) ≤ 2αmax

(−q; q)∞
(q; q)∞

q(αmax+1
2 ) . (36)
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Numerical evaluations show that (−q;q)∞
(q;q)∞ q(αmax

2 ) remains smaller than 10−16 for
αmax = 100 and q ≤ .98.

Estimating the condition number of a matrix is a notably difficult problem and a
vast literature exists on this topic (Golub and Kahan 1965; Qi 1984; Johnson 1989).
Since one of the aims of the present section is showing that a bare truncation of the
balance equations (6)–(7) may be sufficient for an approximate computation of Pn,l ,
we evaluate κ(A) numerically in the ρq-plane when αmax = 100, finding that the
condition number is not larger than 105 for ρ, q ≤ 0.99. Combining these two results
we obtain that, uniformly in ρ ≤ 0.99, the a priori norm-1 approximation error is less
than 10−12 for q up to 0.98.

Remark 9 For air traffic applications, q = 0.98 corresponds to typical delays of the
order of one hour. The same value of q for other transport systems, e.g. trains or buses,
correspond to even higher delays. Consider also that typical values of traffic intensity
ρ in extremely congested systems, e.g. London Heathrow Airport, do not exceed 0.98,
see Caccavale et al. (2014). Therefore, the approximation scheme presented in this
section is very fit for real life applications.

We conclude this section by analysing the performance of EDA/D/1 under conges-
tion, i.e. ρ, q close to 1. First, we offer a comparison of the marginal distribution of
the queue according to EDA/D/1 and the classical M/D/1 system. Figure 2 shows
the distribution of the queue length in 25 different scenarios, with ρ and q increas-
ing from 0.9 to 0.98 and 0.95, respectively. EDA/D/1 and M/D/1 are compared
varying q keeping ρ fixed. We see that, even for very large values of parameter q, the
super-exponential decay of EDA/D/1 yields both a much thinner tail and a much
shorter average queue length. The plot also suggests that the distribution of the queue
approaches the M/D/1 cases for q → 1, which is expected in view of the weak
convergece of 1 to a Poisson process. Yet this phenomenon is much more evident for
low values of ρ – not reported in Fig. 2.

Figure 3 shows the average queue length. We note that the mean value of the queue
never exceed 6, while for ρ = .98 the average queue of M/D/1 is equal to 25. This
shows, as outlined above, that the negative autocorrelation of the arrivals 1 has an
heavy impact on the congestion when the traffic intensity is high. As mentioned, such
difference tends to vanish for low traffic intensity. A deeper comparison, extended to a
wider range of values ρ, q is available at the address https://github.com/clancia/EDA/
blob/master/Asymptotics.ipynb.

5 Conclusions

In this paper we have addressed a single-server queueing system with deterministic
service time and exponentially delayed arrivals. The point process describing these
arrivals dates back to the ’50s of the past century and was studied by Kendall and
others.

We have described the model as a bivariate Markov chain, proved that the latter is
ergodic, wrote the balance equations of the stationary distribution, and found a func-
tional equation for the bivariate generating function. Then we have focused on the
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Fig. 2 Comparison of the queue distribution of EDA/D/1 and M/D/1 models for ρ =
0.90, 0.92, 0.94, 0.96, 0.98 and q = 0.90, 0.9125, 0.925, 0.9375, 0.95. (Color figure online)

marginal distribution of the number of late customers and found its exact expression.
This intermediate step has enabled the fundamental result on the super-exponential
decay of the joint stationary distribution. The characterisation of the asymptotic
behaviour has finally led us to show that the solution to the balance equations can
be approximately computed in a simple yet very accurate way. We have than com-
pared this queueing system with a classical memoryless system, and we have found
that the two systems are deeply different for high traffic intensity

In spite of the big efforts we have put forward to find the solution to the functional
equation (14), the complete solution of the problem is still out of reach. An expansion
in powers of q seems to be a promising approach to obtain (at least) an approximate
expression of the bivariate generating function. Thismethod allows to set up a recursive
scheme to compute the coefficients of the power series (Lancia 2013). Unfortunately,
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Fig. 3 Mean queue length of EDA/D/1 for different pairs (ρ, q)

the computations are quite involved and need some additional work to be refined. This
is the subject of ongoing research.
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Appendix A: Map of the quarter plane onto non-negative integers

Define the map F of the quarter plane onto the set of the non-negative integers and its
inverse G:

F(n, l) ≡
(
n + l

2

)

+ l ,

g(m) ≡ max

{

j ≥ 0 such that

(
j + 1

2

)

≤ m

}

=
⌊

−1 + √
1 + 8m

2

⌋

,

G(m) ≡ (g(m),m − g(m)) ,

where ·� denotes the lower integer part, i.e. the floor operation. Recall that kmax =
(
αmax+1

2

)

for a fixed positive integer αmax. Define the kmax × kmax matrix

Ai j ≡
{

δi, j − P(G(i),G( j)) , i = 0, 1, . . . , kmax − 1 ,

1 i = kmax ,
(37)

123

http://creativecommons.org/licenses/by/4.0/


Asymptotics for the late arrivals problem 491

where P(·, ·) is given by (6)–(7), and

π j ≡ Pg( j), j−g( j) , j = 0, 1, . . . , kmax . (38)

Appendix B: Truncated system

By product of (32) and direct inspection of (6)–(7), for i + j = αmax,

∑

n,l≥0
n+l>αmax

Pn,l P((n, l), (i, j)) ≤ (1 − ρ)
(−q; q)∞
(q; q)∞

ραmax+1q(αmax+1
2 ) , (39)

while for i + j < αmax,

∑

n,l≥0
n+l>αmax

Pn,l P((n, l), (i, j)) = 0 , (40)

where Pn,l and P(·, ·) are defined by (6)–(7) and (12), respectively. Also,

∑

n,l≥0
n+l>αmax

Pn,l ≤ 2
(−q; q)∞
(q; q)∞

ραmax+1q(αmax+1
2 ) . (41)
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