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Abstract We investigate description of the tangent cone to the null set of amapping F
at a given point x∗ in the case when F is degenerate at x∗. To this aim we introduce the
concept of modified 2-regular mappings, which generalizes the concept of p-regular
mappings. Our main result provides the description of the tangent cone to the null set
of modified 2-regular mappings. With the help of this result we derive new optimality
conditions for a wide class of optimization problems with equality constraints.
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1 Introduction

Theproblemof local description of the solution set appears in formulation of optimality
conditions and construction of solution methods for optimization problems. In the
present paper we consider degenerate optimization problems

min ϕ(x) subject to F(x) = 0,
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where ϕ : X → R is defined on a Banach space X and the feasible solution set is
described by a mapping F : X → Y , where Y is a Banach space, which is degenerate
at the solution point x∗, i.e. Im F ′(x∗) �= Y .

Degenerate problems appear often in applications. It was shown in Marsden and
Tretyakov (2003) that degeneracy (singularity) defined as

ImF ′(x∗) �= Y (1.1)

at a given admissible point x∗, F(x∗) = 0, is, in some sense, typical for nonlinear
mappings F . Degeneracy occurs in the calculus of variations and the optimal control
problems with boundary value conditions, e.g. in Chaplygin problem. The develop-
ment of optimality conditions for degenerate problems is an active research topic, see
Byrd et al. (1995), Dmitruk (1987), Ledzewicz and Schättler (1995, 1998a, b).

Here we focus on the description of the tangent cone

T M(x∗) = {h ∈ X | x∗ + αh + r(α) ∈ M(x∗), α ∈ [0, ε], ‖r(α‖ = o(α)},

where M(x∗) = {x ∈ X | F(x) = F(x∗) = 0} and ε > 0 is small enough. In the
nondegenerate (regular) case, i.e., when

ImF ′(x∗) = Y

the problem of description of elements h ∈ X such that h ∈ T M(x∗) has been solved
by the famous Lusternik’s theorem which states that the tangent cone T M(x∗) to the
set M(x∗) at the point x∗ coincides with the kernel of the derivative operator F ′(x∗),
i.e., we have

T M(x∗) = KerF ′(x∗).

The degenerate case has been already investigated e.g., in Brezhneva and Tretyakov
(2007), Buchner et al. (1983), Ledzewicz and Schättler (1998a), Ledzewicz and Schät-
tler (1998b), Tretyakov (1984), where the constructive descriptions of the tangent cone
to the null set M(x∗) are given for some classes of degenerate mappings. However,
the classes of mappings considered so far, do not contain many important degenerate
mappings. To enlarge the class of degenerate (singular)mappingswith the constructive
description of the tangent cone T M(x∗) to the set M(x∗) at the point x∗ we apply the
tools of the p-regularity theory introduced and studied in Brezhneva and Tretyakov
(2003), Marsden and Tretyakov (2003), Tretyakov (1984, 1983, 1987).

The main idea of the p-regularity theory is to replace the operator F ′(x∗), which
is not onto, with a linear operator �p(x∗, h), p ≥ 2, related to the p-th order Taylor’s
polynomial of F at x∗, which is onto. The operator �p(x∗, h) contains the derivatives
of F up to the p-th order, so in our considerations, F is assumed to be p-times
continuously differentiable in a neighbourhood of x∗. The order p is chosen as the
smallest number for which the operator �p is regular.
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Let us point out that mathematical programing problems with complementarity
constraints

min ϕ(x) subject to
g1(x) ≥ 0, . . . , gn(x) ≥ 0
x1 ≥ 0 . . . , xn ≥ 0
xi gi (x) = 0, i = 1, . . . , n

(1.2)

are degenerate. Indeed, the constraints xi gi (x) = 0, i = 1, . . . , n are degenerate (non-
regular) if xi and gi (x) are active at the solution point x∗ (the strict complementarity
conditions do not hold). Then we can not apply the classical optimality conditions and
moreover, Newton-type methods are inapplicable.

It turns out, however, that the constraints of problem (1.2) are 2-regular along
some element h ∈ X in the sense defined below, and thus, we are able to provide
meaningful optimality conditions for (1.2) and to construct efficient Newton-type
solution methods.

There are many papers devoted to the investigation of deformations and pertur-
bations of optimization problems, see e.g. Jongen et al. (1986, 1983, 1986), Jongen
et al. (1990), Klatte andKummer (2002), Rückmann (1993) and the references therein.
Small perturbations of data of degenerate optimization problems may lead to large
changes in solutions and/or to nonexistence of approximate solutions. It turns out
that the existence of the p-regular structure of the problem under investigation entails
stability of approximate solutions.

For these reasons, p-regularity theory is a valuable and adequate tool for providing
optimality conditions and solution methods for large classes of degenerate optimiza-
tion problems.

2 Elements of the p-regularity theory

Consider the equation
F(x) = 0, (2.1)

where F : X → Y X,Y are Banach spaces, F ∈ C p+1(X). Let us assume that F ′(x∗)
is degenerate (singular) at a given point x∗ ∈ M(x∗). In this section we recall basic
constructions of p-regularity theory as developed in Brezhneva and Tretyakov (2003),
Marsden andTretyakov (2003), Tretyakov (1984), Tretyakov (1983), Tretyakov (1987)
to investigate singular mappings.

We assume that the space Y is decomposed into the direct sum

Y = Y1 ⊕ Y2 ⊕ · · · ⊕ Yp, (2.2)

where Y1 := cl ImF ′(x∗), Z1 = Y . Let Z2 be a closed complementary subspace to
Y1 (we assume that such closed complement subspace exists), and let PZ2 : Y → Z2
be the projection operator onto Z2 along Y1. By Y2 we mean the closed linear span of
the image of the map PZ2F

(2)(x∗)[·]2. More generally, we define inductively Yi :=
cl(Span ImPZi F

(i)(x∗)[·]i ) ⊂ Zi , i = 2, . . . , p − 1, where Zi is a chosen closed
complementary subspace for (Y1 ⊕ Y2 · · · ⊕ Yi−1) with respect to Y , i = 2, . . . , p
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and PZi : Y → Zi is the projection operator onto Zi along (Y1 ⊕ Y2 · · · ⊕ Yi−1) with
respect to Y , i = 2, . . . , p. Finally, Yp = Z p. The order p is the smallest number for
which (2.2) holds.

Let Fi : X → Yi , i = 1, . . . , p be defined as Fi (x) := Pi F(x), where Pi := PYi :
Y → Yi is the projection operator onto Yi along (Y1⊕Y2 · · ·⊕Yi−1⊕Yi+1⊕, · · ·⊕Yp)

with respect to Y , i = 1, . . . , p.

Definition 2.1 The linear operator �p(x∗, h) ∈ L(X,Y1 ⊕Y2 ⊕· · ·⊕Yp) for h ∈ X ,
h �= 0,

�p(x
∗, h) := F ′

1(x
∗) + F ′′

2 (x∗)[h] + · · · + F (p)
p (x∗)[h]p−1 (2.3)

is called the p-factor operator of the mapping F at the point x∗.

Definition 2.2 We say that the mapping F is p-regular at x∗ along (on) an element
h ∈ X if

Im�p(x
∗, h) = Y. (2.4)

Definition 2.3 We say that the mapping F is p-regular at x∗ if it is p-regular along
any h ∈ X from the set

Hp(x
∗) :=

p⋂

k=1

Kerk F (k)
k (x∗) \ {0},

where Kerk F (k)
k (x∗) = {ξ ∈ X | F (k)

k (x∗)[ξ ]k = 0} is the k-kernel of the k-order

mapping F (k)
k (x∗)[ξ ]k .

For the linear surjective operator�p(x∗, h) : X → Y , by {�p(x∗, h)}−1 we denote
its right inverse, {�p(x∗, h)}−1 : Y → 2X , and we have

{�p(x
∗, h)}−1y = {x ∈ X | �p(x

∗, h)x = y}.

We define the norm of {�p(x∗, h)}−1 by the formula

‖{�p(x
∗, h)}−1‖ = sup

‖y‖=1
inf{‖x‖ | x ∈ {�p(x

∗, h)}−1y}.

We say that {�p(x∗, h)}−1 is bounded if ‖{�p(x∗, h)}−1‖ < +∞.

Definition 2.4 The mapping F is called strongly p-regular at the point x∗ if there
exists γ > 0 such that

sup
h∈Hγ

‖{�p(x
∗, h)}−1‖ < +∞,

where

Hγ = {h ∈ X | ‖F (k)
k (x∗)[h]k‖Yk ≤ γ, k = 1, . . . , p, ‖h‖ = 1}.
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The following two theorems describe the tangent cone T M(x∗) to the set M(x∗)
at the point x∗ and the null sets M(x∗) of p-regular and strongly p-regular mappings,
respectively.

Theorem 2.5 (Brezhneva and Tretyakov 2007) Let X, Y be Banach spaces. Let F :
X → Y , F ∈ C p+1(X), F(x∗) = 0 and let F be p-regular at x∗. Then

T M(x∗) = Hp(x
∗).

Theorem 2.6 (Prusińska and Tretyakov 2016) Let X, Y be Banach spaces. Let F :
X → Y , F ∈ C p+1(X), p ≥ 2, F(x∗) = 0, and let F be strongly p-regular at x∗.

Then there exists a neighbourhood U (x∗), a mapping ξ → x(ξ) : U (x∗) → X
and a constant δ > 0 such that

F(ξ + x(ξ)) = 0

‖x(ξ)‖ ≤ δ
∑p

k=1
‖Fk (ξ)‖Yk
‖ξ−x∗‖k−1

and ‖x(ξ)‖ ≤ δ
∑p

k=1 ‖Fk(ξ)‖1/kYk

for all ξ ∈ U (x∗).

The proof of Theorem 2.6 can be found in Prusińska and Tretyakov (2016). The
importance of this result in the degenerate case is analogous to the importance of
the classical implicit function theorem in nondegenerate case. In particular, Theorem
2.6 is used in proving optimality conditions for degenerate constrained optimization
problems (Brezhneva and Tretyakov 2003) (see Sect. 4).

3 Generalization of p-regularity and description of the p-th order
tangent cone

In Theorem 2.5, the crucial assumption which allows the constructive description of
the tangent cone T M(x∗) to the setM(x∗) at x∗ is condition (2.4), i.e., the p-regularity
of F along any element h ∈ Hp(x∗). However, condition (2.4) may fail. For p = 2,
there are examples such that F ′′(x∗)h · X �= Y (F ′(x∗) = 0), where h ∈ Ker2F ′′(x∗).

Example 3.1 Consider the mapping F : R4 → R
2,

F(x) :=
(
x1x2 − x23
x3x4

)
, h = (1, 0, 0, 0)T ∈ Ker2F ′′(0).

At x∗ = 0, the 2-factor-operator F ′′(0)h =
(
0 1 0 0
0 0 0 0

)
is singular. Therefore,

Theorem 2.5 does not apply. However, h ∈ T M(0), i.e. th + ω(t) ∈ M(0) ⇔
F(th + ω(t)) = 0, ‖ω(t)‖ = o(t), t ∈ [0, ε], ε > 0 sufficiently small. Here
ω(t) = (0, 0, 0, 0)T .

In the sequel, we consider separately the cases where p = 2 and p ≥ 3.
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3.1 Case p = 2

Suppose that the space Y is decomposed into the direct sum

Y = Y1 ⊕ Y 2
1 ⊕ · · · ⊕ Y 2

q , (3.1)

where Y1 = cl Im F ′(x∗), Z1 = Y , Z2
1 is a closed complementarity subspace to Y1

and let P2
1 := PZ2

1
: Y → Z2

1 be the projection operator onto Z2
1 along Y1. By Y 2

1 we

mean Y 2
1 = cl Im P2

1 F
′′(x∗)h1.

More generally, define inductively Y 2
k := cl Im P2

k F
′′(x∗)hk , k = 2, . . . , q − 1,

where Z2
k is a chosen closed complementarity subspace for (Y1 ⊕ Y 2

1 ⊕ · · · ⊕ Y 2
k−1)

with respect to Y , and K 2
k := Pz2k

: Y → Z2
k is the projection operator onto Z2

k along

(Y1 ⊕ Y 2
1 ⊕ · · · ⊕ Y 2

k−1) with respect to Y , k = 2, . . . , q. Finally Y 2
q = Z2

q .
The order q is chosen as the smallest number for which condition (3.1) holds.
Let us define the mappings

F1 : X → Y1, F1(x) := PY1 · F(x),
F2,k : X → Y 2

k , F2,k(x) := PY 2
k

· F(x), k = 1, . . . , q,

where PY 2
k

: Y → Y 2
k is the projection operator onto Y 2

k along

(
Y1 ⊕ Y 2

1 ⊕ · · · ⊕ Y 2
k−1 ⊕ Y 2

k+1 ⊕ · · · ⊕ Y 2
q

)
.

Definition 3.2 The linear operator

�2
q (x

∗; h1, . . . , hq)) ∈ L
(
X,Y1 ⊕ Y 2

1 ⊕ · · · ⊕ Y 2
q

)

hk �= 0, k = 1, . . . , q

�2
q (x

∗; h1, . . . , hq)) = F ′
1(x

∗) + F ′′
2,1(x

∗)h1 + . . . F ′′
2.qhq (3.2)

is called the modified 2-factor-operator.

Definition 3.3 We say that the mapping F is modified 2- regular at x∗ along
h1, h2, . . . , hq if Im �2

q (x
∗; h1, . . . , hq) = Y .

Example 3.4 (Continuation of Example 3.1)

Let h1 := (1, 0, 0, 0)T , q = 2, h2 := (0, 0, 1, 0)T . Then PY1 =
(
0 0
0 0

)
,

Y1 :=
(
0
0

)
, Y 2

1 :=
(
R
0

)
, PY 2

1
=

(
1 0
0 0

)
, Y 2

2 :=
(
0
R

)
, PY 2

2
=

(
0 0
0 1

)
, F1(x) =

0, F2,1(x) :=
(
x1x2 − x23

0

)
, F2,2(x) :=

(
0
x3x4

)
, F ′′

2,1(0)h1 =
(
0 1 0 0
0 0 0 0

)
,
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p-regular nonlinearity: tangency at singularity in… 491

F ′′
2,2(0)h2 =

(
0 0 0 0
0 0 0 1

)
, and �2

2 (0; h1, h2) :=
(
0 1 0 0
0 0 0 1

)
is nonsingular. This

means that F(x) is modified 2-regular along h1, h2.

The following theorem gives the description of elements of the tangent cone
T M(x∗) for modified 2-regular mappings.

Theorem 3.5 Let X,Y be Banach spaces. Let F : X → Y , F ∈ C3(X) and F(x∗) =
0. Assume that F is modified 2-regular at x∗ along h1, . . . , hq and

F ′(x∗)hk = 0, k = 1, . . . , q
F ′′
2,k(x

∗)[hk+r , hk+p] = 0, 1 ≤ k ≤ q, 0 ≤ r ≤ (q − k), 0 ≤ p ≤ (q − k − r).
(3.3)

Then h1 ∈ T M(x∗) and there exists ω(t), ‖ω(t)‖ = o(t1+(q−1)γ ), γ = 1
2q such

that

F(x∗ + th1 + t1+γ h2 + · · · + t1+(q−1)γ hq + ω(t)) = 0

and

‖ω(t)‖ ≤ c
(
‖F1(x∗ + th1 + t1+γ h2 + · · · + t1+(q−1)γ hq)‖

+∑q
k=1 ‖F2,k(x∗ + th1 + t1+γ h2 + · · · + t1+(q−1)γ hq)‖

1
2+(k−1)γ

)
,

where c > 0 is a constant.

Example 3.6 (Continuation of Example 3.1)
We show that for Example 3.1 all conditions of Theorem 3.5 are fulfilled. Surjec-

tivity of the operator �2
2 (0; h1, h2) along h1 and h2 have been already shown above.

Now we substantiate condition (3.3). In fact, F ′′
2,1(0)[h1]2 = 0, F ′′

2,2(0)[h2]2 = 0,
F2,1(0)[h1, h2] = 0, i.e., all the assumptions of Theorem 3.5 are fulfilled.

For the proof of Theorem 3.5 we need theMultivalued Contraction Mapping Prin-
ciple (MCPP) proved in Brezhneva and Tretyakov (2007).

Theorem 3.7 (Brezhneva and Tretyakov 2007) For a Banach space 
 and w0 ∈ 
,
let � : Br1(w0) → 2
 be a multivalued mapping defined on some ball Br1(w0) ⊂ 
.
Assume that �(w) �= ∅ for any w ∈ Br1(w0) and there exists a number α ∈ (0, 1)
such that

1. H(�(w1),�(w2)) ≤ α‖w1 − w2‖ for all w1, w2 ∈ Br1(w0)

2. dist(w0,�(w0)) < (1 − α)r1.

Then for any r2 such that dist(w0,�(w0) < r2 < (1− α)r1 there exists w̄ ∈ Br3(w0)

with r3 = r2/(1 − α) such that
w̄ ∈ 
(w̄). (3.4)

Moreover, among the points w̄ satisfying (3.4) there exists a point such that

‖w̄ − w0‖ ≤ 2

1 − α
dist(w0,�(w0)).
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Here H(�1,�2) is the Hausdorff distance between sets �1 and �2,

H(�1,�2) := max{ sup
x∈�1

dist(x,�2), sup
y∈�2

dist(y,�1)}.

Proof of Theorem 3.5 For the sake of simplicity consider the case F ′(x∗) = 0. Set
γ := 1

2q and introduce the following operators

Ak := F ′′
2,k(x

∗)[hk], k = 1, . . . , q

and

A := (t A1, . . . , t
1+(q−1)γ Aq).

Define h(t) := th1 + · · · + t1+(q−1)γ hq and consider the mapping

�(x) := x − A−1(F2,1(x
∗ + h(t) + x), . . . , F2,q(x

∗ + h(t) + x)).

We show that all assumptions of (MCMP) are satisfied for �(x) with some ball
Ur(t)(0), where r1 := r(t) = o(t1+(q−1)γ ).

We start by checking the assumption 2. of (MCMP). By the definition of �(0),
there exists c1 ≥ 0 such that

‖�(0)‖ ≤ c1‖A−1F(x∗ + h(t))‖,

where

‖�(0)‖ := inf{‖x‖ | x ∈ �(0)}.

Equivalently,

‖�(0)‖ ≤ c2

(‖F2,1(x∗ + h(t))‖
t

, . . . ,
‖F2,q(x∗ + h(t))‖

t1+(q−1)γ

)
. (3.5)

By using Taylor’s expansion we get for k = 1, . . . , q

F2,k(x
∗ + h(t)) = F ′′

2,k(x
∗)[th1 + · · · + t1+(q−1)γ hq ]2 + ωk(t), (3.6)

where ‖ωk(t)‖ ≤ ct3. By definition of mapping F2,k , we have

F ′′
2,k(x

∗)[hi , h j ] = 0, for ı < k and j ≤ k. (3.7)

By (3.7) and (3.6), we obtain

‖F2,k(x∗ + h(t))‖
t1+(k−1)γ

= o(t1+(q−1)γ ) for k = 1, . . . , q.
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Then, by (3.5) and the latter relation with γ = 1
2q we obtain

‖�(0)‖ = o(t1+(q−1)γ ) = o(t1+(q−1)/2q).

For sufficiently small t with some α ∈ (0, 1) and r1 := r(t) = o(t1+(q−1)γ ) we get

‖�(0)‖ < (1 − α)r1

which proves assumption 2. of (MCMP).
Now we show that assumption 1. of (MCMP) holds for all x1, x2 ∈ Ur(t)(0) that

is

H(�(x1),�(x2)) ≤ α‖x1 − x2‖, 0 < α < 1.

By the definition of �(x), with x̄(t) := x∗ + h(t), we have

H(�(x1),�(x2)) = inf{‖z1 − z2‖ | zi ∈ �(xi ), i = 1, 2}
= inf{‖z1 − z2‖ | Azi = Axi − F(x̄(t) + xi ), i = 1, 2}
= inf{‖z1 − z2‖ | Azi = Axi − F(x̄(t) + xi ), i = 1, 2}
= inf{‖z‖ | Az = A(x1 − x2) − F(x̄(t) + x1) + F(x̄(t) + x2)}
≤ ‖A−1(A(x1 − x2) − F(x̄(t) + x1) + F(x̄(t) + x2))‖.

From this we deduce that

H(�(x1),�(x2))≤ c

(
‖F ′′

2,1(x
∗)[th1](x1−x2)−F2,1(x̄(t)+x1)+F2,1(x̄(t)+x2)

t

+ · · · + ‖F ′′
2,q (x∗)[t1+γ (q−1)hq ](x1−x2)−F2,q (x̄(t)+x1)+F2,q (x̄(t)+x2)

t1+γ (q−1)

)
.

By using Mean Value Theorem and Taylor’s expansion for k = 1, . . . , q, there exists
ck > 0 such that

‖F ′′
2,k (x

∗)[t1+γ (k−1)hk ](x1−x2)−F2,k (x̄(t)+x1)+F2,k (x̄(t)+x2)‖
t1+γ (k−1)

≤ ck supξ∈Ur1 (0) ‖ξ‖ ‖x1−x2‖
t1+γ (k−1) .

Hence, with r1 := r(t) = 0(t1+γ (q−1)) we get

H(�(x1),�(x2)) ≤ α‖x1 − x2‖

which proves assumption 1. of (MCMP).
By (MCMP), there exists ω(t) such that ω(t) ∈ �(ω(t)) which is equivalent to

0 ∈ A−1(F(x∗ + h(t) + ω(t))).
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Hence,

F(x∗ + h(t) + ω(t)) = 0

with ‖ω(t)‖ ≤ c‖�(0)‖ = o(t1+(q−1)/2q). One can easily show that, by (3.5), and by
the inequality ‖ω(t)‖ ≤ c‖�(0)‖, we obtain the following estimate

‖ω(t)‖ ≤ c

(
‖F1(x∗ + h(t))‖ +

q∑

k=1

‖F2,k(x∗ + h(t))‖ 1
2+γ (k−1)

)

which finishes the proof. ��

3.2 Case p ≥ 3

We seek an element x(t) ∈ M(x∗) in the form

x(t) := x∗ + th1 + t1+α2h2 + · · · + t1+αq hq + ω(t)

where ‖ω(t)‖ = o(t1+αq ), 0 < α2 < · · · < αq < 1.
For the sake of simplicity we assume that

F (k)(x∗) = 0, k = 1, . . . , p − 1, q = 2.

As previously,

Y = Y1 ⊕ · · · ⊕ Yp

where Y1 = cl Im F )p)(x∗)[h1]p−1, Z1 := Y1, Z2 is closed complementary subspace
to Y1 and PZ1 : Y → Z1, PZ2 : Y → Z2 are projection operators onto Z1 and Z2,
respectively, Y2 := cl Im PZ2F

(p)(x∗)[h1]p−2[h2].
More generally, we define inductively

Yk := cl Im PZk F
(p)(x∗)[h1]p−k[h2]k−1, k = 3, . . . , p

where PZk : Y → Zk is the projection operator onto Zk along (Y1 ⊕ · · · ⊕ Yk−1) with
respect to Y , k = 3, . . . , p. Finally Yp := Z p.

Let us define Fk(x) := Pk F(x), where Pk : Y → Yk is the projection operator
onto Yk along

(Y1 ⊕ · · · ⊕ Yk−1 ⊕ Yk+1 ⊕ · · · ⊕ Yp), k = 1, . . . , p.
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Definition 3.8 The linear operator �p(x∗; h1, h2) ∈ L(X,Y1 ⊕· · ·⊕Yp) defined as

�p(x
∗; h1, h2):=F (p)

1 (x∗)[h1]p−1 + F (p)
2 (x∗)[h1]p−2[h2] + · · · + F (p)

p (x∗)[h2]p−1

is called the modified p-factor operator.

Remark 3.9 In case q ≥ 3 the modified p-factor operator �p(x∗; h1, . . . , hq) has the
following form

�p(x
∗; h1, . . . , hq) :=

N (p,q)∑

k=1

F (p)
k (x∗)[hi1]q1, . . . , [hip−1 ]qp−1 ,

where N (p, q) :=
(
q − 1
p + q − 1

)
, i j ∈ {1, . . . , p}, ik �= i j , for k �= j and qk ∈

{0, . . . , p − 1} such that q1 + . . . , qp−1 = p − 1 and mappings Fk are defined in the
same way as in case q = 2 and, obviously, depend on (p − 1)− tuple q1, . . . , qp−1.

Definition 3.10 The mapping F is modified p-regular at x∗ along h1, h2 if
Im �p(x∗; h1, h2) = Y (or Y1 ⊕ · · · ⊕ Yp).

Now we seek an element x(t) ∈ M(x∗) in the form

x(t) := x∗ + th1 + t1+αh2 + ω(t), (3.8)

where α := 1
2p and ‖ω(t)‖ = o(t1+α). The proof of the theorem below remains the

same when α assumes any value from a given interval α ∈ (0, ε), ε < 1.

Theorem 3.11 Let X,Y be Banach spaces. Let F : X → Y , F ∈ C p+1(X), F(x∗) =
0, F (k)(x∗) = 0, k = 1, . . . , p − 1.

Assume that F is modified p-regular at x∗ along h1, h2 and for the linear operator
�p(x∗; h1, h2)

�p(x
∗; h1, h2) · h1 = 0, �p(x

∗; h1, h2) · h2 = 0.

Then h1 ∈ T M(x∗) and there exists ω(t), ‖ω(t)‖ = o(t1+α) such that

F(x∗ + th1 + t1+αh2 + ω(t)) = 0

and

‖ω(t)‖ ≤ c
p∑

k=1

‖Fk(x∗ + th1 + t1+αh2)‖
1+α
p+αk ,

where c > 0 is an independent constant.

Proof The proof of this theorem is analogous to the proof of Theorem3.5 and therefore
we omit it. ��
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4 Degenerate optimization problems

We consider the nonlinear optimization problem

min ϕ(x)
subject to
F(x) = 0,

(4.1)

where ϕ : X → R is a sufficiently smooth function and F : X → Y is a sufficiently
smooth mapping from a Banach space X into a Banach space Y . Let us consider the
case where the mapping F is degenerate at the solution x∗ of problem (4.1) that is,
when the derivative F ′(x∗) is not onto. In our previous works (Bednarczuk et al. 2011;
Brezhneva and Tretyakov 2003) we derived optimality conditions for constrained
optimization problems (4.1) that are p-regular at x∗, i.e., when F is p-regular at x∗.

Now we use the results of the previous sections to prove optimality conditions for
problems with mappings F which are strongly p-regular or modified 2-regular. Let us
define p-factor Lagrange function

L p(x, λ, h) := ϕ(x) +
〈 p∑

K=1

F (k−1)
k (x)[h]k−1, λ

〉
,

where λ ∈ Y ∗, F (0)
1 (x) := F(x).

The following optimality conditions for p-regular and strongly p-regular mappings
F were proved in Brezhneva and Tretyakov (2003).

Theorem 4.1 Let X and Y be Banach spaces. Let ϕ : X → R, ϕ ∈ C2(X), F : X →
Y , F ∈ C p+1(X). Suppose that h ∈ Hp(x∗) and F is p-regular along h at the point
x∗.

If x∗ is a solution to problem (4.1), then there exist multipliers λ∗(h) ∈ Y ∗ =
Y ∗
1 × Y ∗

2 , . . . × Y ∗
p such that

L ′
p(x

∗, λ∗(h), h) = 0 ⇔ ϕ′(x∗) +
(
F ′
1(x

∗) + · · · + F (p)
p (x∗[h]p−1

)∗
λ∗(h) = 0

(4.2)
Assume that F is strongly p-regular at x∗.

If there exists α > 0 and multipliers λ∗(h) ∈ Y ∗
1 × Y ∗

2 , . . . × Y ∗
p such that

L ′
p(x

∗, λ∗(h), h) = 0

and

L ′′
p(x

∗, λ̄∗(h), h)[h]2 ≥ α‖h p‖2 ∀ h p ∈ Hp(x
∗),

where λ̄∗(h) := (λ∗
1(h), 1/3λ∗

2(h), . . . , 2/p(p + 1)λ∗
p(h)), then x∗ is a strict local

mnimizer of problem 4.1.
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The proof of this theorem is based on Theorem 2.6 and can be found in Brezhneva
and Tretyakov (2003). It turns out that there exist numerous problems for which the
assumption of p-regularity of the mapping F fails at the solution x∗.

Example 4.2 Consider the following problem

min x3 (4.3)

subject to

F(x) :=
(
x1x2 − x23

x3x4

)
= 0. (4.4)

We investigate optimality of x∗ := (0, 0, 0, 0)T . The mapping F is not 2-regular at
x∗ and we cannot apply Theorem 4.1.

However, for modified 2-regular mappings F the following result holds. Let us
introduce the modified 2-factor Lagrange function

L2,q(x, λ, h1, . . . , hq) := ϕ(x) +
〈
F(x) +

q∑

k=1

F ′
2,k(x)hk, λ

〉
.

Theorem 4.3 (Case p = 2) Let X andY beBanach spaces, F : X → Y ,ϕ : X → R,
ϕ ∈ C2(X) and F ∈ C3(X).

Assume that there exist elements h1, . . . , hq ∈ X such that the mapping F is
modified 2-regular at x∗ along h1, . . . , hq and assumption 3.3 of Theorem 3.5 is
fulfilled.

Then there exists a multiplier λ∗ ∈ Y ∗ such that

L ′
2,q(x

∗, λ∗, h1, . . . , hq) = 0 ⇔ ϕ′(x∗)

+
(
F ′(x∗) + F ′′

2,1(x
∗)h1 + · · · + F ′′

2,q(x
∗)hq

)∗
λ∗ = 0 (4.5)

The proof of Theorem 4.3 is similar to the proof of Theorem 3.3 of Brezhneva and
Tretyakov (2003) and we omit it here.

Let us note that for h1 := (1, 0, 0, 0, ) and h2 := (0, 0, 1, 0) the mapping F from
Example 4.2 defined by (4.4) is modified 2-regular along h1 and h2 at x∗ = 0 and

�2
q (0; h1, h2) =

(
0 1 0 0
0 0 0 1

)
.

If x∗ = (0, 0, 0, 0)T would solve the problem (4.3), (4.4), then according to Theorem
4.3, there would be a multiplier λ∗ ∈ R

2 such that

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0 0
1 0
0 0
0 1

⎞

⎟⎟⎠ λ∗ = 0
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which is impossible.
Consider the case p ≥ 3 and q = 2 when F ′(x∗) = 0, . . . , F (p−1)(x∗) = 0. Let

us introduce the modified p-factor Lagrange function

L p,2(x, λ, h1, h2) := ϕ(x) +
〈 p∑

k=1

F (p−1)
k (x)[h1]p−k[h2]k−1, λ

〉
.

Theorem 4.4 (Case p ≥ 3) Let X and Y beBanach spaces, F : X → Y ,ϕ : X → R,
ϕ ∈ C2(X) and F ∈ C p+1(X), and let x∗ be a solution to optimization problem (4.1).

Assume that there exist elements h1, h2 ∈ X such that the mapping F is modified
p-regular at x∗ along h1, h2 and

�p(x
∗; h1, h2) · hk = 0, k = 1, 2.

Then there exists a multiplier λ∗ ∈ Y ∗ such that

L ′
p,2(x

∗, λ∗, h1, h2) = 0 ⇔
ϕ′(x∗) +

(
F (p)
1 (x∗)[h1]p−1 + F (p)

2 (x∗)[h1]p−2[h2] + · · ·
+ F (p)

p (x∗)[h2]p−1
)∗

λ∗ = 0 (4.6)

Proof We will show that for any z ∈ Ker �(x∗; h1, h2) the equality 〈ϕ′(x∗), z〉 = 0
holds. By annihilator lemmas [ATF], it means that

ϕ′(x∗) ∈ Im�(x∗; h1, h2) = Im
(
F (p)
1 (x∗)[h1]p−1 + F (p)

2 (x∗)[h1]p−2[h2] + · · ·
+ F (p)

p (x∗)[h2]p−1
)∗

or, there exists λ∗ ∈ Y ∗ such that

ϕ′(x∗) +
(
F (p)
1 (x∗)[h1]p−1 + F (p)

2 (x∗)[h1]p−2[h2] + · · ·
+ F (p)

p (x∗)[h2]p−1
)∗

λ∗ = 0

Let z ∈ Ker �(x∗; h1, h2). It means that

(
F (p)
1 (x∗)[h1]p−1 + F (p)

2 (x∗)[h1]p−2[h2] + · · ·
+ F (p)

p (x∗)[h2]p−1
)
z = 0.

Taking into account the last inequality we will show that there exists ω(z, t) such that

x(z, t) = x∗ + th1 + t1+αh2 + t1+α+εz + ω(z, t) ∈ M(x∗),

123



p-regular nonlinearity: tangency at singularity in… 499

t ∈ [0, δ], ‖ω(z, t)‖ = o(t1+α+ε), α + ε < 1 and δ > 0 sufficiently small. To this
aim we introduce mapping

�p(x) : = x − �(x∗; th1, t1+αh2)−1(F1(x∗ + th1 + t1+αh2 + t1+α+εz + x) + · · ·
+ Fp(x∗ + th1 + t1+αh2 + t1+α+εz + x)).

Based on the fact that

‖Fk(x∗ + th1 + t1+αh2 + t1+α+εz)‖
t p−k t (1−α)(k−1)

= O(t2)

for k = 1, . . . , p we obtain, analogously as in the proof of Theorem 3.5, that mapping
�p(x) satisfies all the assumptions of (MCMP)with some ball Br̄(t)(0), where r1 :=
r̄(t) = o(t1+α+ε).

By (MCMP), there exists ω(z, t) ∈ �p(ω(z, t)) which is equivalent to

0 ∈ �(x∗; th1, t1+αh2)
−1F(x∗ + th1 + t1+αh2 + t1+α+εz + ω(z, t)),

t ∈ [0, δ] with

‖ω(z, t)‖ ≤ c‖�p(0)‖ = o(t1+α+ε).

It means that

x(z, t) := x∗ + th1 + t1+αh2 + t1+α+εz + ω(z, t) ∈ M(x∗)

for all z ∈ Ker �p(x∗; h1, h2).
Now we finish the proof by observing that it must be

〈ϕ′(x∗), h1〉 = 〈ϕ′(x∗), h2〉 = 〈ϕ′(x∗), z〉 = 0

for all z ∈ Ker �p(x∗; h1, h2) since otherwise x∗ is not a minimizer of our problem.
��

5 Conclusions

In this paper we derived new optimality conditions for problemwith degenerate equal-
ity constraints. Our approach is based on constructions of p-regularity theory and on
the modification of the concept of p-regularity. In Sect. 3 we proved a new theorem on
the null set description and investigate the structure of the tangent cone for modified
p-regular mappings. These results generalize the tangent cone descriptions obtained
so far. Let us note that Theorems 3.5 and 3.11 do not give a complete description
of the tangent cone T M(x∗) to the set M(x∗) at the point x∗ of the mapping F but
knowing a single element h ∈ T M(x∗) is enough to prove optimality conditions for
optimization problems (4.1) with the modified p-regular mappings F .
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500 E. M. Bednarczuk, A. Tretyakov

In Sect. 4 we derived new optimality conditions for modified p-regular constrained
optimization problems. These results generalize necessary optimality conditions
obtained for p-regular problems. The presented results can be considered as a part
of the p-regularity theory.

Acknowledgements For the second author this work was supported by the Russian Foundation for Basic
Research under the Grant No. 11-01-00786-a, by the Leading Scientific School, Grant No. 5264.2012.1
and by the Russian Academy of Sciences Presidium Program P-18.

References
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