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Abstract This paper analyzes the 1-nucleolus and, in particular, its relation to the
nucleolus. It is seen that, contrary to the nucleolus, the 1-nucleolus can be com-
puted in polynomial time due to a characterization using a combination of standard
bankruptcy rules for associated bankruptcy problems. Sufficient conditions on a
compromise stable game are derived such that the 1-nucleolus and the nucleolus
coincide.

Keywords 1-nucleolus · Compromise stable games · Aumann–Maschler rule ·
Nucleolus

1 Introduction

Cooperative transferable utility games (TU-games) have proven effective to analyze
problems where the joint profits obtained by a joint collaboration have to be shared
among the individuals involved (the grand coalition). In order to decide on a “fair”
or “just” distribution of the joint profits (a solution), benchmarks are used: the joint
profits that any subgroup of individuals (a coalition) could obtain by cooperation
without any help from the other members of the grand coalition that are outside this
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subgroup. Thismeans that the description of a cooperative game in general requires the
computation of 2n values, with n being the number of members of the grand coalition.
For this reason, the computation of solutions that are based on all coalitional values is
NP-hard.

In a general framework, there are several solutions to TU-games available that, in
principle, need as input all coalitional values. Among the most studied are the core
(Gillies 1953), the nucleolus (Schmeidler 1969), the Shapley value (Shapley 1953)
and the compromise value (Tijs 1981).

This paper analyzes the possibility of reducing the number of input variables with
respect to the nucleolus of a TU-game by studying the 1-nucleolus, a member of the
class of generalized nucleoli introduced in Maschler et al. (1992) and conceptually
related to the notion of the k-core cover as studied in Sánchez-Rodríguez et al. (2015).
For TU-games with a nonempty imputation set, the nucleolus is a solution based on
the idea that a fair distribution of the total worth should (lexicographically) mini-
mize the sorted vector of the excesses (or complaints) associated with all possible
coalitions. Given an imputation x and a coalition S, the excess measures the dissat-
isfaction of S at x . There are different algorithms to compute the nucleolus, see the
Kopelowitz algorithm (Kopelowitz 1967) or the Maschler-Peleg-Shapley algorithm
(Maschler et al. 1979). The complexity of these algorithms, however, is exponential
in the number of players, and therefore useful only for relatively small games. Still,
there are classes of games, such as assignment games (Shapley and Shubik 1972),
where the complexity of these algorithms only grows polynomically in the number of
players. That fact has allowed to develop special algorithms to obtain the nucleolus
when the game has a special underlying structure. Nevertheless, in most applications
where many players are involved, the task of computing the nucleolus can be very
difficult.

This paper focuses on the 1-nucleolus which is based on computing the excesses
only of coalitions of size 1 and n − 1. By reducing the number of variables
involved in the computation of the 1-nucleolus with respect to the nucleolus, we
also decrease its computational difficulty. We characterize the 1-nucleolus using
a combination of standard bankruptcy rules of an associated bankruptcy problem,
the computations of which are done in polynomial time. Next, we analyze under
which conditions the nucleolus and 1-nucleolus of compromise stable games coin-
cide. Finally, without aiming for a full characterization of the 1-nucleolus, we
study several properties on the class of TU-games with a nonempty core and use
them to compare the 1-nucleolus and the nucleolus. In particular, it is seen that
the 1-nucleolus satisfies individual superadditivity gains to the grand coalition and
first agent consistency, which are not satisfied by the nucleolus. Unfortunately,
just like the nucleolus, the 1-nucleolus does not satisfy aggregate monotonicity
either.

The outline of the paper is as follows. Section 2 recalls basic concepts and results
that will be used throughout the paper. Section 3 formally defines the 1-nucleoli. In
Sect. 4,we characterize the 1-nucleolus bymeans of a combination of bankruptcy rules.
Section 5 analyzes the 1-nucleolus in relationwith the nucleolus for compromise stable
games and Sect. 6 is dedicated to open questions and to comparing the 1-nucleolus
and nucleolus based on some desirable properties.
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2 Preliminaries

In this section, we survey some well-known concepts and results that will be used in
the subsequent sections.

For x, y ∈ R
n , we say that x is lexicographically smaller than y, x <L y, if there

is m ∈ {1, . . . , n} such that xl = yl for every 1 ≤ l < m and xm < ym . Moreover,
x ≤L y if either x = y, or x <L y.

A transferable utility game (TU-game) is a pair (N , v) where N is a finite set of
players and v : 2N → R satisfies v(∅) = 0, where 2N denotes the set of subsets or
coalitions of N . In general, v(S) represents the value of coalition S, that is, the joint
payoff that can be obtained by this coalition when its members decide to cooperate.
Let G N be the set of all TU-games with player set N . Given S ⊆ N , let |S| be the
number of players in S.

The main focus within a cooperative setting is on how to share the total joint
payoff obtained when all players decide to cooperate. Given a TU-game v ∈ G N ,
the imputation set of v, I (v), is the set of efficient allocations that are individually
rational. Formally,

I (v) =
{

x ∈ R
N ‖

∑
i∈N

xi = v(N ), xi ≥ v({i}) for all i ∈ N

}
.

Note that the imputation set is nonempty if, and only if,

∑
i∈N

v({i}) ≤ v(N ).

Wedenote by I N the set of all TU-gameswith player set N andnonempty imputation
set.

The core of v ∈ G N , Core(v), was first introduced in Gillies (1953) and is defined
as the set of efficient allocations that are stable, in the sense that no coalition has an
incentive to deviate. Formally,

Core(v) =
{

x ∈ R
N |

∑
i∈N

xi = v(N ),
∑
i∈S

xi ≥ v(S) for all S ⊆ N

}
.

Bondareva (1963) and Shapley (1967) established that a game v ∈ G N has a nonempty
core if, and only if, it is balanced. Before introducing balanced games, we need to fix
some notation.

Let ∅ 	= S ⊆ N and let eS ∈ R
N be the characteristic vector of S, defined as

eS
i = 1 if i ∈ S and eS

i = 0 if i /∈ S. A family B of nonempty subcoalitions of S
is called balanced on S if there are positive weights δ = {δT }T ∈B, δT > 0 for all
T ∈ B, such that ∑

T ∈B
δT eT = eS or, equivalently,

∑
T ∈B:T 
i δT = 1 for all i ∈ S and∑

T ∈B:T 
i δT = 0 for all i ∈ N\S. We denote byF(S) the set of balanced families of
S. Given a balanced familyB, we denote by�(B) the set of positive weights satisfying
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the balancedness condition. A game v ∈ G N is called balanced if for all balanced
families B ∈ F(N ) and all {δS}S∈B ∈ �(B),

∑
S∈B

δSv(S) ≤ v(N ).

A well-established one-point solution concept is the nucleolus, introduced in
Schmeidler (1969). Let v ∈ I N and let x ∈ I (v). We denote the excess of coali-
tion S ∈ 2N with respect to x by

e(S, x) = v(S) −
∑
j∈S

x j .

Moreover, we denote by θ(x) ∈ R
2|N |

the vector whose coordinates are the excesses
e(S, x) arranged in non-increasing order, that is, θl(x) ≥ θm(x) for every 1 ≤ l ≤
m ≤ 2|N |. The nucleolus of v ∈ G N , nuc(v), is defined as

nuc(v) = {x ∈ I (v)|θ(x) ≤L θ(y) for all y ∈ I (v)}.

Schmeidler (1969) showed that the nucleolus of a game with a nonempty imputation
set exists and is unique. The nucleolus is invariant with respect to positive affine
transformations, i.e. for v ∈ I N , α > 0, and a ∈ R

N , it follows nuc(αv + a) =
αnuc(v) + a with (αv + a)(S) = αv(S) + ∑

j∈S a j for every S ∈ 2N .

Tijs and Lipperts (1982) introduced the core cover. Let v ∈ I N and i ∈ N . The
utopia value of player i , Mi (v), is defined as

Mi (v) = v(N ) − v(N\{i}).

The minimal right of player i , mi (v), is defined as

mi (v) = max
S⊆N\{i}

⎧⎨
⎩v(S ∪ {i}) −

∑
j∈S

M j (v)

⎫⎬
⎭ .

Note that, in general, we need 2|N |−1 values to compute the minimal right of a player.
Thus, in general, the computation of minimal rights is NP-hard. The utopia vector
is given by M(v) = (Mi (v))i∈N and the minimal right vector is given by m(v) =
(mi (v))i∈N . The core cover of v ∈ G N , CC(v), is defined as

CC(v) = {x ∈ I (v) | m(v) ≤ x ≤ M(v)}.

It can be verified that Core(v) ⊆ CC(v) ⊆ I (v). A TU game v ∈ I N is compromise
admissible if CC(v) 	= ∅. A compromise admissible game is compromise stable if
Core(v) = CC(v). Quant et al. (2005) characterized the family of compromise stable
games.

Theorem 2.1 (Quant et al. 2005). Let v ∈ I N be compromise admissible. Then, v is
compromise stable if, and only if, v(S) ≤ max{∑ j∈S m j (v), v(N )−∑

j∈N\S M j (v)}
for every S ⊆ N.
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An important subclass of balanced games is the class of convex games, as introduced
in Shapley (1971). A game v ∈ G N is convex if v(S ∪{i})−v(S) ≤ v(T ∪{i})−v(T )

for every i ∈ N and S ⊆ T ⊆ N\{i}.
A bankruptcy problem is described by (N , E, c), with N a finite set of players,

E > 0, and c ∈ R
N such that ci ≥ 0 for all i ∈ N and

∑
i∈N ci ≥ E . O’Neill (1982)

defines the bankruptcy game associated to a bankruptcy problem (N , E, c), as

vE,c(S) = max

⎧⎨
⎩0, E −

∑
i∈N\S

ci

⎫⎬
⎭ for every S ∈ 2N .

In fact, Quant et al. (2005) show that a game is convex and compromise stable game
if, and only if, it is S-equivalent1 to a bankruptcy game. Aumann andMaschler (1985)
show that the nucleolus of a bankruptcy game corresponds to the Aumann–Maschler
rule of the corresponding bankruptcy problem.

3 1-nucleolus

This section focuses on the 1-nucleolus of a game by considering excesses only of
coalitions of size at most 1 and at least |N | − 1. In order to formally define the 1-
nucleolus, we need to fix some notation. Let N be a finite set, we denote

C1(N ) = {S ∈ 2N | |S| ≤ 1 or |S| ≥ |N | − 1}.

If no confusion arises, we write C1 instead of C1(N ). Given v ∈ I N and x ∈ I (v),
we write θ1(x) ∈ R

2(|N |+1) the vector whose coordinates are the excesses e(S, x),
with S ∈ C1, arranged in non-increasing order, that is, θ1l (x) ≥ θ1m(x) for every
1 ≤ l ≤ m ≤ 2(|N | + 1).

Definition 3.1 Let v ∈ I N . The 1-nucleolus is defined by

nuc1(v) = {x ∈ I (v)|θ1(x) ≤L θ1(y) for all y ∈ I (v)}.

Note that for |N | = 3, C1(N ) = 2N . As a consequence, the 1-nucleolus and nucle-
olus of 3-players games coincide. Moreover, just like the nucleolus, the 1-nucleolus
is invariant with respect to positive affine transformations.

Theorem 3.2 (cf. Schmeidler 1969) Let v ∈ I N . Then, nuc1(v) exists and is unique.

The characterization of the nucleolus in Kohlberg (1971) can be translated to the
1-nucleolus as already pointed out inMaschler et al. (1992). For this, we need to obtain
a partition of the coalitions in N of size at most 1 or at least |N | − 1. Let v ∈ I N and
let x ∈ I (v). Let B1

0 (x, v) = {{i} ⊆ N |xi = v({i})} and define recursively

1 Two games v, w ∈ G N are S-equivalent if there exists α > 0 and a ∈ R
N such that v(S) = αw(S) +∑

i∈S ai for every S ⊆ N .
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B1
l (x, v) =

{
S ∈ C1(N )\(∪l−1

m=1B1
m(x, v))|e(S, x) ≥ e(R, x)

for every R ∈ C1(N )\(∪l−1
m=1B1

m(x, v))
}

for l ∈ {1, . . . , p}, with p such that B1
p(x, v) 	= ∅ and 〈B1

1 (x, v), . . . , B1
p(x, v)〉

forms a partition of the set of coalitions of C1(N ). For l ∈ {1, . . . , p}, let B1,l(x, v) =
∪l

m=1B1
m(x, v).

Theorem 3.3 (cf. Kohlberg 1971; Maschler et al. 1992). Let v ∈ I N . Then, x is the
1-nucleolus of v if, and only if, for every l ∈ {1, . . . , p}, there exists B1,l

0 (x, v) ⊆
B1
0 (x, v) such that B1,l

0 (x, v) ∪ B1,l(x, v) is balanced.

4 1-nucleolus and bankruptcy

The 1-nucleolus only takes into account the information provided by the value of
the singletons (individual coalitions), the value of the |N | − 1 player coalitions, and
the value of the grand coalition. Thus, the information needed stems from 2|N | + 1
coalitions.

This section shows that the 1-nucleolus is related to the Aumann–Maschler rule of
bankruptcy problems (see Aumann and Maschler 1985), the constrained equal losses
rule for bankruptcy problems, and the equal share rule. Moreover, the 1-nucleolus
of a balanced game can be described as the Aumann–Maschler rule of an associated
bankruptcy problem. As a consequence, it turns out that the 1-nucleolus and the nucle-
olus of bankruptcy games coincide (see O’Neill 1982; Aumann and Maschler 1985;
Quant et al. 2005). We recall some well-known bankruptcy rules in the literature. The
equal share rule of a bankruptcy problem (N , E, c), ES(N , E, c), assigns

ES j (N , E, c) = E

|N | for every j ∈ N .

The constrained equal awards rule of a bankruptcy problem (N , E, c), CEA(N , E, c),
assigns

CEA j (N , E, c) = min{λ, c j } to every j ∈ N ,

with λ ∈ R+ chosen such that
∑

j∈N CEA j (N , E, c) = E . The Aumann–Maschler
rule of a bankruptcy problem (N , E, c), AM(N , E, c), is given by

AM(N , E, c) =
{
CEA

(
N , E, 1

2c
)

if E ≤ 1
2

∑
j∈N c j ,

c − CEA
(

N ,
∑

j∈N c j − E, 1
2c

)
otherwise.

Aumann and Maschler (1985) showed that the Aumann–Maschler rule of a
bankruptcy problem corresponds to the nucleolus of the associated bankruptcy game.
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To conclude, the constrained equal losses rule of a bankruptcy problem (N , E, c),
CEL(N , E, c), is defined as

CEL j (N , E, c) = max{0, c j − λ} for every j ∈ N ,

where λ is chosen such that
∑

j∈N CEL j (N , E, c) = E .

For v ∈ I N , we define the zero-normalization of v, v0 ∈ I N , as

v0(S) = v(S) −
∑
j∈S

v({ j}) for every S ∈ 2N .

Note that nuc1(v0) = nuc1(v) − (v({ j})) j∈N . Therefore, when describing the
1-nucleolus, we can assume that v = v0, that is, that v is zero-normalized.

The following result fully describes the 1-nucleolus by means of a combination of
standard bankruptcy solutions to associated bankruptcy problems.

Theorem 4.1 Let v ∈ I N with v = v0. Let E = v(N ) and let c ∈ R
N be defined by

c j = v(N ) − v(N\{ j}) for every j ∈ N.

(i) If c j ≥ 0 for every j ∈ N, then,

nuc1(v) =
{

AM(N , E, c) if E ≤ ∑
j∈N c j ,

c + ES(N , E − ∑
j∈N c j , c) if E >

∑
j∈N c j .

(ii) If c j < 0 for some j ∈ N, let c+ ∈ R
N be defined by c+

j = max{0, c j } for every

j ∈ N and let cmin ∈ R
N be defined as cmin

j = c j − min{cl |l ∈ N } for every
j ∈ N. Then,

nuc1(v) =

⎧⎪⎨
⎪⎩

AM(N , E, c+) if E ≤ ∑
j∈N c+

j ,

CEL(N , E, cmin) if
∑

j∈N c+
j < E ≤ ∑

j∈N cmin
j ,

c + ES(N , E − ∑
j∈N c j , c) if E >

∑
j∈N cmin

j .

Proof See “Appendix”.

Since all rules used in Theorem 4.1 are computed in polynomial time and only
the values of coalitions of size 1, |N | − 1, and |N | are used, the 1-nucleolus is also
computed in polynomial time. The next result provides an explicit connection of the
1-nucleolus for balanced games to the Aumann–Maschler rule.

Theorem 4.2 Let v ∈ I N be a balanced game with v = v0. Then,

nuc1(v) = AM(N , E, c)

with E = v(N ) and c ∈ R
N defined as c j = v(N ) − v(N\{ j}) for every j ∈ N.
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Proof By Theorem 4.1 (i), it suffices to show that c j ≥ 0 for every j ∈ N and that
E ≤ ∑

j∈N c j .
Let j ∈ N . Since v is balanced, we have that v(N ) ≥ v({ j}) + v(N\{ j}) =

v(N\{ j}). Therefore, c j = v(N ) − v(N\{ j}) ≥ 0.
Moreover, since v is balanced, we have that

∑
j∈N

1
|N |−1v(N\{ j}) ≤ v(N ). There-

fore,

E = v(N ) = v(N ) + (|N | − 1)
∑
j∈N

1

|N | − 1
v(N\{ j}) −

∑
j∈N

v(N\{ j})

≤ v(N ) + (|N | − 1)v(N ) −
∑
j∈N

v(N\{ j}) =
∑
j∈N

(v(N ) − v(N\{ j})) =
∑
j∈N

c j .

As a consequence, we have

Theorem 4.3 Let (N , E, c) be a bankruptcy problem and let (N , vE,c) be the corre-
sponding bankruptcy game. Then, nuc(vE,c) = nuc1(vE,c).

Proof Let w ∈ G N be the zero-normalization of vE,c, that is w(S) = vE,c(S) −∑
j∈S vE,c({ j}) for all S ∈ 2N . Then,

nuc1(vE,c) = (vE,c({ j})) j∈N + nuc1(w)

= (vE,c({ j})) j∈N + AM(N , w(N ), (w(N ) − w(N\{ j})) j∈N )

= (vE,c({ j})) j∈N

+ AM

⎛
⎝N , vE,c(N ) −

∑
j∈N

vE,c({ j}), M(vE,c) − (vE,c({ j})) j∈N

⎞
⎠

= m(vE,c) + AM(N , vE,c(N ) −
∑
j∈N

m j (vE,c), M(vE,c) − m(vE,c))

= AM(N , vE,c(N ), M(vE,c))

= nuc(vE,c)

where the third equality follows from Mi (w) = w(N ) − w(N\{i}) = Mi (vE,c) −
vE,c({i}) for every i ∈ N , the fourth equality is a direct consequence of vE,c({ j}) =
m j (vE,c) for every j ∈ N , and the fifth equality follows from the fact that theAumann–
Maschler rule satisfies the property of minimal rights first (see Thomson 2003).

As a consequence of Theorem 4.3, the nucleolus and 1-nucleolus of convex and
compromise stable games coincide since every convex and compromise stable game
is S-equivalent to a bankruptcy game (cf. Quant et al. 2005).

5 1-nucleolus and nucleolus

Quant et al. (2005) characterize the nucleolus of compromise stable games.

123



On the 1-nucleolus 317

Theorem 5.1 (Quant et al. 2005). Let v ∈ I N be a compromise stable game. Then,

nuc(v) = m(v) + AM(N , v(N ) −
∑
j∈N

m j (v), M(v) − m(v)).

By Theorem 5.1, the nucleolus of a compromise stable game depends on the minimal
right vector of the game and its computation is, therefore, still NP-hard. The following
example shows that the 1-nucleolusmight not belong to the core cover of a compromise
stable game. Furthermore, it illustrates that the 1-nucleolus and the nucleolus of such
a game need not coincide.

Example 5.2 Consider v ∈ I N with N = {1, 2, 3, 4},

v({1}) = 0, v({2}) = 0, v({3}) = 0, v({4}) = 0,

v({1, 2}) = 0, v({1, 3}) = 0, v({1, 4}) = 1, v({2, 3}) = 3,

v({2, 4}) = 0, v({3, 4}) = 4,

v({1, 2, 3}) = 0, v({1, 2, 4}) = 1, v({1, 3, 4}) = 5, v({2, 3, 4}) = 5, v(N ) = 5.

Here, m(v) = (0, 0, 3, 1) and M(v) = (0, 0, 4, 5). One readily verifies (using Theo-
rem 2.1) that v is compromise stable. Using Theorem 5.1, we have

nuc(v) = (0, 0, 3, 1) + AM(N , 1, (0, 0, 1, 4)) = (0, 0, 3.5, 1.5) ∈ CC(v).

However, using Theorem 4.1, we have

nuc1(v) = AM(N , 5, (0, 0, 4, 5)) = (0, 0, 2, 3) /∈ CC(v).

Notice that in the example above, both the nucleolus and the 1-nucleolus are
obtained through the Aumann–Maschler rule, but they provide different allocations.
This difference arises from the fact that we first allocate theminimal rights in the nucle-
olus and thenwe apply theAumann–Maschler rule, while in the case of the 1-nucleolus
we first allocate the vector (v({i}))i∈N and then we apply the Aumann–Maschler rule.
Thus, some of the coordinates of the 1-nucleolus may be smaller than the corre-
sponding coordinates of the minimal rights vector. Precisely that difference makes the
1-nucleolus of a compromise stable game easier to compute than the nucleolus, since
one does not need the minimal rights vector. Next, we provide some conditions for
the nucleolus and 1-nucleolus of a compromise stable game to coincide.

Theorem 5.3 Let v ∈ I N be compromise stable. Let E = v(N ) − ∑
j∈N v({ j}) and

c j = M j (v) − v({ j}) for every j ∈ N.

(i) If m j (vE,c) = m j (v) − v({ j}) for every j ∈ N, then, nuc1(v) = nuc(v).
(ii) If m j (v) = max{v({ j}), v(N ) − ∑

k∈N\{ j} Mk(v)} for every j ∈ N, then,

nuc1(v) = nuc(v).
(iii) If either m(v) < M(v), or m(v) = M(v), then, nuc1(v) = nuc(v).
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318 A. Estévez-Fernández et al.

Proof We assume, without loss of generality, that v = v0. Note that E = v(N ) −∑
j∈N v({ j}) = v(N ) and c j = M j (v) − v({ j}) = M j (v) for every j ∈ N . Since

v is compromise stable, v is balanced and, therefore, nuc1(v) = AM(N , E, c) by
Theorem 4.2.

(i) Let m j (vE,c) = m j (v) − v({ j}) = m j (v) for every j ∈ N . Then,

nuc1(v) = AM(N , E, c)

= m(vE,c) + AM(N , E −
∑
j∈N

m j (vE,c), c − m(vE,c))

= m(v) + AM(N , v(N ) −
∑
j∈N

m j (v), M(v) − m(v))

= nuc(v)

where the second equality follows from the fact that the Aumann–Maschler rule
satisfies minimal rights first (see Thomson 2003), the third one is a direct conse-
quence of m j (vE,c) = m j (v) − v({ j}) = m j (v) for every j ∈ N , and the last
one follows from Theorem 5.1.

(ii) Letm j (v) = max
{
v({ j}), v(N ) − ∑

k∈N\{ j} Mk(v)
}
for every j ∈ N .We show

that m j (vE,c) = m j (v) − v({ j}) = m j (v) for every j ∈ N .
Since (N , vE,c) is convex, we havem j (vE,c) = vE,c({ j}) for every j ∈ N . Then,
for j ∈ N ,

m j (vE,c) = vE,c({ j})
= max

{
0, E −

∑
k∈N\{ j}

ck

}

= max

{
0, v(N ) −

∑
k∈N

v({k}) −
∑

k∈N\{ j}
(Mk(v) − v({k}))

}

= max

{
0, v(N ) −

∑
k∈N\{ j}

Mk(v)

}

= max

{
v({ j}), v(N ) −

∑
k∈N\{ j}

Mk(v)

}

= m j (v) − v({ j})

Then, by (i), we have that nuc1(v) = nuc(v).
(iii) First, let m(v) < M(v). We show that m j (v) = max{v({ j}), v(N ) −∑

k∈N\{ j} Mk(v)} for every j ∈ N . By (ii), we then have that nuc1(v) = nuc(v).

On the contrary, suppose that there exists i ∈ N and S ∈ 2N \{∅, N } with
S 
 i such that mi (v) = v(S) − ∑

k∈S\{i} Mk(v) > max{v({i}), v(N ) −∑
k∈N\{i} Mk(v)}. Then, we arrive at a contradiction since
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mi (v) = v(S) −
∑

k∈S\{i}
Mk(v)

≤ max

{∑
k∈S

mk(v), v(N ) −
∑

k∈N\S

Mk(v)

}
−

∑
k∈S\{i}

Mk(v)

= max

{
mi (v) +

∑
k∈S\{i}

(mk(v) − Mk(v)), v(N ) −
∑

k∈N\{i}
Mk(v)

}

< mi (v)

where the first inequality follows from Theorem 2.1 and the second one is a direct
consequence of M(v) > m(v) and our supposition.
Second, let m(v) = M(v). Since v ∈ I N is a compromise stable game and
m(v) = M(v), it follows that

∑
i∈N mi (v) = v(N ) = ∑

i∈N Mi (v) and
nuc(v) = M(v) = AM(N , E, c) = nuc1(v).

Remark 5.1 As a consequence of Theorem 5.3, we can identify several well-known
classes of compromise stable games for which the nucleolus and the 1-nucleolus
coincide: big boss games (see Muto et al. 1988), clan games (see Potters et al. 1989),
1-convex games (see Driessen 1983) and 2-convex games (see Driessen 1983).

6 Concluding remarks

Similarly to the 1-nucleolus, one can consider k-nucleoli, with k ∈ {1, . . . , |N |},
where only coalitions of size at most k and at least |N | − k are taken into account.
Note that for2 k ≥ �|N |

2 �, nuck(v) = nuc(v) since all coalitions are considered. From
a computational perspective, it could be interesting to further study the 2-nucleolus
and to analyze explicit relationships between the 2-nucleolus and the nucleolus for
special classes of games.

Another solution that selects an allocation on the basis of a restricted number of
coalitional values is the Rawls rule (Tissdell and Harrison 1992), which considers only
individual coalitions. The Rawls rule is also known as the centre of the imputation
set (CIS-value, cf. Driessen and Funaki 1991) in the context of TU games. The 1-
nucleolus, in general, is different from the CIS-value. For instance, consider N =
{1, 2, 3}, v({i}) = 0, for every i ∈ N , v({1, 2}) = 4, v({1, 3}) = 0, v({2, 3}) = 3,
and v(N ) = 6. It turns out that nuc1(v) = (1.5, 3.5, 1), but C I S(v) = (2, 2, 2).

An important line of research in TU-games is the axiomatic characterization of
solutions based on desirable properties. As future research, it may be interesting to
provide such a characterization of the 1-nucleolus for (special classes of) TU-games.
In Table 1, we provide a comparative analysis of some properties regarding the 1-
nucleolus and the nucleolus for the class of balanced games. It is readily seen that
both the 1-nucleolus and the nucleolus satisfy basic properties as invariance with
respect to strategic equivalence, the dummy player property, and symmetry. It turns out
that that the 1-nucleolus, contrary to the nucleolus, satisfies individual superadditivity

2 For each r ∈ R, �r� denotes the largest integer smaller than or equal to r .
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Table 1 Comparative analysis of the 1-nucleolus and the nucleolus by means of properties for the class of
balanced games

Property 1-nucleolus Nucleolus

Aggregate monotonicity No No

Individual superadditivity gains to the grand coalition Yes No

First agent consistency Yes No

gains to the grand coalition and first agent consistency (which is based on the idea
of first-player consistency in Potters and Sudhölter (1999) and this, in turn, is based
on Sobolev (1975)). Unfortunately, just like the nucleolus, the 1-nucleolus does not
satisfy aggregate monotonicity either.

Let f be a one point solution for TU-games. We say that f satisfies

(i) aggregate monotonicity if for every balanced TU-games (N , v) and (N , w)

satisfying v(S) = w(S) for every S ⊆ N , S 	= N , and w(N ) > v(N ),
fi (N , w) ≥ fi (N , v) for every i ∈ N ;

(ii) individual superadditivity gains to the grand coalition if for every balanced TU-
game (N , v) and every players i, j ∈ N satisfying v(N ) − v(N\{i}) − v({i}) ≤
v(N ) − v(N\{ j}) − v({ j}), fi (N , v) ≤ f j (N , v);

(iii) first agent consistency if for every balancedTU-game (N , v)with N = {1, . . . , n}
such that v(N\{1}) + v({1}) ≥ v(N\{2}) + v({2}) ≥ . . . ≥ v(N\{n}) + v({n})
and such that (N\{1}, v1, f1(N ,v)) is balanced, fi (N , v) = fi (N\{1}, v1, f1(N ,v))

for every i ∈ N\{1}; here, for i ∈ N and x ∈ R, the game (N\{i}, vi,x ) is defined
by

vi,x (S) =
{

v(S) if S ⊆ N\{i}, |S| ≤ |N | − 3,
v(S ∪ {i}) − x if S ⊆ N\{i}, |N | − 2 ≤ |S| ≤ |N | − 1.

for every S ⊆ N\{i}.

Acknowledgements The authors would like to thank an associate editor and two referees for their help-
ful suggestions to improve this article. Moreover, we would also like to thank the financial support of
Ministerio de Ciencia e Innovación through Grant MTM2011-27731-C03 and Ministerio de Economía y
Competitividad through Grant MTM2014-53395-C3-3-P.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proof of Theorem 4.1

We assume, without loss of generality, that N = {1, . . . , n} and c1 ≤ c2 ≤ . . . ≤ cn .
Note that if x ∈ I (v), then,

e({ j}, x) = v({ j}) − x j = −x j
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and

e(N\{ j}, x) = v(N\{ j}) −
∑

k∈N\{ j}
xk = v(N\{ j}) − (v(N ) − x j ) = x j − c j .

(i) We have c j ≥ 0 for every j ∈ N .

Case (i.a) E ≤ ∑
j∈N c j .

We show that nuc1(v) = AM(N , E, c). Note that (N , E, c) is a bankruptcy
problem. We distinguish between two situations: E ≤ 1

2

∑
j∈N c j and E >

1
2

∑
j∈N c j .

Case (i.a.1) E ≤ 1
2

∑
j∈N c j .

By definition of the Aumann–Maschler rule, AM(N , E, c) = CEA
(
N , E, 1

2c
)

where CEA j
(
N , E, 1

2c
) = min{λ, 1

2c j } for every j ∈ N and λ ∈ R+ is chosen
such that

∑
j∈N CEA j

(
N , E, 1

2c j
) = E . Let c0 = 0 and let i ∈ N satisfy

ci−1

2
≤ λ <

ci

2
.

Then, λ = 1
|N |−i+1 (E − ∑i−1

k=0
ck
2 ) and

AM j (N , E, c) =
{ c j

2
if 1 ≤ j ≤ i − 1,

λ if i ≤ j ≤ n.

Let x = AM(N , E, c). Then,

e({ j}, x) = −x j =
{

−c j

2
if 1 ≤ j ≤ i − 1,

−λ if i ≤ j ≤ n

and

e(N\{ j}, x) = x j − c j =
{

−c j

2
if 1 ≤ j ≤ i − 1,

λ − c j if i ≤ j ≤ n.

Therefore,

e({1}, x) = e(N\{1}, x) ≥ . . . ≥ e({i − 1}, x)

= e(N\{i − 1}, x) = −ci−1

2
≥ −λ

= e({i}, x) = . . . = e({n}, x) = −λ > −λ + 2λ − ci = λ − ci

= e(N\{i}, x) ≥ . . . ≥ e(N\{n}, x).

Let i1, i2, . . . , i p ∈ {1, . . . , i − 1} be such that

c1 = . . . = ci1 < ci1+1 = . . . = ci2 < . . . < ci p+1 = . . . = ci−1 < ci
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and let j1, j2, . . . , jq ∈ {i, . . . , n} be such that

ci = . . . = c j1 < c j1+1 = . . . = c j2 < . . . < c jq+1 = . . . = cn .

Let i0 = 0, i p+1 = i − 1, j0 = i − 1 and jq+1 = n. Using the same notation as
in Theorem 3.3, we have B1

0 (x, v) = ∅ and

B1
m(x, v) =

⎧⎪⎨
⎪⎩

{{im−1 + 1}, N\{im−1 + 1}, . . . , {im}, N\{im}} if 1 ≤ m ≤ p + 1,

{{i}, . . . , {n}} if m = p + 2,

{N\{ jm−p−3 + 1}, . . . , N\{ jm−p−2}} if p + 3 ≤ m ≤ p + q + 3.

Then,B1,l(x, v) = ∪l
m=1B1

m(x, v) is balanced for every l ∈ {1, 2, . . . , p+q +3}
and, by Theorem 3.3, we have that x = nuc1(v).

Case (i.a.2) E > 1
2

∑
j∈N c j .

By definition of the Aumann–Maschler rule, AM(N , E, c) = c − CEA(
N ,

∑
k∈N ck − E, 1

2c
)
where CEA j

(
N ,

∑
k∈N ck − E, 1

2c
) = min{λ, 1

2c j } for
every j ∈ N andλ ∈ R+ is chosen such that

∑
j∈N CEA j

(
N ,

∑
k∈N ck − E, 1

2c
)

= ∑
k∈N ck − E .

Let c0 = 0 and let i ∈ N satisfy

ci−1

2
≤ λ <

ci

2
.

Then, λ = 1
|N |−i+1

(∑|N |
k=1 ck − E − ∑i−1

k=0
ck
2

)
and

AM j (N , E, c) =
{ c j

2
if 1 ≤ j ≤ i − 1,

c j − λ if i ≤ j ≤ n.

Let x = AM(N , E, c). Then,

e({ j}, x) = −x j =
{

−c j

2
if 1 ≤ j ≤ i − 1,

−c j + λ if i ≤ j ≤ n

and

e(N\{ j}, x) = x j − c j =
{

−c j

2
if 1 ≤ j ≤ i − 1,

−λ if i ≤ j ≤ n.

Therefore,

e({1}, x) = e(N\{1}, x) ≥ . . . ≥ e({i − 1}, x) = e(N\{i − 1}, x)

= −ci−1

2
≥ −λ

= e(N\{i}, x) = . . . = e(N\{n}, x) = −λ > −λ + 2λ − ci = λ − ci

= e({i}, x) ≥ . . . ≥ e({n}, x).
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Then, similarly as in Case (i.a.1), we have that x = nuc1(v) by Theorem 3.3.

Case (i.b) E >
∑

j∈N c j .

We show that nuc1(v) = c + ES(N , E − ∑
j∈N c j , c). Let x = c + ES(N , E −∑

j∈N c j , c). Then, x j = c j + E−∑
k∈N ck

|N | ,

e({ j}, x) = −x j = −c j − E − ∑
k∈N ck

|N | , and

e(N\{ j}, x) = x j − c j = E − ∑
k∈N ck

|N |
for every j ∈ N . Therefore,

e(N\{1}, x) = . . . = e(N\{n}, x) > e({1}, x) ≥ . . . ≥ e({n}, x)

where the strict inequality is a direct consequence of the fact that E−∑
k∈N ck

|N | >

0 > −c1 − E−∑
k∈N ck

|N | . Then, similarly as in Case (i.a.1), we have that x =
nuc1(v) by Theorem 3.3.

(ii) We have c j < 0 for some j ∈ N . Assume, without loss of generality, that
c1 ≤ . . . ≤ ck̄ < 0 ≤ ck̄+1 ≤ . . . ≤ cn with k̄ ∈ {1, . . . , n}.
Case (ii.a) E ≤ ∑

j∈N c+
j .

We show that nuc1(v) = AM(N , E, c+). Note that c+
1 = . . . = c+

k̄
= 0 and

c+
j = c j for every j ∈ {k̄ + 1, . . . , n}. Moreover, (N , E, c+) is a bankruptcy

problem. By definition of the Aumann–Maschler rule, AM j (N , E, c+) = 0 for
every j ∈ {1, . . . , k̄}. Let x = AM(N , E, c+). Then,

e({ j}, x) = −x j = 0 and e(N\{ j}, x) = x j − c j = −c j > 0

for every j ∈ {1, . . . , k̄}.

Since AM j (N , E, c+) > 0 for every j ∈ N with c+
j > 0, it follows

that B1
0 (x, v) = {1, . . . , k̄}. Moreover, B1

1(x, v) = {N\{1}, . . . , N\{k̄}} and
B1
0 (x, v) ∪ B1

1(x, v) is balanced. Further, following the same lines as in Case
(i.a.1) of this proof, one can see that x = nuc1(v).

Case (ii.b)
∑

j∈N c+
j < E ≤ ∑

j∈N cmin
j .

We show that nuc1(v) = CEL(N , E, cmin), with CEL j (N , E, cmin) =
max{0, cmin

j − λ} for every j ∈ N and λ ∈ R+ chosen such that
∑

j∈N CEL j

(N , E, cmin) = E . Note that cmin
j = c j − min{ck |k ∈ N } = c j − c1 for every

j ∈ N and 0 = cmin
1 ≤ cmin

2 ≤ . . . ≤ cmin
n . Moreover, it follows that (N , E, cmin)

is a bankruptcy problem.
Let i ∈ N satisfy

cmin
i−1 ≤ λ < cmin

i .

123



324 A. Estévez-Fernández et al.

Then, λ = 1
|N |−i+1

(∑|N |
k=i cmin

k − E
)
and

CEL j (N , E, cmin) =
{
0 if 1 ≤ j ≤ i − 1,
cmin

j − λ if i ≤ j ≤ n.

Let x = CEL(N , E, cmin). Then,

e({ j}, x) = −x j =
{
0 if 1 ≤ j ≤ i − 1,
−cmin

j + λ if i ≤ j ≤ n

and

e(N\{ j}, x) = x j − c j = x j − cmin
j − c1 =

{−c j if 1 ≤ j ≤ i − 1,
−c1 − λ if i ≤ j ≤ n.

Before we write the excesses in non-increasing order, we show that

i − 1 ≤ k̄. (1)

First, note that
−c1 > λ

since

λ = 1

|N | − i + 1

⎛
⎝ |N |∑

k=i

cmin
k − E

⎞
⎠ = 1

|N | − i + 1

⎛
⎝ |N |∑

k=i

(ck − c1) − E

⎞
⎠

= 1

|N | − i + 1

⎛
⎝ |N |∑

k=i

ck − E

⎞
⎠ − c1 ≤ 1

|N | − i + 1

(∑
k∈N

c+
k − E

)
− c1 < −c1,

where the weak inequality is a direct consequence of the definition of c+ and the
strict inequality follows by the assumption

∑
k∈N c+

k < E .
Next, we show that i − 1 ≤ k̄ by contradiction. Suppose, on the contrary, that
i − 1 > k̄. Then, ci−1 > 0 by definition of k̄ and cmin

i−1 = ci−1 − c1 > −c1 >

λ. This establishes a contradiction with the definition of i . Therefore, we have
i − 1 ≤ k̄. Then,

B1
0 (x, v) = {1, . . . , i − 1}

and

e(N\{1}, x) ≥ . . . ≥ e(N\{i − 1}, x) ≥ e(N\{i}, x) = . . . = e(N\{n}, x)

> e({1}, x) = . . . = e({i − 1}, x) > e({i}, x) ≥ . . . ≥ e({n}, x)

where e(N\{i−1}, x) ≥ e(N\{i}, x) because−ci−1 = −c1−cmin
i−1 ≥ −c1−λ by

definition of i ; e(N\{n}, x) > e({1}, x) since −c1 > λ and, then, −c1 − λ > 0;
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e({i − 1}, x) > e({i}, x) since cmin
i > λ by definition of i . Then, similarly as in

Case (i.a.1), we have that x = nuc1(v) by Theorem 3.3.

Case (ii.c) E >
∑

j∈N cmin
j .

We show that nuc1(v) = c + ES(N , E − ∑
j∈N c j , c). Let x = c + ES(N , E −∑

j∈N c j , c). Then, x j = c j + E−∑
k∈N ck

|N | ,

e({ j}, x) = −x j = −c j − E − ∑
k∈N ck

|N | , and

e(N\{ j}, x) = x j − c j = E − ∑
k∈N ck

|N |

for every j ∈ N . Therefore,

e(N\{1}, x) = . . . = e(N\{n}, x) > e({1}, x) ≥ . . . ≥ e({n}, x)

where the strict inequality is a direct consequence of the fact that E−∑
k∈N ck

|N | >

0 > −c1 − E−∑
k∈N ck

|N | . Then, similarly as in Case (i.a.1), we have that x =
nuc1(v) by Theorem 3.3. �

7 Proofs or counterexamples to the properties on Table 1

To see that the nucleolus and the 1-nucleolus do not satisfy aggregatemonotonicity, we
refer to the example in Tauman and Zapechelnyuk (2010), where both the nucleolus
and 1-nucleolus coincide.

Since the 1-nucleolus of a balanced game (N , v) is given by nuc1i (v) = v({i}) +
AMi (N , E, c) for every i ∈ N , with (N , E, c) the bankruptcy problem given by
E = v(N ) − ∑

j∈N v({ j}) and c j = v(N ) − v(N\{ j}) − v({ j}) for every j ∈ N ,
it immediately follows that the 1-nucleolus satisfies individual superadditivity gains
to the grand coalition since the Aumann–Maschler rule satisfies order preservation
(cf. Thomson 2003). Example 5.2 shows that the nucleolus does not need to satisfy
individual superadditivity gains to the grand coalition.

With respect to first agent consistency, Example 5.2 provides a balanced game
for which the nucleolus does not satisfy first agent consistency. Next, we show
that the 1-nucleolus satisfies first agent consistency. Let (N , v) be a balanced TU-
game with N = {1, . . . , n} such that v(N\{1}) + v({1}) ≥ v(N\{2}) + v({2}) ≥
. . . ≥ v(N\{n}) + v({n}) and such that (N\{1}, v1, f1(N ,v)) is balanced. We show
that fi (N , v) = fi (N\{1}, v1, f1(N ,v)) for every i ∈ N\{1}. We can assume, without
loss of generality, that v = v0. Then, by Theorem 4.2, nuc1(v) = AM(N , E, c) with
E = v(N ) and c ∈ R

N defined as c j = v(N ) − v(N\{ j}) for every j ∈ N . Note
that c1 ≤ c2 ≤ . . . ≤ cn . We distinguish between two cases: E ≤ 1

2

∑
j∈N c j and

E > 1
2

∑
j∈N c j .
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Case 1 E ≤ 1
2

∑
j∈N c j In this case,

nuc1(v) = CEA

(
N , E,

1

2
c

)

and nuc11(v) = min
{

c1
2 ,

v(N )
n

}
. Besides, the game (N\{1}, v1,nuc11(N ,v)) is given

by

v1,nuc11(N ,v)(S) =
⎧⎨
⎩

v(N ) − nuc11(v) if S = N\{1},
v(S ∪ {1}) − nuc11(v) if |S| = n − 2,
v(S) otherwise.

Let Ẽ = v(N ) − nuc11(v) and c̃ ∈ R
N\{1} with

c̃ j = v1,nuc11(N ,v)(N\{1}) − v1,nuc11(N ,v)(N\{1, j}) = v(N ) − v(N\{ j}) = c j

for every j ∈ N\{1}. First, if nuc11(v) = c1
2 , then, v(N ) = E ≤ 1

2

∑n
j=1 c j implies

Ẽ = v(N ) − c1
2

≤
n∑

j=2

c j

2
=

n∑
j=2

c̃ j

2
.

Second, if nuc11(v) = v(N )
n , then, c1

2 ≤ v(N )
n and

Ẽ = (n − 1)v(N )

n
≤ (n − 1)

c1
2

≤
n∑

j=2

c j

2
=

n∑
j=2

c̃ j

2

where the second inequality is a direct consequence of c1 ≤ c2 ≤ . . . ≤ cn . Therefore,

nuc1(v1,nuc11(N ,v)) = CEA

(
N\{1}, Ẽ,

1

2
cN\{1}

)

and

nuc12(v1,nuc11(N ,v)) = min

{
c2
2

,
v(N ) − nuc11(v)

n − 1

}

= min

{
c2
2

,
v(N ) − CEA1

(
N , E, 1

2c
)

n − 1

}

= CEA2

(
N , E,

1

2
c

)
= nuc12(v).

Next, assume that nuc1j (v1,nuc11(N ,v)) = nuc1j (v) for every j = 2, . . . , i − 1,

with i ∈ N\{1, 2}. We show that nuc1i (v1,nuc11(N ,v)) = nuc1i (N , v). Note that
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CEA j

(
N , Ẽ, 1

2c
)

= nuc1j (v1,nuc11(N ,v)) = nuc1j (v) = CEA j
(
N , E, 1

2c
)
for j =

2, . . . , i − 1 and

nuc1i (v1,nuc11(N ,v)) = min

⎧⎨
⎩c j

2
,

Ẽ − ∑i−1
j=2 CEA j

(
N , Ẽ, 1

2c
)

n − i + 1

⎫⎬
⎭

= min

⎧⎨
⎩c j

2
,
v(N ) − nuc11(v) − ∑i−1

j=2 CEA j

(
N , Ẽ, 1

2c
)

n − i + 1

⎫⎬
⎭

= min

{
c j

2
,
v(N ) − ∑i−1

j=1 CEA j
(
N , E, 1

2c
)

n − i + 1

}

= CEAi

(
N , E,

1

2
c

)
= nuc1i (v).

Case 2 E > 1
2

∑
j∈N c j

In this case,

nuc1(v) = c − CEA

⎛
⎝N ,

∑
j∈N

c j − E,
1

2
c

⎞
⎠

nuc11(v) = c1 −min

{
c1
2 ,

∑n
j=1 c j −v(N )

n

}
. Besides, the game (N\{1}, v1,nuc11(N ,v))

is given by

v1,nuc11(N ,v)(S) =
⎧⎨
⎩

v(N ) − nuc11(v) if S = N\{1},
v(S ∪ {1}) − nuc11(v) if |S| = n − 2,
v(S) otherwise.

Let Ẽ = v(N ) − nuc11(v) and c̃ ∈ R
N\{1} with

c̃ j = v1,nuc11(N ,v)(N\{1}) − v1,nuc11(N ,v)(N\{1, j}) = c j

for every j ∈ N\{1}. First, if nuc11(v) = c1
2 , v(N ) > 1

2

∑n
j=1

c j
2 implies

Ẽ = v(N ) − c1
2

>
1

2

n∑
j=2

c j = 1

2

n∑
j=2

c̃ j .
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Second, if nuc11(v) = c1 −
∑n

j=1 c j −v(N )

n , then,

Ẽ = v(N ) − c1 +
∑n

j=1 c j − v(N )

n
=

n∑
j=2

c j − n − 1

n

⎛
⎝ n∑

j=1

c j − v(N )

⎞
⎠

=
n∑

j=2

(
c j −

∑n
k=1 ck − v(N )

n

)
≥

n∑
j=2

c j

2
= 1

2

n∑
j=2

c̃ j .

where the inequality is a direct consequence of c j −
∑n

k=1 ck−v(N )

n ≥ c j
2 for every j ∈

{2, . . . , n}. To see this, note that c1 −
∑n

j=1 c j −v(N )

n ≥ c1
2 implies c1

2 −
∑n

j=1 c j −v(N )

n ≥
0. Then, since c j ≥ c1 for j ∈ {2, . . . , n}, we have

c j
2 −

∑n
k=1 ck−v(N )

n ≥ c1
2 −∑n

k=1 ck−v(N )

n ≥ 0 and c j −
∑n

k=1 ck−v(N )

n ≥ c j
2 for every j ∈ {2, . . . , n}. Therefore,

nuc1(v1,nuc11(N ,v)) = c − CEA

⎛
⎝N\{1},

n∑
j=2

c j − Ẽ,
1

2
cN\{1}

⎞
⎠

and

nuc12(v1,nuc11(N ,v)) = c2 − CEA2

⎛
⎝N\{1},

n∑
j=2

c j − Ẽ,
1

2
cN\{1}

⎞
⎠

= c2 − min

{
c2
2

,

∑n
j=2 c j − Ẽ

n − 1

}

= c2 − min

{
c2
2

,

∑n
j=2 c j − (

v(N ) − nuc11(v)
)

n − 1

}

= c2 − min

{
c2
2

,

∑n
j=1 c j − v(N ) − (

c1 − nuc11(v)
)

n − 1

}

= c2 − min

⎧⎪⎪⎨
⎪⎪⎩

c2
2

,

∑n
j=1 c j − E − min

{
c1
2 ,

∑n
j=1 c j −E

n

}
n − 1

⎫⎪⎪⎬
⎪⎪⎭

= c2 − min

⎧⎨
⎩c2

2
,

∑n
j=1 c j − E − CEA1

(
N ,

∑n
j=1 c j − E, 1

2c
)

n − 1

⎫⎬
⎭

= c2 − CEA2

⎛
⎝N ,

n∑
j=1

c j − E,
1

2
c

⎞
⎠ = nuc12(v).

Following the same lines as in the case above, one can see that nuc1j (v1,nuc11(N ,v)) =
nuc1j (N , v) for j = 2, . . . , n.
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