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Abstract We consider a full information best-choice problemwhere an administrator
who has only one on-line choice in m consecutive searches has to choose the best
candidate in one of them.
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1 Introduction and notation

In the full information best-choice problem Gilbert and Mosteller (1966) we deal
with a discrete time stochastic process (X1, . . . , Xn) where X1, . . . , Xn are i.i.d.
random variables with known continuous cumulative distribution function F . We
observe elements of (X1, . . . , Xn) one by one and our goal is to choose on-line the
largest element of X1, . . . , Xn which is not a priori known. Stopping the process at a
given moment means choosing the object we have observed at this moment accord-
ing to the knowledge obtained in the hitherto observations. The best-choice problem
consists of finding a strategy of stopping the process that maximizes the probability
P [Xτ = max {X1, . . . , Xn}] over all stopping times τ ≤ n. [see Gnedin (1996)]

Let us recall basic results for this case.
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278 M. Kuchta

Numbers dk , called decision numbers, are implicitly defined as satisfying the fol-
lowing equalities: d0 = 0 and for k = 1, 2 . . .,

k∑

j=1

(
k

j

)
(d−1

k − 1) j j−1 = 1,

or, equivalently,

k∑

j=1

(d− j
k − 1) j−1 = 1.

The optimal stopping time is given by the following formula:

τ ∗
n = min {t : Xt = max {X1, . . . , Xt } , 1 ≤ t ≤ n and F(Xt ) ≥ dn−t } ,

if the set under minimum is nonempty, otherwise τ ∗
n = n.

It is known [seeSamuels (1991)], that the sequence (dk) is increasing in k, lim
k→∞ dk =

1 and lim
k→∞ k(1 − dk) = c, where c = 0.804352 . . . is the solution of the following

equation

∞∑

j=1

c j

j ! j =
∫ c

0
x−1(ex − 1)dx = 1.

The maximal probability (using the optimal stopping time)

vn = P
[
Xτ∗

n
= max {X1, . . . , Xn}

]

does not depend on F , is strictly decreasing in n and

v∞ := lim
n→∞ vn = e−c + (

ec − c − 1
) ∫ ∞

1
x−1e−cxdx (1)

(v∞ = 0.580164 . . .) [see Samuels (1991)].
In this paper we consider amodification to the classical full information best-choice

problem. Namely, we consider m consecutive classical full information searches. Our
aim is to choose the largest element in one of them if we have only one choice. Our
goal is to find a strategy that maximizes the probability of achieving this aim.

The problem considered here is related to real life situations where contests may be
repeated several times but once in one of them the choice is made the procedure ends.
Usually selectors know how many times they can repeat the contest and intuitively,
the more contests are ahead the more selective they can be.

The solution of the no information version for the repeated contest problem was
presented in Kuchta and Morayne (2014a).

Here is a formal description of the problem considered.
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Iterated full information secretary problem 279

Let n1, . . . , nm ∈ N and
(
X (m), X (m−1), . . . , X (1)

)
be a sequence of m consecutive

searches: for i = 0, . . . ,m − 1,

X (m−i) =
(
X1+∑i−1

k=0 nm−k
, X2+∑i−1

k=0 nm−k
. . . , X∑i

k=0 nm−k

)
,

where X1+∑i−1
k=0 nm−k

, X2+∑i−1
k=0 nm−k

. . . , X∑i
k=0 nm−k

are independent random vari-

ables with known continuous cumulative distribution function Fm−i . (The inverse
numbering simplifies some technicalities in the proof and is adjusted to the recursion
we will use.) The continuous distribution Fm−i is known and since the largest mea-
surement in a sample remains the largest under all monotonic transformations of its
variable, we lose no generality by assuming that Fm−i is the standard uniform for all
searches: F(x) = x on 0 ≤ x ≤ 1.

Let for 1 ≤ i ≤ m

Y (i) ≡
(
X (i), X (i−1), . . . , X (1)

)

and

Max(Y (i)) =
{
max

(
X (i)

)
, . . . ,max

(
X (1)

)}
,

where max(X (i)) is the largest element of the search X (i), for i = 1, . . . ,m.
Let t be an integer, 1 ≤ t ≤ ∑m

i=1 ni . For the time t = ∑i−1
k=0 nm−k + j ,

where 0 ≤ i ≤ m − 1, 1 ≤ j ≤ nm−i , the selector sees the whole sequences
X (m), X (m−1), . . . , X (m−i+1) and the first j values of the search X (m−i). The goal
of the selector is to stop the search at a time t maximizing the probability that
Xt ∈ Max

(
Y (m)

)
. Formally, for t ≥ 1, let Ft be the σ -algebra generated by

X1, . . . , Xt , Ft = σ(X1, . . . , Xt ). Our aim is to find a stopping time τm with respect
to the filtration (Ft ) maximizing the probability P

[
Xτm ∈ Max

(
Y (m)

)]
.

2 Optimal stopping time

Let us recall the Monotone Case Theorem [see Chow et al. (1971)], which is often a
very useful tool when looking for an optimal stopping time.

Theorem 2.1 If {(Zi ,Fi ) : i ≤ n} is a stochastic process such that the inequality
Zi ≥ E(Zi+1|Fi ) implies the inequality Zi+1 ≥ E(Zi+2|Fi+1) for each i ≤ n − 2,
then the stopping time

ρ̄ = min {i : Zi ≥ E(Zi+1|Fi )}

is optimal for maximizing E(Zτ ) over all (Fi )-stopping times τ .

We apply this theorem to determine an optimal stopping time for m searches, i.e.
for Y (m).

Let γm−1 be the probability of success using an optimal stopping time for Y (m−1).
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280 M. Kuchta

For 1 ≤ k ≤ nm we define the sequence of multiple search decision numbers d̂k in
the following way:

d̂0 = 0,

and if 1 ≤ k ≤ nm − 1,

k∑

j=1

1

j

(
d̂− j
k − 1

)
= 1 − γm−1,

or, equivalently,
k∑

j=1

(
k

j

)
1

j

(
d̂−1
k − 1

) j = 1 − γm−1. (2)

Notice that the numbers d̂k are to be used only in the first search X (m). For m = 1,
d̂k = dk .

Now let us define the following stopping times τm for Y (m).
For m = 1:

τ1 = min
{
t : Xt = max {X1, . . . , Xt } , 1 ≤ t ≤ n1 and Xt ≥ dn1−t

}

if the set under minimum is nonempty, otherwise τ1 = n1,
and, for m > 1:

τm =
⎧
⎨

⎩

min{t : Xt = max{X1, . . . Xt } , 1 ≤ t ≤ nm, Xt ≥ d̂nm−t } if the set
under minimum is nonempty,

nm + τm−1 otherwise.

In the first case of the definition above we choose from the first search X (m) =(
X1, . . . , Xnm

)
. In the second case we choose from among the remaining m − 1

searches: Y (m−1), so the recursion is used.

Theorem 2.2 The stopping time τm is optimal for Y (m). When using τm the probability
of success equals

γm = 1

nm

(
1 − (d̂nm−1)

nm
)

+
nm−1∑

t=1

(
1

nm − t

t∑

i=1

(
(d̂nm−i )

t

t
− (d̂nm−i )

nm

nm

)
− (d̂nm−t−1)

nm

nm

)

+ 1

nm

nm−1∑

t=1

(d̂t )
nm · γm−1, (3)

where we set γ0 = 0.
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Iterated full information secretary problem 281

Proof In the proof we use recursion with respect to m. If τm−1 is an optimal stopping
time for the case Y (m−1), then when looking for an optimal stopping time τm for m
searches, i.e. for Y (m), the only stopping times that should be considered are the times
of relative records for X (m) and the optimal stopping time τm−1 in the remainingm−1
searches Y (m−1). Namely,

let ρ1 = 1 and, for 2 ≤ i ≤ ∑m
j=1 n j if ρi−1 ≤ nm , then

ρi =
⎧
⎨

⎩

min{ j > ρi−1 : X j = max{X1, . . . X j }, j ≤ nm} if the set under
minimum is nonempty,

nm + τm−1 otherwise.

(Note that if ρi ≤ nm then ρi is the time of i-th relative record. If ρi−1 > nm then
ρi = ρi−1.)

Let

Wi =
{
1 i f Xρi ∈ Max(Y (m)),

0 i f Xρi /∈ Max(Y (m)),

and

Zi = E(Wi |Fρi ).

Let us notice that in our notation the probability of stopping on a maximal element
is equal to

P[Xρi ∈ Max(Y (m))] = P[Wi = 1] = E(Zi ).

Thus, our aim is maximizing E(Zτ ) over all
(Fρi

)
i - stopping times τ . By Theorems

2.3, 4.1 and Proposition 5.2 of Kuchta and Morayne (2014b) the process Z satisfies
the hypothesis of the Monotone Case Theorem.

Suppose we have seen the t-th element x from the first search and this element is
maximal so far. Thus t = ρ j for some j . There are still nm − t elements to come in
X (m). The probability that the next nm − t elements are not bigger than x is equal to
xnm−t and this is the probability of winning if we stop now. The probability of winning
in the time of the next relative record in X (m) is equal to

nm−t∑

i=1

(
nm − t

i

)
1

i
xnm−t−i (1 − x)i ,

where the i-th summand is the probability that exactly i elements from the remaining
nm − t ones are larger than x , and the maximum of those i elements appears first.
Choosing the times when they come corresponds to the factor

(nm−t
i

)
, the probability

that exactly these elements are bigger than x is equal to xnm−t−i (1 − x)i and the
probability that the largest element from this group comes before the other ones is
equal to 1

i .
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282 M. Kuchta

If there is no relative record after x till the time nm , i.e., within the first search
X (m), we use the optimal strategy for the remaining part which consists of m − 1
searches X (m−1), . . . , X (1). The probability that this happens and that we succeed is
equal to xnm−tγm−1. Thus, by the Monotone Case Theorem, we decide to stop at the
t-th moment if it is the first moment of the relative record when

Z j = xnm−t ≥ E(Z j+1|Fρ j ) =
nm−t∑

i=1

(
nm − t

i

)
1

i
xnm−t−i (1 − x)i + xnm−tγm−1.

(4)

Since

nm−t∑

i=1

(
nm − t

i

)
1

i

(
x−1 − 1

)i =
nm−t∑

i=1

1

i

(
x−i − 1

)
,

(4) is equivalent to

1 − γm−1 ≥
nm−t∑

i=1

1

i

(
x−i − 1

)
. (5)

The function f (x) = ∑nm−t
i=1

1
i

(
x−i − 1

)
is decreasing in x , where 0 < x < 1 and

1 ≤ t ≤ nm − 1. Thus the smallest x satisfying (5) is equal to the solution of the
equation

1 − γm−1 =
nm−t∑

i=1

1

i

(
x−i − 1

)
.

Hence τm is an optimal stopping time.
The probability that we choose from X (m) and we are successful is equal to

P
[
Xτm = max(X (m))

]
=

nm∑

t=1

pt , (6)

where pt is the probability that we stop at time t and it is successful, i.e. Xt =
max

{
X1, . . . , Xnm

}
.

Thus

p1 =
∫ 1

d̂nm−1

xnm−1dx = 1

nm

(
1 − (d̂nm−1)

nm
)

. (7)

Let 1 ≤ t ≤ nm − 1. The probability that no element among the first t is chosen
and that the absolute largest is Xt+1 is equal to (see the explanation below)
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Iterated full information secretary problem 283

1

nm − t

t∑

i=1

(∫ d̂nm−i

0
xt−1dx −

∫ d̂nm−i

0
xnm−1dx

)

= 1

nm − t

t∑

i=1

(
(d̂nm−i )

t

t
− (d̂nm−i )

nm

nm

)
, (8)

where the first integral is the probability that the i-th element is below d̂nm−i and it is
the biggest among the first t elements, the second integral is the probability that the
i-th element is below d̂nm−i and it is the absolute maximum, and the factor 1

nm−t is
the probability that the best element among the remaining nm − t elements is exactly
the (t + 1)-th one.

The probability that Xt+1 is the largest in X (m) but does not pass the threshold, is
equal to

∫ d̂nm−t−1

0
xnm−1dx = (d̂nm−t−1)

nm

nm
. (9)

Note that if the last event (whose probability is given by (9)) happens then also the
previous one (whose probability is given by (8)) does, because the thresholds d̂nm−i

are decreasing with i . Thus by (8) and (9), for 1 ≤ t ≤ nm − 1,

pt+1 = 1

nm − t

t∑

i=1

(
(d̂nm−i )

t

t
− (d̂nm−i )

nm

nm

)
− (d̂nm−t−1)

nm

nm
. (10)

We do not stop at the first search X (m) if and only if, for every 1 ≤ t ≤ nm − 1,
Xt < d̂nm−t when Xt = max{X1, . . . Xt }. Thus the probability that using τm we do
not stop at the first search X (m) is equal to

P[τm > nm] =
nm−1∑

t=1

∫ d̂nm−t

0
xnm−1dx =

nm−1∑

t=1

(d̂t )nm

nm
.

The above equality, (7), (10) and (6) yield (3). 	


3 Asymptotics

In this section we examine the asymptotic behavior of the probability of success γm
and the multiple search decision numbers d̂k as ni −→ ∞ for every i ∈ {1, . . . ,m}.

Let us define recursively the following sequence: r0 = 0, and for i ≥ 1:

ri = e−ci + (
eci − ci − 1

) ∫ ∞

1
x−1e−ci xdx, (11)

where ci satisfies the following equation (i ≥ 1):

∫ ci

0
x−1 (

ex − 1
)
dx = 1 − ri−1, (12)
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284 M. Kuchta

or, equivalently,

∞∑

j=1

c ji
j ! j = 1 − ri−1.

Let n∗
i = min{n1, . . . , ni } for i = 1, . . . ,m and let, for 1 ≤ k ≤ nm − 1,

αk = k
(
d̂−1
k − 1

)
. (13)

Theorem 3.1 γm −→ rm as n∗
m −→ ∞.

Proof We prove this theorem by induction with respect to m.
For m = 1 we have only one search and

lim
n∗
1→∞

γ1 = v∞ = r1.

Of course, this is the asymptotic solution (1) of the classical full information best-
choice problem.

Let m ≥ 2 and assume that lim
n∗
m−1→∞

γm−1 = rm−1.

Note that αk is, in fact, a function of m variables: k, nm−1, . . . , n1; αk =
αk(nm−1, . . . , n1).

Claim 1 αk −→ cm as (k, n∗
m) −→ (∞,∞) and k ≤ nm − 1.

Proof of Claim 1 For 1 ≤ k ≤ nm − 1, (2) and (13) yield

1 − γm−1 =
k∑

j=1

(
k

j

)
1

j

(αk

k

) j
.

Thus

1 − γm−1 =
k∑

j=1

(
k

j

)
1

k j

∫ αk

0
x j−1dx =

∫ αk

0

1

x

((
1 + x

k

)k − 1

)
dx

=
∫

R

1[0,αk ]
1

x

((
1 + x

k

)k − 1

)
dx .

Since the function 1
x

((
1 + x

k

)k − 1
)
is increasing in k for x > 0 and, for k = 1,

∫ α1
0 1dx = α1 = 1 − γm−1 ≤ 1, we always have 0 ≤ αk < 1 for 1 < k ≤ nm − 1.
Let U = lim sup(k,n∗

m)→(∞,∞) αk and L = lim inf(k,n∗
m)→(∞,∞) αk .

By Lebesgue’s bounded convergence theorem

1 − rm−1 =
∫

R

1[0,U ]x−1(ex − 1)dx =
∫ U

0
x−1(ex − 1)dx
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Iterated full information secretary problem 285

and

1 − rm−1 =
∫

R

1[0,L]x−1(ex − 1)dx =
∫ L

0
x−1(ex − 1)dx,

which implies L = U . Hence the limit from the statement of the claim exists. In view
of the definition of cm we also obtain lim(k,n∗

m)→(∞,∞) αk = cm . 	

Further we follow the method used by Samuels (1982), [see also Samuels (1991)].
Consider the first search X (m). Let Mt = max {X1, . . . , Xt }, 1 ≤ t ≤ nm , and let

M0 = 0. Let σnm be the arrival time of the largest element in X (m) and σ̂nm be the
arrival time of the largest element in X (m) before the time σnm , i.e.

Xσnm
= Mnm and X σ̂nm

= Mσnm−1.

Because d̂nm−t is decreasing and Mt is increasing in t for 1 ≤ t ≤ nm , the probability
that we choose from X (m) and we are successful is equal to

P
[
Xτm = Mnm

] = P
[
Mnm ≥ d̂nm−σnm

& Mσnm−1 < d̂nm−σ̂nm

]

and the probability that we do not choose from X (m) is equal to

P [τm > nm] = P
[
Mnm < d̂nm−σnm

]
.

Thus,

lim
n∗
m→∞ γm = lim

n∗
m→∞ P

[
Xτm = Mnm

] + lim
n∗
m→∞ P

[
Mnm < d̂nm−σnm

]
· lim
n∗
m−1→∞

γm−1.

(14)

Claim 2

(i) lim
n∗
m→∞ P

[
Xτm = Mnm

] = e−cm + (
ecm − cm − 1

) ∫ ∞

1
x−1e−cmxdx

−rm−1

(
e−cm − cm

∫ ∞

1
x−1e−cmxdx

)
(15)

and

(i i) lim
n∗
m→∞ P

[
Mnm < d̂nm−σnm

]
= e−cm − cm

∫ ∞

1
x−1e−cmxdx . (16)

Proof of Claim 2 We change variables:

Snm = nm
(
1 − Mnm

) ; Tnm = σnm

nm
;

Ŝnm = (
σnm − 1

) (
1 − Mσnm−1

Mnm

)
; T̂nm = σ̂nm

σnm − 1
.
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286 M. Kuchta

Then nm − σnm = nm
(
1 − Tnm

)
and nm − σ̂nm = nm

(
1 − Tnm T̂nm

)
+ T̂nm . Thus,

applying (13),

Mnm ≥ d̂nm−σnm
⇔ Snm

(
1 − Tnm + αnm(1−Tnm )

nm

)
≤ αnm(1−Tnm )

and

Mσnm −1 < d̂nm−σ̂nm
⇔

α
nm

(
1−Tnm T̂nm

)
+T̂nm

<
(
Snm + Lnm

)
[
1 − Tnm T̂nm + 1

nm

(
α
nm

(
1−Tnm T̂nm

)
+T̂nm

+ T̂nm

)]
,

where

Lnm =
(
Tnm − 1

nm

)−1 (
1 − Snm

nm

)
Ŝnm .

Let us define the following events (depending on nm):

A =
[
Snm

(
1 − Tnm + αnm(1−Tnm )

nm

)
≤ αnm(1−Tnm )

]
,

B =
[
αKnm

<
(
Snm + Lnm

) (
1 − Tnm T̂nm + 1

nm

(
αKnm

+ T̂nm
))]

,

where

K = nm
(
1 − Tnm T̂nm

)
+ T̂nm .

Then

P
[
Xτm = Mnm

] = P
[
Mnm ≥ d̂nm−σnm

& Mσnm−1 < d̂nm−σ̂nm

]
= P [A ∩ B]

and

P
[
Mnm < d̂nm−σnm

]
= 1 − P [A] .

By the properties of the uniform distribution,

Snm −→ S, Ŝnm −→ Ŝ, Tnm −→ T, T̂nm −→ T̂ ,

in the weak convergence as n∗
m −→ ∞, where S, Ŝ, T, T̂ are mutually independent

variables, S, Ŝ have the exponential distribution with parameter 1, and T, T̂ have the
uniform distribution on [0, 1].
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We have

lim
n∗
m→∞ P

[
Xτm = Mnm

] = lim
n∗
m→∞ P [A ∩ B]

= P

[
S (1 − T ) ≤ cm ≤

(
S + Ŝ

T

) (
1 − T T̂

)]

and

lim
n∗
m→∞ P

[
Mnm < d̂nm−σnm

]
= lim

n∗
m→∞ (1 − P [A]) = P [S (1 − T ) > cm] .

The conditional probability

P

[
S (1 − T ) ≤ cm ≤

(
S + Ŝ

T

) (
1 − T T̂

)
| S = s, T = t, T̂ = t̂

]

is equal to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if cm/
(
1 − t t̂

) − s < 0 and s ≤ cm/ (1 − t) ,

0 if cm/
(
1 − t t̂

) − s < 0 and s > cm/ (1 − t) ,

e−t(cm/(1−t t̂)−s) otherwise.

Now we integrate this probability multiplied by the exponential density of S and we
obtain the conditional probability for given T = t and T̂ = t̂ :

P

[
S (1 − T ) ≤ cm ≤

(
S + Ŝ

T

)(
1 − T T̂

)
| T = t, T̂ = t̂

]

=
∫ cm/(1−t t̂)

0
e−tcm/(1−t t̂)e−s(1−t)ds +

∫ cm/(1−t)

cm/(1−t t̂)
e−sds

= (1 − t)−1e−tcm/(1−t t̂)
(
1 − e−cm (1−t)/(1−t t̂)

)
+ e−cm/(1−t t̂) − e−cm/(1−t).

In the next step we integrate this expression over the unit square:

∫ 1

0

∫ 1

0
P

[
S (1 − T ) ≤ cm ≤

(
S + Ŝ

T

) (
1 − T T̂

)
| T = t, T̂ = t̂

]
dtdt̂

=
∫ 1

0

∫ 1

0

(
(1 − t)−1e−tcm/(1−t t̂)

(
1 − e−cm (1−t)/(1−t t̂)

)
+ e−cm/(1−t t̂)

)
dtdt̂

−
∫ 1

0

∫ 1

0
e−cm/(1−t)dtdt̂ . (17)
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288 M. Kuchta

It is easy to see that

∫ 1

0

∫ 1

0
e−cm/(1−t)dtdt̂ = e−cm − cm

∫ ∞

1
x−1e−cmxdx .

Making the following change of variables in the first integral of (17)

u = 1 − t

1 − t t̂
, v = 1

1 − t t̂
,

we obtain

∫ 1

0

∫ 1

0

(
(1 − t)−1e−cmt/(1−t t̂)

(
1 − e−cm (1−t)/(1−t t̂)

)
+ e−cm/(1−t t̂)

)
dtdt̂

=
∫ ∞

1

∫ 1

0
v−2 (v − u)−1 e−cm (v−u)dudv

+
(
e−cm − cm

∫ ∞

1
x−1e−cmxdx

) ∫ cm

0
x−1 (

ex − 1
)
dx .

We set w = v − u. Interchanging the order of integration we obtain

∫ ∞

1

∫ 1

0
v−2 (v − u)−1 e−cm (v−u)dudv = e−cm + (

ecm − cm − 1
) ∫ ∞

1
x−1e−cmxdx .

By (12) we obtain (15).
The conditional probability of {S ≥ cm/ (1 − t)} for T = t and T̂ = t̂ is equal to

P
[
S ≥ cm/ (1 − t) | T = t, T̂ = t̂

]
=

∫ ∞

cm/(1−t)
e−sds = e−cm/(1−t).

Analogously,

lim
n∗
m→∞ P

[
Mnm < d̂nm−σnm

]
=

∫ 1

0

∫ 1

0
e−cm/(1−t)dtdt̂=e−cm − cm

∫ ∞

1
x−1e−cmxdx .

This completes the proof of the claim. 	

By (14), (15) and (16) and the induction hypothesis, we get

lim
n∗
m→∞ γm = e−cm + (

ecm − cm − 1
) ∫ ∞

1
x−1e−cmxdx = rm . (18)

This completes the proof. 	

The following proposition describes the asymptotic behavior of the sequences (cm)

and (rm) when m −→ ∞ .
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Proposition 3.2 The sequence (cm) is decreasing and lim
m→∞ cm = 0. The sequence

(rm) is increasing and lim
m→∞ rm = 1.

Proof The function

g(y) = e−y + (
ey − y − 1

) ∫ ∞

y
x−1e−xdx, 0 < y < 1

is decreasing in y, (the derivative of this function is negative i.e. dg
dy = (ey − 1)(∫ ∞

y e−x x−1dx − e−y y−1
)

< 0). By (11), (12) and r0 = 0, c1 ≈ 0.804. It is easy

to see that the sequence (rm) is increasing and cm is decreasing with m −→ ∞ and
both sequences are bounded by 0 and 1. Thus, both sequences are convergent. Let
β = lim

m→∞ cm . By (11) and (12) the sequence (cm) satisfies the following recurrence

∫ cm+1

0
x−1 (

ex − 1
)
dx = 1 − e−cm − (

ecm − cm − 1
) ∫ ∞

1
x−1e−cmxdx .

Thus, β is the solution of the following equation

∫ β

0
x−1 (

ex − 1
)
dx = 1 − e−β − (

eβ − β − 1
) ∫ ∞

1
x−1e−βxdx .

It is easy to check that the only β satisfying this equation is β = 0.
By (18), it is now easy to check that lim

m→∞ rm = 1.

This completes the proof. 	

Approximations of the first ten elements of the sequences (rm) and (cm) are given
in Table 1, see also Fig. 1. For comparison, the first column gives the correspond-
ing probability of success (am) for the iterated no information version (the classical
secretary problem) [see also Kuchta and Morayne (2014a)].

Table 1 The values of rm , cm
and am for m = 1, . . . , 10

m am ∼ rm ∼ cm ∼
1 1/e 0.5801 0.8043

2 0.5315 0.7443 0.3803

3 0.6259 0.8200 0.2404

4 0.6879 0.8629 0.1722

5 0.7319 0.8903 0.1325

6 0.7649 0.9091 0.1067

7 0.7905 0.9228 0.0888

8 0.8110 0.9332 0.0756

9 0.8277 0.9412 0.0656

10 0.8418 0.9477 0.0578

123



290 M. Kuchta

Fig. 1 The graph of ri , i = 1, . . . , 10

Table 2 Approximations of
probabilities of success for two
searches of the same lengths: n
= 2, 3, . . . , 12 and n = 20

n γ2 ≈
2 0.8956636342

3 0.8423563181

4 0.8159421134

5 0.8006581275

6 0.7907759043

7 0.7838725263

8 0.7787751482

9 0.7748534206

10 0.7717399044

11 0.7692062973

12 0.7671032840

20 0.7579203475

The following proposition describes the asymptotic behavior of the decision numbers
d̂k when k −→ ∞ and n∗

m −→ ∞.

Proposition 3.3 d̂k −→ 1 as (k, n∗
m) −→ (∞,∞) and k ≤ nm − 1.
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Fig. 2 The graph of γ2 for two searches of the same lengths: n = 2, 3, . . . , 12 and n = 20

Proof By (13) we have d̂k = (
αk
k + 1

)−1. By Claim 1 lim αk = cm as (k, n∗
m) −→

(∞,∞) and k ≤ nm − 1. Since 0 < cm < 1, d̂(k) −→ 1 as (k, n∗
m) −→ (∞,∞)

and k ≤ nm − 1. 	

Example Let us consider the case of two searches of the same length n. According
to the optimal strategy using (13) for multiple search decision numbers d̂(k) for n =
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, we obtain the approximations of γ2 from Table 2
(see Fig. 2). (γ2 −→ 0.7443... for n −→ ∞.)
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