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Abstract We consider the problem of finding the optimal time to switch between two
measurable cash-flow streams. A complete characterization of the set of solutions is
obtained in terms of adjoint variables which measure the available gain from devia-
tions. An iterative procedure for the computation of the adjoint variables is provided.
The results are generalized to multiple switching times, multiple cash-flow streams,
switching costs, as well as switch-triggered cash-flow streams that arise in equipment-
replacement problems.

Keywords Capital budgeting · Cash flows · Deterministic multi-armed bandit ·
Optimal stopping and starting · Replacement decisions

Mathematics Subject Classifications C61 · D01 · D24 · E22 · G00

“Where one door shuts, another opens.”
– Miguel de Cervantes, Don Quixote

1 Introduction

Conceptually, the question of optimally switching between several (deterministic)
cash-flow streams—considered in this paper—can be viewed as a scheduling problem
for substitutablemachines (processors) with time-varying yield that can be allocated to
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the task of creating time-discounted value in a single job.We characterize the solutions
to the simple switching problem and generalize the approach to include switching
costs, switch-triggered obligations, as well as any finite number of allowable switches
and available cash-flow streams.

1.1 Literature

From a scheduling viewpoint, the cash-flow switching problem fits within the deter-
ministic production-planning and scheduling framework laid out by Salveson (1952).
Subsequent contributions to the theory of scheduling, beginning with Johnson (1954),
focus on minimizing the time needed to complete heterogeneous jobs on a discrete
number of machines. Because of their combinatorial nature these types of problems
are often NP-hard and require an algorithmic approach (Veinott and Wagner 1962;
Gawienjnowicz 2008). For the cash-flow switching problem with a single switching
time, we pursue a semi-analytical approach. For multiple switching times, the sim-
ple solution can be used repeatedly, effectively amounting to a solution via dynamic
programming (Bellman 1957).

In a stochastic setting, when the yield of the processors is random (but usually
stationary), the cash-flow switching problem is also known as the multi-armed bandit
problem (Gittins et al. 2011).1 For uncorrelated processors, the optimal switching
policy is obtained by comparing processor-specific “Gittins indices,” corresponding
to an expected retirement reward for a given machine, and then always choosing the
machine with the highest available reward (Gittins and Jones 1974). Our problem
amounts to a “time-varying deterministic multi-armed bandit problem,” thus focusing
on pure exploitation without experimental exploration of the various processors. It is
optimal to switch to another cash-flow stream as soon as the benefit of delaying the
switch, as measured by an appropriate “adjoint variable,” drops to zero. Switching
costs, which in our problem tend to delay actions, have also been studied for the
stochastic multi-armed bandit problem; see Jun (2004) for a survey.

Finally, our approach to the cash-flow switching problem is related to global
optimization, as the optimal switching time needs to globally maximize a differen-
tiable function on the interval of consideration. Early semi-heuristic methods included
golden-section search (Kiefer 1953, 1957) among others; see, e.g., Wilde (1964) for a
textbook survey. Derivative-free approaches based on a Lipschitz constant have been
advanced by Shubert (1972), Breiman and Cutler (1993), Sergeyev (1995), and more
recently by Lera and Sergeyev (2013). For an overview of random sampling methods
see, e.g., Törn and Žilinskas (1989, Ch. 4). Another interesting approach, at least from
a computational viewpoint, is the (approximate) global maximization of polynomials
formulated in terms of semi-definite programming, pioneered by Nesterov (2000),
Lasserre (2001), and Parrilo (2003); see also Li et al. (2012). To solve the cash-flow
switching problem we use the semi-analytic approach recently proposed by Weber
(2017) which requires the knowledge of a derivative that is naturally available in our

1 Switching between more general stochastic processes has been discussed by Mandelbaum et al. (1990)
for Brownian motions and by Cairoli and Dalang (1995) for random walks.
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Optimal switching between cash-flow streams 569

problem as the difference between the two available cash-flow streams. The latter is
assumed merely essentially bounded (as an element of L∞) instead of the absolute
integrability (as an element of L1) stipulated originally.2

Cash-flow switching in its various forms relates to many well-known problems in
capital budgeting: equipment replacement (Alchian 1958) as well as the evaluation of
project returns, for example. Regarding the latter Arrow and Levhari (1969), as well as
Wright (1959), earlier, and Flemming and Wright (1971), later, with more generality,
considered the uniqueness of the internal rate of return subject to optimal stopping
of a cash-flow stream, thus assuming a “free disposal of investment projects” (Arrow
1985, p. 373). In other words, given a solution to (a special case of) the cash-flow
switching problem (switching to a zero cash-flow stream), these authors show that the
resulting maximized present value is nonincreasing in the constant interest rate, so
that the internal rate of return should be unique.3

1.2 Outline

The remainder of this paper is organized as follows. In Sect. 2, we introduce the basic
cash-flow switching problem and formulate it as a global optimization problem, the
solutions to which can be characterized by means of a suitable adjoint variable. Sec-
tion 3 considers the effects of switching cost, while Sect. 4 allows for a generalization
of the basic problem tomultiple switches andmultiple cash-flow streams, respectively.
Section 5 concludes.

2 Simple switching

2.1 Preliminaries

Let T > 0 be a fixed time horizon. An investment project consists of a deterministic
(measurable) cash-flow stream x(t), defined for all t ∈ [0, T ]. Given the (measurable)
schedule r : [0, T ] → R, which for any t ∈ [0, T ] specifies an external rate r(t),
representing a cost of capital or a hurdle rate,4 let

R(t) �
∫ t

0
r(θ) dθ, t ∈ [0, T ], (1)

denote the cumulative interest up to time t . The present value of the cash-flow stream
x is

2 Specifically, Proposition 1, established for W1,∞ instead of W1,1, is different from Weber (2017,
Thm. 2.1).
3 Splitting hairs somewhat, this assertion requires strict monotonicity. Their result also follows from the
more general comparative-statics methods developed by Quah and Strulovici (2009). For an unrelated
approach that yields a unique internal rate of return for any cash-flow stream (without the need of truncation),
see Weber (2014).
4 Poterba and Summers (1995) note that, to evaluate their investment projects, firms often use hurdle rates
which differ significantly from their actual costs of capital.
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PV(x) �
∫ T

0
exp[−R(t)] d X (t) =

∫ T

0
β(t)x(t) dt. (2)

where β(t) � exp[−R(t)] > 0 denotes the discount factor, i.e., the present value of
a concentrated unit payment that is set to arrive at time t ∈ [0, T ].

Example 1 For a constant discount rate r(t) ≡ r̂ ∈ R, it is R(t) = r̂ t for all t ∈ [0, T ],
and the present value of the cash-flow stream x becomes PV(x) = ∫ T

0 e−r̂ t x(t) dt .

No assumption is made about the sign of the interest rate. Time-varying interest
rates characterize the term structure of financial instruments (e.g., in the form of yield
curves) andhelp describemacroeconomicperformance (e.g., relative to the real interest
rate); see, e.g., Gürkaynak and Wright (2012) for an overview. They also describe the
(deterministic) dynamics of the capital cost for any given firm or individual decision-
maker, who are the subjects of our study.

2.2 Problem formulation

Consider the following basic switching problem: Given two cash-flow streams, x1

(“project 1”) and x2 (“project 2”), both defined on the interval [0, T ], at what time
τ ∗ is it optimal to switch from project 1 to project 2? To formulate this question
as an optimization problem, note first that when switching at time τ ∈ [0, T ], the
decision-maker obtains the switched cash-flow stream5

xτ (t) � 1{t<τ } x1(t) + 1{t=τ }
[
τ x1(τ ) + (1 − τ)x2(τ )

]
+ 1{t>τ } x2(t), t ∈ [0, T ].

The original cash-flow streams obtain as special cases for τ ∈ {0, T }: x0 = x2 and
xT = x1. The decision-maker’s payoff from the switched cash-flow stream corre-
sponds to its present value,

V (τ ) � PV(xτ ) =
∫ τ

0
β(t)x1(t) dt +

∫ T

τ

β(t)x2(t) dt, τ ∈ [0, T ]. (3)

The objective function V , which represents the present value of the switched cash-flow
stream, is differentiable, with derivative

V̇ (τ ) = β(τ)(x1(τ ) − x2(τ )), τ ∈ [0, T ].

5 The term in square brackets serves to establish a homotopic mapping from x2 to x1 as τ varies from 0 to
1; see, e.g., Zangwill and Garcia (1984). It can be omitted without changing any of the following results,
provided one of the two strict inequalities on the right-hand side is replaced by its weak equivalent. More
generally, the value of all the cash-flow streams can be changed on a set of (Lebesgue-)measure zero without
affecting any of the present values.
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Optimal switching between cash-flow streams 571

The decision-maker’s cash-flow switching problem amounts to maximizing the objec-
tive function,

max
τ∈[0,T ] V (τ ). (P)

By virtue of the Weierstrass theorem (see, e.g., Bertsekas 1995, p. 540) a solution τ ∗
to (P) exists. Let P ⊆ [0, T ] denote the set of all solutions to the switching problem.
For an interior τ ∗ ∈ (0, T ), Fermat’s lemma implies that V̇ (τ ∗) = 0, leading to the
necessary optimality condition

x1
(
τ ∗) = x2

(
τ ∗) , (4)

provided that V̇ is continuous in a neighborhood of τ ∗. We note that Eq. (4) need not
be satisfied at any point of discontinuity of x1 or x2. It also does not need to hold
at the boundary of the interval [0, T ]. Moreover, the condition is at most necessary,
i.e., there may be many points τ ∈ [0, T ] for which x1(τ ) = x2(τ ) but which do not
solve (P), including local minima and maxima, as well as saddle points and points of
discontinuity. The usual approach to obtain a better characterization of the optimum,
namely to use a second-order necessary optimality condition, requires that the cash-
flow streams are differentiable. Even if satisfied and valid, such an additional condition
leads neither to a truly necessary nor a sufficient optimality condition. Our approach
is different in that we construct a necessary and sufficient optimality condition for any
solution to (P), without any further regularity assumptions, thus arriving at a simple
characterization and representation of the solution set P .

Remark 1 We note two important special cases of the switching problem. For x2 = 0,
one obtains the problem of optimally stopping project 1, and for x1 = 0 the problem
of optimally starting project 2.

Remark 2 In the basic version (P) of the switching problem, the implicit assumption
is that both cash-flow streams are synchronized, in the sense that both start at t = 0.
By switching at time τ , the decision-maker changes his exposure from one stream of
obligations (characterized by the net cash inflow x1 on [0, τ ]) to another stream of
obligations (characterized by the net cash inflow x2 on [τ, T ]). As shown in Sect. 3.3,
the solution of this problem can be extended to the situation where the switch from one
cash-flow stream triggers the start of another cash-flow stream, such as for equipment-
replacement decisions.

Remark 3 If the decision-maker’s (indirect) utility u(x(t)) for a net cash inflow x(t)
at time t is evaluated by a (measurable) utility function u : R → R, then it is enough
to replace x(t) by x̂(t) � u(x(t)), for all t ∈ [0, T ]. That is, any cash-flow stream
can also be interpreted as a stream of utility, as experienced—for example—by a
representative consumer in a model of (finite-horizon) economic growth.

Example 2 For t ≥ 0, consider the cash-flow streams x1(t) � 1−c exp(−at) cos(ωt)
and x2(t) � 1 − exp(−bt), where a, b > 0 are damping constants and ω ≥ 0
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572 T. A. Weber

Fig. 1 Available cash-flow streams x1 and x2 in Example 2 on [0, T ]

describes an oscillation frequency of the default option before the switch (e.g., due to
seasonalities). As in Example 1, let the discount rate be constant, so r(t) ≡ r̂ ∈ R.
While in the very long run, i.e., for t → ∞, both cash-flow streams behave like a
unit perpetuity, in the short run they may differ significantly. In terms of their present
values, over a sufficiently long time horizon T , it is PV(x2) > PV(x1) if (and only
if) b > a + ω2/(a + r̂).6 Figure 1 shows the cash-flow streams x1 and x2 for the
parameter values (a, b, c) = (1, 2, 5) and ω = 2π . For the horizon T = 3 and the
constant interest rate r̂ = 20%, Fig. 2 depicts the corresponding objective function V .

2.3 Adjoint variable

The solution of the switching problem (P) is achieved bymeans of an adjoint variable,
the cumulative (right-sided) gain,

y(s) �
∫ T

T −s
f
(
θ, x1(θ) − x2(θ), y(T − θ)

)
dθ, (5)

6 For any given horizon T > 0, the present values are PV(x2) =
(
1 − e−r̂ T

)
/r̂ −

(
1 − e−(r̂+b)T

)
/

(
r̂ + b

)
and PV(x1) =

(
1 − e−r̂ T

)
/r̂ − c

[
r̂ + a + (

ω sin(ωT ) − (r̂ + a) cos(ωT )
)

e−(r̂+a)T
]
/((

r̂ + a
)2 + ω2

)
, respectively. The present values coincide if (for example): a = b, c = 1+ ω2/(r̂ + a)2,

and ωT = 2πk for some k ∈ Z.
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Optimal switching between cash-flow streams 573

Fig. 2 Objective function V (τ ) in Example 2, for all τ ∈ [0, T ]

where the (right-sided) gain inflow f , for (t, x̂, ŷ) ∈ [0, T ] × R × R, is defined as

f
(
t, x̂, ŷ

)
�

⎧⎨
⎩

x̂ − r(t) ŷ, if ŷ > 0,
max{0, x̂}, if ŷ = 0,
0, otherwise.

(6)

Starting at an initial value of zero at s = 0, the adjoint variable would measure any
nonnegative gain available by continuing from τ = T − s until the interval horizon T .
By reversing the time-scale, the right-hand side of Eq. (5) becomes

y(s) =
∫ s

0
f
(

T − θ, x1(T − θ) − x2(T − θ), y(θ)
)

dθ, s ∈ [0, T ]. (7)

A solution y to this integral equation is necessarily differentiable and such that y(0) =
0, corresponding to the logic that the right-sided cash-flow gainmust vanish at the right
interval boundary. As a result, the right-sided adjoint variable y satisfies the following
initial-value problem:

ẏ(s) = f
(

T − s, x1(T − s) − x2(T − s), y(s)
)

, y(0) = 0, s ∈ [0, T ]. (8)

The gain inflow f is a discontinuous function, and in particular does not satisfy the
Carathéodory conditions (Filippov 1988, p. 3), so that the existence of a solution
to Eq. (8) deserves special attention. The latter conditions allow for a measurable
dependence on time, so that it is not the possible discontinuities of x1 − x2, but rather
the structural properties of the gain inflow itself which require care in the construction
of a solution.7 Before turning our attention to the question of existence and uniqueness,
it is useful to establish a lower bound for an adjoint variable y, provided it exists.

7 Even if x1 − x2 is continuous, the right-hand side of Eq. (8) is generally discontinuous.
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574 T. A. Weber

Lemma 1 The (right-sided) adjoint variable y, as solution to the initial-value problem
(8), is bounded from below: y(s) ≥ max{0, V (T ) − V (T − s)}/β(T − s), for all
s ∈ [0, T ].
The adjoint variable captures the value of the option to delay switching. It is therefore
necessarily nonnegative and cannot be smaller than the value of waiting until the end
of the interval horizon. Its interpretation as the cumulative right-sided gain is the key
to finding the smallest solution to the switching problem (P), as detailed in Sect. 2.4
below.

As in the standard approach (see, e.g., Coddington and Levinson 1955), the idea
of proving the existence of a solution y to Eq. (8) is to construct an approximating
sequence (yk)

∞
k=0 by means of a successive Picard–Lindelöf iteration. However, while

usually the convergence of this sequence and the uniqueness of its limit are estab-
lished jointly using the Banach fixed-point theorem, in our setting this strategy proves
unsuccessful because of the lack of a suitable Lipschitz constant for the gain inflow.
We consider any “admissible” solution of Eq. (8) in the Sobolev spaceW1,∞([0, T ])
of differentiable functions with measurable and essentially bounded derivatives (in
L∞([0, T ])). For this sufficiently large class of functions, it is possible to construct a
Cauchy sequence which converges in the ‖ · ‖1,∞-norm, the latter being defined as

‖y‖1,∞ �
∫ T

0
|y(s)| ds + ess sup

s∈[0,T ]
|ẏ(s)|, (9)

for any y ∈ W1,∞([0, T ]). To determine the solution set of Eq. (8) (as a subset
of W1,∞([0, T ])), our approach is to introduce an outcome-equivalent transforma-
tion of the gain inflow and use it to define a successive-approximation procedure
that converges to the unique solution of the initial-value problem. For this, note that
by Lemma 1 a solution y to Eq. (8), if it exists, is necessarily nonnegative-valued.
Introducing the modified gain inflow,

�
(
ξ̂ , ŷ

)
� ξ̂ − min{0, ξ̂} 1{ŷ≤0},

(
ξ̂ , ŷ

) ∈ R
2, (10)

we obtain a measure that counts a net cash flow x̂ (at a given time) if it is positive
or if the cumulative gain ŷ is positive. Specifically, provided the cumulative gain is
nonnegative, the modified gain inflow equals the (regular) gain inflow, i.e., for any
(t̂, x̂, ŷ) ∈ [0, T ] × R × R:

ŷ ≥ 0 ⇒ f
(
t̂, x̂, ŷ

) = (
x̂ − r

(
t̂
)

ŷ
)
1{ŷ>0} + max{0, x̂} 1{ŷ=0} = �

(
x̂ − r

(
t̂
)

ŷ, ŷ
)
.

If we further introduce the time-reversed cash-flow difference ϕ(s) � x1(T − s) −
x2(T − s) and the time-reversed interest rate ρ(s) � r(T − s), for s ∈ [0, T ], then
the initial-value problem in Eq. (8) is equivalent to

ẏ(s) = �(ϕ(s) − ρ(s)y(s), y(s)) , y(0) = 0, s ∈ [0, T ]; (8′)
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Optimal switching between cash-flow streams 575

that is, it has the same set of solutions as Eq. (8). The spaceW1,∞([0, T ]) is a Banach
space, i.e., a complete normed vector space, which means that any Cauchy sequence
with elements in the vector space converges (in the ‖ ·‖1,∞-norm) to an element of the
vector space. Based on the equivalent integral representation (7) of the initial-value
problem (8), we introduce the operator P : W1,∞([0, T ]) → W1,∞([0, T ]) mapping
any admissible function y to a function Py,

(Py)(s) �
∫ s

0
�(ϕ(ς) − ρ(ς)y(ς), y(ς)) dς, s ∈ [0, T ], (11)

which (as can be verified) is also an element ofW1,∞([0, T ]). The solution set of the
initial-value problem (8′) is therefore the set of fixed points of P. The following result
provides existence and uniqueness of a solution to the initial-value problems (8) and
its equivalent representation (8′).

Proposition 1 There exists a unique solution to the initial-value problem (8).

As shown in the proof of Proposition 1, a repeated application of the operator P to
the initial seed φ, with8

φ(s) �
∫ s

0

β(T − ς)

β(T − s)
ϕ(ς) dς = V (T ) − V (T − s)

β(T − s)
, s ∈ [0, T ],

converges to the unique solution of Eq. (8). That is, when considering the sequence
σ � (yk)

∞
k=0, with the initial function y0 = φ and the Picard–Lindelöf iteration

yk+1 = Pyk for k ≥ 0, then yk → y as k → ∞, and y solves Eq. (8). In practice,
the convergence of the sequence σ to the adjoint variable y = limk→∞ Pkφ is usually
very efficient and takes place within a few iterations, as illustrated by the following
example.

Example 3 In the setting of Example 2, let y0 = φ. As illustrated in Fig. 3, the
Picard–Lindelöf iterations converge rapidly: y = limk→∞ yk = y5 = P5φ. Note that
successive iterates are “alternatingly nested,” in the sense that y0 ≤ y2 ≤ y4 ≤ y =
y5 ≤ y3 ≤ y1.9

2.4 Optimal switching

For any solution τ of the cash-flow switching problem (P), the right-sided adjoint
variable y(s) in the inverted time scale s = T − τ must vanish, i.e., necessarily
y(T − τ) = 0. This guarantees that no improvement is possible on the interval [τ, T ]
relative to the present value V (τ ) obtained by switching at time τ . Conversely, when
viewed from the left, the smallest point τ ∗ ∈ [0, T ] which satisfies y(T − τ ∗) = 0 is
the first for which all right-sided improvements vanish. It must therefore be globally
optimal.

8 In general, a more effective seed is φ0 � max{0, φ}, corresponding to the lower bound for y in Lemma 1.
9 See Lemma 3 in the appendix for the general formulation of this property.
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Fig. 3 Computation of the adjoint variable y in Example 3 within five iterations

Proposition 2 Let s∗ � sup{s ∈ [0, T ] : y(s) = 0}. The smallest solution of the
cash-flow switching problem (P) is τ ∗ = T − s∗.

The smallest solution of (P) is the earliest switching time τ ∗ for which no improve-
ment of the objective canbeobtained.Bya symmetric consideration, one candetermine
the largest solution τ ∗∗ of (P) by measuring left-sided gains on the interval [0, τ ]. For
this, we introduce a (left-sided) (co-)adjoint variable z as solution to the initial-value
problem

ż(t) = g
(

t, x2(t) − x1(t), z(t)
)

, z(0) = 0, t ∈ [0, T ], (12)

where the (left-sided) gain inflow g, for any (t, x̂, ẑ) ∈ [0, T ] × R × R, is defined as

g(t, x̂, ẑ) �

⎧⎨
⎩

x̂ + r(t) ẑ, if ẑ > 0,
max{0, x̂}, if ẑ = 0,
0, otherwise.

(13)

Because Eqs. (8) and (12) have the same structure, Proposition 1 also guarantees
the existence and uniqueness of z. By symmetric considerations, we obtain the latest
optimal switching time as the largest feasible point where no left-sided improvement
is available.

Proposition 3 The largest solution of (P) is τ ∗∗ = sup{t ∈ [0, T ] : z(t) = 0}.
As with Eq. (8′) for Eq. (8), there exists an equivalent formulation for the initial-

value problem (12) for the computation of z,

ż(t) = �(x2(t) − x1(t) + r(t)z(t), z(t)), z(0) = 0, t ∈ [0, T ], (12′)

with the modified gain inflow � as specified in Eq. (10). To determine the left-sided
gain z, we use again a Picard–Lindelöf approximation sequence (zk)

∞
k=0, where z0 � φ̂

and zk+1 = P̂zk for k ≥ 0, with initial seed
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φ̂(t) �
∫ t

0

β(θ)

β(t)

(
x1(θ) − x2(θ)

)
dθ = V (0) − V (t)

β(t)
, t ∈ [0, T ].

The operator P̂ : W1,∞([0, T ]) → W1,∞([0, T ]) maps any admissible function z to
an admissible function P̂z, with

(
P̂z

)
(t) �

∫ t

0
�

(
x2(θ) − x1(θ) + r(θ)z(θ), z(θ)

)
dθ, t ∈ [0, T ], (14)

similar to the definition of the operator P in Eq. (11). With this, the left-sided adjoint
variable z is attained by repeatedly applying P̂ to �̂:

lim
k→∞ P̂k φ̂ = z.

The convergence usually obtains in a finite number of iterations, e.g., when both
cash-flow streams are Lipschitz-continuous.

Remark 4 Propositions 2 and 3 together characterize the uniqueness of a solution
to the cash-flow switching problem (P). Indeed, the solution is unique if and only if
τ ∗ = τ ∗∗. In the case where τ ∗ = τ ∗∗, it is still V ∗ = V (τ ∗) = V (τ ∗∗). The solution
set is then the upper contour set of V relative to its globally optimal value V ∗ on
[0, T ]: P = {τ ∈ [τ ∗, τ ∗∗] : V (τ ) ≥ V ∗}.

The adjoint variables y and z describe the right-sided and left-sided gains available
at any point in the interval [0, T ] of available switching times. By introducing the
combined (or two-sided) adjoint variable

λ(t) � β(t)max{y(T − t), z(t)}, t ∈ [0, T ],

one naturally obtains a necessary and sufficient condition for an optimal switching
time.

Proposition 4 A point t̂ ∈ [0, T ] is a solution to (P) if and only if

λ(t̂) = 0. (15)

Accordingly, the solution set is P = {t ∈ [0, T ] : λ(t) = 0}.
The fact that λ(τ) can be interpreted as the total gain available on the domain [0, T ]
relative to the point τ implies that the present value V (τ ) plus λ(τ) must always be
equal to the optimal value of (P); see Fig. 4.

Corollary 1 For all τ ∈ [0, T ] : λ(τ) + V (τ ) = V ∗.

Knowing the adjoint variable λ is therefore equivalent to knowing the objective func-
tion V and its largest value V ∗. Combining the last result with the initial conditions
in Eqs. (8) and (12) yields an expression of the optimal value of (P) as a function of
the adjoint variables evaluated at the interval horizon.
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578 T. A. Weber

Fig. 4 Adjoint variables for the cash-flow switching problem in Example 2

Corollary 2 y(T ) = λ(0) = V ∗ − V (0) and β(T )z(T ) = λ(T ) = V ∗ − V (T ).

The preceding result means that a one-sided adjoint variable (either y or z) is
enough to determine the optimal value of the switching problem (P):

V ∗ = y(T ) + PV(x2) = β(T )z(T ) + PV(x1). (16)

Each one-sided adjoint variable can also be considered a solution to a complete family
of one-sided problems. For example, the right-sided gain y determines the optimal
policy of whether to stop at τ or continue searching for a better stopping time on the
interval [τ, T ] because

y(T − τ) = 0 ⇔ V (τ ) ≥ max
τ̂∈[τ,T ]

V (τ̂ ), (17)

for any τ ∈ [0, T ]. Similarly, the left-sided gain z fully describes the optimal policy
of whether to stop at τ or earlier, since

z(τ ) = 0 ⇔ V (τ ) ≥ max
τ̂∈[0,τ ]

V (τ̂ ), (18)

for any τ ∈ [0, T ]. As will become apparent in Sect. 4, the one-sided adjoint variables
are intimately related to a dynamic-programming solution of the switching problem.

Remark 5 Let x1 and x2 be defined on the general interval [t, t̄], where t, t̄ are real
numbers such that t < t̄ . Consider the cash-flow switching problem

W ∗ = max
τ∈[t,t̄]

W (τ ), (P′)
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where

W (τ ) �
∫ τ

t
β(θ)x1(θ) dθ +

∫ t̄

τ

β(θ)x2(θ) dθ, τ ∈ [t, t̄],

is a differentiable real-valued objective function in W1,∞([t, t̄]). While (P′) may
appear more general than the basic switching problem discussed thus far, it can be
reduced to (P) by maximizing V (τ ) � W (t + τ) on the interval [0, T ]with T � t̄ − t ,
just as in (P). By a translation, any solution τ ∗ of (P) directly corresponds to a solution
τ̂ ∗ of (P′): τ̂ ∗ = τ ∗ − t .

2.5 Comparative statics

We now examine how changes in the interest-rate schedule affect the solution to
the switching problem. To this end, let us consider two different (measurable and
real-valued) interest-rate schedules, r and r̂ , defined on [0, T ]. Let τ ∗ and τ̂ ∗ be the
corresponding (smallest) solutions to the cash-flow switching problem (P). An ordinal
relationship in the interest-rate schedules implies an (inverse) ordinal relationship in
the optimal switching times.

Proposition 5 If r ≤ r̂ , then τ ∗ ≥ τ̂ ∗.

This result confirms the intuition that a decrease in patience (i.e., a higher discount
rate) at the margin tends to speed up cash-flow switching.

3 Switching cost

If there is a cost c of performing a switch, payable at the time of the switch, then the
optimal solution depends on whether switching is mandatory or optional.

3.1 Mandatory switching

If a switch from x1 to x2 is required at some point on the time interval [0, T ], then the
optimal cash-flow switching problem becomes

V ∗
c = max

τ∈[0,T ] {V (τ ) − cβ(τ)} . (Pc)

A positive switching cost introduces a bias towards preserving the status quo, as delay-
ing the transition increases the decision-maker’s present value. A negative switching
cost c amounts to a subsidy, encouraging the switch. For zero switching cost one
obtains V0 = V , i.e., the same payoff function as in the original problem discussed in
Sect. 2. Moreover, by (fictitiously) including the benefit of the implicit rent from not
switching in the default cash-flow stream x1 for all times before the switching time,
the problem (Pc) with nonzero switching cost can be reduced to the simple cash-flow
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switching problem (P). For this, we introduce (Px1−x2)y � Py and (P̂x1−x2)z � P̂z
for any admissible y and z, just as in Eqs. (11) and (14), with the only difference that
the extended notation indicates the difference of the available cash-flow streams.

Proposition 6 Let c ∈ R. A point τ ∗
c ∈ [0, T ] is a solution to the switching problem

(Pc) if and only if τ ∗
c ∈ Pc = {τ : λc(τ ) = 0}, where λc = β max{yc, zc} is

the adjoint variable, and yc, zc are the unique solutions of yc = (Px1+cr−x2)yc and

zc = (P̂x1+cr−x2)zc. The resulting optimal value is V ∗
c = V (τ ∗

c ) − cβ(τ ∗
c ).

To incorporate switching costs when switching is mandatory, it is therefore suffi-
cient to consider the default cash-flow stream x̂1c � x1 + cr instead of x1. As noted
earlier, a positive switching cost introduces inertia in the decision-maker’s willingness
to move from x̂1c to the alternative cash-flow stream x2.

Lemma 2 The (smallest) solution to (Pc) is nondecreasing in the switching cost c.

If switching becomes more expensive, then it is never optimal to switch earlier.

3.2 Optional switching

If switching is optional, then the decision-maker can opt to forgo the option of switch-
ing away from the default cash-flow stream. The optimal switching problem becomes

V̂ ∗
c = max

τ∈[0,T ] {V (τ ) − cβ(τ), V (T )} . (P̂c)

Because in the case where the decision-maker chooses τ ∈ [0, T ), his payoff is
identical to the payoff in the problem (Pc) with mandatory switching cost, any extra
payoff related to the additional flexibility in the relaxed problem (P̂c) must come from
saving the switching cost by holding out until the end of the horizon without switch.

Proposition 7 For c ∈ R, consider the optional switching problem (P̂c). LetPc and V ∗
c

be as in Proposition 6. If V (T ) > V ∗
c , then it is optimal to never switch. Otherwise,

it is optimal to switch at a time τ ∗
c ∈ Pc. The resulting optimal value is V̂ ∗

c =
max{V ∗

c , V (T )}.
The solution to the problem (P̂c) with flexibility reduces to the problem (Pc) without

flexibility. As in Sect. 3.1, if the subsidies to switching increase (so c decreases), it is
never optimal to increase the switching time (see Lemma 2).

3.3 Switch-triggered cash-flow streams

If a switch at time τ ∈ [0, T ] triggers a commitment that is associated with a cash-
flow stream x0 (which can be of any duration), then the present value of this cash-flow
stream is

v(τ) �
∫ ∞

τ

β(θ)x0(θ − τ) dθ =
∫ ∞

0
β(ϑ + τ)x0(ϑ) dϑ.
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The switch-triggered cash-flow stream may well extend beyond the consideration
interval [0, T ]. When triggered at time τ , only its (differentiable) time-0 value v(τ)

is important.10 An example of practical interest is the equipment-replacement prob-
lem, where at the time of purchasing new equipment a new cash-flow stream starts,
associated with the lifecycle of the replacement product. The corresponding cash-flow
switching problem becomes

V ∗
v = max

τ∈[0,T ] {V (τ ) + v(τ)} . (Pv)

As in the simpler problem (Pc) with constant switching cost, the strategy for solv-
ing (Pv) is to convert the present value into a cash-flow stream associated with the
default option. By not exerting the option to switch at t the decision-maker earns the
time-t rent v̇(t).

Proposition 8 Assume that switching at time τ triggers an obligation with present
value v(τ). A point τ̂ ∗

v ∈ [0, T ] is a solution to (Pv) if and only if τ ∗
v ∈ Pv = {τ :

λv(τ ) = 0}, where λv = β max{yv, zv} is the adjoint variable, and yv, zv are the
unique solutions of yv = (Px̂0+x1−x2)yv and zv = (P̂x̂0+x1−x2)zv , given the auxiliary
cash-flow stream x̂0 � v̇/β. The resulting optimal value is V ∗

v = V (τ ∗
v ) + v(τ ∗

v ).

The intuition of this result is that a positive switch-triggered present value would
generally decrease when delayed, thus producing a negative gradient and therefore
also a negative fictitious cash-flow stream to be added to the default cash-flow stream.
Thus, delaying the switch amounts to an opportunity cost. Conversely, delaying a
negative switch-triggered cash-flow stream produces a positive bias to stick with the
default cash-flow stream.

4 Multi-switching

The results obtained so far can be generalized for settings where multiple switches are
possible or multiple cash-flow streams are available.11

4.1 Multiple switches

Let N ≥ 1 be the number of allowable switches between the cash-flow streams x1 and
x2 on the time interval [0, T ], beginning with the default cash-flow stream x1. Let

VN (τ ) =
N∑

i=0

∫ τ i+1

τ i
x1+(i mod 2)(θ) dθ.

10 If v(τ) = −cβ(τ) for τ ∈ [0, T ], then (Pv) reduces to (Pc) with the constant switching cost c.
11 A combination of both generalizations is beyond the scope of this paper and left for future research.
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be the decision-maker’s value for a vector for switching times τ = (τ 1, . . . , τ N ) ∈ TN

with

TN �
{(

τ̂ 1, . . . , τ̂ N
)

∈ [0, T ]N : τ 0 � 0 ≤ τ̂ 1 ≤ · · · ≤ τ̂ N ≤ T � τ N+1
}

.

The “N -multi-switching problem” is the original cash-flow switching problem (P)
generalized to N switches:

V ∗
N = max

τ∈TN

VN (τ ). (PN )

To understand the general argument for a solution to (PN ), consider first the case with
two possible switches. If at time t , there is only one switch left, then the present value
(at time 0) of the switched cash-flow stream (from 2 to 1) on the interval [t, T ] is the
payoff of switching immediately at t , plus the value of the option to switch later,

W21(t) � PV
(

x̂1[t,T ]
)

+ β(t)y21(T − t), t ∈ [0, T ].

Consider now the fictitious cash-flow stream x̂2 such that PV(x̂2[t,T ]) ≡ W21(t), i.e.,

∫ T

t
β(θ)x̂2(θ) dθ = W21(t), t ∈ [0, T ].

Then necessarily x̂2(t) ≡ −Ẇ21(t)/β(t), i.e.,

x̂2(t) = x2(t) + max{0, x1(t) − x2(t)}1{y21(T −t)=0}, t ∈ [0, T ].

The only remaining problem is how to optimally switch from x1 to x̂2, which is
equivalent to the simple cash-flow switching problem (P) discussed in Sect. 2.

In the general case with N ≥ 2 switches, odd-numbered switches are from x1 to x2,
and even-numbered switches are from x2 to x1. Let ξ k(t) be the (somewhat fictitious)
cash-flow stream that when switched to at time t will have the same present value as
the cash-flow stream which on the interval [t, T ] includes a maximum of k switches.
For this, we set ξ0 � x1 if N is even, and ξ0 � x2 if N is odd. Furthermore, we define
recursively

ξ k(t) �
{

x1(t) + max{0, ξ k−1(t) − x1(t)}1{yk (t)=0}, if k + N is even
x2(t) + max{0, ξ k−1(t) − x2(t)}1{yk (t)=0}, if k + N is odd

}
, t ∈ [0, T ],

for all k ∈ {1, . . . , N }, where the (right-sided) adjoint variable for k remaining
switches is given by

yk �
{(

Px2−ξ k−1

)
yk, if k+N is even(

Px1−ξ k−1

)
yk, if k+N is odd

}
.

123



Optimal switching between cash-flow streams 583

The auxiliary cash-flow stream ξ k with k remaining switches incorporates the improve-
ment of switching from the current cash-flow stream to the auxiliary cash-flow stream
ξ k−1 with k − 1 remaining switches. This implies a solution to the N -multi-switching
problem.

Proposition 9 A solution τ(N ) = (τ 1(N ), . . . , τ N (N )) ∈ TN to the cash-flow
switching problem (PN ) with N ≥ 1 allowable switches between the cash-flow
streams x1 and x2 is such that the i-th switching time is τ i (N ) = T − si (N ), where
si (N ) � sup{s ∈ [τ i−1, T ] : yN−i+1(s) = 0}, for all i ∈ {1, . . . , N }, and τ 0 � 0.

Analogous to our discussion after Corollary 2, at any time t ∈ [0, T ], the right-sided
adjoint variable yk(T −t) determines the optimal stopping policy for the k-th switching
time on the remaining time interval [t, T ]. Similarly, ξ k(t) defines the (fictitious) cash-
flow stream with that optimal policy implemented on the interval [t, T ]. The solution
in Proposition 9 therefore implements Bellman’s principle of optimality via backward
induction from the right interval end t = T in the form of dynamic programming
(Bellman 1957, Ch. III.3).

Example 4 Given the cash-flow streams x1 and x2 described in Example 2, consider
the N -multi-switching problem (PN ) for N ∈ {1, . . . , 7}. Table 1 shows the com-
ponents of the optimal timing vector τ(N ) ∈ TN . The solutions for N ∈ {2, . . . , 7}
suggest a monotonicity property in the sense that optimal switches remain optimal
when more switches are available. However, a counterexample to this heuristic is
easily obtained by comparing the solutions for N = 1 and N = 2, as indeed
τ 1(1) /∈ {τ 1(2), τ 2(2)}; see Fig. 5.

As can be gleaned from Table 1 (with V ∗
0 � PV(x1) ≈ 2.1133), the optimal value

V ∗
N of an N -multi-switching problem (PN ) is not necessarily concave in the allowed

number of switches N ≥ 1. On the other hand, it is straightforward to see that in
general both V ∗

2n+2 and V ∗
2n+1 are nondecreasing and concave in n, because each

increase of n provides two extra switches, adding a full cycle relative to the current
cash-flow stream. The resulting extra cycles must, by optimality, be chosen in the
order of nonincreasing payoff increments.

Remark 6 As N becomes large, the optimal value V ∗
N of the N -multi-switching prob-

lem (PN ) converges to the upper bound

V ∗∞ �
∫ T

0
β(θ)max{x1(θ), x2(θ)} dθ,

i.e., limN→∞ V ∗(N ) = V ∗∞. This follows from the monotone convergence theorem
(see, e.g., Rudin 1976, p. 55), for the sequence (V ∗

N )∞N=1 is nondecreasing and tightly
bounded by V ∗∞.

Example 5 In the setting of Example 4, one obtains V ∗∞ = V ∗
N ≈ 3.2339, for all

N ≥ 7.
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Optimal switching between cash-flow streams 585

Fig. 5 Optimal switching times of the N -multi-switching problem in Examples 4 and 5

4.2 Multiple cash-flow streams

Consider the switching problem for M ≥ 2 cash-flow streams x1, . . . , x M . As before,
we assume that x1 is the initial default option. The decision-maker’s problem is to find
the best cash-flow stream to switch to at the optimal time, which amounts to solving

max
j∈{2,...,M} max

τ∈[0,T ]

{∫ τ

0
β(θ)x1(θ) dθ +

∫ T

τ

β(θ)x j (θ) dθ

}
. (PM )

Having the option to switch between multiple cash-flow streams means that the
decision-maker can participate in the proceeds of a portfolio of simultaneous projects
without being able to alter their timing and without being able to have stakes in more
than one project at a time.

Proposition 10 The tuple ( j∗, τ ∗) solves the cash-flow switching problem (PM ) if and
only if

j∗ ∈ arg max
j∈{2,...,M} y j (T ) and τ ∗ ∈ PM ,

where PM = {τ ∈ [0, T ] : λ j∗(τ ) = 0}, with λ j = β max{y j , z j } and y j , z j

uniquely determined by y j = (Px1−x j )y j and z j = (P̂x1−x j )z j , for j ∈ {2, . . . , M},
respectively.
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The earliest optimal jump should be to the cash-flow stream which promises the
highest payoff at a time when no strict improvement from waiting can be achieved.

5 Conclusion

The problem of switching between cash-flow streams can be reinterpreted as finding
the optimal choice between a finite number of intertemporal streams of expected utility
by a rational economic agent who can change activities, possibly at a cost.12 The key
insight from the analysis is that the optimal switching times, and in fact the entire
switching policy up to the decision horizon, is characterized by an adjoint variable
that can be precomputed as the unique solution of an initial-value problem. The adjoint
variable measures the one-sided gain that is available in the future. Applying this logic
backward leads to a natural dynamic-programming solution of the switching problem.
As in Weber (2014), all results can be transposed into a discrete-time setting.

In terms of future research, it will be interesting to study the combinatorial extension
of the cash-flow switching problem for finitely many cash-flow streams with a given
maximum number of switching times. Moreover, one may consider a robust version
of the problemwhen its primitives, such as the interval horizon, the cash-flow streams,
or the interest-rate process, are only imperfectly known. Similarly, an investigation
of the comparative statics may reveal that structured perturbations of the problem
primitives—valid for a base case—may, under certain conditions, lead to monotone
changes of the optimal solutions and resulting values of the objective function.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs

Proof of Lemma 1 Since f (t, ν, 0) = max{0, ν} ≥ 0 for all ν ∈ R, the right-hand
side of the differential equation in Eq. (8) is nonnegative whenever y = 0. Together
with the initial condition y(0) = 0, this implies—using the continuity of y and the
intermediate value theorem—that the adjoint variable y(t) ≥ 0 for all t ∈ [0, T ]. In
other words, it is not possible that y takes on negative values because when reaching
the boundary where y = 0, it can only stay or grow (as in that case ẏ ≥ 0), but
not decrease. We now show that y(s) ≥ (V (T ) − V (T − s)) /β(T − s), which is
equivalent to

β(T − s)y(s) ≥
∫ T

T −s
β(θ)

(
x1(θ) − x2(θ)

)
dθ, s ∈ [0, T ].

12 At this point, we note in passing—without introducing the stochastic machinery—that the utility streams
(see Remark 3) may in principle be risky, as long as the decision-maker remains risk-neutral, thus limiting
attention to the expected utility, represented at each instant by the current cash flow.
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For this, consider the initial-value problem

ν̇(s) =
(

x1(T − s) − x2(T − s)
)

− r(T − s)ν(s), ν(0) = 0, (19)

which for any measurable cash-flow streams x1 and x2 satisfies the Carathéodory
conditions. By the Cauchy formula (see, e.g., Weber 2011, p. 25), the solution to
Eq. (19) is of the form

ν(s) = 1

β(T − s)

∫ T

T −s
β(θ)

(
x1(θ) − x2(θ)

)
dθ.

Consider the difference � � y − ν. Then �(0) = 0 and, using the fact that y(s) ≥ 0,
it is

�̇(s) = −min
{
0, x1(T − s) − x2(T − s)

}
1{y(s)=0} − r(T − s) (y(s) − ν(s))

= max
{
0, x2(T − s) − x1(T − s)

}
1{y(s)=0} − r(T − s)�(s),

for all s ∈ [0, T ]. Similar to our earlier argument that the adjoint variable y cannot
become negative, we observe that �̇(s) ≥ 0. Indeed, at the boundary where�(s) = 0,
it is �̇(s) = max{0, x2(T −s)−x1(T −s)} ≥ 0, so that the difference y(s)−ν(s)must
be nondecreasing on [0, T ]. More generally, the Cauchy formula yields the solution
to the initial-value problem for �:

�(s) = 1

β(T − s)

∫ T

T −s
β(θ)max

{
0, x2(θ) − x1(θ)

}
1{y(T −θ)=0} dθ ≥ 0,

s ∈ [0, T ],

which implies that y(s) ≥ ν(s) for all s ∈ [0, T ], thus establishing the claim. ��
Proof of Proposition 1 Existence and uniqueness of a solution to the initial-value
problem (8) are established separately. The result largely parallels but differs from
Weber (2017, Thm. 1), as we allow here for solutions in the Sobolev space
W1,∞([0, T ]).

(i) Existence. Consider a sequence of admissible functions, σ � (yk)
∞
k=0 ⊂

W1,∞([0, T ]), defined by the recursion

y0(s) � φ(s), yk+1(s) � (Pyk)(s), s ∈ [0, T ],

for all k ≥ 0, where φ(s) = ∫ s
0 ϕ(ς) dς = V (0) − V (T − s).13 Consider now the

sequence of the largest possible horizons sk such that the consecutive elements of this

13 The iterative solution of an ordinary differential equation in this manner originated with Picard (1893)
and Lindelöf (1894). Its convergence is usually established using the Banach fixed-point theorem, which
cannot be used here, as the (right-sided) gain inflow f in Eq. (6) is discontinuous and does not satisfy the
Carathéodory conditions.
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sequence coincide, yk(s) = yk−1(s), for all s ∈ [0, sk]:

sk � sup{s ∈ [0, T ] : yk(ς) = yk−1(ς), ς ∈ [0, s]}, k ≥ 1, (20)

with the additional definition s0 � 0. We now show the following statement:

A (k) : sk < T ⇒ sk < sk+1 ≤ T,

for all k ≥ 1. For this, we first introduce ϕ−(s) � min{0, ϕ(s)} for all s ∈ [0, T ], and
then note that y1 = Py0 = Pφ, with

y1(s) = φ(s) +
∫ s

0
(−ϕ−(s)) 1{φ(s)≤0} dς ≥ φ(s) = y0(s), s ∈ [0, T ], (21)

so 0 ≤ s1 = inf{s ∈ [0, T ] : φ(s) ≤ 0}. Since by definition φ(0) = 0, the preceding
infimum is nonnegative, and by Eq. (21) it describes s1 ∈ [0, T ] as introduced in
Eq. (20). By a contradiction argument, it is straightforward to see that s1 > 0. Indeed,
if s1 = 0, then φ(s) > 0 for all s ∈ (0, T ]. Thus, by the continuity of ϕ there exists
an ε0 ∈ (0, T ] such that ϕ(s) > 0 for all s ∈ (0, ε0). This implies ϕ−(s) = 0 and
by Eq. (21) therefore y1(s) = y0(s) on [0, ε0], whence by Eq. (20): s1 ≥ ε0 > 0, as
claimed. If s1 = T , thenA (1) holds automatically. Consider now the interesting case
where 0 < s1 < T . By the definition of s1, there exists an ε1 ∈ (0, T − s1) such that
for all s ∈ (s1, s1 + ε1): φ(s) < 0 = y1(s), whence 1{φ(s)≤0<y1(s)} = 0. With this, the
inequality in (21) yields

y2(s) = y1(s) +
∫ s

0
(−ϕ−(ς))

(
1{y1(ς)≤0} − 1{φ(ς)≤0}

)
dς

= y1(s) −
∫ s

0
(−ϕ−(ς)) 1{φ(ς)≤0<y1(ς)} dς

= y1(s) −
∫ max{s,s1+ε1}

s1+ε1

(−ϕ−(ς)) 1{φ(ς)≤0<y1(ς)} dς, (22)

for all s ∈ [0, T ]. This means that y1(s) = y2(s) for all s ∈ [0, s1+ε1], so necessarily

s2 ≥ s1 + ε1 > s1.

Thus, the statement A (1) is true. The following “alternating nestedness” of the
sequence σ is useful in the remainder of the argument.

Lemma 3 (Weber 2017) The even and odd subsequences (y2 j )
∞
j=0 and (y2 j+1)

∞
j=0 of

σ are both monotonic, and its elements are such that y2 j ≤ y2 j+2 ≤ y2 j+3 ≤ y2 j+1,
for all j ≥ 0.

By Eqs. (21) and (22) it is φ = y0 ≤ y2 ≤ y1. By virtue of Lemma 3, if yk = yk+1
(i.e., sk+1 = T ), then yk = yk+n (i.e., sk+n = T ) for all n ≥ 1. In our proof of A (k)

for k ≥ 1 we therefore consider the nontrivial case where sk < T .
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The forward difference between two consecutive elements of σ , starting with an
even element yk = y2 j+2, is

y2 j+3(s) − y2 j+2(s) =
∫ s

0
(−ϕ−(ς)) 1{y2 j+2(ς)≤0<y2 j+1(ς)} dς,

for all s ∈ [0, T ] and any integer j ≥ 0. By the definition of sk in Eq. (20) this yields

yk+1(s) − yk(s) =
∫ max{sk ,s}

sk

(−ϕ−(ς)) 1{yk (ς)≤0<yk−1(ς)} dς, s ∈ [0, T ].

Since yk(sk) = yk−1(sk−1), by the continuity of ϕ there exists an εk ∈ (0, T − sk]
such that yk(s) > yk−1(s) for all s ∈ (sk, sk + εk). But then 1{yk (ς)≤0<yk−1(ς)} = 0 on
(sk, sk+εk),which (by continuity) implies that yk+1(s) = yk(s) for all s ∈ [sk, sk+εk],
whence (given that s1 > 0, as shown earlier):

sk+1 ≥ sk + εk > sk, k = 2 j, j ≥ 0. (23)

Similarly, the forward difference between two consecutive elements of σ , starting with
an odd element yk = y2 j+1, is

y2 j+2(s) − y2 j+1(s) = −
∫ s

0
(−ϕ−(ς)) 1{y2 j (ς)≤0<y2 j+1(ς)} dς,

for all s ∈ [0, T ] and any integer j ≥ 0. As a result, using again the definition of sk :

yk+1(s) − yk(s) = −
∫ max{sk ,s}

sk

(−ϕ−(ς)) 1{yk−1(ς)≤0<yk(ς)} dς, s ∈ [0, T ].

The fact that yk(sk) = yk−1(sk) implies (by continuity) that there exists an εk ∈
(0, T − sk] such that yk(s) < yk−1(s) and therefore also 1{yk−1(s)≤0<yk (s)}, for all
s ∈ (sk, sk + εk). Hence, yk+1(s) = yk(s) on [sk, sk + εk], resulting in

sk+1 ≥ sk + εk > sk, k = 2 j + 1, j ≥ 0. (24)

Combining the monotonicity of sk in (23) and (24), (sk)
∞
k=0 is an increasing sequence

with upper bound T . As such it must converge (Rudin 1976, p. 55), and since T is the
smallest upper bound:14

lim
k→∞ sk = T .

14 If there were another bound T̂ < T , then whenever sk = T̂ , by virtue of A (k) one would obtain
sk+1 > T̂ , i.e., a contradiction.
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Taking into account the ‖ · ‖1,∞-norm in Eq. (9) yields

‖yk+1 − yk‖1,∞ ≤
∫ T

0

(∫ T

s2k

(−ϕ−(ς)) dς

)
ds

+ ess sup
s∈[0,T ]

{
(−ϕ−(s))1{y2k (s) =y2k−1(s)}

}

≤ (mT )(T − s2k) + ess sup
s∈[s2k ,T ]

{
(−ϕ−(s))1{y2k (s) =y2k−1(s)}

}
,

(25)

where

0 ≤ m � max
t∈[0,T ] {−ϕ−(s)} = max

{
0,− min

s∈[0,T ] ϕ(s)

}
< ∞.

The first term in inequality (25) tends to zero as k → ∞. The second term is by
definition

ess sup
s∈[s2k ,T ]

{
max{0, x2(T − s) − x1(T − s)}1{y2k (s) =y2k−1(s)}

}
.

That this term cannot be relevant for k → ∞ may be shown as follows. Con-
sider a small perturbation such that we consider the cash-flow streams x̂ i

j (t) �
xi (t) 1{t∈[T/j,T ]} instead of xi (t) for i ∈ {1, 2} and t ∈ [0, T ], where j > 1 is a
large integer. As j → ∞, the measure of the set [0, T/j), where x̂ i

j can differ from xi ,
goes to zero. For any given j > 1, there is a k( j) such that [0, T − s2k( j)] � [0, T/j),
which implies that for all k ≥ k( j):

ess sup
s∈[s2k ,T ]

{
max{0, x̂2j (T − s) − x̂1j (T − s)}1{y2k (s) =y2k−1(s)}

}
= 0.

If we therefore use the cash-flow streams x̂ i
j , and consider the corresponding Picard–

Lindelöf iterates ŷk, j of the adjoint variable ŷ j , computed analogous to the original
iterates yk for y, then

lim
k→∞ ‖ŷ j,k+1 − ŷ j,k‖1,∞ = 0. (26)

Thus, the j-th sequence (ŷ j,k)
∞
k=0 must be a Cauchy sequence. By completeness of the

Banach space W1,∞([0, T ]), there exists an admissible function ŷ j ∈ W1,∞([0, T ])
such that

lim
k→∞ ŷ j,k = ŷ j .

The limit function ŷ j solves the fixed-point problem (written for the perturbed prob-
lem):

‖P ŷ j − ŷ j‖1,∞ = 0.
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But this means that ŷ j solves the initial-value problem (8′) for the perturbed problem.
Consider now the switched cash-flow stream x̂τ, j for the perturbed problem, analogous
to xτ for the original problem in Sect. 2.2, with

x̂ j,τ (t) � 1{t<τ } x̂1j (t) + 1{t=τ }
[
τ x̂1j (τ ) + (1 − τ)x̂2j (τ )

]
+ 1{t>τ } x̂2j (t), t ∈ [0, T ].

Let V̂ j (τ ) � PV(x̂ j,τ ). Then the difference in the objectives,15

|V (τ ) − V̂ j (τ )| ≤
∫ T/j

0
β(θ)|max{x1(θ), x2(θ)}| dθ → 0,

as j → ∞, independent of τ ∈ [0, T ]. By the continuity of V and V̂ j we obtain that the
sequence of solution sets P̂ j to the perturbed problem converges to the solution set P
of the cash-flow switching problem (P), in the sense that for any converging sequence
(τ̂ j )

∞
j=2 with τ̂ j ∈ P̂ j for all j > 1, there exists a τ ∈ P such that lim j→∞ τ̂ j → τ ,

and vice versa, for any τ ∈ P there exists a converging sequence (τ̂ j )
∞
j=2 with limit τ .

This means that the k-th Picard–Lindelöf iterate ŷ j,k of the right-sided improvement
for the j-th perturbed problem must uniformly converge to the k-th iterate yk of the
right-sided improvement of the original problem. Moreover,

‖yk+1 − yk‖1,∞ ≤ ‖yk+1 − ŷ j,k+1‖1,∞ + ‖yk − ŷ j,k‖1,∞ + ‖ŷ j,k+1 − ŷ j,k‖1,∞.

It is now possible to choose a j (k) > 1 such that each of the terms is less than 1/k
for all j ≥ j (k) [the third term converges to zero in j by Eq. (26)]. But this means
that by successive approximation of the problem with the j (k)-th perturbed problem,
we obtain that

lim
k→∞ ‖yk+1 − yk‖1,∞ = 0.

This in turn implies that by the completeness of W1,∞([0, T ]) there exists a
limit function y ∈ W1,∞([0, T ]) with limk→∞ ‖yk − y‖1,∞ = 0. In particular,
‖Py − y‖1,∞ = 0, so

y(s) =
∫ s

0

(
ϕ(ς) − ϕ−(ς) 1{y(ς)≤0}

)
dς =

∫ s

0
�̂(ϕ(ς), yk(ς)) dς, s ∈ [0, T ],

i.e., the limit function y solves the initial-value problem (8′).
(ii) Uniqueness. For any given solutions y1 and y2 of Eq. (8), let

ρ(s) � y1(s) − y2(s), s ∈ [0, T ],

15 The precise difference is: V (τ ) − V̂ j (τ ) = ∫ min{τ,T/j}
0 β(θ)x1(θ) dθ + ∫ T/j

min{τ,T/j} β(θ)x2(θ) dθ ,
τ ∈ [0, T ].
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denote the corresponding pointwise difference. By the initial condition in Eq. (8′) it
is ρ(0) = 0, and furthermore:

ρ̇(s) = ẏ1(s) − ẏ2(s) = −ϕ−(s)
(
1{y1(s)≤0} − 1{y2(s)≤0}

)
, s ∈ [0, T ].

Thus, ρ̇(s) = 0 whenever the values y1(s) and y2(s) are either both positive or both
equal to 0. On the other hand, if y1(s) > y2(s) = 0, then ρ̇(s) = ϕ−(s) ≤ 0; and if
y1(s) = 0 < y2(s), then ρ̇(s) = −ϕ−(s) ≥ 0. Combining these insights yields

d

ds

(ρ(s))2

2
= (ρ(s)) ρ̇(s) ≤ 0, s ∈ [0, T ]. (27)

Together with the initial condition ρ(0) = 0, Eq. (27) implies

y1(s) − y2(s) = ρ(s) = 0, s ∈ [0, T ],

so y1 = y2, which yields the claimed uniqueness.

The claims (i) and (ii) together imply that there exists a unique solution to the initial-
value problem (8′), which by construction has the same solution set as the initial-value
problem (8), thus concluding our proof. ��
Proof of Proposition 2 Note first that by definition y(0) = 0, and by virtue of
Lemma 1 the adjoint variable y(s) is nonnegative for all s ∈ [0, T ]. Thus, the set
S � {s ∈ [0, T ] : y(s) = 0} is nonempty (as 0 ∈ S). Its supremum, s∗ � sup S,
exists and lies in the interval [0, T ]. We distinguish two cases, depending on whether
S is a singleton or not.

Case 1: S = {0}. Provided that y(s) > 0 for all s ∈ (0, T ], the Cauchy formula
yields the terminal value of the adjoint variable, as for the initial-value problem (19)
(in the proof of Lemma 1):

y(s) =
∫ T

T −s

β(θ)

β(T − s)

(
x1(θ) − x2(θ)

)
dθ > 0, s ∈ (0, T ].

Thus, for any τ ∈ [0, T ), by setting s = T − τ , one obtains

V (τ ) = PV(x1) −
∫ T

τ

β(θ)(x1(θ) − x2(θ)) dθ

= PV(x1) − β(τ)y(T − τ) < PV(x1) = V (T ).

Since s∗ = 0, this implies that τ ∗ = T − s∗ = T .
Case 2: S � {0}. Suppose there exists ŝ ∈ (0, T ] such that y(ŝ) = 0. Thus,

ŝ ∈ S and s∗ ≥ ŝ > 0. Using � = x − ν as in the proof of Lemma 1, note that
β(T − s)�(s) = ∫ T

T −s β(θ)max{0, x2(θ) − x1(θ)}1{y(T −θ)=0} dθ is nondecreasing
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in s on [0, T ]. Now consider the value of the switching problem for switching times
τ restricted to the interval [T − ŝ, T ],

V̂ ∗(ŝ) � max
τ∈[T −ŝ,T ]

V (τ ) = max
τ∈[T −ŝ,T ]

{
PV(x1) −

∫ T

τ

β(θ)(x1(θ) − x2(θ)) dθ

}
.

Then by the monotonicity of β(T − s)�(s), it is

V̂ ∗(ŝ) = max
τ∈[T −ŝ,T ]

{
PV(x1) − β(τ)ν(T − τ)

}
(28)

= PV(x1) + max
τ∈[T −ŝ,T ]

{
β(τ)

(
�(T − τ) − y(T − τ)

)}

≤ PV(x1) + max
τ∈[T −ŝ,T ]

{β(τ)�(T − τ)}
= PV(x1) + β(T − ŝ)�(ŝ).

Since by hypothesis y(ŝ) = 0, we obtain

max
τ∈[T −ŝ,T ]

{β(τ)(�(T − τ) − y(T − τ))} = β(T − ŝ)
(
�(ŝ) − y(ŝ)

)

= max
τ∈[T −ŝ,T ]

{−β(τ)ν(T − τ)} .

Taking into account Eq. (28), this yields

V̂ ∗(ŝ) = PV(x1) + β(T − ŝ)�(ŝ) = V (T − ŝ).

Using again the monotonicity β(T − s)�(s) and setting s∗ � sup{s ∈ [0, T ] : y(s) =
0}, one therefore finds

V̂ ∗(ŝ) ≤ sup
s∈S

V̂ ∗(s) = V̂ ∗(s∗) = V (T − s∗) = max
τ∈[T −s∗,T ] V (τ ), (29)

and y(s) > 0 for all s ∈ (s∗, T ]. Thus, the cardinality of Ŝ � {s ∈ [s∗, T ] : y(s) = 0}
is 1, Ŝ = {s∗}. Just as in Case 1, one obtains that the maximum of V on the interval
[0, T − s∗] is achieved at the upper interval boundary, so

V (T − s∗) = max
τ∈[0,T −s∗] V (τ ). (30)

Combining Eqs. (29) and (30) the optimal switching time is therefore τ ∗ = T − s∗,
and

V ∗ � V (τ ∗) = max
τ∈[0,T ] V (τ ) = PV(x1) + β(τ ∗)�(T − τ ∗).
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Moreover,

V ∗ = PV(x1) +
∫ T

τ∗
β(θ)max{0, x2(θ) − x1(θ)}1{y(T −θ)=0} dθ.

This completes the proof. ��
Proof of Proposition 3 For any s ∈ [0, T ], let W (s) � V (T − s). Then any solution
to the cash-flow switching problem,

W ∗ = max
s∈[0,T ] W (s), (P′)

is also a solution of (P). Moreover, by Proposition 2 the smallest solution s∗ of (P′)
is equal to T minus the largest solution τ ∗∗ of (P). Mirroring the objective function
from V to W also mirrors the sign of corresponding net inflow, Ẇ (s) = −V̇ (T − s).
Accordingly, instead of discounting from T to t = T − s, it is necessary to compound
from 0 to t , so that the left-sided cumulative cash-flow gain z necessarily satisfies the
initial-value problem

ż(t) = f (t, x2(t) − x1(t), z(t);−r(t)), z(0) = 0, t ∈ [0, T ]. (31)

The latter corresponds to the initial-value problem (8)with inverse cash-flowdifference
and r replaced by−r . By Proposition 2 the smallest solution of (P′) is s∗ = T −sup{t ∈
[0, T ] : z(t) = 0}, so the largest solution of (P) becomes τ ∗∗ = T − s∗ = sup{t ∈
[0, T ] : z(t) = 0}. Since Eq. (31) is equivalent to the initial-value problem (12), this
concludes our proof. ��
Proof of Proposition 4 Consider the solution set P and the optimal value V ∗ of the
cash-flow switching problem (P). We first establish necessity and then sufficiency of
the optimality condition (15).

(i) Necessity: If τ ∈ P , then by Remark 4 no improvement is possible on the interval
[τ, T ], so y(T − τ) = 0 necessarily. Similarly, no improvement is possible on
the interval [0, τ ] which implies that z(τ ) = 0. Together with the definition of λ,
this establishes Eq. (15) as a necessary optimality condition for any element of
the set P .

(ii) Sufficiency: Consider a switching time τ ∈ [0, T ] which satisfies λ(τ) = 0. By
Lemma 1 the adjoint variable y is nonnegative-valued, which—by symmetry—is
also true for z. Hence, y(T − τ) = z(τ ) = 0, so a positive gain over V (t̂) is
attainable neither to the right (on [τ, T ]) nor to the left (on [0, τ ]), which implies
that V (τ ) = V ∗, and—consequently—it must be τ ∈ P .

Based on (i) and (ii), Eq. (15) characterizes any solution to (P), which implies the
claimed representation of the solution set P , concluding the proof. ��
Proof of Proposition 5 Assume that r̂(t) ≥ r(t) for all t ∈ [0, T ]. Consider further
a homotopic mapping rμ = (1 − μ)r + μr̂ , parametrized by μ ∈ [0, 1], which is
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such that r0 = r and r1 = r̂ (see also footnote 5). Let R and R̂ be the cumulative-
interest functions, as in Eq. (1), associated with r and r̂ , respectively. As a result, the
parametrized discount rate becomes

βμ(t) � exp
[
−μR(t) − (1 − μ)R̂(t)

]
, t ∈ [0, T ],

and the corresponding parametrized switching problem is

V ∗
μ = max

τ∈[0,T ] Vμ(τ), (Pμ)

where Vμ(τ) � V (τ ;βμ) when the discount factor β in Eq. (3), for all τ ∈ [0, T ],
is replaced by βμ. Since the (nonnegative) right-sided gain inflow f in Eq. (6) is
nonincreasing in the current value r(t) of the interest rate, for any t ∈ [0, T ], the right-
sided adjoint variable yμ for the parametrized switching problem (Pμ) is nonincreasing
in μ. Hence, yμ is nonincreasing in μ:

0 ≤ μ ≤ μ̂ ≤ 1 ⇒ yμ ≥ yμ̂.

Consider now the smallest solution τ ∗
μ of the cash-flow switching problem (P), which

by Proposition 2 solves

τ ∗
μ = inf{T − s ∈ [0, T ] : yμ(s) ≤ 0}.

Provided that τ ∗
μ ∈ (0, T ), the envelope theorem (see, e.g., Mas-Colell et al. 1995;

Milgrom and Segal 2002) yields

dτ ∗
μ

dμ
= ∂Lμ(s)

∂μ
= �

∂yμ

∂μ
≤ 0,

where Lμ(s) � T − s + �yμ(s) is the corresponding Lagrangian and � ≥ 0 is the
Lagrange multiplier for the binding constraint yμ(s) = 0. Thus, τ ∗

μ is nonincreasing
in μ, which in turn implies that τ ∗ ≥ τ̂ ∗ as claimed. ��
Proof of Proposition 6 Since by the fundamental theorem of calculus and by the def-
inition of the discount factor β it is

β(τ) =
∫ τ

0
β̇(θ) dθ = −

∫ τ

0
r(θ)β(θ) dθ, τ ∈ [0, T ],

the decision-maker’s objective function with mandatory switching can be written in
the form

V̂c(τ ) = V (τ ) − cβ(τ) =
∫ τ

0
β(θ)

(
x1(θ) + cr(θ)

)
dθ +

∫ T

τ

x2(θ) dθ, τ ∈ [0, T ].
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As a result, the solution to the cash-flow switching problem follows fromProposition 4
with the adjoint variable λc = β max{yc, zc} instead of λ, where the one-sided adjoint
variables yc and zc are uniquely specified as solutions to the fixed-point problems

yc = (Px1+cr−x2)yc and zc = (P̂x1+cr−x2)zc,

respectively. ��
Proof of Lemma 2 For any c ∈ R, let Sc � {s ∈ [0, T ] : yc(s) = 0}, generalizing
the definition of S = S0 in the proof of Proposition 2. Consider now two different
switching costs c and ĉ such that c < ĉ. Then because of the (weak) monotonicity
of gain inflow f (see Eq. (6)) in its second variable (i.e., x̂), it is yc ≤ yĉ. This in
turn implies that Sĉ ⊆ Sc, so necessarily sup Sĉ ≤ sup Sc, and consequently also
τ ∗

ĉ ≥ τ ∗
c , completing the proof. ��

Proof of Proposition 7 For any solution τ ∗
c ∈ Pc of the problem (Pc) with optional

switching, we have

V ∗
c = V (τ ∗

c ) − cβ(τ ∗
c ) = max

τ∈[0,1] {V (τ ) − cβ(τ)} .

Hence, V̂ ∗
c = max{V ∗

c , V (T )}, and the stated optimal switching policy follows. ��
Proof of Proposition 8 By the fundamental theorem of calculus

v(τ) =
∫ τ

0
v̇(θ) dθ, τ ∈ [0, T ],

where, using the Leibniz rule and taking into account the definition of β in Sect. 2.1,

v̇(θ) = −
∫ ∞

0
r(ϑ + θ)β(ϑ + θ)x0(ϑ) dϑ, θ ∈ [0, T ].

Hence, by setting

x̂0(θ) � v̇(θ)

β(θ)
= (β̇ ∗ x0)(θ)

β(θ)
, θ ∈ [0, T ],

where ‘∗’ denotes the convolution product, the switching problem (Pv) is equivalent
to

V ∗
v = max

τ∈[0,T ]

{∫ τ

0
β(θ)

(
x̂0(θ) + x1(θ)

)
dθ +

∫ T

τ

β(θ) x2(θ) dθ

}
,

which is a simple switching problem of the form (P). By Proposition 4, we therefore
obtain that τ ∗

v solves (Pv) if and only if it is an element of Pv � {τ : λv(τ ) = 0},
where λv = β max{yv, zv} and yv, zv are one-sided adjoint variables, uniquely deter-
mined as the solutions (in the space W1,∞([0, T ])) of the fixed-point problems
yv = (Px̂0+x1−x2)yv and zv = (P̂x̂0+x1−x2)zv , respectively. ��
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Proof of Proposition 9 For N = 1, an optimal switching time is τ 1 = τ ∗, as in
Proposition 2. Consider now the case where N > 1. Let t ∈ [0, T ], and for k ∈
{2, . . . , N } assume that an optimal solution has been found for the problem with k −1
switches on the interval [t, T ] resulting in the present valueU∗

k−1(t). Switching at time
τ from an admissible cash-flow stream x (defined on [0, T ]) to the cash-flow stream
ξ k−1 at the start of the interval [τ, T ] results in the payoff

Uk(τ ; t) �
∫ τ

t
β(θ)x(θ) dθ + U∗

k−1(τ ) =
∫ τ

t
β(θ)x(θ) dθ

+
∫ T

τ

β(θ)ξ k−1(θ) dθ, τ ∈ [t, T ],

where the cash-flow stream ξ k−1 is such that

ξ k−1(θ) � −U̇∗
k−1(θ)

β(θ)
, θ ∈ [t, T ]. (32)

As discussed in Sect. 2, the solution to the family of optimization problems,

U∗
k (t) � max

τ∈[t,T ] Uk(τ ; t), t ∈ [0, T ], (33)

can be obtained—by the principle of optimality—from the (right-sided) adjoint vari-
able yN of the “all-inclusive” problem

V ∗
k � max

τ∈[0,T ] Uk(τ ; 0) = max
τ∈[0,T ]

{∫ τ

0
β(θ)x(θ) dθ +

∫ T

τ

β(θ)x̂(θ) dθ

}
,

which is of the form (P). By Proposition 1, the adjoint variable yN is the unique
solution of

yk(s) =
∫ s

0
f (T − ς, x(T − ς) − ξ k−1(T − ς), yk(ς)) dς, yk(0) = 0, s ∈ [0, T ];

that is: yk = (Px−ξ k−1)yk . By Proposition 2, an optimal solution to the cash-flow
switching problem (33) is τ̂ k(t) = T − ŝk(t), where

ŝk(t) � sup
{

s ∈ [0, T − t] : yk(s) = 0
}

, t ∈ [0, T ]. (34)

Differentiating the maximized objective in Eq. (33) yields

U̇∗
k (t) = d

dt

∫ T

t
β(θ)

(
x(θ) − min{0, x(θ) − ξ k−1(θ)}

)
1{yk (T −θ)=0} dθ, t ∈ [0, T ],
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which, using Eq. (32), implies that

ξ k(t) = −U̇∗
k (t)

β(t)
= x(t) + max{0, ξ k−1(t) − x(t)}, t ∈ [0, T ].

If the number of remaining switches k and the total number of available switches N
are both even or both odd (or equivalently, k + N is even), then the current switch k
is from x1 to x2. Conversely, if k is even (resp., odd) and N is odd (resp., even) (or
equivalently, k + N is odd), then the current switch k is from x2 to x1. Hence, we set
x = x1 if k + N is even, and x = x2 if k + N is odd. As a result:

ξ k(t) =
{

x1(t) + max{0, ξ k−1(t) − x1(t)}1{yk (t)=0}, ifk+N is even
x2(t) + max{0, ξ k−1(t) − x2(t)}1{yk(t)=0}, ifk+N is odd

}
, t ∈ [0, T ].

By induction, the preceding arguments apply for all k ∈ {2, . . . , N }. The correspond-
ing switching times τ 1, . . . , τ N (with τ 1 ≥ · · · ≥ τ N ) obtain recursively, starting
with the smallest (τ N ) :

τ N = T − sup{s ∈ [0, T ] : yN (s) = 0},
τ k = τ̂ k(τ k+1), k ∈ {1, . . . , N − 1},

where τ̂ k = T − ŝk as introduced earlier; see Eq. (34). This completes our proof. ��
Proof of Proposition 10 Given that x1 is the current default cash-flow stream, the
decision-maker compares the post-switch cash-flow streams

ξ j (t) � x j (t) + max{0, x1(t) − x j (t)}1{y j (T −t)=0}, t ∈ [0, T ],

for j ∈ {2, . . . , M}, where y j � (Px1−x j )y j . The present value of ξ j is equal to
the optimal value of the simple cash-flow switching problem, from x1 to x j , so by
Corollary 2 and the definition of the present value in Eq. (2) we have

PV(ξ j ) = y j (T ) + PV(x1).

This implies that from x1 the best cash-flow stream to switch to is x j∗ , where

j∗ ∈ arg max
j∈{2,...,M} PV(ξ j ) = arg max

j∈{2,...,M} y j (T ).

The optimal switching time τ ∗ is obtained by Proposition 4, in the sense that τ ∗ must
be an element of the solution set PM = {τ ∈ [0, T ] : λ j∗(τ ) = 0} with the adjoint
variable λ j = β max{y j , z j }. The one-sided adjoint variables y j , z j are uniquely
determined as solutions (in the spaceW1,∞([0, T ]) to the fixed-point problems y j =
(Px1−x j )y j and z j = (P̂)z j , for any j ∈ {2, . . . , M}, which completes the proof. ��
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