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Abstract The short-term unit commitment and reserve scheduling decisions aremade
in the face of increasing supply-side uncertainty in power systems. This has mainly
been caused by a higher penetration of renewable energy generation that is encouraged
and enforced by the market and policy makers. In this paper, we propose a two-stage
stochastic and distributionally robust modeling framework for the unit commitment
problem with supply uncertainty. Based on the availability of the information on the
distribution of the random supply, we consider two specific models: (a) a moment
model where the mean values of the random supply variables are known, and (b)
a mixture distribution model where the true probability distribution lies within the
convex hull of a finite set of known distributions. In each case, we reformulate these
models through Lagrange dualization as a semi-infinite program in the former case and
a one-stage stochastic program in the latter case. We solve the reformulated models
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using sampling method and sample average approximation, respectively. We also
establish exponential rate of convergence of the optimal value when the randomization
scheme is applied to discretize the semi-infinite constraints. The proposed robust unit
commitment models are applied to an illustrative case study, and numerical test results
are reported in comparison with the two-stage non-robust stochastic programming
model.

Keywords Unit commitment problem · Distributionally robust optimization ·
Mixture distribution · Sample average approximation · Convergence analysis

1 Introduction

The recent increase in the deployment of renewable energy resources such as wind
power is having a significant impact on the short-term operational and long-term
investment decisions in power systems due to their non-dispatchability and intermittent
nature. In the short term, the higher penetration of wind power and the lack of efficient
storage facilities have an adverse effect on the stability of generation output. One of the
most crucial decision problems that are affected by the short-term supply uncertainty is
the unit commitment (UC for short) problem (Takriti 1996; Padhy 2004). The objective
of theUC problem is tominimize the overall generation cost by determining the hourly
unit commitment and the reserve schedule for the day ahead given the demand and
wind forecasts.

Classical models for the UC problem are often deterministic and consider sup-
ply and demand for electricity in the day ahead to be known in advance. Whilst the
demand forecast for the day ahead can be reasonably estimated, the high reliance
of the generation output on the unreliable wind power potentially renders optimal
solutions of a deterministic model either heavily infeasible or non-optimal under real-
ized supply (Nemirovski 2012). Stochastic and robust optimization models provide
an alternative approach to incorporating the increased uncertainties associated with
the wind and load forecasts into power system operations. In this sense, approaches to
account for the uncertainty in renewable energy generation in the UC problem fall into
three categories: (two-stage) stochastic programming, chance-constrained stochastic
programming, and robust optimization.

The first approach of two-stage stochastic optimization Shapiro et al. (2009) has
been used widely for solving the UC problem (Tuohy et al. 2009; Papavasiliou et al.
2011; Wang et al. 2008), where energy and reserve generation are jointly scheduled
to meet demand under stochastic wind supply. Pozo and Contreras (2013) and Wang
et al. (2012) propose a chance-constrained programming approach to deal with the
joint energy and reserve scheduling UC where one or several constraints must be
satisfied with a given probability. One of the key assumptions in two-stage stochastic
programming and chance-constrained programming is that the decision maker has
complete information on the distribution of the uncertain parameters. However, limited
predictability and high volatility of the renewable supply often make this assumption
unrealistic.
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Robust unit commitment with n − 1 security criteria 375

In the third approach of classical robust optimization, the only available information
on the uncertain parameters is its support, i.e., the set of all scenarios or possible
realizations of the unknown parameters (Soyster (1973); Bertsimas and Sim (2004);
Ben-Tal and Nemirovski (2000)). For the basic concept and a thorough survey of
robust optimization, we refer the interested readers to review papers by Kouvelis and
Yu (1997), Aissi et al. (2009) and Ben-Tal et al. (2009). In the context of the UC
problem, Jiang et al. (2012) and Bertsimas et al. (2013) provide a robust optimization
formulation and an adaptive robust optimization to address thewind power and demand
uncertainty, respectively.

The min–max robust optimization approach is often criticized for being over con-
servative and/or not utilizing available partial information about the distribution of
the uncertainty such as the mean and variance. Distributionally robust optimization,
as part of the robust modeling framework, is considered a powerful remedy where
the optimal decision is based on the worst probability distribution rather than worst
scenario from a set of distributions constructed through the partial information.

There is extensive research published on UC models where energy and reserve
are scheduled together. Table 1 summarizes some of those references that are closely
related to the models proposed in this paper.

For a comparison between the existing models in the literature and the proposed
distributionally robust UC model in this paper, we provide some classification criteria
as follows.

• The uncertainty sources and their available information Contingencies, demand
and wind production are some common sources of uncertainty in the UC problem
with security criterion. Contingency events are usually considered as scenarios to
include a deterministic or stochastic UC constraint. A bunch of post-contingency
power flow operation equations are included in the problem to model how the
system remains stable under the loss of one or more unit or line (see Bouffard
and Galiana 2004, 2005a; Arroyo and Galiana 2005; Bouffard et al. 2005b, c;
Restrepo and Galiana 2011; Karangelos and Bouffard 2012). Probability of the
contingencies may be known (e.g. in Bouffard and Galiana 2004, 2005a; Restrepo
and Galiana 2011; Karangelos and Bouffard 2012) or may not be known (e.g. in
Arroyo and Galiana 2005; Street et al. 2011; Pozo and Contreras 2013). Bouffard
and Galiana (2008), Restrepo and Galiana (2011) and Pozo and Contreras (2013)
include stochastic demand and wind with full knowledge of probability distribu-
tions of the uncertainties. Bertsimas et al. (2013) include stochastic demand with
partial information, where the uncertainty set is defined as box uncertainty with a
budget constraint. Here we model the wind production as the only uncertain para-
meter with partial information on its probability distribution such as moments and
scope of the distribution (representation as a mixture of some know distributions).

• The number of simultaneous contingencies The purpose of security criteria is to
keep the system stable in case of one (n − 1 criterion) or more outages (n −
K criteria) of a generating unit or line, where reserve planning is justified to
compensate for possible outages. Then−1 criterion has been extensively applied to
the UC problem (Arroyo andGaliana 2005; Bouffard andGaliana 2005a; Bouffard
et al. 2005b, c; Bouffard andGaliana 2008;Restrepo andGaliana 2011;Karangelos
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and Bouffard 2012). Street et al. (2011) and Pozo and Contreras (2013) extend
the security criterion up to K simultaneous contingencies. However, more strict
criteria increases the complexity of the model and its tractability. Here we propose
a model where a n − 1 security criterion is included in the sense that if one unit is
lost, the demand is met with the scheduled reserve from the first stage under any
wind scenario.

• Modeling of contingenciesOutages can be treated as deterministic parameters and
the preventive actions are taken pre-contingency and through inclusion of deter-
ministic constraints. These security constraints will ensure sufficient resources for
the normal operation of the system in the event of a contingency (see Arroyo and
Galiana 2005). On the other hand, outages can be treated as stochastic parameters,
in which case the objective function includes expected value of the second-stage
recourse costs. Contingencies probabilities should be known for this model, and
the set of post-contingencies equations, one for each outage, is incorporated into
the model (see Bouffard and Galiana 2008; Bouffard et al. 2005b). Note that,
when other sources of uncertainty exist, post-contingencies equations should be
extended for each scenario, which may lead to an intractable problem. Because of
that, some authors limit the scenarios of contingencies to an umbrella of credible
contingencies (Arroyo and Galiana 2005; Bouffard and Galiana 2005a; Bouf-
fard et al. 2005b, c; Karangelos and Bouffard 2012; Bouffard and Galiana 2008).
Another approach to deal with security criteria is posing an optimization prob-
lem to determine the worst contingency/contingencies. The works by Street et al.
(2011) and Pozo and Contreras (2013) propose a worst-case optimization problem
embedded into a deterministic and chance-constrained UC model, respectively.
Here we formulate the security criterion as a deterministic constraint for the worst-
case outage. We show that this worst-case outage is always the worst in any wind
scenario. In this sense, we do not need to add up post-contingency equations for
each plausible outage (all generating units) and each wind scenario. There is no
cost term in the objective function to account for the extra cost of the corrective
actions taken in the event of a contingency. This is a reasonable approach because
contingencies have a very low probability of occurrence.

• Mathematical model and numerical methodology Bouffard and Galiana (2004)
and Arroyo and Galiana (2005) propose a deterministic modeling framework,
Bouffard and Galiana (2008) and Bouffard et al. (2005b) develop a two-stage
stochastic programming model, Pozo and Contreras (2013) consider a chance-
constrained problem, and Street et al. (2011) Bertsimas et al. (2013) present a
robust optimization formulation. Most of these models are solved through their
deterministic counterparts and further as mixed integer programming (MILP for
short). Here we propose a two stage stochastic programming model to describe
the decision making process and then develop a distributionally minimax robust
optimization formulation of the two stage stochastic program to address the risks
arising from uncertainty of wind power supply. Monte Carlo sampling methods
have been applied to solve the resulting mathematical models. Compared to the
existing minimax robust optimization model, the distributionally robust minimax
model is less conservative.
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378 A. Gourtani et al.

Bertsimas et al. (2013) propose a two-stage deterministic robust optimizationmodel
for UC problems, where the uncertainty set is defined through a deterministic set.
The solution of the proposed adaptive robust model provides immunity against all
realizations of the uncertain datawithin the deterministic uncertainty set. However, this
robust model does not take into account the distributional information of the random
variables. In contrast, our model accounts for the available, or partially available,
information on the probability distribution of the uncertain data. Furthermore the first-
stage decision variables in Bertsimas et al. (2013) consist of the on/off commitment
variables and the second stage solves an economic dispatch; therefore, they do not need
to schedule reserve for the second-stage uncertainty deviations (North American’s UC
outlook). However, in our model, the first-stage decision variables are the set of on/off
decisions and scheduled energy and reserve (European’s UC outlook). Scheduled
reserve is used in the second stage as a corrective action to meet the demand under
wind production deviations and/or the outage of one generating unit.

Despite the fact that there is a rich body of literature focussing on two-stage stochas-
tic and robust UC with endogenous reserve scheduling and wind-generation models,
a distributionally robust UC approach has not been presented yet. The main contribu-
tions of this paper are summarized as follows:

• We propose a distributionally robust approach for UC problemswith n−1 security
criteria to tackle the risks arising from day-ahead wind uncertainty. Two specific
models are considered: i) a moment model where the mean values of the random
wind power supply are known, and ii) a mixture distribution model where the
true probability distribution can be represented as a convex combination of some
known distributions.

• For the moment model, we reformulate the distributionally minimax two stage
robust problem as a semi-infinite programming problem through Lagrange duality
and propose a random discretization approach for solving the latter. Under some
moderate conditions, we demonstrate exponential rate of convergence of the ran-
domization scheme as sample size increases. For the mixture distribution model,
we reformulate the robustmodel as a one-stage stochastic program through duality,
and develop a solution method based on sample average approximation (SAA) to
reformulate the problem as a mixed integer linear programming problem (MILP).

• We have undertaken numerical experiments for the proposed new mathematical
model carried out comparative analysis with two-stage stochastic UC model in
terms of stability of the optimal solutions against variation of the mean and covari-
ance.

The remainder of this paper are organized as follows. Section 2 sets out a stan-
dard two-stage stochastic programming model for the unit commitment problem with
uncertainty in wind power generation and a distributionally robust formulation by
explicitly considering ambiguity of the true probability distribution of the underlying
uncertainty. Sections 3 and 4 detail the robust formulations and reformulations by
considering some specific structures of the ambiguity set and develop corresponding
numerical schemes for solving themathematical models. Section 5 presents some case
studies and comparative analysis of the new models and numerical schemes. Some
conclusions are drawn in Sect. 6.
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Robust unit commitment with n − 1 security criteria 379

2 Stochastic unit commitment problem

The unit commitment and generation scheduling problems involve inherent uncertain-
ties stemming from the short-term volatility of demand and unpredictability of wind
power. The recent progress in the field of stochastic programming makes it an attrac-
tive approach for modeling the UC problem under uncertainty. Research carried out
by Carpentier et al. (1996), Takriti (1996) and Dentcheva and Römisch (1998) were
amongst the first which formulate the UC problem as a two-stage stochastic program.
In this section, we first introduce a two-stage stochastic unit commitment problem
(Sto-UC) by taking into account the wind uncertainty and additional technical infor-
mation. We then further extend the stochastic framework to include the uncertainty
on the distribution of the uncertainty and develop a two-stage distributionally robust
model.

2.1 Two-stage stochastic UC with uncertain net load

Consider a unit commitment problem with a set of conventional generating units,
denoted by I = {1, . . . , I }, over a time horizon denoted by T = {1, . . . , T }. The net
load at time t ∈ T is stochastic and denoted by ξt .

The stochasticity of the load reflects uncertainty of renewable power supply such
as wind power. Mathematically, we denote by ξ = (ξt ), t ∈ T a vector of random
variables defined over measurable space (�,F) with sigma-algebra. We use � to
denote the support set of ξ . In this context, we can assume with out loss of generality
that � is a compact set (bounded and closed).

A standard two-stage stochastic programming model for the UC problem includes
a first-stage decision on the planning of unit power operation before realization of the
uncertainty and a second-stage adjustment (recourse action) after the uncertainty is
observed. The system operator aims tominimize the total generation costs which com-
prising the planned generation cost and the expected ‘adjustment’ cost. Specifically,
the framework for the two-stage UC problem can be described as follows.

The first-stage (here and now) decisions are taken prior to realization of uncertain
net load ξ . These include the on/off decisions denoted by uit , for generator i and time
period t , i.e.,

uit =
{
1, if generator i is turned on in time period t,

0, otherwise,

the energy dispatch variable qit , and the up and down scheduled reserves r
up
it , rdw

i t for

generator i at time t . Each generator i ∈ I has a fixed on cost of c f
i and, if on, it has a

unit generation cost of cli . The upper and lower generation capacities of generator i are
given by qi and qi while the upper and lower limits for reserve up/down for generator

i are given by rupit /rdw
i t and rupit /rdw

i t , respectively. The unitary costs of scheduling

reserve up cr,upi and reserve down cr,dw
i for generator i are given as an input of the

problem.
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The second stage decisions include deployed actual up and down reserves, denoted
by r̂ upi t (ξ), r̂ dw

i t (ξ). The unitary costs for the actual deployment of the reserve up and
down are denoted by ĉupi and ĉdw

i .
To avoid imbalance in the supply and demand for energy in the second stage, we

introduce additional auxiliary variables for load shedding and wind spillage. The load-
shedding variable is denoted by St (ξ) and represents the excess demand which cannot
be met by the total generation output at time period t and has to be shed at high penalty
cost of clst . On the other hand, the wind-spillage variable, denoted by Wt (ξ), is equal
to the excess wind power that cannot be utilized upon the realization of the net load.
Wind spillage incurs an unitary opportunity cost of cws

t .
The resulting mathematical model of the two-stage stochastic UC problem with

n − 1 security criterion and ramping constraints can be presented as follows,

(Sto-UC) min
u,q,r

∑
i

∑
t

[
c fi uit + cli qit︸ ︷︷ ︸
Generation Cost

+ cr,upi rupit + cr,dw
i rdw

i t︸ ︷︷ ︸
Reserves Cost

]+ EP [g(u,q, r, ξ)]︸ ︷︷ ︸
Expected variation cost

s.t. qit + rupit ≤ qi uit , ∀ t, i, (2.1)

qit − rdw
i t ≥ q

i
uit , ∀ t, i, (2.2)

rupi ≤ rupit ≤ rupi , ∀ t, i, (2.3)

rdw
i ≤ rdw

i t ≤ rdw
i , ∀ t, i, (2.4)

qit , r
dw
i t , rupit ∈ R

+, uit ∈ {0, 1}, ∀ t, i, (2.5)

where EP denotes the mathematical expectation w.r.t. the distribution of ξ over prob-
ability space (P,�,F), and g(u,q, r, ξ) is the optimal value of the second-stage
problem defined as

g(u,q, r, ξ) : min
r̂,W,S

∑
i

∑
t

{
ĉupi r̂ upit (ξ)+ĉdw

i r̂ dw
i t (ξ)

}
+
∑
t

{
clst St (ξ) + cws

t Wt (ξ)
}

s.t.
∑
i

q̂i t (ξ) + St (ξ) − Wt (ξ) = lt (ξ), ∀ t, (2.6)

0 ≤ r̂ upi t (ξ) ≤ rupit , ∀ t, i, (2.7)

0 ≤ r̂ dw
i t (ξ) ≤ rdw

i t , ∀ t, i, (2.8)

Qt − (qit + rupit ) + St (¯
ξ) ≥ lt (¯

ξ), ∀ t, i, (2.9)

q̂i t (ξ) = qit + r̂ upi t (ξ) − r̂ dw
i t (ξ), ∀ t, i, (2.10)

q̂i t (ξ) − q̂i(t−1)(ξ) ≤ RUiui(t−1) + SUi (1 − ui(t−1)), ∀ t, i, (2.11)

q̂i(t−1)(ξ) − q̂i t (ξ) ≤ RDiuit + SDi (1 − uit ), ∀ t, i. (2.12)

In the first stage, constraints (2.1) and (2.2) represent the generation limits includ-
ing the up and down scheduled reserves. The constraints (2.3) and (2.4) bound the
minimum and maximum reserves to be scheduled.

In the second-stage problem, constraint (2.6) represents the energy balance for each
hour t and net load wind scenario ξ . Constraints (2.7) and (2.8) ensure that the actual
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Robust unit commitment with n − 1 security criteria 381

up and down reserves used are within the limits of the nominal reserve scheduled in the
first stage. Furthermore, constraint (2.9) represents the n − 1 reliability requirement
which ensures that the demand will be met under the failure of up to one generating
unit, where Qt is the total generation upper limit and

¯
ξt is the worst (lowest) realization

of wind output at time t . When the time index t is clear from the context, we use
¯
ξ as

a shorthand notation for
¯
ξt . For example, St (¯

ξ) is equivalent to St (¯
ξt ) and denotes the

load shedding that corresponds to the worst realization of the wind output at time t .
Constraint (2.10) provides the formulation for the actual power output of unit i at time
t and scenario ξ . Finally, constraints (2.11) and (2.12) represent the ramp constraint
with RUi , RDi , SUi , SDi are the ramp up, ramp down, starting up and starting down
ramps, respectively. Details about how the reliability and n − 1 security constraints
and the ramp constraints are formed are presented in “Appendix 1”.

2.2 Distributionally robust UC problem

Under the stochastic programming framework (Sto-UC), we assume that the “true”
probability distribution P of the randomwind variables is known. In practice, however,
such distribution is often unknown and hence it has to be estimated through partial
information or subjective judgements. One of the possible ways to deal with this issue
is to use available information to construct a set of distributions, denoted byP , inwhich
the true probability distribution is assumed to lie. The robust optimization approach
for the two-stage stochastic problem with respect to this ambiguity aims to make a
decision which is optimal for the worst probability distribution from P .

To ease the exposition, we write x for the first stage decision variables (u,q, r)
with feasible domain X . Likewise we write y for the second stage decision vari-
ables (r̂,W, S). Furthermore, we denote the first-stage cost parameters by c =
(c f , cl , cr,up, cr,dw) and the second-stage cost parameters by h = (ĉup, ĉdw, cls, cws).
The corresponding mathematical model can be formulated as

(R-UC) min
x

cT x + supP∈P EP [g(x, ξ)]
s.t. x ∈ X ,

(2.13)

where g(x, ξ) is the optimal value of the second-stage problem

g(x, ξ) = min
y

hT y

s.t. y ∈ Y(x, ξ),
(2.14)

and Y(x, ξ) is the second-stage feasible set depending on x and ξ . In the literature of
robust optimization, (2.13) is known as a distributionally robust formulation where the
robustness is in the sense that the worst probability distribution rather than the worst
scenario of the random vector ξ is taken into account. This kind of robust optimization
framework can be traced back to the earlier work by Scarf Scarf et al. (1958) which
wasmotivated to address incomplete information on the underlying uncertainty in sup-
ply chain and inventory control problems. In such problems, historical data may be
insufficient to estimate future distribution either because sample size of past demand
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382 A. Gourtani et al.

is too small or because there is a reason to suspect that future demand will come from
a different distribution that governing past history. Compared to minimax robust opti-
mization model, the distributionally robust formulation is obviously less conservative
and hence more compelling in the circumstances where an optimal decision based on
the formermodel may incur excessive economic and/or computational costs to prevent
a rare event. Over the past few decades, DRO models have found many applications
in operations research, finance and management sciences, see for instances Bertsi-
mas and Popescu (2005), Delage and Ye (2010), Goh and Sim (2010), Mehrotra and
Papp (2014), Wiesemann et al. (2012), Wiesemann et al. (2013) and Wozabal (2014)
for various applications and numerical schemes. In particular, Bertsimas et al. (2010)
propose a distributionally robust formulation of two stage linear programming model
with applications in finance and facility location planning.

A key element in (R-UC) is the ambiguity set P . Various statistical methods have
been proposed in the literature for constructing ambiguity set. Here we consider two
popular ones where P is constructed through moments and mixture distribution.

3 Moment model and sample approximation approach

In this section, we investigate the robust unit commitment problem where the first
moment condition of the underlying random wind generation is known. Let μ ∈ R

T

denote the mean of ξ . We consider the ambiguity set P being defined as follows:

P = {P ∈ P : EP [ξ ] = μ} , (3.1)

where P denotes the set of all probability measures of measurable space (�,B)

induced by ξ . For each fixed x ∈ X , we consider the worst expected value of g(x, ξ)

over the ambiguity set P:

H(x) := sup
P∈P

EP [g(x, ξ)]. (3.2)

Using the moment conditions, we can write H(x) as the optimal value of the
following maximization problem

H(x) = sup
P∈M+

∫
�

g(x, ξ)P(dξ),

s.t.
∫

�

ξt P(dξ) = μt , for all t = 1, . . . , T,∫
�

P(dξ) = 1,

(3.3)

where M+ denotes the set of all non-negative finite measures on measurable space
(�,B), and μt is the t th component of μ. Problem (3.3) is a typical form of classical
moment problem. We refer interested readers to a monograph by Landau (1987) for
a comprehensive discussion of the historical background of the latter. In order to deal
with difficulties associated with solving such an infinite dimensional problem, duality
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theory is often used; for example, see Rockafellar (1974). Here we follow Shapiro
(2001, Proposition 3.1) to derive the Lagrange dual associated with the moment prob-
lem (3.3).

Proposition 3.1 For a given x ∈ X , the Lagrange dual of problem (3.2) is

HD(x) := min
α

α0 +
T∑
t=1

αtμt

s.t. g(x, ξ) ≤ α0 +
T∑
t=1

αtξt , for all ξ ∈ �,

(3.4)

where αt ∈ R, t = 0, 1, . . . , T , denotes the dual variables corresponding to moment
problem constraints and � ⊂ R

T is the support set of ξ , and HD(x) = H(x).

Proof The derivation of the dual formulation is standard and can be found in Shapiro
et al. (2009). Since � is compact and the underlying function are continuous in ξ , the
strong duality follows from Shapiro et al. (2009, p. 308). ��

Using Proposition 3.1, we can reformulate (R-UC) as

(SIP-UC) min
x,α0,α

cT x + α0 + αTμ

s.t. x ∈ X ,

g(x, ξ) ≤ α0 + αT ξ , for all ξ ∈ �.

(3.5)

Moreover, through a simple analysis, we can show that problem (3.5) is equivalent
to the following program which incorporates the details of the second-stage problem

min
x,y(.),α0,α

cT x + α0 + αTμ

s.t. x ∈ X ,

hT y(ξ) ≤ α0 + αT ξ , for all ξ ∈ �,

y(ξ) ∈ Y(x, ξ), for all ξ ∈ �.

(3.6)

In the rest of the paper, we discuss numerical methods for solving (3.5) or (3.6). If
we are able to obtain a closed form of g(x, ξ) and show that g is a linear or a quadratic
functionof ξ , thenwemay reformulate the semiinfinite constraints of problem (3.5) as a
semidefinite constraint and consequently solve the resulting semidefinite programming
(SDP) problem with existing methods for SDP. Indeed, this is the main stream work
for distributionally robust optimization, see for instance Wiesemann et al. (2012),
Wiesemann et al. (2013) and references therein. Unfortunately, here g is not linear
or quadratic in ξ . Likewise, the underlying functions in the constraints of problem
(3.6) are also nonlinear, non-quadratic which makes it impossible to reformulate the
semiinfinite constraints as semidefinite constraints. This motivates us to solve (3.6)
through other methods
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3.1 Sample approximation scheme

One of the well-known solution approaches for semi-infinite programs is random
discretization. The basic idea is to construct a tractable sub-problem by considering a
randomly drawnfinite subset of constraints. The approach has been shown numerically
efficient and it has been widely applied to various stochastic and robust programs (see
Calafiore and Campi 2005). In a more recent development, Anderson et al. (0000)
propose a CVaR approximation scheme to a semi-infinite constraint system, and then
apply the well-known sample average approximation to the CVaR (of the constraint
function); see also Liu and Xu (2014) where the approach is applied to mathematical
programs with semi-infinite complementarity constraints.

Let ξ1, . . . , ξ S be random variables which are independent and follow identical
distribution to that of ξ . Let S = {1, . . . , S}. We consider the following discretization
problem as an approximation to problem (3.6):

min
x,y(ξ s ):s∈S,α0,α

cT x + α0 + αTμ

s.t. x ∈ X ,

hT y(ξ s) ≤ α0 + αT ξ s, for all s ∈ S,

y(ξ s) ∈ Y(x, ξ s), for all s ∈ S,

(3.7)

where ξ s is a realization of ξ for s ∈ S. In what follows, we show the convergence
of the optimal value of (3.7) to its true counterpart as the sample size increases. To
this end, we consider an equivalent form of (3.7) which is presented in terms of the
optimal value function of the second-stage problem:

min
x,α0,α

cT x + α0 + αTμ

s.t. x ∈ X ,

g(x, ξ s) ≤ α0 + αT ξ s, for all s ∈ S.

(3.8)

A clear benefit of the formulation above is that the decision variables are indepen-
dent of the sample and this will particularly facilitate the convergence analysis.

To minimize the dependence on the specific details of the objective and constraints
functions of problem (3.8) for the convergence analysis and also for the purpose of
potential applications of the convergence result, we consider the following general
optimization problem

min
x∈X ψ(x)

s.t. f (x, ξ) ≤ 0, for all ξ ∈ �,
(3.9)

where X is a compact set in a finite dimensional space, ψ and f are continuous
functions which map from R

n and R
n × R

k to R respectively, ξ is the parameter
which takes values over a compact set �.

Let ξ1, . . . , ξ N be independent and identically distributed random variables with
the same distribution as ξ . We consider the discretized problem
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min
x∈X ψ(x)

s.t. f (x, ξ i ) ≤ 0, i = 1, . . . , N .
(3.10)

Let v and vN denote, respectively, the optimal values of program (3.9) and program
(3.10).

Lemma 3.1 Assume that (a) ψ is Lipschitz continuous, (b) � is a compact set, (c) ξ

is a continuously distributed1 and there exist positive constants K and τ independent
of x, such that for each x ∈ X there exist α0(x) < f ∗(x) := max

y∈�
f (x, y) with

1 − Fx (α) ≥ K
(
f ∗(x) − α

)τ
, for all α ∈ (α0(x), f ∗(x)), (3.11)

where Fx denotes the cumulative distribution function of f (x, ξ),2 and (d) f is Lip-
schitz continuous in x with integrable Lipschitz modulus (w.r.t. the distribution of ξ ).
Then for any positive number ε, there exist positive constants C(ε) and A(ε) such that

Prob(|vN − v| ≥ ε) ≤ C(ε)e−A(ε)N (3.12)

for N sufficiently large.

Proof The thrust of the proof is to use CVaR and its sample average approximation to
approximate the semi-infinite constraints of (3.9) which is similar to the convergence
analysis in Anderson et al. [2]. However, there are a few important distinctions: (a)
the convergence here is for the randomization scheme (3.10) rather than the sample
average approximation of the CVaR approximation of the semi-infinite constraints, (b)
the underlying functions in the objective and constraints are not necessarily convex,
and (c) the decision vector may consist of some integer variables.

Let

	(x) := supξ∈� f (x, ξ) and 	N (x) := supi=1,...,N f (x, ξ i ),

and let F and FN denote the feasible set of problem (3.9) and problem (3.10) respec-
tively. Then

F = {x : 	(x) = 0} and FN = {x : 	N (x) = 0}.

Moreover, since 	N (x) ≤ 	(x), F ⊂ FN . For β ∈ (0, 1), let

CVaRβ( f (x, ξ)) := sup
η

{
η + 1

1 − β

∫
y∈Y

( f (x, y) − η)+ρ(y)dy
}

1 Although ξ is a deterministic parameter here, we may regard it as a random variable, and by writing
f (x, ξ) ≤ 0 we mean that, for every realization of ξ , the inequality holds.
2 Note that ξ could be any random variable which follows a continuous distribution with support set � and
the cumulative distribution function satisfying (3.11).
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and

N
β (x) := sup

η

{
η + 1

(1 − β)N

N∑
j=1

( f (x, ξ j ) − η)+
}

where ρ(·) denotes the density function of the random variable ξ , (a)+ = max(0, a)

for a ∈ IR. In the literature, CVaRβ ( f (x, ξ)) is known as conditional value at risk
and N

β (x) is its sample average approximation (see Rockafellar and Uryasev 2000;
Anderson et al. 0000). It is well known that the maximum w.r.t. η in the above for-
mulation is achieved at a finite η. In other words, we may restrict the maximum to
be taken within a closed interval [−a, a] for a sufficiently large, see Rockafellar and
Uryasev (2000). It is easy to verify that

N
β (x) ≤ 	N (x) ≤ 	(x). (3.13)

We proceed the rest of the proof in four steps.
Step 1. By the definition of CVaR,

CVaRβ ( f (x, ξ)) ≤ 	(x)

for any β ∈ (0, 1) (see [2]). Moreover, under condition (c), it follows by ([2], Theorem
2.1) that

|CVaRβ ( f (x, ξ)) − 	(x)| ≤ 1

K 1/τ

τ

1 + τ
(1 − β)1/τ . (3.14)

Therefore by driving β to 1, we obtain

sup
x∈X

|CVaRβ ( f (x, ξ)) − 	(x)| → 0.

Step 2. Using the inequalities (3.13), we have

|	N (x) − 	(x)| ≤ |N
β (x) − 	(x)|

≤ |N
β (x) − CVaRβ ( f (x, ξ)) | + |CVaRβ ( f (x, ξ)) − 	(x)|.

(3.15)

Let δ be a small positive number. By (3.14), we may set β sufficiently close to 1 such
that

sup
x∈X

|CVaRβ ( f (x, ξ)) − 	(x)| ≤ δ

2
.

On the other hand, since � is compact and f is Lipschitz continuous in x with
integrable modulus, by virtue of Shapiro and Xu (2008, Theorem 5.1), there exist
positive constants C(δ) and A(δ) such that
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Prob
(
sup
x∈X

|N
β (x) − CVaRβ ( f (x, ξ)) | ≥ δ/2

)

≤ Prob
( 1

1−β
sup
x∈X

sup
η∈[−a,a]

∣∣∣∣∣∣
1

N

N∑
j=1

( f (x, ξ j )−η)+ − EP [(η− f (x, ξ))+]
∣∣∣∣∣∣≥ δ/2

)

≤ C(δ)e−A(δ)N

when N is sufficiently large. Here, in the first inequality, we are using the fact that the
maximum w.r.t. η is achieved in [−a, a] for some appropriate positive constant a; see
similar discussions in Xu and Zhang (2009). Therefore,

Prob
(
sup
x∈X

|	N (x) − 	(x)| ≥ δ
)

≤ Prob
(
sup
x∈X

|CVaRN
β ( f (x, ξ)) − CVaRβ ( f (x, ξ)) | ≥ δ/2

)
≤ C(δ)e−A(δ)N . (3.16)

Step 3. For small positive number t , let

R(t) = min
x

{
	(x) : d(x,F)

}
≥ t,

where d(x,F) denotes the distance from point x to set F . Obviously R(t) > 0, it is
monotonically increasing, and R(t) → 0 as t ↓ 0. Therefore, it is easy to observe that

d(x,F) ≥ t ⇐⇒ 	(x) ≥ R(t).

Let

D(FN ,F) := sup
x∈F N

d(x,F)

and

H(FN ,F) := max
(
D(FN ,F),D(F ,FN )

)
,

where H is the Hausdorff distance between FN and F . Since both FN and F
are bounded, the Hausdorff distance is well defined. Moreover, since F ⊂ FN ,
H(FN ,F) = D(FN ,F). In what follows, we estimate Prob

(
D(FN ,F) ≥ δ

)
. For

any xN ∈ FN , since 	N (xN ) = 0, then

	(xN ) ≥ R(t) ⇐⇒ 	(xN ) − 	N (xN ) ≥ R(t).
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Therefore,

Prob
(
D(FN ,F) ≥ t

)
≤ Prob

(
sup
x∈F N

|	(x)| ≥ R(t)

)

≤ Prob

(
sup
x∈X

|	(x) − 	N (x)| ≥ R(t)

)
. (3.17)

Step 4. Let x∗ ∈ F and xN ∈ FN be the optimal solutions to (3.9) and (3.10). Then,
by the Lipschitz continuity of ψ ,

|vN − v∗| = |ψ(xN ) − ψ(x∗)| ≤ L‖xN − x∗‖ ≤ LH(FN ,F)

where L denotes the Lipschitz modulus of ψ . By (3.17), we deduce

Prob(|vN − v∗| ≥ ε) ≤ Prob
(
H(FN ,F) ≥ ε/L

)
≤ Prob

(
sup
x∈X

|	(x) − 	N (x)| ≥ R(ε/L)

)
.

The rest follows from (3.16) with δ = R(ε/L). The proof is complete. ��
With Lemma 3.1, we are ready to state the convergence of problem (3.8).

Theorem 3.1 Let ϑ and ϑN denote the optimal value of (SIP-UC) and (3.8) respec-
tively. Assume that ξ follows a uniform distribution.3 Then for any positive number ε,
there exists positive constants C(ε) and β(ε) such that

Prob(|ϑN − ϑ | ≥ ε) ≤ C(ε)e−β(ε)N (3.18)

for N sufficiently large.

Proof It suffices to verify the conditions of Lemma 3.1. Conditions (a) and (b) are
obvious since the objective function is linear and � is compact problem (3.8). Condi-
tion (c) is satisfied because g(x, ξ) also follows a uniform distribution for each fixed
x and the cumulative distribution function of g(x, ξ) is a linear function. Let us verify
condition (d). Following Walkup and Wets (1969) and Nožička (1974) (see also Liu
et al. 2014, Lemma 4.3) that g(x, ξ) is Lipschitz continuous w.r.t. x and ξ and since
� is compact, g(x, ξ) is Lipschitz continuous in x with integrable Lipschitz modulus.
The proof is complete. ��

In Theorem 3.1, we assume that ξ follows a uniform distribution. It might be
interesting to show the conclusion when ξ follows a general continuous distribution

3 Following the comments at a footnote of Lemma 3.1, the distribution of ξ can be any so long as its support
set coincides with � and it satisfies consistent tail condition (3.14) because the distribution is only used
for generating samples of the random discretization scheme. We make it easier by considering uniform
distribution which obviously satisfies the tail condition as the density is a postive constant.
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with positive density function in the interior of �; that is, g(x, ξ) satisfies (3.11). We
leave this for our future work.

The detailed formulation for the sample approximation of (SIP-UC) problem is
given by the mixed integer linear program below,

min
u,q,r,r̂(.),α

c f
i uit + cli qit + cr,upi rupit + cr,dw

i rdw
i t + α0 +

T∑
t=1

αtμt

s.t. qit + rupit ≤ qiuit , ∀t, i,
qit − rdw

i t ≥ q
i
uit , ∀t, i,

rupi ≤ rupit ≤ rupi , ∀t, i,
rdw
i ≤ rdw

i t ≤ rdw
i , ∀t, i,

qit , rdw
i t , rupit ∈ R

+, uit ∈ {0, 1}, ∀t, i,∑
i

∑
t {ĉupi r̂ upit (ξ s) + ĉdw

i r̂ dw
i t (ξ s)} +∑

t
{clst St (ξ s) + cws

t Wt (ξ
s)} ≤

α0 +
T∑
t=1

αtξ
s
t , ∀s,∑

i
q̂i t (ξ s) + St (ξ s) − Wt (ξ

s) = lt (ξ s), ∀t, s,
0 ≤ r̂ upit (ξ s) ≤ rupit , ∀t, i, s,
0 ≤ r̂ dw

i t (ξ s) ≤ rdw
i t , ∀t, i, s,

Qt − (qit + rupit ) + St (¯
ξ) ≥ lt (¯

ξ), ∀t, i,
q̂i t (ξ) = qit + r̂ upit (ξ) − r̂ dw

i t (ξ), ∀t, i,
q̂i t (ξ s) − q̂i(t−1)(ξ

s) ≤ RUiui(t−1) + SUi (1 − ui(t−1)), ∀t, i, s,
q̂i(t−1)(ξ

s) − q̂i t (ξ s) ≤ RDiuit + SDi (1 − uit ), ∀t, i, s,

where the first five constraints are the first-stage constraints, and the last six constraints
represent the remaining constraints in problem (3.7).

4 Mixture distribution approach

In the absence of complete information on the underlying distribution of random
variables, the decision maker could integrate information obtained through various
channels to construct amixture probability distribution. The use ofmixture distribution
in the context of robust optimization could be traced back to Peel and McLachlan
(2000) and more recently in Zhu and Fukushima (2009) for portfolio optimization
problems.

To define the ambiguity set corresponding to the robust problem (2.13), let Pj , j =
1, . . . , L be a set of probability measures such that EPj [g(x, ξ)] is well defined for
j = 1, . . . , L . The ambiguity set under mixture distribution can then be defined as
follows,

P :=
{ L∑

j=1

γ j Pj :
L∑
j=1

γ j = 1, γ j ≥ 0, ∀ j = 1, . . . , L
}
,

where γ j denotes theweight of distribution j . The probability distributions P1, . . . , PL
are assumed to be known and true probability distribution is assumed to be in their
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convex hull. For any realization of the distribution P :=∑ j γ j Pj we have

EP [g(x, ξ)] =
L∑
j=1

γ jEPj [g(x, ξ)].

Under the mixture distribution, the inner maximization problem in (2.13) can then
be rewritten as follows,

H(x) = supγ

L∑
j=1

γ jEPj [g(x, ξ)]
s.t.

∑
j

γ j = 1,

γ j ≥ 0, ∀ j = 1, . . . , L .

(4.1)

Let λ be the dual variable corresponding to the first constraint in (4.1). Then the
dual of the above problem can be written as

HD(x) = min
λ∈R

λ

s.t. EPj [g(x, ξ)] ≤ λ, ∀ j = 1, . . . , L .
(4.2)

Proposition 4.1 In the case when ξ has a finite discrete distribution with the support
set containing a finite number of values ξ1, . . . , ξ N and for a given first-stage decision
x, model (4.2) is equivalent to

min
y1,...,yN ,λ

λ

s.t.
N∑

k=1
pkj (h

T yk) ≤ λ, ∀ j = 1, . . . , L ,

yk ∈ Y(x, ξ k), ∀k = 1, . . . , N ,

(4.3)

where pkj is the probability measure of Pj in scenario k.

Proof If ξ has a discrete distribution with a finite number of scenarios ξ1, . . . , ξ N ,
then model (4.2) can be written as

min
λ

λ

s.t.
N∑

k=1
pkj g(x, ξ

k) ≤ λ, ∀ j = 1, . . . , L ,

where g(x, ξ k) refers to the second-stage problem

g(x, ξ k) = min
y

hT y

s.t. y ∈ Y(x, ξ k).
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Let us denote the optimal solution of the above problem as

ŷk = argmin
y∈Y(x,ξ k )

hT y, ∀k.

Then we have g(x, ξ k) = hT ŷk . Let us define λ̂ =∑N
k=1 p

k
j (h

T ŷk). It is clear that

(λ̂, ŷ) is a feasible solution to problem (4.3). Let (λ̃, ỹk : k = 1, . . . , N ) be an optimal
solution to problem(4.3). Then hT ỹk ≥ hT ŷk for all k by the definition of ŷk . Thus,
we have

N∑
k=1

pkj (h
T ỹk) ≥

N∑
k=1

pkj (h
T ŷk), ∀ j.

Therefore

min
j

{
N∑

k=1
pkj (h

T ỹk)

}
≥ min

j

{
N∑

k=1
pkj (h

T ŷk)

}

and λ̃ ≥ λ̂. Since (λ̂, ŷ) is a feasible solution of (4.3), it must also be an optimal
solution. ��

Thus, when ξ has a finite discrete distribution, the original robust problem (2.13)
can be rewritten as

(Mix-UC) min
x,y(.),λ

cT x + λ

s.t. x ∈ X ,
N∑

k=1
pkj (h

T yk) ≤ λ, ∀ j = 1, . . . , L ,

yk ∈ Y(x, ξ k), ∀k = 1, . . . , N .

(4.4)

Note that when Pj follows a continuous distribution, it might be difficult to compute
the expected value of the functions in the constraints of (4.2). A well-known approach
to resolving this issue is to use sample average approximation (SAA). For a fixed

j , let ξ1j , . . . , ξ
N j
j denote independent and identically random sampling of ξ . Then

Ep j [g(x, ξ)] can be approximated by

1

N j

N j∑
k=1

g(x, ξ kj ).

Consequently, problem (4.4) can be approximated by
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min
x,y(.),λ

cT x + λ

s.t. x ∈ X ,

1

N j

N j∑
k=1

hT ykj ≤ λ, ∀ j = 1, . . . , L ,

ykj ∈ Y(x, ξ kj ), ∀k = 1, . . . , N j , j = 1, . . . , L .

(4.5)

The overall SAA of the Mix-UC problem can be written as follows,

min
u,q,r,r̂,W,S,λ

c f
i uit + cli qit + cr,upi rupit + cr,dw

i rdw
i t + λ

s.t. qit + rupit ≤ qiuit , ∀t, i,
qit − rdw

i t ≥ q
i
uit , ∀t, i,

rupi ≤ rupit ≤ rupi , ∀t, i,
rdw
i ≤ rdw

i t ≤ rdw
i , ∀t, i,

qit , rdw
i t , rupit ∈ R

+, uit ∈ {0, 1}, ∀t, i,
1

N j

N j∑
k=1

[∑
i

∑
t {ĉupi r̂ upit (ξ kj )+

ĉdw
i r̂ dw

i t (ξ kj )} +∑
t
{clst St (ξ kj ) + cws

t Wt (ξ
k
j )}
]

≤ λ ∀ j,∑
i
q̂i t (ξ kj ) + St (ξ kj ) − Wt (ξ

k
j ) = lt (ξ kj ) ∀t, k, j,

0 ≤ r̂ upi t (ξ kj ) ≤ rupit ∀t, i, k, j,
0 ≤ r̂ dw

i t (ξ kj ) ≤ rdw
i t ∀t, i, k, j,

Qt − (qit + rupit ) + St (¯
ξ) ≥ lt (¯

ξ), ∀t, i,
q̂i t (ξ) = qit + r̂ upi t (ξ) − r̂ dw

i t (ξ), ∀t, i,
q̂i t (ξ kj ) − q̂i(t−1)(ξ

k
j ) ≤ RUiui(t−1) + SUi (1 − ui(t−1)), ∀t, i, k, j,

q̂i(t−1)(ξ
k
j ) − q̂i t (ξ kj ) ≤ RDiuit + SDi (1 − uit ), ∀t, i, k, j.

Note that the SAA approach for Mix-UC results in a mixed integer linear program
(MILP).

5 Case study

In this section, we carry out some numerical experiments to evaluate the proposed
mathematical methods and numerical schemes. To facilitate further exposition and
reading, we develop a list of models in Table 2.

5.1 Data

We consider an illustrative case study based on a system with 10 generating units. The
data for the generators are based on work by Pozo and Contreras (2013) and includes
the cost and limitation of the generation and reserve utilization as summarised in
Table 3.
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Table 2 Reference of the methodologies

Abbreviations Problem Method Known information on
uncertainty

Sto-UC (2.1)–(2.12) Stochastic UC Probability distribution (P)

SIP-UC (3.5) Robust UC with semi-infinite
formulation

First moments (μ)

Mix-UC (4.4) Robust UC with mixture
distribution

A set of known distributions

5.1.1 Stochastic base case

The hourly power demand is assumed to be known, and under the two-stage stochastic
setting (Sto-UC) the wind output is assumed to follow a multivariate normal distri-
bution N (μ, �) with mean μ, standard deviation σ , correlation C and covariance
� = σCσ T . The hourly demand, wind output mean values μ, and the standard devi-
ations σ for a 24-h period are given in Table 4. The corresponding mean values for
the stochastic net load are also presented in Fig. 1.

The correlation matrix C is based on the hourly Danish wind output data4 for the
year 2013 and is given by

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.994 0.979 0.962 0.942 0.913 0.88 0.844 0.812 0.778 0.744 0.705 0.665 0.629 0.597 0.566 0.54 0.51 0.479 0.462 0.449 0.428 0.399 0.372
0.994 1 0.994 0.982 0.965 0.937 0.905 0.87 0.838 0.806 0.774 0.735 0.697 0.66 0.627 0.595 0.568 0.535 0.504 0.486 0.471 0.449 0.42 0.391
0.979 0.994 1 0.995 0.982 0.957 0.927 0.893 0.862 0.829 0.797 0.759 0.719 0.682 0.648 0.616 0.587 0.553 0.522 0.505 0.489 0.467 0.439 0.411
0.962 0.982 0.995 1 0.994 0.975 0.949 0.919 0.888 0.856 0.823 0.784 0.744 0.706 0.672 0.64 0.611 0.576 0.544 0.527 0.511 0.487 0.459 0.43
0.942 0.965 0.982 0.994 1 0.992 0.974 0.949 0.922 0.892 0.86 0.821 0.781 0.741 0.705 0.673 0.643 0.608 0.576 0.558 0.54 0.515 0.486 0.454
0.913 0.937 0.957 0.975 0.992 1 0.993 0.976 0.953 0.926 0.895 0.858 0.817 0.776 0.74 0.707 0.677 0.641 0.609 0.59 0.57 0.542 0.511 0.477
0.88 0.905 0.927 0.949 0.974 0.993 1 0.993 0.976 0.953 0.924 0.888 0.847 0.805 0.768 0.735 0.705 0.669 0.636 0.616 0.594 0.563 0.53 0.494
0.844 0.87 0.893 0.919 0.949 0.976 0.993 1 0.992 0.974 0.947 0.913 0.873 0.831 0.795 0.762 0.731 0.696 0.663 0.642 0.619 0.586 0.55 0.511
0.812 0.838 0.862 0.888 0.922 0.953 0.976 0.992 1 0.992 0.969 0.939 0.902 0.862 0.827 0.796 0.766 0.731 0.699 0.678 0.652 0.616 0.577 0.536
0.778 0.806 0.829 0.856 0.892 0.926 0.953 0.974 0.992 1 0.99 0.967 0.935 0.899 0.866 0.836 0.806 0.77 0.735 0.711 0.683 0.644 0.604 0.562
0.744 0.774 0.797 0.823 0.86 0.895 0.924 0.947 0.969 0.99 1 0.991 0.969 0.94 0.91 0.882 0.854 0.819 0.78 0.754 0.723 0.682 0.641 0.598
0.705 0.735 0.759 0.784 0.821 0.858 0.888 0.913 0.939 0.967 0.991 1 0.991 0.971 0.946 0.922 0.895 0.861 0.822 0.794 0.761 0.719 0.677 0.635
0.665 0.697 0.719 0.744 0.781 0.817 0.847 0.873 0.902 0.935 0.969 0.991 1 0.993 0.976 0.957 0.933 0.901 0.863 0.835 0.801 0.759 0.719 0.679
0.629 0.66 0.682 0.706 0.741 0.776 0.805 0.831 0.862 0.899 0.94 0.971 0.993 1 0.994 0.98 0.961 0.933 0.899 0.871 0.837 0.796 0.757 0.719
0.597 0.627 0.648 0.672 0.705 0.74 0.768 0.795 0.827 0.866 0.91 0.946 0.976 0.994 1 0.995 0.981 0.958 0.928 0.901 0.867 0.827 0.789 0.753
0.566 0.595 0.616 0.64 0.673 0.707 0.735 0.762 0.796 0.836 0.882 0.922 0.957 0.98 0.995 1 0.994 0.977 0.952 0.927 0.894 0.855 0.818 0.783
0.54 0.568 0.587 0.611 0.643 0.677 0.705 0.731 0.766 0.806 0.854 0.895 0.933 0.961 0.981 0.994 1 0.993 0.974 0.951 0.92 0.882 0.847 0.814
0.51 0.535 0.553 0.576 0.608 0.641 0.669 0.696 0.731 0.77 0.819 0.861 0.901 0.933 0.958 0.977 0.993 1 0.991 0.973 0.944 0.908 0.875 0.845
0.479 0.504 0.522 0.544 0.576 0.609 0.636 0.663 0.699 0.735 0.78 0.822 0.863 0.899 0.928 0.952 0.974 0.991 1 0.992 0.969 0.937 0.905 0.876
0.462 0.486 0.505 0.527 0.558 0.59 0.616 0.642 0.678 0.711 0.754 0.794 0.835 0.871 0.901 0.927 0.951 0.973 0.992 1 0.989 0.964 0.935 0.906
0.449 0.471 0.489 0.511 0.54 0.57 0.594 0.619 0.652 0.683 0.723 0.761 0.801 0.837 0.867 0.894 0.92 0.944 0.969 0.989 1 0.99 0.969 0.944
0.428 0.449 0.467 0.487 0.515 0.542 0.563 0.586 0.616 0.644 0.682 0.719 0.759 0.796 0.827 0.855 0.882 0.908 0.937 0.964 0.99 1 0.992 0.975
0.399 0.42 0.439 0.459 0.486 0.511 0.53 0.55 0.577 0.604 0.641 0.677 0.719 0.757 0.789 0.818 0.847 0.875 0.905 0.935 0.969 0.992 1 0.992
0.372 0.391 0.411 0.43 0.454 0.477 0.494 0.511 0.536 0.562 0.598 0.635 0.679 0.719 0.753 0.783 0.814 0.845 0.876 0.906 0.944 0.975 0.992 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5.1.2 SIP formulation

In the SIP formulation, we assume that only the first moment of the uncertain wind
power is known and is given by μ. Based on this assumption, we implement the first
proposed model and formulate the problem as a robust SIP (SIP-UC). In solving the
SIP problem, we limit the support set of random hourly wind to 150 values generated
from a multivariate uniform distribution.

4 Available online at http://energinet.dk.
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Table 4 Hourly demand and mean/standard deviation of the wind

Hour Demand Wind Hour Demand Wind

t dt Mean (μt ) SD(σt ) t dt Mean (μt ) SD(σt )

1 1127 282 42.3 13 2254 564 126.8

2 1208 302 47.2 14 2093 523 121

3 1369 342 55.6 15 1932 483 114.7

4 1530 383 64.5 16 1691 423 103

5 1610 403 70.4 17 1610 403 100.6

6 1771 443 80.2 18 1771 443 113.5

7 1852 463 86.8 19 1932 483 126.8

8 1932 483 93.6 20 2254 564 151.4

9 2093 523 104.7 21 2093 523 143.9

10 2254 564 116.2 22 1771 443 124.5

11 2335 584 124 23 1449 362 104.1

12 2415 604 132.1 24 1288 322 94.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

500

1000

1500
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Demand
Uncertain wind mean
Uncertain net load mean

Fig. 1 Nominal values of demand and mean wind

5.1.3 Mixture distribution formulation

In the second approach of mixture distribution, we consider a case where the informa-
tion on the uncertain net load is received through various resources, e.g. advice from a
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Table 5 Potential distributions for wind power

Distribution Mean Covariance Weight

Multivariate normal 0.8μ � 1
3

Multivariate normal 1.2μ � 1
3

Multivariate uniform μ � 1
3

Table 6 Problems size and computational times

Model Scenarios (#) Constraints (#) Total variables (#) Binary variables (#) CPU time (s)

Sto-UC 150 148,320 80,160 240 539.16

SIP-UC 150 148,470 80,185 240 1894.1

Mix-UC 150 148,322 80,161 240 196.70

group of experts.While each alternative net loadmodel provides a specific distribution
and parameters such as the mean and the covariance, there is no consensus among the
decision makers on which model contains the true distribution. Therefore, instead of
relying on a particular expert model, we use the mixture model (Mix-UC) to com-
bine all these potential distributions. Specifically, we assume that we are given three
different distributions for the stochastic net load, shown in Table 5. We assume that
three distributions are equally relevant and therefore they have equal weights in the
construction of the mixture distribution. We construct the uncertainty set by drawing
50 random samples from each distribution.

5.2 Numerical results

We compare the solutions produced by three different models: (a) a two-stage stochas-
tic UC that uses the known distribution of the random supply as described in Sect. 2.1,
(b) the robust UC that uses only information on the mean value of the random supply
as described in Sect. 3, and (c) the robust UC that ‘knows’ only a convex hull of a finite
set of known distributions containing the true probability distribution as described in
Sect. 4. Table 6 shows the size of each problem as well as the running time for solving
each problem. Themodels have been tested on anMacBookAir Intel Core i5 processor
at 1.6GHz and 4GB of RAMmemory using CPLEX 12.6.1 under MATLABR2014a.

The sizes of the three models are dependent on the number of scenarios generated
and are very similar to each other in this case study. We generate 150 scenarios for
each of the models so that the computational time is reasonable. Our main interest lies
in assessing the quality of the solutions proposed by the stochastic model and their
robust counterparts.

The cumulative first-stage decisions as well as the second-stage decisions and the
total costs for each solution are presented in Table 7. It can be observed that robust
solutions result in higher expected costs than the stochastic solution in both the first
stage and the second stage. This is contributed to mostly by the increase in the first-
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Table 7 Stochastic versus robust solutions

Model First-stage decisions [Total MW] Cost [$]

Generation Reserve up Reserve down First stage Second stage Total expected∑
t
∑

i qi t
∑

t
∑

i r
up
i t

∑
t
∑

i r
dw
i t

Sto-UC 32,098 3701 3882 821,260 50,870 872,130

Mix-UC 33,633 2910 2390 854,660 118,270 972,940

SIP-UC 32,661 5391 7231 882,740 195,930 1,078,680

stage generation to hedge against the ambiguity of the distribution of the underlying
net load uncertainty. The increase of the expected costs makes sense because the
stochastic solution was produced by using the truth distribution of the net load; i.e. the
truth information is known, while the robust solutions only have the uncertainty set
containing the truth distribution. Note that, in practice, we often do not have the truth
distribution and hence the stochastic solution must use some ‘guess’ distribution in
the uncertainty set. In that case, the resulting expected cost might be higher than those
suggested by the robust solutions as we will demonstrate in the sensitivity analysis
later on.

The hourly cumulative first-stage generation and reserve levels are presented in
Fig. 2. It can be observed that, in the case of the Mix-UC solution, the hourly pattern
of total generation is generally higher than the base Sto-UC solution. Additionally, the
SIP-UC solution provides a greater flexibility for the second stage through a higher
level of up and down reserves. It can also be observed that the hourly patterns of the
generation and the reserve schedule are similar to the net load quantities, and at the
peak hours the maximum generation capacity of generators are scheduled either in
term of generation (Mix-UC) or generation with reserve (Sto-UC and SIP-UC).

5.2.1 Sensitivity of solutions to variation of the wind distribution

The first-stage decisions of the UC models determines the flexibility of the solution to
changes in the actual realization of the wind distribution in the second stage, i.e. we
expect the robust solutions to provide greater flexibility if the actual distribution of the
uncertainty was different from the assumed distribution. To compare the performance
of the Sto-UC model, MIX-UC model, and SIP-UC model, we analyze the effect of
deviation of the distribution parameters such as the mean and the covariance matrix
from the nominal values. In doing so, we consider a two-stage stochastic structure
for each instance, in which the first stage unit commitment and reserve schedules are
fixed as the first-stage solutions of the Sto-UC model, MIX-UC model, and SIP-UC
model. In each instance, we then solve the second-stage problem using a distribution
with different means or covariances for the uncertain wind.

Wefirst study the sensitivity of solution to changes in the actualmean of the distribu-
tion. We compare the Sto-UC, Mix-UC, and SIP-UC for instances with the following
wind distributions: N (aμ, �), a = {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}
bounded away from zero (i.e. truncated normal distributions). For each choice of a,
we carry out 100 independent runs, each generating 150 i.i.d samples from the corre-
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Fig. 2 UC first-stage solutions. a Sto-UC. b Mix-UC. c SIP-UC

sponding distribution, and use these i.i.d samples as input to solve the second-stage
problem. The solutions of 100 runs for each instance are summarised as a box plot and
are presented in Fig. 3a–c. The average values of the objective function (total expected
cost) for the 100 runs of each instance are also shown in Fig. 3d.

It can be observed that when the actual wind distribution isN = (μ, �), i.e. when
a = 1, the Sto-UC solution performs better than Mix-UC and SIP-UC solutions as
expected since the assumed distribution in Sto-UC coincides with the actual distribu-
tion. The Sto-UC solution also performs better for all the instances with the mean of
distribution greater than μ, i.e. when the mean of wind level is greater than expected
in Sto-UC model. This is due to the ability of the system operator to dispatch higher
levels of energy using the excess wind power rather than utilizing the costly reserve.
On the other hand, the Mix-UC (SIP-UC) solution performs better when the mean
of the wind distribution is less than 90% (80%) of the anticipated value in the Sto-
UC model. In other words the Mix-UC and SIP-UC robust solutions have lower total
costs than the Sto-UC solution when the wind output is less than what decision maker
assumed under the Sto-UC model.

In the second set of sensitivity test instances, we compare the performances of the
Sto-UC, Mix-UC, and SIP-UC solutions to the possible changes in the covariances of
the wind distribution.

We specifically consider the following truncated normal distributions for the
second-stage uncertain windN (μ, (b)2�), where b = {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6,

123



Robust unit commitment with n − 1 security criteria 399

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5

0.8

0.9

1

1.1

1.2

1.3

1.4

x 106

a mean scaler

O
b
je

ct
iv

e
fu

nc
ti
on

($
)

Total cost for the distibutions N (aµ,Σ)

Mean Sto-UC

1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

x 106

O
b
je

ct
iv

e
fu

nc
ti
on

($
)

Total cost for the distibutions N (aµ,Σ)

Mean Mix-UC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 106

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

O
b
je

ct
iv

e
fu

nc
ti
on

($
)

Total cost for the distibutions N (aµ,Σ)

Mean SIP-UC

0.50.60.70.80.911.11.21.31.41.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x 106

O
b
je

ct
iv

e
fu

nc
ti
on

($
)

Total cost for the distibutions N (aµ,Σ)

Mean Sto-UC
Mean Mix-UC

a mean scaler

a mean scaler
a mean scaler

(a) (b)

(c) (d)

Fig. 3 Sensitivity of solutions to variation in mean. a Sto-UC. b Mix-UC. c SIP-UC. d Mean objective
values for 100 runs

1.8, 2, 2.2, 2.4, 2.6}. Similar to previous tests, we draw 150 i.i.d samples from the
corresponding distribution in each instance and repeat each instance for 100 runs.
The corresponding box plots for test instances for all three models are presented in
Fig. 4a–c. Furthermore, the mean value of the objective function for 100 tests in each
instance and each model is shown in Fig. 4d. It can be observed that the SIP-UC
solution has the least sensitivity to change in covariance of the distribution, since the
only available information for the SIP-UC model was the first moment condition of
the distribution and there was no assumption on the covariance of the distribution.
However, this additional flexibility comes at a cost and it can be observed that the SIP-
UC solution is more conservative and costly for instances with covariance coefficients
around 2, when compared to the Sto-UC solutions. For the instances with b ≥ 2.2 the
SIP-UC performs better than both the Sto-UC and Mix-UC solutions.

The sensitivity of the Mix-UC and Sto-UC solutions to changes in covariance are
very similar and the difference between the two curves is almost unchanged across
the test instances. This is due to the covariance assumptions in construction of the
mixture model, i.e. covariance of all distributions used to construct the mixture model
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Fig. 4 Sensitivity of solutions to variation in covariance. a Sto-UC. bMix-UC. c SIP-UC. dMean objective
values for 100 runs

was equal to �. We have also constructed the mixture distribution using the following
distributions:

N
(
μ, (0.8)2�

)
,N
(
μ,�

)
,N
(
μ, (1.2)2�

)
.

The solution of this mixture model was very similar to the solutions of the Sto-UC
model.

The final sensitivity test that we have performed is to randomly draw the wind input
from historical Danish wind data. Specifically, we perform 100 independent runs, each
includes 150 daily wind speed data drawn out of 263 historical daily wind speed by
using samplingwith replacement. For eachof these 100 independent runs, thefirst stage
solutions of the STO-UC, the MIX-UC and the SIP-UC are tested for performance
against the corresponding 150 daily wind data. We then report the corresponding total
costs of these solutions on the 100 runs. Figure 5a shows the box-plot of these total
costs and Fig. 5b shows their quantile plots. These quantile plots provide us with the
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Fig. 5 Sensitivity of solutions to variation in samples from historical wind data. a Mean objective values
for 100 runs. b Mean objective values for 100 runs

Table 8 Computational performance on different problem sizes

STO-UC MIX-UC SIP-UC

(n = 10, t = 24) 539.16 s 196.7 s 1894s

0.79% optimality gap 0.91% optimality gap 0.5% optimality gap

(n = 50, t = 12) 2457.51 s 1050.46 seconds 18000 seconds

0.94% optimality gap 0.84% optimality gap 2.09% optimality gap

(n = 100, t = 12) 18,000s 6202.39 s · · ·
1.01% optimality gap 0.99% optimality gap · · ·

relative comparison between STO-UC, MIX-UC and SIP-UC on different quantiles.
For example, at quantile 1, the figure shows us the worst total cost among these three
strategies while at quantile 0 it shows the best cases. We can see from the Fig. 5b that
MIX-UC does not performs well compared to the others. This could be because of
the belief on mixed distribution does not apply to the Danish wind data. The SIP-UC,
on the other hand, always outperforms STO-UC in all the quantiles. This implies that
using only a belief on the mean is more ‘robust’ against sampling with replacement
on the Danish wind data.

5.3 Medium and large cases

We have also tested the limit of the models computationally by considering a medium-
sized problem with 50 generator and a large-sized problem with 100 generators. The
time period T is set to equal to 12. We set the stopping criteria as either 5h computer-
running time or an optimality gap of no more than 1%, whichever reaches first.
Sensitivity results for these cases are included in the “Appendix 2”. Table 8 shows
the computational times and optimality gaps on these two instances in addition to the
small instance with 10 generators.

We can see that the computational time increases significantly when the number
of generator increases. This is because the number of binary variables, the number of
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continuous variables and the number of constraints in each of the STO-UC, MIX-UC
and SIP-UC increase proportionally with the number of generators. For the case of
50 generators, the STO-UC can reach 0.94% optimality gap within around 40min.
The MIX-UC took less than 18min to reach 0.85% optimality gap while the STO-UC
stops after 5h when it reached 2.09% optimality gaps. For the case of 100 generators,
only the MIX-UC reach the 1% optimality gap stopping criteria after 104min while
the STO-UC stops slightly higher at 1.01% optimality gap after 5h. There was no sign
of the SIP-UC to reach reasonable optimality gap after 5h.

One interesting observation is that theMIX-UC actually took less time compared to
the STO-UC. This is a bit counter-intuitive as the distributionally robust optimization
models are build on the two-stage with one extra layer of optimization, i.e. a min–
max–min problemwith a worst-case max operator in the middle, and hence, we would
generally expect it to be more difficult to solve than the stochastic counterpart. In fact,
through dualization, the reformulated models for the MIX-UC and the SIP-UC are
actually not much bigger than the stochastic counterpart. Specifically, the MIX-UC
has one additional variables and two additional constraints compared to the STO-UC.
The corresponding numbers of additional variables and constraints for the SIP-UC
are 25 and 150, respectively. MIX-UC, however, looks very much the same structure
with the stochastic model while the SIP-UC, however, has extra variable α appearing
in the objective function and KnT constraints. This make sthe problem much harder
to solve

We have programmed the entiremodels for the STO-UC,MIX-UC and SIP-UC into
MATLAB and calling the CPLEX solver directly. It is possible to apply techniques for
solving stochastic programming (e.g. by usingBender’s decomposition) to improve the
performance of these models and we expect that these could improve the numerical
computation significantly. Using that method, we envisage that the increase in the
number of generatorswould not impose significant computational issues as the number
of binary variables only grow linearly. Nevertheless, we leave this enhanced methods
for future research direction.

6 Conclusion

In this paper, we present a two-stage distributionally robustmodel that provides a novel
and practical approach to deal with the uncertainty of the distribution of random wind
output in the unit commitment problem. The model includes the technical ramping
constraints as well as reliability condition against failure of up to one generating unit.
The robustness takes into account the available information on uncertainty in two
alternativeways. First,we assume that only thefirst-moment informationof the random
wind is given and use duality theory to formulate the problem as a linear semi-infinite
program. The SIP model is then solved using sampling because the structure of the
problem does not allow us to reformulate the semiinfinite constraints as semidefinite
constraints. We establish exponential rate of convergence of the optimal value when
the randomization scheme is applied to discretize the semi-infinite constraints.

Second, we assume that the information on probability distribution of uncertain
wind is received through various sources, and we construct a mixture model to include
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these into decision making. The mixture model is also reformulated using duality
theory and solved through the sample average approximation approach. Empirical tests
have been carried out using an illustrative UC case study, taken from the literature,
in order to illustrate the performance of the proposed robust models. The robust UC
solutions may lose the potential of utilizing the wind power in high-wind climate;
however, they performmuch better in a low-wind climate as compared to the solutions
that do not consider the uncertainty of the distribution (Sto-UC).

As one of the referees observed, the model has some limitations in absence of
network constraints and second order moment information. In the unit commitment
literature, transmission network has a very important impact on the UC decisions,
particularly when there is significant wind power generation. Moreover, transmission
line outages are an important factor for the (n-1) security constraints. Likewise, if we
interpret the first order moment μ as a persistence forecast for each time period of
the planning horizon, then the forecast routines used to generate μ may constitute
standard deviations. We envisage that these are new directions for further research of
the model but require significant new work on numerical schemes to cope with the
additional complexity from network constraints and higher order moment conditions.
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Appendix 1:Rampconstraints and reliability and n−1 security constraint

Ramp constraints

For conventional generation units, it is important to take into account the short-term
dynamics of generation output over the consecutive periods. Such requirements are
often referred to as ramp constraints which limit the maximum increase or decrease of
generated power from one time period to the next, reflecting the thermal and mechan-
ical inertia which need to be overtaken in order for the generating unit to increase or
decrease its output.

In a two-stage stochastic framework, we need to define the ramp constraints for
any possible realization of the net load ξ . At the second stage after the realization of
the uncertain net load, the scheduled energy qit does not change and the generating
units adapt their production to accommodate the realized net load. To do this, up and
down reserves (r̂ upi t (ξ), r̂ dw

i t (ξ)) are used. We denote the actual power output of unit i
at time t and scenario ξ by q̂i t (ξ) which is defined as follows:

q̂i t (ξ) = qit + r̂ upi t (ξ) − r̂ dw
i t (ξ), ∀t, i, ξ.
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Note that up and down reserves should not be simultaneously positive. We consider
the ramp constraints for all four combinations of on-off decisions between any two
consecutive periods t − 1 and t as follows,

1. If ui(t−1) = 1 and uit = 1, then the generating unit i is coupled for both hours,
and ramp limitations in hour t are bounded by the ramp up and down rates, RUi

and RDi , respectively. The ramp constraints will then be as follows:

q̂i t (ξ) − q̂i(t−1)(ξ) ≤ RUi , ∀t, i, ξ, (R1)

q̂i(t−1)(ξ) − q̂i t (ξ) ≤ RDi , ∀t, i, ξ. (R2)

2. If ui(t−1) = 0 and uit = 1, generating unit i starts up at the beginning of period t
and hence the limitation for hour t should be the starting up ramp SUi . The ramp
constraints will then be

q̂i t (ξ) − q̂i(t−1)(ξ) ≤ SUi , ∀t, i, ξ, (R1)

q̂i(t−1)(ξ) − q̂i t (ξ) ≤ RDi , ∀t, i, ξ. (R2)

Note that (R2) always holds because q̂i(t−1)(ξ) = 0, q̂i t (ξ) ≥ 0 and RDi ≥ 0.
3. If ui(t−1) = 1 and uit = 0, generating unit i shutdowns at the beginning of time

period t and hence limitation during the hour t should be the shut-down ramp SDi .
The ramp constraints then become

q̂i t (ξ) − q̂i(t−1)(ξ) ≤ RUi , ∀t, i, ξ, (R1)

q̂i(t−1)(ξ) − q̂i t (ξ) ≤ SDi , ∀t, i, ξ. (R2)

Note that (R1) always holds because the left hand side is always negative whereas
the right hand side is always positive.

4. If ui(t−1) = 0 and uit = 0, then generating unit i is off during both periods and
the ramp constraints are

q̂i t (ξ) − q̂i(t−1)(ξ) ≤ SUi , ∀t, i, ξ, (R1)

q̂i(t−1)(ξ) − q̂i t (ξ) ≤ SDi , ∀t, i, ξ. (R2)

A summary of ramp limitations for all of the scenarios discussed above is presented
in Table 9:

Having defined the ramp constraints for all on/off decision scenarios over two time
periods, we can generalize them in relation to decision variable uit as follow,

q̂i t (ξ) − q̂i(t−1)(ξ) ≤ RUiui(t−1) + SUi (1 − ui(t−1)), ∀t, i, ξ,

q̂i(t−1)(ξ) − q̂i t (ξ) ≤ RDiuit + SDi (1 − uit ), ∀t, i, ξ.
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Table 9 Ramp limitations
ui(t−1) ut RHS of (R1) RHS of (R2)

Uncoupled 0 0 SUi SDi

Starting up 0 1 SUi RDi

Shutting down 1 0 RUi SDi

Coupled 1 1 RUi RDi

Reliability and n− 1 security constraint

To ensure the secure operation of the system under the failure of up to one scheduled
generator, we consider theworst-case scenario that the system could possibly face; that
is, for any given time period, the generator with the highest total scheduled generation
and actual up reserve fails under the lowest level of wind (highest net load) available.
This can be modeled as∑

i

(
qit + rupit

)− max
i

{qit + r̂ upi t (ξ)} + St (ξ) ≥ dt − min
ξ

{wt (ξ)}, ∀t, ξ. (6.1)

In the literature of energymanagement, this is known as n−1 criteria. Let us denote
the worst (lowest) realization of wind output at time t by

¯
ξt = argmin

ξ

{wt (ξ)},

and let St (¯
ξ) denote the corresponding load shedding for this realization. Since the

actual up reserve used has to be less than the scheduled up reserve, i.e. r̂ upi t (ξ) ≤ rupit
for every scenario ξ , the inequality (6.1) can be rewritten as

∑
i

(
qit + rupit

)− max
i

{qit + rupit } + St (¯
ξ) ≥ dt − wt (¯

ξ), ∀t. (6.2)

Let us denote the upper limit of total generation and reserve schedules at time t as

Qt =
∑
i

(
qit + rupit

)
, ∀t.

The inequality constraint (6.2) can be rewritten as

Qt − (qit + rupit ) + St (¯
ξ) ≥ lt (¯

ξ), ∀t, i.

Appendix 2: Numerical results for medium and large cases

See Figs. 6 and 7.
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Fig. 6 Sensitivity of solutions to variation in mean and variance for a medium-sized problem with 50
generators (with T = 12, S = 150). aMean objective values for 100 runs. bMean objective values for 100
runs
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Fig. 7 Sensitivity of solutions to variation in mean and variance for a medium-sized problem with 100
generators (with T = 12, S = 150). aMean objective values for 100 runs. bMean objective values for 100
runs
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