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Abstract In this paper we derive analytic formulas for electricity derivatives under
assumption that electricity spot prices follow a 3-regime Markov regime-switching
model with independent spikes and drops and periodic transition matrix. Since the
classical derivatives pricing methodology cannot be used in the case of non-storable
commodities, we employ the concept of the risk premium. The obtained theoretical
results are then used for the European Energy Exchange data analysis. We calculate
the risk premium in the case of the calibrated 3-regime MRS model. We find a time
varying structure of the risk premium and an evidence for a negative risk premium (or
positive forward premium), especially at short times before delivery. Finally, we use
the obtained risk premium to calculate prices of European options written on spot, as
well as, forward prices.

Keywords Regime-switching model · Electricity spot price · Derivatives pricing ·
Risk premium

1 Introduction

Deregulation of electricity markets has led to a substantial increase in risk borne by
market participants. The often unexpected extreme spot price changes caused by non-
storable nature of electricity range even two orders of magnitude and can cause severe
financial problems to the utilities that buy electricity in the wholesale market and
deliver it to consumers at fixed prices. The utilities and other power market companies
need to hedge against this price risk. A straightforward way to do it is to use derivatives,
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2 J. Janczura

like forwards and options. It is exactly the aim of this paper to price commonly traded
electricity derivatives.

Before calculating a price of a derivative, a proper model for the underlying asset
has to be chosen. There are two approaches common for the electricity market. The
first one is to start with specifying the forward price dynamics (see e.g. Clewlow
and Strickland 1999; Benth and Koekebakker 2008; Bjerksund et al. 2010). Such
approach is useful if only derivatives written on forwards are to be considered and a
link between forward and spot prices is not important for modeling issues. Obviously,
the spot price can always be derived using the fact that the forward and spot prices
should coincide at the forward settlement. However, the complexity of the spot price
dynamics is then usually neglected. The second approach is based on defining the spot
price dynamics first (see e.g. Lucia and Schwartz 2002; Miltersen 2003; Benth et al.
2003; Bierbrauer and Menn 2007) and then modeling a link between the forward and
spot markets. Usually, a convenience yield or risk premium notion is used (Benth et
al. 2008a; Geman 2005; Weron 2006; Benth and Sgarra 2012; Haerdle and Lopez-
Cabrera 2012; Longstaff and Wang 2004; Lucia and Torro 2008; Benth et al. 2008b;
Benth and Meyer-Brandis 2009). Using such an approach allows to price derivatives
written both on the spot and the forward price. Moreover, a relation between spot and
forward prices is taken into account and the lack of forward price data is no more
a limitation. Here, we use the latter approach and describe the spot price dynamics
by a Markov regime-switching (MRS) model with independent spikes and drops and
periodic transition matrix that was proposed by Janczura and Weron (2010). For other
applications of MRS models to electricity prices see e.g. Deng (1998), Ethier and
Mount (1998), Huisman and Jong (2003), Huisman and Mahieu (2003), Kholodnyi
(2005), De Jong (2006), Haldrup and Nielsen (2006), Mount et al. (2006), Becker et al.
(2007), Huisman (2008), Kanamura and Ohashi (2008), Karakatsani and Bunn (2008),
Mari (2008), Weron (2009), Erlwein et al. (2010), Haldrup et al. (2010), Dempster et
al. (2013).

After specifying a model we have to choose derivatives pricing methodology. Clas-
sical approach used in financial and commodities markets is based on the no-arbitrage
assumption and construction of a strategy replicating a future payoff (or equivalently
finding a martingale measure, Musiela and Rutkowski 1997). However, such approach
fails in case of electricity due to very limited storage possibilities. Therefore, instead
of using a martingale approach, we employ a concept of the risk premium/market
price of risk and find such pricing measure that yields the observed forward market
prices. With such methodology we are able to derive forward prices from the spot
price model that coincide with the actual quotations and also to find explicit formu-
las for premiums of European options written on spot, as well as, on forward prices
within the assumed 3-regime MRS model. The theoretical results are then used for
the European Energy Exchange (EEX) data analysis. We calculate the risk premium
and find a time varying structure of the risk premium, which increases with increasing
time to delivery. Moreover, we obtain a strong evidence for a negative risk premium
(or positive forward premium) in the EEX market, especially at short times before
delivery.

The paper is structured as follows. In Sect. 2 we introduce the Markov regime-
switching model used for electricity spot price dynamics. Next, in Sect. 3 we explain

123



Pricing electricity derivatives 3

why the classical derivatives pricing approach fails in case of electricity derivatives
and, as a solution, we describe the ‘risk premium’ approach in case of the considered
model. The obtained results are then used to derive analytical formulas for prices of
electricity derivatives in Sect. 4. Finally, in Sect. 5 we use the obtained theoretical
results to price derivatives using the European Energy Exchange (EEX) data and in
Sect. 6 we conclude. All of the computations in the empirical part of the paper were
conducted in Matlab 2009.

2 The model

Let us first recall the main stylized facts about electricity prices. Electricity prices
highly depend on the actual demand/consumption. Obviously, the latter is varying
during a year due to the changing weather conditions and throughout the week or day
due to the business cycle. The same long-term (yearly) and short-term (weekly/daily)
seasonality is recorded for electricity prices. The second apparent feature is the very
high volatility of electricity prices and unexpected, usually transient, dramatic price
changes called spikes or jumps. The spot price may rise for a few hours to even two
orders of magnitude of the standard prices and then fall back to the normal level. What
makes electricity market completely different from other financial or commodities
markets is that the electricity prices may, as well, abruptly fall down yielding negative
values. Finally, electricity prices are mean-reverting, meaning that in long time period
they move back to some equilibrium level.

Seasonality is usually removed from the analyzed prices prior to modeling by fit-
ting some periodic function like sine (Cartea and Figueroa 2005; De Jong 2006) or
piecewise constants (Lucia and Schwartz 2002). Alternatively, some smoothing tech-
nique like wavelets or moving average can be used (Weron 2009; Nowotarski et al.
2013). The mean-reverting property is typically modeled with some mean-reverting
processes, like e.g. AR(1) time series or the Vasicek (1977) model. The most chal-
lenging for modeling, and at the same time the most important for risk management,
are the price spikes. One approach is to incorporate a jump component into a standard
mean-reverting diffusion model (Deng 1998; Cartea and Figueroa 2005; Weron 2008).
However, in the resulting jump-diffusion models there is a problem of how the price
after a spike revert back to the normal level. Nor an immediate negative jump, nor
mean-reversion pulling back the prices to the normal level, yields a flexible tool for
modeling consecutive spikes. Another possibility are the Markov regime-switching
(MRS) models in which the prices might stay in the excited (spike) regime with some
probability. Hence, MRS models allow for modeling consecutive spikes in a very nat-
ural way and seem to be a reasonable choice for electricity price dynamics. To our best
knowledge MRS models were first applied to electricity prices by Ethier and Mount
(1998) who used an AR(1) time series with parameters depending on the actual regime.
A MRS model with independent spikes was later introduced by Huisman and Jong
(2003) and De Jong (2006). Numerous attempts improving statistical properties of the
model (see e.g. Huisman and Mahieu 2003; Haldrup and Nielsen 2006; Weron 2009;
Dempster et al. 2013) or including some exogenous factors (see e.g. Huisman 2008;
Kanamura and Ohashi 2008; Karakatsani and Bunn 2008) were later proposed. Here,
we focus on a 3-regime model with independent spikes and drops introduced recently
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by Janczura and Weron (2010), who found it superior to other MRS models. It allows
for modeling consecutive spikes and drops as independent variables, being flexible
enough to capture different statistical properties of spikes and drops, which are a
consequence of different driving factors. Moreover, it takes into account the seasonal
intensity of the occurrences of extreme observations. Finally, the model not only
reproduces the stylized facts about electricity prices, but also it’s goodness of fit was
statistically confirmed for different markets, see Janczura and Weron (2010) for more
details, and is also confirmed for the data studied in this paper.

Having in mind the above mentioned features of electricity, we let the electricity
spot price be given by

Pt = gt + Xt , (1)

where gt is a deterministic seasonal component and Xt follows a 3-regime MRS model
with independent spikes and drops. Namely,

Xt =
⎧
⎨

⎩

Xt,b if R�t� = b,

X�t�,s if R�t� = s,
X�t�,d if R�t� = d,

(2)

where b denotes the base regime (describing the ‘normal’ prices), s the spike regime
(representing the sudden upward price jumps), while d stands for the drop regime
(responsible for the sudden price drops). Further, �t� denotes the integer part of t, Rk

is a discrete-time Markov chain defined by a time-varying (periodic) transition matrix
P(k)

P(k) = (pi j (k)) =
⎛

⎝
pbb(k) pbs(k) pbd(k)

psb(k) pss(k) psd(k)

pdb(k) pds(k) pdd(k)

⎞

⎠, (3)

where pi j (k) is the probability of switching from state i at time k to state j at time
k +1 for k ∈ {0, 1, 2, . . .}. The process Rt describes the actual state of the market, i.e.
normal (base regime, denoted by ‘b’) behavior, spike (denoted by ‘s’) or drop (denoted
by ‘d’), and is an unobserved random variable. The base regime dynamics is given by
the Vasicek (1977) model:

d Xt,b = (α − β Xt,b)dt + σbdWt , (4)

having unique mean-reverting solution of the form:

Xt,b = X0,be−βt + α

β

(
1 − e−βt) + σb

t∫

0

e−β(t−u)dWu, (5)

where Wt is a Wiener process (or Brownian motion), β is the speed of mean-reversion,
α
β

is the long-time equilibrium level and σb is the volatility. Note that, for simplicity,
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Pricing electricity derivatives 5

we use a constant volatility for the base regime. Assuming time varying σb would
make the estimation of the MRS model computationally intractable and might also
lead to overparametrization. However, with the assumed model specification, the shifts
in volatility observed in electricity prices can still be modeled by switching between
regimes having different volatilities. The spike regime values (X0,s, X1,s, X2,s, . . .)

constitute an i.i.d. sample from the cs-shifted log-normal distribution, i.e. :

ln(Xk,s − cs) ∼ N (μs, σ
2
s ), Xk,s > cs, (6)

while the drop regime values (X0,d , X1,d , X2,d , . . .) form an i.i.d. sample from the
inverted cd -shifted log-normal distribution defined as:

ln(−Xk,d + cd) ∼ N (μd , σ 2
d ), Xk,d < cd . (7)

The log-normal distribution seems to be a good choice for modeling extreme obser-
vations like spikes or drops, as it has heavier tails than the Gaussian one, but still all
moments are finite. Moreover the statistical goodness of fit of such distribution choice
is confirmed in the empirical part of the paper, see Table 3. Obviously, for different
data other distribution choice might be relevant. However, in such a case all of the
following results can be easily adapted.

Observe, that in the model defined by (2) the price process can jump to a different
regime only at discrete time points t = 0, 1, 2, . . .. This is motivated by the fact,
that, even though the price is a result of continuous bidding, electricity spot price is
typically settled for contracts with some delivery period, usually an hour. Hence, the
change in electricity spot price dynamics may occur only in discrete time points.

Finally, let (Ω,F , Q) be a probability space with filtration Ft generated by the
processes Xt and R�t� and assume a constant continuously compounded interest rate r .
It should be noted that the market interest rates are seldom constant over a period of
time. In the literature there are different approaches for dealing with this issue like a
deterministic interest rate being a function of time or stochastic interest rate models
( see e.g. Vasicek 1977 or Heath et al. 1992). However, finding a deterministic function
that will accurately describe future interest rates behavior is usually problematic, while
the more advanced approaches often make derivatives pricing analytically intractable.
On the other hand, interest rates in stable economies are not very volatile, especially
over short periods of time, for example a change in a yearly LIBOR rate during the
pricing period considered in the empirical example of Sect. 5 was only 0.06 %. Hence,
for simplicity, we assume a constant interest rate.

3 The risk premium

The classical option pricing approach is based on the no-arbitrage assumption, which
implies that the fair price of a derivative is the discounted expected future payoff
under a martingale measure. If the market is complete, i.e. any contingent claim can
be replicated with a self-financing strategy (it is attainable), there exists a unique
martingale measure. However, due to non-storability of electricity a derivative written
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on the spot electricity price cannot be replicated with a portfolio consisting of the
underlying instrument and a financing debt account. As a consequence, the market
is incomplete. Moreover, since electricity cannot be traded in the usual way (once
purchased has to be consumed), the only tradable asset in the spot market is the bank
account (Benth et al. 2003). Recall that here we assume a continuously compounded
constant interest rate r . Obviously, the discounted value of the bank account is a
martingale under any measure equivalent to the actual (also called the objective or
statistical) measure Q. Therefore, the spot market is arbitrage-free but there is no
unique martingale measure. An additional criterion has to be used in order to select a
pricing measure.

Here we use an approach based on the concept of the risk premium (see e.g. Benth
and Sgarra 2012; Benth et al. 2008a; Geman 2005; Weron 2006), which is defined as a
reward for investing into a risky asset instead of a risk-free one. In such methodology
a risk-free asset is usually a derivative, while a risky asset is an underlying instrument.
In the paper we consider a risk-free forward electricity contract and risky electricity
spot price, i.e. the risk premium RP is defined as the difference between the expected
spot price in the future time T and the price of a forward contract with delivery at
time T

RP(T ) = E(PT |F0) − f T
0 , (8)

where f T
0 is the market price at time 0 (now—the moment of pricing) of a forward

contract expiring at time T . In such a case, the forward contract does not bring risk
to it’s owner, since the whole specification is agreed on the moment of entering a
contract and, compared to the spot price, does not depend on unknown future market
quotations.

Observe that, the definition (8) is based on the forward looking approach, as the risk
premium is calculated using the forecast of the spot price. The risk premium defined in
such a way is called in the literature (see e.g. Lucia and Torro 2008; Benth et al. 2008b;
Karakatsani and Bunn 2005) the ex-ante risk premium. On the other hand, the risk
premium is also often defined using the ex-post (historical) approach and calculated
as the difference between the forward price and the realized spot price at the time of
the forward contract delivery (see e.g. Geman and Vasciek 2001; Longstaff and Wang
2004). However, for the purpose of the paper we use the ex-ante risk premium. This is
motivated by the fact, that for the valuation of a derivative with some future maturity
time, the estimate of the future risk premium, rather than the realized one, should be
used.

It should be noted that some authors (see e.g. Eydeland and Wolyniec 2003) define
the risk premium as the forward premium, i.e. as the difference between the forward
price and the expected spot price, being equal to −RP(T ). Moreover, in the classical
financial and commodities setup there exists a notion of the convenience yield, which
relates the current prices of forward contracts with the current spot prices using the
storage theory (first introduced by Kaldor 1939), i.e. f T

0 = P0e(r−y)T , where y is
called the convenience yield. For commodities this relation is a consequence of the
cost of carry relationship which means that the forward price must exceed the spot
price by the cost of carrying the physical commodity, determined by the storage costs
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Pricing electricity derivatives 7

and the interest lost, until the expiry date of the contract (Weron 2006). However, in
the case of non-storable commodities, like electricity, the storage theory rarely makes
sense and the link between the current spot price and the forward prices is much more
complex. Hence, instead we use the risk premium notion.

The idea of the ‘risk premium’ approach in derivatives valuation is to choose a
martingale measure that is consistent with the prices of forward contracts quoted in
the market. A similar approach is used in the weather (Benth and Benth 2007; Haerdle
and Lopez-Cabrera 2012) or interest rate derivatives context and is based on calibrating
the model to the initial yield curve (see e.g. Hull and White 1993; Bjork 1997).

Recall, that the arbitrage-free price of a forward contract should be equal to the
expected future spot price under a pricing measure, namely

f T
0 = Eλ(PT |F0), (9)

where f T
0 is the price at time 0 (now) of a forward contract with a delivery at time

T, PT is the electricity spot price and Eλ(·) is the expected value with respect to the
pricing probability measure Qλ, equivalent to the actual measure Q. In an incomplete
market relation (9) does not yield a unique forward price, as it is dependent on the
choice of Qλ. Here we choose Qλ such that relation (9) is consistent with market data,
i.e. Eλ(PT |F0) is calibrated to the quotations of forward contracts. In other words,
we choose the pricing measure that is used by the market. In the following we will
assume that the measure Qλ is the probability measure under which the drift of the
base regime process is parametrized by a function λ(T ) chosen so that Eλ(PT |F0)

yields the market forward price f T
0 . The function λ(T ) is called the market price of

risk, which can be seen as a drift adjustment in the dynamics of an asset to reflect
how investors are compensated for bearing risk when holding the asset (Benth et al.
2008b).

Before we find the measure Qλ, we give a brief explanation of how to calcu-
late the risk premium in the 3-regime model (1)–(7). Assume, that the forward
price f T

0 is given for any maturity T and the spot price model parameters θ =
(α, β, σb, μs, σs, cs, μd , σd , cd , P) are known.

Let p(t)
i j = P(R�t� = j |R0 = i) denote the probability of switching from state i

at time 0 to state j at time �t�. For a constant probability matrix P it is given by the
i j th element of the �t�th power of the transition matrix, i.e. p(t)

i j = (
P�t�)

i j . For a

time-varying probability matrix it is given by p(t)
i j =

(∏�t�
k=0 P(k)

)

i j
.

In order to simplify the derivation, in the following we assume that P(R0 = b) = 1
or equivalently X0 = X0,b a.s., i.e. at time 0 the process Xt is in the base regime with
probability 1.

Now, we can derive a formula for the risk premium. Observe that

E(XT |F0) = P(R�T � =b|R0 = b)E(XT,b|F0)+P(R�T � = s|R0 = b)E(X�T �,s |F0)

+ P(R�T � = d|R0 = b)E(X�T �,d |F0). (10)

Recall, that X�T �,s and X�T �,d are random variables independent of F0. Hence,
E(X�T �, j |F0) = E(X�T �, j ) for j = s, d. Moreover, from the assumption of X0 =
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X0,b we have that E(XT,b|F0) = E(XT,b|X0,b). Hence,

E(XT |F0) = p(T )
bb E(XT,b|X0,b) + p(T )

bs E(X�T �,s) + p(T )
bd E(X�T �,d). (11)

As a consequence, from (1), (5) and (11), the risk premium in the 3-regime MRS
model defined by Eqs. (2)–(7) is given by:

RP(T ) = p(T )
bb

[

x0e−βT + α

β

(
1 − e−βT

)]

+ p(T )
bs

(
eμs+ 1

2 σ 2
s + cs

)

+p(T )
bd

(
−eμd+ 1

2 σ 2
d + cd

)
+ gT − f T

0 , (12)

where x0 is the stochastic part of the price observed at time 0 and f T
0 is the market

forward price.

Remark 1 Observe that, if assumption that X0 = X0,b is not satisfied we have:

E(XT,b|F0) = I{R0=b}E(XT,b|X0,b) (13)

+
∞∑

k=1

I{R0 �=b,R−1 �=b,R−2 �=b,...,R−k+1 �=b,R−k=b}E(XT,b|X−k+1,b),

where a negative time index is used for the historical (i.e. before the moment of
valuation t = 0) values of the process and for u < T E(XT,b|Xu,b) = Xu,be−β(T −u)+
α
β

(
1 − e−β(T −u)

)
. Note, that formula (13) is a consequence of the fact that the base

regime values become latent if a spike or drop occurs. Moreover,

P(R�T � = j |F0)=
∑

i∈{b,s,d}
I{R0=i} P(R�T � = j |R0 = i)=

∑

i∈{b,s,d}
I{R0=i} p(T )

i j . (14)

Thus, the risk premium calculation and all of the following results can be generalized
to the case R0 �= b.

4 Electricity derivatives pricing

4.1 Options written on the electricity spot price

Now, we turn to pricing of a European call option written on the electricity spot price.
Recall, that the European option is a contract that gives the buyer the right to buy/sell
the underlying commodity at some future date t (called maturity) at a certain price K
(called the strike price). First, we find the pricing measure Qλ. Like Merton (1976)
in the context of jump-diffusion processes we assume that the dynamics of spikes and
drops are the same in the actual and pricing measures. Similar simplification was used
e.g. by De Jong and Huisman (2002) or Weron (2008). It allows to avoid estimating
jointly the market prices of risk related to the base, spike and drop regime from very
limited data. On the other hand, in the obtained formulas for derivatives prices the
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Pricing electricity derivatives 9

parts related to different regimes are easily separated and, as suggested by De Jong
and Huisman (2002), the spike/drop part can be multiplied by some factor to increase/
decrease the price of the spike/drop risk. Nevertheless, finding such a pricing measure
that would also allow for a change in spikes and drops distribution is a challenging
problem. A promising approach was used by Benth and Sgarra (2012), who applied
the Escher transform theory in order to derive the market price of risk. Unfortunately,
the Escher transform technique is applicable only for Levy processes, while the MRS
model analyzed in this paper does not have independent increments and hence is not
a Levy process.

We start the valuation of derivatives from finding the spot price dynamics under
λ parametrization. Let λ(u) be a deterministic function square-integrable on u ∈
[0, Tmax ], where Tmax is a time horizon long enough to contain all maturities of
derivatives quoted in the market, and introduce a new process W λ

t :

W λ
t = Wt +

t∫

0

λ(u)

σb
du, (15)

where σb is the volatility of the base regime. From the Girsanov theorem (see Girsanov
1960) we have that W λ

t is a Wiener process under a new measure Qλ defined as a
Radon–Nikodym derivative (Nikodym 1930)

d Qλ

d Q
= exp

⎡

⎣−
Tmax∫

0

λ(u)

σb
dWu − 1

2

Tmax∫

0

(
λ(u)

σb

)2

du

⎤

⎦ (16)

with the filtration FW
t , being the natural filtration of the process Wt .

Now, the base regime process Xt,b can be rewritten as:

d Xt,b = [α − λ(t) − β Xt,b]dt + σbdW λ
t (17)

and the expected future spot price is given by:

Eλ(Pt |F0) = p(t)
bb

⎡

⎣X0e−βt + α

β

(
1 − e−βt) −

t∫

0

e−β(t−u)λ(u)du

⎤

⎦

+p(t)
bs

(
eμs+ 1

2 σ 2
s + cs

)
+ p(t)

bd

(
−eμd+ 1

2 σ 2
d + cd

)
+ gt . (18)

The function λ(T ) can be calibrated to the market forward prices so that
Eλ(PT |F0) = f T

0 , e.g. by using some fitting procedure (like the least squares min-
imization). Alternatively, one can find the risk premium and then use the relation
between the market price of risk λ(T ) and the risk premium:

p(T )
bb

T∫

0

e−β(T −u)λ(u)du = RP(T ), (19)
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which is a simple consequence of the fact that RP(T ) = E(PT |F0) − Eλ(PT |F0),
formula (18) and Ito’s lemma.

Now, the price of a European call option written on the electricity spot price can be
derived.

Option price formula If the electricity spot price Pt is given by the MRS model defined
by Eqs. (1)–(7), then the price of a European call option written on Pt with strike price
K and maturity T is equal to:

CT (K ) = e−rT
[

p(T )
bb CT,b(K ) + p(T )

bs CT,s(K ) + p(T )
bd CT,d(K )

]
, (20)

where

CT,b(K ) = s√
2π

exp

(

− (K ′ − m)2

2s2

)

+ (m − K ′)
[

1 − Φ

(
K ′ − m

s

)]

, (21)

CT,s(K ) = I{K ′>cs }
{

exp

(

μs + σ 2
s

2

)[

1 − Φ

(
log(K ′ − cs) − μs − σ 2

s

σs

)]

− (K ′ − cs)
[
1 − FL N (μs ,σ 2

s )(K ′ − cs)
] }

+ I{K ′≤cs }
[

exp

(

μs + σ 2
s

2

)

+ cs − K ′
]

(22)

and

CT,d(K ) = I{K ′<cd }
{

− exp

(

μd + σ 2
d

2

)

Φ

[
log(cd − K ′) − μd − σ 2

d

σd

]

+(cd − K ′)FL N (μd ,σ 2
d )(cd − K ′)

}

. (23)

Further, K ′ = K −gT , m = X0e−βT + α
β

(
1 − e−βT

)−∫ T
0 e−β(T −u)λ(u)du, s2 =

σ 2
b

2β

(
1 − e−2βT

)
and FL N (μ,σ 2) is the cumulative distribution function of the log-

normal distribution with parameters μ and σ 2. Note that, in order to make the expo-
sition of the paper clear, the price derivation is moved to the “Appendix”.

Here, we assume that the option is settled in an infinitesimal period of time
[T, T + Δ]. However, in practice, the electricity spot price usually corresponds to
a delivery during some period of time (e.g. an hour, a day) and, hence, the maturity of
the option should be specified on the same time-scale. On the other hand, the analyzed
spot price quotations usually represent some delivery period. For instance, if the con-
sidered data is quoted daily, as it will be in the empirical example of Sect. 5, then the
maturity of the option would be also given in daily time-scale and would correspond
to daily delivery.
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Pricing electricity derivatives 11

4.2 Electricity forward contracts

Probably, the most popular electricity derivatives are the forward contracts. Recall that
a forward contract is an agreement to buy (sell) a certain amount of the underlying
(here MWh of electricity) at a specified future date. Settlement of the contract can
be specified in two ways: with physical delivery of electricity or with only financial
clearing. Both types of settlement are in the following called delivery. Denote the
price at time t of a forward contract with a delivery at time T by f T

t . Since the cost
of entering a forward contract is equal to zero, the expected future payoff under the
pricing measure should fulfill:

Eλ(PT − f T
t |Ft ) = 0, (24)

what implies that

f T
t = Eλ(PT |Ft ). (25)

Observe, that now we define the price of a forward contract at any future date t .
This is motivated by the fact that the valuation at time 0 of an option written on
a forward contract requires the knowledge about the forward price dynamics at the
option’s maturity t .

Forward price formula If the electricity spot price Pt is given by the MRS model
defined by Eqs. (1)–(7), then the price at time t of a forward contract written on Pt

with a delivery at time T is given by the following formula

f T
t = P(R�T � = b|Ft )

[

Eλ(Xt,b|Ft )e
−β(T −t) + α

β

(
1 − e−β(T −t)

)

−
T∫

t

e−β(T −u)λ(u)du

]

+ P(R�T � = s|Ft )(e
μs+ 1

2 σ 2
s + cs)

+P(R�T � = d|Ft )(cd − eμd+ 1
2 σ 2

d ) + gT , (26)

where P(R�T � = i |Ft ) = ∑
j∈{b,s,d} P(R�T � = i |R�t� = j)I{R�t�= j}.

Note that in the above formula Eλ(Xt,b|Ft ) is used, since this expectation depends
on the state process value at time t . Namely, if Rt = b then Eλ(Xt,b|Ft ) = Xt,b =
Xt . On the other hand, if at time t a spike or a drop occurred then Eλ(Xt,b|Ft ) =
Eλ(Xt,b|Ft−1) and again this expectation is dependent on Rt−1 value. A general
formula for Eλ(Xt,b|Ft ) can be found using the same derivations as in Remark 1.

When deriving the forward price dynamics, we have to remember that the properties
of the obtained model should comply with the observed market prices. One of the most
pronounced features of the market forward prices is the observed term structure of
volatility, called the Samuelson effect. Precisely, the volatility of the forward prices is
quite low for distant delivery periods, however, it increases rapidly with approaching
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12 J. Janczura

maturity of the contracts. Here, the forward price volatility is described by the part
P(R�T � = b|Ft )Eλ(Xt,b|Ft )e−β(T −t) of formula (26). Hence, it is specified by the
volatility of the spot price base regime scaled with e−β(T −t) and the corresponding
probability of switching to the base regime. Observe that the scaling factor e−β(T −t)

exhibits the Samuelson effect as it increases to 1 with t approaching maturity time T .
Moreover the forward price volatility, again due to the scaling factor, is lower than the
spot price volatility. This is in compliance with the behavior of the market spot and
forward prices.

Electricity forward contracts listed on energy exchanges are usually settled during
a certain period of time (a week, a month, a year, etc.). Denote the price at time t of a
forward contract settled during the period [T1, T2] by f [T1,T2]

t . Obviously, the latter is
the mean price of forward contracts with delivery during the period [T1, T2], namely:

f [T1,T2]
t =

T2∫

T1

w(T1, T2, T ) f T
t dT =

T2∫

T1

w(T1, T2, T )Eλ(PT |Ft )dT, (27)

where w(T1, T2, T ) is the weight function representing the time value of money. The
form of w depends on the contract specification. For contracts settled at maturity we

have w(T1, T2, T ) = 1
T2−T1

, while for instant settlement w(T1, T2, T ) = re−rT

e−rT1−e−rT2
,

where r > 0 is the interest rate (Benth et al. 2008a). The price f [T1,T2]
t can be obtained

from formulas (26) and (27). Indeed, we have:

f [T1,T2]
t = Eλ(Xt,b|Ft )

T2∫

T1

w(T1, T2, T )P(R�T � = b|Ft )e
−β(T −t)dT

+
T2∫

T1

w(T1, T2, T )P(R�T � = b|Ft )

×
⎡

⎣
α

β

(
1 − e−β(T −t)

)
−

T∫

t

e−β(T −u)λ(u)du

⎤

⎦ dT

+(eμs+ 1
2 σ 2

s + cs)

T2∫

T1

w(T1, T2, T )P(R�T � = s|Ft )dT

+(cd − eμd+ 1
2 σ 2

d )

T2∫

T1

w(T1, T2, T )P(R�T � = d|Ft )dT

+
T2∫

T1

w(T1, T2, T )gT dT . (28)
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Pricing electricity derivatives 13

4.3 Options written on electricity forward contracts

Finally, we find an explicit formula for a European call option written on a forward
contract delivering electricity during a specified period of time. Observe, that the
forward price f [T1,T2]

t depends on the spot price at time t and, as a consequence, also
on the state process value at time t .

We consider an option written on an electricity forward contract with settlement
during a specified period of time, as it is the most popular specification of electric-
ity options on energy exchanges. For example, in the EEX market there are options
written on forward contracts with monthly, quarterly and yearly settlement periods.
The maturity of such options is set to the fourth business day before the beginning
of the underlying contracts settlement period. The EEX example will be examined in
Sect. 5.

Price formula for an option written on a forward contract If the electricity spot price
Pt is given by the model defined by Eqs. (1)–(7), then the price of a European call
option with strike price K and maturity t written on a forward contract with delivery
during the period [T1, T2] is equal to:

C f [T1,T2]
t (K ) = e−r t

{

A0(b)Ct,b

(
K − B0(b)

A0(b)
+ gt

)

P(R�t� = b|R0 = b)

+
∑

i∈{s,d}

�t�∑

k=1

[

Ak(i)C�t�−k+1,b

(
K − Bk(i)

Ak(i)
+ g�t�−k+1

)

×P(R�t� = i, R�t�−1 �= b, . . . , R�t�−k = b|R0 = b)

]}

, (29)

where

Ak(i) =
T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = i)e−β(T −�t�+k−1)dT, (30)

A0(b) =
T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = b)e−β(T −t)dT, (31)

Bk(i) =
T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = i)

×
⎡

⎢
⎣

α

β

(
1 − e−β(T −�t�+k−1)

)
−

T∫

�t�−k+1

e−β(T −u)λ(u)du

⎤

⎥
⎦ dT

+(eμs+ 1
2 σ 2

s + cs)

T2∫

T1

w(T1, T2, T )P(R�T � = s|R�t� = i)dT
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14 J. Janczura

+(cd − eμd+ 1
2 σ 2

d )

T2∫

T1

w(T1, T2, T )P(R�T � = d|R�t� = i)dT

+
T2∫

T1

w(T1, T2, T )gT dT, (32)

B0(b) =
T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = b)

×
⎡

⎣
α

β

(
1 − e−β(T −t)

)
−

T∫

t

e−β(T −u)λ(u)du

⎤

⎦ dT

+(eμs+ 1
2 σ 2

s + cs)

T2∫

T1

w(T1, T2, T )P(R�T � = s|R�t� = b)dT

+(cd − eμd+ 1
2 σ 2

d )

T2∫

T1

w(T1, T2, T )P(R�T � = d|R�t� = b)dT

+
T2∫

T1

w(T1, T2, T )gT dT . (33)

and Ct,b(K ) is the ‘base regime part’ of the price of a European call option written on
the electricity spot price with maturity t and strike K , see Eq. (21) with T = t .

5 EEX market example

Theoretical results from the previous sections allow us to price energy derivatives. We
assume that the electricity spot price follows the model specified by Eqs. (1)–(7) with
a periodic transition matrix and cs, cd being the first and third quartile of the stochastic
part [i.e. Xt in Eq. (1)] of the dataset, respectively. We use mean daily EEX spot prices
from the period January 2, 2006–January 2, 2011 (5 years and 261 whole weeks). In
order to calibrate the model, we first remove the seasonal component.

We assume that the deterministic function gt is composed of two parts: a long
term trend Lt and a weekly seasonality St . Since the valuation of derivatives requires
forecasting the seasonal component, we use the standard approach (see e.g. Bierbrauer
and Menn 2007; Geman and Roncoroni 2006; Weron 2008) and model the long term
trend by a sum of sine functions:

Lt = (a1 + a2t) sin [2π (t + a3)]

+ (a4 + a5t) sin [2πa6 (t + a7)] + a8 + a9t + a10t2, (34)
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Pricing electricity derivatives 15

Table 1 Coefficients of the function Lt , see Eq. (34), fitted to the EEX spot prices

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

−11.99 0.55 −0.13 34.03 −8.04 0.46 6.75 25.37 19.20 −3.35
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Fig. 1 Left panel EEX spot prices and the fitted long term seasonal component (blue solid line). Right panel
weekly periodicity calculated for the EEX spot prices. Note, that 1—Monday, 2—Tuesday, …, 7—Sunday,
while the 8 day of the week is used for the German national holidays. (Color figure online)

where t is in yearly time scale. Note, that the first component of the above sum is
responsible for the yearly periodicity, while the second one captures seasonalities
of different period than one year (here, we obtain nearly half-year period, see a6 in
Table 1). The function Lt is fitted to the EEX spot prices using the least squares
method. The obtained curve is plotted in Fig. 1, while the obtained ai coefficients are
given in Table 1.

The estimated long term trend is subtracted from the analyzed time series. Next,
the short term seasonal component is estimated using the ‘average week’ method,
being equivalent to using dummy variables (see e.g. Cartea and Figueroa 2005; De
Jong 2006). Namely, we calculate the mean of prices corresponding to each day of
the week (German national holidays are treated as the eight day of the week). The
obtained weekly pattern is plotted in Fig. 1.

Finally, the deseasonalized prices are obtained by subtracting the long and short
term trend from the EEX spot prices. Moreover, the data is shifted so that the minimum
of the deseasonalized and the original prices is the same. The resulting time series can
be seen in Fig. 2.

After removing seasonality, we are left with modeling the stochastic part Xt . Here,
we calibrate the 3-regime MRS model, see Eqs. (2)–(7), to the deseasonalized EEX
prices. To this end, we use a version of the Expectation-Maximization algorithm of
Dempster et al. (1977), which was applied to MRS models by Hamilton (1990) and
was later refined by Kim (1994). It is a two-step iterative procedure:

– Step 1: For a parameter vector θ compute the conditional probabilities for the
process being in regime j at time t, P(Rt = j |X1, X2, . . . , X N ; θ), where
(X1, X2, . . . , X N ) is a sample of observations.
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Fig. 2 Calibration results of the 3-regime MRS model fitted to the EEX deseasonalized prices. The prices
classified to the spike regime i.e. with P(S) = P(Rt = s|X1, X2, . . . , X N ) > 0.5 are denoted by red dots,
while the prices classified to the drop regime i.e. with P(D) = P(Rt = d|X1, X2, . . . , X N ) > 0.5 are
denoted with black x’s. Additionally, in the lower panels the corresponding probabilities are plotted. The
estimated unconditional probability of spike occurrence is displayed in the bottom panel. Observe, that the
highest probability of spike is obtained for the Autumn/Winter period, while the lowest for Spring. (Color
figure online)

– Step 2: Calculate new and more exact maximum likelihood estimates of θ using
the likelihood function, weighted with the probabilities from step 1.

The steps 1 and 2 are repeated until a local maximum of the likelihood function
is found. For the detailed description of the algorithm in case of the 3-regime model
considered in this paper see the recent work of Janczura and Weron (2012). The
obtained parameters are given in Table 2. Observe high probabilities of staying in the
same regime, ranging from 0.40 for the drop regime up to 0.97 for the base regime.
Hence, the assumed model allows for modeling consecutive spikes or drops in a very
natural way. The calibration results are plotted in Fig. 2, where additionally the regimes
classification is illustrated. As we may observe, spikes/drops occur usually as a series
of high/low prices rather than separate outstanding observations. What is interesting to
note, is the clear seasonal pattern in the estimated probability of spike, see the bottom
panel in Fig. 2. Indeed, the highest spike occurrence probability is obtained for the
Autumn/Winter season, while the lowest for Spring.

In order to validate the used MRS model, we apply a Kolmogorov–Smirnov
goodness-of-fit test for the marginal distribution of the individual regimes, as well
as, for the whole model. We use two testing procedures. The first one (called
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Pricing electricity derivatives 17

Table 2 Parameter estimates of the 3-regime MRS model fitted to the deseasonalized EEX prices

Parameters Probabilities

α1 β1 σ 2
1 α2 σ 2

2 α3 σ 2
3 p11 p22 p33

5.98 0.16 39.53 2.89 0.64 2.62 0.33 0.97 0.66 0.40

Table 3 p values of the goodness-of-fit tests for the 3-regime MRS model fitted to the deseasonalized EEX
prices

ewedf wedf

Regime Base Spike Drop Model Base Spike Drop Model

p value 0.64 0.16 0.50 0.34 0.30 0.59 0.95 0.25

The test results for the ewedf, as well as, the wedf approach are provided

Table 4 Specification of the
monthly forward contracts listed
on the EEX market on January
3, 2011

Name Settlement price T1 T2

Feb-11 54.35 1.2.2011 28.2.2011

Mar-11 51.64 1.3.2011 31.3.2011

Apr-11 48.07 1.4.2011 30.4.2011

May-11 45.53 1.5.2011 31.5.2011

Jun-11 48.50 1.6.2011 30.6.2011

Jul-11 49.00 1.7.2011 31.7.2011

ewedf—equally weighted empirical distribution function) is based on classifying
observations to the most probable regime, i.e. assuming that Rt = i if P(Rt =
i |X1, X2, . . . , X N ) > 0.5. Note that, due to the cutoff values cs and cd , if a proba-
bility of spike (drop) is positive, the probability of drop (spike) must be equal to 0.
Hence, an observation is considered a spike or a drop if it is the most probable regime
for it. As a consequence, the standard Kolmogorov–Smirnov goodness-of-fit test can
be applied. The second one (called wedf) utilizes a notion of the weighted empir-
ical distribution function, where t-th observation is taken into account with weight
proportional to the probability P(Rt = i |X1, X2, . . . , X N ). For the detailed testing
procedure derivation see Janczura and Weron (2013). The obtained test p values are
given in Table 3. Recall, that p value higher than 5 % means that we cannot reject,
at the 5 % significance level, the hypothesis that the analyzed dataset was driven by
the assumed model. As all of the obtained p values are higher than 5 %, we can-
not reject the considered 3-regime MRS model as a proper one for the analyzed
dataset.

Before we start with the valuation of derivatives we have to find the risk premium
and the function λ, see Eq. (19). We use monthly forward contracts listed on the EEX
market on January 3, 2011, i.e. on the day directly following the calibration period.
The prices, as well as, the delivery periods of the analyzed forward contracts are given
in Table 4. Since we analyze monthly contracts, the risk premium should be also
calculated on the monthly basis, i.e. instead of Eq. (8) we use:
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18 J. Janczura

RP(T1, T2) = 1

T2 − T1 + 1

T2∑

t=T1

E(Pt |F0) − f [T1,T2]
0 (35)

with f [T1,T2]
0 being the monthly forward contracts quotations (see Table 4) and

E(Pt |F0) being the forecast of the future spot price based on the fitted model. Note that
the average monthly expected spot price is calculated as an arithmetic mean instead
of an integral, because the analyzed spot prices are quoted is discrete time (on a daily
basis). The values of the risk premium obtained from contracts with different delivery
periods are plotted in Fig. 3 (for contract specifications see Table 4).

The negative risk premium [if defined as in (8)] means that the forward prices are
higher than the expected spot prices, what might indicate that there is high demand
for the forward contracts. Such situation occurs if buyers (retailers) are risk averse and
are willing to pay more to ensure a future delivery. On the other hand, according to the
normal backwardation theory, a positive risk premium means that producers accept
forward prices lower than the expected spot prices in order to secure consumption
of electricity produced in the future. It should be noted that there are also different
attempts to explain signs of the risk premium in the literature. Benth and Meyer-
Brandis (2009) use an information-based approach, while Benth et al. (2008b) give
an interpretation of the risk premium on the basis of the certainty equivalent principle
and jumps in the spot price dynamics.

Here, we observe an evidence for the negative risk premium, especially for contracts
with approaching delivery period, see Fig. 3. For the contracts with more distant
delivery period the obtained risk premium is less significant. Since calibrating the
risk premium on only one day might not be representative, we also calculate the risk
premium for the same contracts but on the next three Mondays of January 2011,
namely on 10th, 17th and 24th of January. The obtained values are plotted in Fig. 7
in the “Appendix”. Observe, that although the values change for different times of
calculation, what might be due to the low liquidity of the contracts, the shape of the
risk premium is generally preserved. For each case the risk premium is negative and
increase with increasing time to delivery. The obtained term structure of risk premium
might indicate that for short deliveries the risk-averse retailers dominate on the market
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Fig. 3 The risk premium obtained from monthly forward contracts with different delivery periods (blue
lines), as well as the fitted function in the case of linear λ(t) [see Eq. (36)] plotted with red dashed line.
(Color figure online)
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Fig. 4 Prices of a European call option written on the electricity spot price for different maturities T and
strike prices K . The prices are calculated on January 3, 2011

hedging against a possible spike risks, while with increasing time of delivery the
forward contracts become more attractive for electricity producers. Similar results
were also obtained by other authors, like e.g. Geman and Vasciek (2001) for the case
of the PJM market or Ronn and Wimschulte (2009) for the EEX market (note that
these authors define the risk premium as the difference between the forward prices
and the expected spot prices, which is −RP(T ) defined in this article).

Next, using the obtained risk premium values we fit the function λ, i.e the market
price of risk, see Eq. (19). To this end, we assume that the market price of risk λ(t) =
λ1t + λ2. Again, since we analyze monthly forward contracts and the risk premium
is found on the monthly basis, λ1 and λ2 are found by fitting:

λ1
∑T2

t=T1
p(t)

bb (t − (1 − e−βt )/β) + λ2
∑T2

t=T1
p(t)

bb (1 − e−βt )

β(T2 − T1 + 1)
= RP (T1, T2). (36)

See Eq. (19) for the comparison with the continuous time scale. Using the least-
squares minimization scheme we get λ(t) = 0.0084t − 1.8387, see the red dashed
line in Fig. 3 for the plot of the function fitted to the risk premium [i.e. the left hand
side of Eq. (36)]. Note that, the choice of the linear form of the λ function allows
to model dependence between the risk premium and time to maturity. Obviously,
alternative functions can be used as well. Different time dependent market price of
risk specifications were studied e.g. by Haerdle and Lopez-Cabrera (2012) in the
case of weather derivatives. It was found that the market price of risk shows seasonal
variations and is an increasing function of the futures expiration date. However, for the
example studied in the paper, the linear function yields a reasonable fit as compared to
a constant, see Figs. 3 and 6, at the same time being simple enough to be numerically
and analytically easily handled.

123



20 J. Janczura

0

10

20

30

30
40

50
60

70

0

5

10

K

t

C
F

t(K
)[T

1,T
2]

Fig. 5 Prices of a European call option written on the electricity forward contract with settlement in
February 2011 for different maturities t and strike prices K . The prices are calculated on January 3, 2011

Table 5 Prices of European call
options written on monthly
forward contracts with strike
price K = 30

The prices are calculated on
January 3, 2011

Month of delivery
[T1, T2]

Options maturity t Options price

C f
[T1,T2]
t (K )

February 26.1.2011 13.5449

March 23.2.2011 9.1074

April 28.3.2011 4.2258

May 26.4.2011 2.6826

June 28.5.2011 3.6148

July 27.6.2011 7.1913

Now, we can derive the price of a European call option written on the electricity spot
price. Assume that the interest rate r is equal to 0. The option prices obtained in Sect. 4.1
with different maturities t and strike prices K are plotted in Fig. 4. Obviously, the lower
is the strike price, the higher is the call option price. What is interesting to note, is how
the option price depends on the maturity tenor T . Observe the clear seasonal pattern of
option prices, both on the weekly and the long-term level. The long-term seasonality is
caused not only by the deterministic component gt but also by the periodic transition
matrix allowing for varying spike (drop) probabilities during the year. Recall that in
the EEX market the spike probability is the highest in Autumn/Winter and the lowest
in Spring, see Fig. 2.

Now, we derive the prices of European call options written on monthly forward
contracts. Using the results obtained in Sect. 4.3 we calculate the price of an option
written on the forward contract with settlement in February 2011. The results are
plotted in Fig. 5. In order to check how the option price varies according to the delivery
period, we calculate the prices of options written on monthly forward contracts with
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deliveries within the next 6 months (i.e. February 2011 till July 2011). According to
the products specification in the EEX market, the maturity of the options is set to the
fourth business day before the beginning of the delivery period. The obtained option
prices are given in Table 5. Similarly, as in the case of options written on the spot
price, we observe the lowest option prices for settlement during the Spring months.

6 Conclusions

In this paper we have derived premiums of European options written on electricity spot,
as well as, forward prices. We assumed that electricity spot prices can be described
by a 3-regime MRS model with independent spikes and drops and periodic transition
matrix, proposed earlier by Janczura and Weron (2010). The forward prices were
then derived using the risk premium approach and fitting the model-based prices to
the observed forward curve. Next, using the spot and forward price dynamics we
calculated prices of the corresponding European options. It should be stressed that
the presented formulas are valid only under assumption of the 3-regime MRS model
of Janczura and Weron (2010). However, the presented methodology can be easily
extended to other specifications of the MRS models.

The assumed model was then calibrated to the spot prices from the European Energy
Exchange. We have validated the model choice by performing a statistical goodness-
of-fit test. Next, using monthly forward contracts quotations we have calculated the
risk premium. We have obtained negative values, especially significant for contracts
with approaching maturity. For contracts with distant settlement the risk premium
values were higher.

Finally, the presented methodology and the calibration results allowed us to find
prices of European options currently listed on the EEX market. As the assumed
3-regime MRS model seems to be adequate to describe dynamics of electricity spot
prices, the results of the paper can be used for pricing of electricity derivatives and,
hence, yield an effective risk management tool.
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Appendix

Derivation of the option price formula Using standard arguments the option price
is the discounted expected value of the payoff function under the pricing measure
(see e.g. Musiela and Rutkowski (1997)). Moreover, analogously to formula (11) this
expectation is equal to:

CT (K ) = e−rT Eλ
[
(PT − K )+|F0

] = e−rT Eλ
[
(XT + gT − K )+|F0

]
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= e−rT
{

p(T )
bb Eλ

[
(XT,b − K ′)+|F0

] + p(T )
bs E

[
(X�T �,s − K ′)+|F0

]

+p(T )
bd E

[
(X�T �,d − K ′)+|F0

]
}

, (37)

where K ′ = K − gT and (x)+ = max(0, x).
We start with pricing the base regime part CT,b(K ):

CT,b(K ) = Eλ
[
(XT,b − K ′)+|F0

] =
∞∫

K ′
(x − K ′) fXT,b|X0,b (x)dx, (38)

where fXT,b|X0,b (x) denotes the density of XT,b conditional on X0,b. From (17) and
Ito’s lemma we have that:

XT,b = X0,be−βT + α

β

(
1−e−βT

)
−

T∫

0

e−β(T−u)λ(u)du+σb

T∫

0

e−β(T −u)dW λ
u . (39)

Hence, XT,b given X0,b has a Gaussian distribution with mean

E(XT,b|F0) = X0,be−βT + α

β

(
1 − e−βT

)
−

T∫

0

e−β(T −u)λ(u)du, (40)

and variance

V ar(XT,b|F0) = σ 2
b

2β

(
1 − e−2βT

)
. (41)

Denote the mean by m and the variance by s2. We have:

CT,b(K ) = 1√
2πs

∞∫

K ′
(x − K ′) exp

(

− (x − m)2

2s2

)

dx

= s√
2π

exp

(

− (K ′ − m)2

2s2

)

+ (m − K ′)
[

1 − Φ

(
K ′ − m

s

)]

. (42)

Now, we turn to the pricing of the spike regime part. Observe that if K ′ ≤ cs ,
then E[(X�T �,s − K ′)+|F0] = E(X�T �,s) − K ′. Assume that K ′ > cs . Denote the
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log-normal pdf by fL N (μs ,σ 2
s ) and the cdf by FL N (μs ,σ 2

s ). Then

E[(X�T �,s − K ′)+|F0] =
∞∫

K ′
(x − K ′) fL N (μs ,σ 2

s )(x − cs)dx

= exp

(

μs + σ 2
s

2

){

1 − Φ

[
log(K ′ − cs) − μs − σ 2

s

σs

]}

−(K ′ − cs)
[
1 − FL N (μs ,σ 2

s )(K ′ − cs)
]

(43)

and we have that

E[(X�T �,s − K ′)+|F0] = I{K ′>cs }
{

exp

(

μs + σ 2
s

2

)

×
[

1 − Φ

(
log(K ′ − cs) − μs − σ 2

s

σs

)]

−(K ′ − cs)
[
1 − FL N (μs ,σ 2

s )(K ′ − cs)
] }

+I{K ′≤cs }
[

exp

(

μs + σ 2
s

2

)

+ cs − K ′
]

. (44)

Similarly, we can price the drop regime part:

E[(X�T �,d − K ′)+|F0] = I{K ′<cd }
{

− exp

(

μd + σ 2
d

2

)

×Φ

[
log(cd − K ′) − μd − σ 2

d

σd

]

+(cd − K ′)FL N (μd ,σ 2
d )(cd − K ′)

}

. (45)

Finally, letting CT,i (K ) = E[(X�T �,i − K ′)+|F0] for i ∈ {s, d} and combining
formulas (37), (42), (44) and (45) yields the result.

Derivation of the forward price First, note that

Eλ(PT |Ft ) = Eλ(XT |Ft ) + gT = Eλ(I{R�T �=b} XT,b + I{R�T �=s} X�T �,s
+I{R�T �=d} X�T �,d |Ft ) + gT . (46)

Since X�T �,i , for i =s, d, is independent of R�T � and Ft , we have: Eλ(I{R�T �=i} XT,i |
Ft ) = P(R�T � = i |Ft )E(X�T �,i ), i = s, d. Secondly, we have

Eλ(I{R�T �=b} XT,b|Ft ) = Eλ(I{R�T �=b}|Ft )Eλ(XT,b|Ft )

+P(R�T � = b|Ft )Eλ
(
XT,b|Ft

)
(47)
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and from the base regime definition and Ito’s lemma:

Eλ(XT,b|Ft ) = Eλ(Xt,b|Ft )e
−β(T −t) + α

β

(
1 − e−β(T −t)

)

−
T∫

t

e−β(T −u)λ(u)du. (48)

Moreover, from the definitions of the spike and drop regimes, see Eqs. (6) and (7),
we get:

E(X�T �,s) = eμs+ 1
2 σ 2

s + cs (49)

and

E(X�T �,d) = cd − eμd+ 1
2 σ 2

d . (50)

Finally, combining formula (46) with (48), (49) and (50) yields the result.

Derivation of the price formula for an option written on a forward contract We start
the derivation of the option price formula with the following observation.

If R�t� = b, then the forward price is given by:

f [T1,T2]
t |{R�t�=b} = Xt,b

T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = b)e−β(T −t)dT

+
T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = b)

×
⎡

⎣
α

β

(
1 − e−β(T −t)

)
−

T∫

t

e−β(T −u)λ(u)du

⎤

⎦ dT

+(eμs+ 1
2 σ 2

s + cs)

T2∫

T1

w(T1, T2, T )P(R�T � = s|R�t� = b)dT

+(cd − eμd+ 1
2 σ 2

d )

T2∫

T1

w(T1, T2, T )P(R�T � = d|R�t� = b)dT

+
T2∫

T1

w(T1, T2, T )gT dT . (51)
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Moreover, if k is such a number that R�t� = i, R�t�−1 �= b, . . . , R�t�−k+1 �=
b, R�t�−k = b, for i ∈ {s, d} (i.e. the last base regime price before time t was observed
k-periods earlier), then the forward price is given by:

f [T1,T2]
t |{R�t�=i,R�t�−1 �=b,...,R�t�−k=b}

= X�t�−k+1,b

T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = i)e−β(T −�t�+k−1)dT

+
T2∫

T1

w(T1, T2, T )P(R�T � = b|R�t� = i)

×
⎡

⎢
⎣

α

β

(
1 − e−β(T −�t�+k−1)

)
−

T∫

�t�−k+1

e−β(T −u)λ(u)du

⎤

⎥
⎦ dT

+(eμs+ 1
2 σ 2

s + cs)

T2∫

T1

w(T1, T2, T )P(R�T � = s|R�t� = i)dT

+(cd − eμd+ 1
2 σ 2

d )

T2∫

T1

w(T1, T2, T )P(R�T � = d|R�t� = i)dT

+
T2∫

T1

w(T1, T2, T )gT dT . (52)

Formula (51) is a simple consequence of Eq. (28) and the fact that R�t� = b implies
that Eλ(Xt,b|Ft ) = Xt,b. In order to show (52), observe that for R�t� = i, R�t�−1] �=
b, . . . , R�t�−k = b, i = s, d, we have

Eλ(Xt,b|Ft ) = Eλ
[

X�t�−k+1,be−β(t−�t�+k−1) + α

β

(
1 − e−β(t−�t�+k−1)

)

−
t∫

�t�−k+1

e−β(t−u)λ(u)du

+ σb

t∫

�t�−k+1

e−β(t−u)dW λ
u |X�t�−k+1,b

]

= X�t�−k+1,be−β(t−�t�+k−1) + α

β

(
1 − e−β(t−�t�+k−1)

)
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−
t∫

�t�−k+1

e−β(t−u)λ(u)du. (53)

Combining Eqs. (28) and (53) yields the result.
Now we can derive the option price formula. The option price is equal to the

expected future payoff. Therefore, we have

C f [T1,T2]
t (K ) = e−r t Eλ

[
( f [T1,T2]

t − K )+|F0

]
. (54)

Observe that the forward price can be written as

f [T1,T2]
t = I{R�t�=b} f [T1,T2]

t |{R�t�=b}

+
∑

i∈{s,d}

�t�∑

k=1

I{R�t�=i,R�t�−1 �=b,...,R�t�−k=b} f [T1,T2]
t |{R�t�=i,R�t�−1 �=b,...,R�t�−k=b},(55)

where f [T1,T2]
t |{R�t�=b} and f [T1,T2]

t |{R�t�=i,R�t�−1 �=b,...,R�t�−k=b}, i ∈ {s, d}, k = 1, 2, . . . , �t�, are
given by (51) and (52). Hence,

C f [T1,T2]
t (K ) = e−r t

{

Eλ
[
( f [T1,T2]

t |{R�t�=b} − K )+|F0

]
P(R�t� = b|R0 = b)

+
∑

i∈{s,d}

�t�∑

k=1

{
Eλ

[
( f [T1,T2]

t |{R�t�=i,R�t�−1 �=b,...,R�t�−k=b} − K )+|F0

]

×P(R�t� = i, R�t�−1 �= b, . . . , R�t�−k = b|R0 = b)
}
. (56)

Now, observe that

Eλ
[
( f [T1,T2]

t |{R�t�=b} − K )+|F0

]
= Eλ

[(
Xt,b A0(b) + B0(b) − K

)+ |F0

]

= A0(b)Eλ

[(

Xt,b − K − B0(b)

A0(b)

)+ ∣
∣
∣F0

]

= A0(b)Ct,b

(
K − B0(b)

A0(b)
+ gt

)

, (57)

where Ct,b

(
K−B0(b)

A0(b)
+ gt

)
is the ‘base regime part’ of the price of a European call

option written on the electricity spot price with maturity t and strike K−B0(b)
A0(b)

+ gt ,
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see Eq. (21) and Ak, Bk are defined in Eqs. (30)–(33). Similarly,

Eλ
[
( f [T1,T2]

t |{R�t�=i,R�t�−1 �=b,...,R�t�−k=b} − K )+|F0

]

= Ak(i)Eλ

[(

X�t�−k+1,b − K − Bk(i)

Ak(i)

)+
|F0

]

= Ak(i)C�t�−k+1,b

(
K − Bk(i)

Ak(i)
+ g�t�−k+1

)

(58)
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Fig. 6 The risk premium obtained from monthly forward contracts with different delivery periods (blue
solid lines) on three consecutive Mondays in January 2011: 10.01.2011 (top panel), 17.01.2011 (middle
panel) and 24.01.2011 (bottom panel). Additionally, the fitted function in the case of linear λ(t) [see Eq.
(36)] is plotted with red dashed lines. (Color figure online)
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Fig. 7 The risk premium obtained from monthly forward contracts with different delivery periods (blue
lines), as well as the fitted function in the case of constant λ (see Eq. (36) with λ1 = 0) plotted with red
dashed line. (Color figure online)

for i ∈ {s, d} Finally, combining formulas (54), (57) and (58) completes the proof
(Figs. 6, 7).
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