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Abstract
The average treatment effect is used to evaluate effects of interventions in a population.
Under certain causal assumptions, such an effect may be estimated from observational
data using the g-computation technique. The asymptotic properties of this estimator
appears not to be well-known and hence bootstrapping has become the preferred
method for estimating its variance. Bootstrapping is, however, not an optimal choice
for multiple reasons; it is a slow procedure and, if based on too few bootstrap samples,
results in a highly variable estimator of the variance. In this paper, we consider estima-
tors of potential outcome means and average treatment effects using g-computation.
We consider these parameters for the entire population but also in subgroups, for
example, the average treatment effect among the treated. We derive their asymptotic
distributions in a general framework. An estimator of the asymptotic variance is pro-
posed and shown to be consistent when g-computation is used in conjunction with
the M-estimation technique. The proposed estimator is shown to be superior to the
bootstrap technique in a simulation study. Robustness against model misspecification
is also demonstrated by means of simulations.

Keywords Average treatment effect · Causal inference · G-computation · Model
misspecification · Variance estimation

1 Introduction

Many research questions involve quantifying the effect of intervening on some vari-
able on an outcome. For example, policymakers might be interested in the effect of
introducing a new treatment or new guidelines on certain health outcomes. This is
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usually quantified as an average effect over the entire population but in some situa-
tions it might also be useful to know if there are subgroups for which the intervention
is particularly beneficial. The literature has focused much on assumptions needed to
identify and estimate such effects based on observational data whereas the statistical
properties of these estimators has had limited attention.

If Y denotes the outcome of interest, A the covariate we are interested in intervening
on and B any other quantity we wish to include in our statistical model, for reasons
to become clear in a moment, then we may quantify such an effect in two steps. First,
we assume that the relationship between Y and X = (A,B) can be described by a
conditional mean model

E(Y | X) = μ(β0;X) (1)

for some mean function μ and true vector of parameters β0. Next, if X
a = (a,B)

denotes the covariate vector obtained by replacing A by the fixed value a, then the
predictive margin of the intervention a is defined as E(μ(β0;Xa)). Assuming (1)
holds true, this quantity equals E(E(Y | A = a,B)) justifying its name. Similarly, the
predictive contrast between two interventions a1 and a2 is defined as E(μ(β0;Xa1)−
μ(β0;Xa2)).

The predictivemargin appears to quantifywhatwould havehappened in the underly-
ing population ifwe had, contrary to fact, intervened on A and set it to a for allmembers
of the population. However, such a causal interpretation is only warranted under fur-
ther assumptions. One such assumption is exchangeability (Hernán and Robins 2020),
also called (strong) ignorability (Rosenbaum and Rubin 1983). Assuming exchange-
ability conditional on B, the predictive margin corresponds to the mean of a potential
outcome variable after intervention and the predictive contrast corresponds to the aver-
age treatment effect comparing two interventions. Restricting these to subgroups may
also be relevant, e.g. when the interest lies in the average treatment effect among the
treated or untreated (Wang et al. 2017). In this context, the model in (1) is sometimes
referred to as the Q-model and the estimating procedure described below is also known
as (parametric) g-computation or standardization (Robins 1986; Snowden et al. 2011;
Wang et al. 2017; Hernán and Robins 2020).

Standardization or g-computation can, in this situation, be described as a two-step
estimating procedure: Obtain a reasonable estimate β̂n of β0 and then estimate the
potential outcome mean or average treatment effect by an appropriate sample average
in which β0 has been replaced by β̂n . Bootstrapping has become the predominant
method for obtaining valid confidence intervals and statistical tests for these estimators
(Snowden et al. 2011; Wang et al. 2017; Keil et al. 2014; Westreich et al. 2012;
Nianogo et al. 2017; Chatton et al. 2020). However, as bootstrapping quickly becomes
computationally intensive and, as we will demonstrate, may result in a highly variable
estimator when the number of bootstrap samples are too few, alternative methods for
estimating the variance seem valuable.

The asymptotic properties of these estimators have been studied in Dowd et al.
(2014) and Qu and Luo (2015). In both papers, the authors disregard the sampling
variation in X which has later been argued to be incorrect if causal parameters such
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as the average treatment effect is the target (Terza 2016; Bartlett 2018). In both Terza
(2016) andBartlett (2018), these results have been extended to account for the sampling
variability inX although the latter focus mostly on randomised trials. These properties
have also been studied to some extent by Graubard and Korn (1999). Terza (2016)
relies on results by Newey and McFadden (1994) but, in their derivation, they do
however make an unnecessary simplification of the asymptotic variance that relies on
a correctly specified conditional meanmodel. Bartlett (2018) also relies on Newey and
McFadden (1994) and in their paper they discuss how the variance estimator proposed
by Qu and Luo (2015) can be remedied by adding an extra term to their expression.
The resulting expression coincides with that of Terza (2016). Therefore, the variance
estimator proposed by Terza (2016) and Bartlett (2018) relies on a correctly specified
conditional mean model and Terza (2016) argued that this is required for the analysis
to be of interest. However, it appears that the results of Terza (2016) and Bartlett
(2018) have been overlooked in the causal inference literature as is evident by the
plethora of studies that use bootstrapping but also by the lack of availability in software.
For example, a recent R package called marginaleffects (Arel-Bundock 2022)
has implemented the variance estimator proposed by Dowd et al. (2014) and Qu
and Luo (2015). Another R package called riskCommunicator relies entirely
on bootstrapping (Grembi and McQuade 2022). Moreover, Terza (2016) and Bartlett
(2018) only focus on estimating potential outcomemeans and average treatment effects
in the entire population and, hence, they do not consider effects in subgroups nor do
they consider relative treatment effects.

In this paper, we derive the asymptotic distribution of the g-computation estimator
for potential outcome means in the entire population but also among subgroups. The
asymptotic distribution is presented in a multivariate setting where multiple interven-
tions are considered simultaneously which enables us to easily derive the asymptotic
distribution of effect estimates such as the average treatment effect in the entire popu-
lation and in subgroups. Relative treatment effects, obtained as ratios of two potential
outcomemeans, are also considered. This is useful when onewants to express the treat-
ment effect as a risk ratio or odds ratio, say (Rubin 2010). Based on these asymptotic
properties, we propose an estimator for the asymptotic variance for the various estima-
tors considered. We discuss when these variance estimators are consistent and argue
that consistency is guaranteed when a type of M-estimation is used in the first step
to estimate β0. The asymptotic variance for the average treatment effect derived here
will have an extra term compared to that of Terza (2016) and Bartlett (2018) which,
we argue, makes it robust against model misspecification. We compare coverage and
variability of the proposed variance estimator against bootstrapping in a simulation
study. We also compare the proposed variance estimator to that of Terza (2016) and
Bartlett (2018) in a scenario where the conditional mean model is misspecified.

2 Potential outcomemeans

As above, we let Y denote the outcome of interest, A the variable we are interested
in intervening on and B one or more variables we wish to include in our statistical
model.We call A the treatment although A could, in principle, be any exposure variable
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whose effect we might want to study. Let Y (a) denote the outcome had the individual
in question received treatment a. This is a potential outcome as, for a given individual,
we are only able to observe one of them– all other variables are counterfactual. Let also
Y = Y (A) denote the observed outcome. This is often referred to as the consistency
assumption.We denote byX = (A,B) the observed covariates and defineXa = (a,B)

to be the covariates obtained by replacing A by the fixed value a. We also denote by
Z = (Y ,X) the observed outcome and covariates collectively.

In the following, we will work under the assumption of exchangeability conditional
on B. This assumption states that Y (a) should be independent of A given B for all a.
Under this assumption we have that

E(Y (a)) = E(E(Y (a) | B)) = E(E(Y (a) | A = a,B))

= E(E(Y | A = a,B)) = E(μ(β0;Xa)) (2)

where we have used that Y1(A = a) = Y (a)1(A = a) by definition of Y .
By this chain of equalities, we conclude the following: The right-hand side,

E(μ(β0;Xa)), corresponds to a predictive margin only when the conditional mean
model is correctly specified and to a potential outcome mean only when, in addition,
exchangeability holds. In the following, our focus will be on estimating the right-
hand side and hence all of the results established in this paper holds even when the
conditional mean model is misspecified although, in this case, the target parameter is
simply E(μ(β0;Xa)) where β0 provides some sort of best fit of μ(β;X) to E(Y | X).
A similar argument as in (2) shows that E(Y (a) | V = v) = E(μ(β0;Xa) | V = v)
when V is a function of X, meaning that we also have a causal interpretation when
restricting the analysis to subgroups of the population.

Consider now the conditional mean model of (1) in which β0 is assumed to be a
k-dimensional column vector. We assume throughout the paper that μ satisfies the
following regularity conditions

• x �→ μ(β; x) is measurable for all β in a neighborhood of β0.
• β �→ μ(β; x) is continuously differentiable for all x.

Consider also an i.i.d. sample Z1, . . . ,Zn of Z and assume that, based on this
sample, an estimator β̂n of β0 exists that is asymptotically linear in the sense that

β̂n = β0 + 1

n

n∑

i=1

β̇(Zi ) + oP (n−1/2), (3)

with an influence function β̇ such that β̇(Z) is square integrable and E(β̇(Z)) = 0.
We discuss the existence of such an estimator in greater detail in Sect. 4.

Let a be a fixed intervention value and recall that Xa = (a,B) is the covariate
vector obtained by replacing A with a. Consider now the potential outcome mean
upon replacing A with a, θa = E(μ(β0;Xa)), as our target parameter. It seems
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natural to estimate this by

θ̂an = 1

n

n∑

i=1

μ(β̂n;Xa
i ). (4)

The procedure leading to the estimator in (4) is known as g-computation.
In the following, we say that a function θ �→ g(θ; x) is dominated (square) inte-

grable with respect to X around some θ0 if there exists a function h such that h(X) is
(square) integrable and such that ‖g(θ; x)‖ ≤ h(x) for all x and for θ in some com-
pact set around θ0. By a first-order Taylor expansion ofμwe now obtain the following
result.

Proposition 1 Assume thatμ(β; x) is dominated square integrable and that ∂
∂β

μ(β; x)
is dominated integrable with respect toXa around β0. Then θ̂an is asymptotically linear
with influence function

θ̇a(z) = μ(β0; xa) − θa + E

(
∂

∂β
μ(β0;Xa)

)
β̇(z), (5)

for z = (y, x). That is, for each n, we have the decomposition

θ̂an = θa + 1

n

n∑

i=1

θ̇a(Zi ) + oP (n−1/2) (6)

where θ̇a(Z) is square integrable with mean zero.

Proof The proof is given in the Appendix. ��

With this decomposition at hand, the asymptotic distribution of θ̂an follows imme-
diately. The following result is formulated in a multivariate setting as it allows us
to study estimators obtained as functions of multiple potential outcome means. For a
vector a = (a1, . . . , al) of interventions we let θ̂

a
n = (θ̂

a1
n , . . . , θ̂

al
n )T denote the vector

of estimators and θa = (θa1, . . . , θal )T the vector of target parameters. Furthermore,
we let μ(β;Xa) denote the l-dimensional column vector whose i th entry is μ(β;Xai )

and let E( ∂
∂β

μ(β;Xa)) denote the l × k matrix whose i th row is E( ∂
∂β

μ(β;Xai )). We
then have the following result.

Theorem 2 Let a = (a1, . . . , al) be a vector of interventions. Assume that μ(β; x) is
dominated square integrable and that ∂

∂β
μ(β; x) is dominated integrable with respect

to Xai around β0 for i = 1, . . . , l. Then θ̂
a
n

P→ θa and

√
n(θ̂

a
n − θa)

d→ N (0,�a) (7)
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for n → ∞ with covariance matrix given by

�a = Cov

(
μ(β0;Xa) + E

(
∂

∂β
μ(β0;Xa)

)
β̇(Z)

)
.

Proof Let θ̇
a = (θ̇a1, . . . , θ̇al )T denote the vector of influence functions. By Propo-

sition 1 we have

θ̂
a
n − θa = 1

n

n∑

i=1

θ̇
a
(Zi ) + oP (n−1/2)

where the right-hand side is seen to converge to zero in probability by the law of large
numbers as θ̇

a
(Z) has mean zero.

Moreover,

√
n(θ̂

a
n − θa) = √

n
1

n

n∑

i=1

θ̇
a
(Zi ) + oP (1)

where the right-hand side is seen to converge to a normal distribution with mean zero
and covariance matrix �a by the central limit theorem. ��

Assume now that an estimator ˆ̇βn(z) of β̇(z) exists for all z. The asymptotic covari-
ance matrix of Theorem 2 may then be estimated by the following plug-in estimator

�̂
a
n = 1

n

n∑

i=1

{
μ(β̂n;Xa

i ) − θ̂
a
n +

(
1

n

n∑

j=1

∂

∂β
μ(β̂n;Xa

j )

)
ˆ̇βn(Zi )

}⊗2

(8)

where x⊗2 = xxT for a column vector x.
Under some mild regularity conditions on the estimator ˆ̇βn , this plug-in estimator

will be consistent for the asymptotic covariance matrix as the following result shows.

Theorem 3 Make the assumptions of Theorem 2 and assume furthermore that ˆ̇βn
satisfies

‖ ˆ̇βn(z) − β̇(z)‖ ≤ gn · f (z) (9)

for a sequence of random variables gn
P→ 0 and a measurable function f with

E( f (Z)2) < ∞. Then �̂
a
n

P→ �a.

Proof See the Appendix. ��
The assumption (9) is just one example of an assumption which ensures consistency of
the plug-in estimator of (8). Other assumptions might also do the job but this particular
assumption can be seen to hold in the examples discussed in Sect. 4.
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2.1 Potential outcomemeans in a subgroup

Sometimes we are interested in the mean of the potential outcome, not for the entire
population, but only among individuals in a certain subgroup. Let V = h(X) be a
partition of X and consider a subgroup V = v with P(V = v) > 0. Define also
ψa,v = E(μ(β0;Xa) | V = v) to be the potential outcome mean corresponding to
the intervention a among those with covariate vector V equal to v.

Let m = #{i : Vi = v} be the number of observations compatible with V = v in
our sample. A natural estimator for ψa,v is then

ψ̂a,v
n = 1

m

∑

i :Vi=v

μ(β̂n;Xa
i ). (10)

Similar to above we argue that this estimator is asymptotically linear.

Proposition 4 Assume thatμ(β; x) is dominated square integrable and that ∂
∂β

μ(β; x)
is dominated integrable with respect to Xa around β0. Then ψ̂

a,v
n is asymptotically

linear with influence function

ψ̇a,v(z) = (μ(β0; xa) − ψa,v)
1(h(x) = v)
P(V = v)

+ E

(
∂

∂β
μ(β0; xa) | V = v

)
β̇(z),

(11)

for z = (y, x). That is, for each n, we have the decomposition

ψ̂a,v
n = ψa,v + 1

n

n∑

i=1

ψ̇a,v(Zi ) + oP (n−1/2) (12)

where ψ̇a,v(Z) is square integrable with mean zero.

Arguments similar to those above yield the following asymptotic result.

Theorem 5 Let a = (a1, . . . , al) be a vector of interventions. Assume that μ(β; x) is
dominated square integrable and that ∂

∂β
μ(β; x) is dominated integrable with respect

to Xai around β0 for i = 1, . . . , l. Then ψ̂
a,v
n

P→ ψa,v and

√
n(ψ̂

a,v
n − ψa,v)

d→ N (0,�a,v) (13)

for n → ∞ with

�a,v = Cov

((
μ(β0;Xa) − ψa,v

)
1(V = v)
P(V = v)

+ E

(
∂

∂β
μ(β0;Xa) | V = v

)
β̇(Z)

)
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The asymptotic covariance matrix �a,v may be estimated by

�̂
a,v
n = 1

n

n∑

i=1

{(
μ(β̂n;Xa

i ) − ψ̂
a,v
n

)
1(Vi = v)

m/n
+

(
1

m

∑

j :V j=v

∂

∂β
μ(β̂n;Xa

j )

)
ˆ̇βn(Zi )

}⊗2

(14)

for which we have the following result.

Theorem 6 Make the assumptions of Theorem 5 and assume furthermore that ˆ̇βn
satisfies

‖ ˆ̇βn(z) − β̇(z)‖ ≤ gn · f (z)

for a sequence of random variables gn
P→ 0 and a measurable function f with

E( f (Z)2) < ∞. Then �̂
a,v
n

P→ �a,v.

3 Average treatment effects

Often we are not explicitly interested in the mean of a potential outcome but more
so in a contrast between such two: the average treatment effect. Let a1, a2 be two
interventions and define the average treatment effect between such two interventions
by

ATE(a1, a2) = E

(
μ(β0;Xa1) − μ(β0;Xa2)

)
= θa1 − θa2

which we estimate by ̂ATEn(a1, a2) = θ̂
a1
n − θ̂

a2
n . The asymptotic distribution of this

estimator now follows immediately from Theorem 2 and an application of the delta
method.

Corollary 7 Let a1, a2 be two interventions such that μ(β; x) is dominated square
integrable and that ∂

∂β
μ(β; x) is dominated integrable with respect to Xai around β0

for i = 1, 2. Then ̂ATEn(a1, a2)
P→ ATE(a1, a2) and

√
n

(
̂ATEn(a1, a2) − ATE(a1, a2)

)
d→ N (0, �a1,a2) (15)

for n → ∞ with

�a1,a2 = Var

(
μ(β0;Xa1) − μ(β0;Xa2 ) + E

(
∂

∂β
μ(β0;Xa1) − ∂

∂β
μ(β0;Xa2 )

)
β̇(Z)

)

(16)
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The asymptotic variance may be consistently estimated by

�̂a1,a2 = 1

n

n∑

i=1

(
μ(β̂n;Xa1

i ) − μ(β̂n;Xa2
i ) + θ̂a2n − θ̂a1n

+
(
1

n

n∑

j=1

(
∂

∂β
μ(β̂n;Xa1

j ) − ∂

∂β
μ(β̂n;Xa2

j )

))
ˆ̇βn(Zi )

)2

(17)

under assumption (9).

In many scenarios, it will be the case that E(β̇(Z) | X) = 0 provided that the
conditional mean model is correctly specified. Under this assumption, the asymptotic
variances described so far may be simplified. For example, the asymptotic variance,
�a1,a2 , for the average treatment effect reduces to

Var

(
μ(β0;Xa1) − μ(β0;Xa2)

)

+Var

(
E

(
∂

∂β
μ(β0;Xa1) − ∂

∂β
μ(β0;Xa2)

)
β̇(Z)

)
(18)

An estimator of the variance based only on the second term is what was pro-
posed by Dowd et al. (2014) and Qu and Luo (2015) and implemented in e.g. the
marginaleffects package for R (Arel-Bundock 2022). An estimator of the
asymptotic variance based on both terms is what was proposed by Terza (2016) and
Bartlett (2018). In Sect. 5 we compare the estimator based on (18) with the estimator
in (17).

3.1 Average treatment effects in a subgroup

Sometimes we are interested in the average treatment effect in a subgroup of the
population, e.g. among those who received the treatment. More generally, if the effect
of interest is between interventions a1 and a2 among those with V = v, then this
corresponds to the parameter

ATE(a1, a2 | v) = E(μ(β0;Xa1) − μ(β0;Xa2) | V = v) = ψa1,v − ψa2,v.

This is naturally estimated by ̂ATEn(a1, a2 | v) = ψ̂
a1,v
n − ψ̂

a2,v
n .

Corollary 8 Let a1, a2 be two interventions such that μ(β; x) is dominated square
integrable and that ∂

∂β
μ(β; x) is dominated integrable with respect to Xai around β0

for i = 1, 2. Then ̂ATEn(a1, a2 | v) P→ ATE(a1, a2 | v) and
√
n

(
̂ATEn(a1, a2 | v) − ATE(a1, a2 | v)

)
d→ N (0,�a1,a2,v) (19)
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for n → ∞ with

�a1,a2,v = Var

((
μ(β0;Xa1) − μ(β0;Xa2) + ψa2,v − ψa1,v

)
1(V = v)
P(V = v)

+ E

(
∂

∂β
μ(β0;Xa1) − ∂

∂β
μ(β0;Xa2) | V = v

)
β̇(Z)

)

The asymptotic variance may be consistently estimated by

�̂a1,a2,v = 1

n

n∑

i=1

((
μ(β̂n;Xa1

i ) − μ(β̂n;Xa2
i ) + ψ̂a2,v

n − ψ̂a1,v
n

)
1(Vi = v)

m/n

+
(
1

m

∑

j :V j=v

(
∂

∂β
μ(β̂n;Xa1

j ) − ∂

∂β
μ(β̂n;Xa2

j )

))
ˆ̇βn(Zi )

)2

under assumption (9).

Most commonly this is used when estimating the average treatment effect among
the treated or untreated. If A is binary and a = 1 corresponds to being treated and
a = 0 corresponds to being untreated, then by takingV = A we note that ψ1,1 −ψ0,1

is the average treatment effect among the treated while ψ1,0 − ψ0,0 is that of the
untreated.

3.2 Relative treatment effects

The average treatment effect above is measured as an absolute difference between
potential outcome means. Sometimes one might be interested in modeling the treat-
ment effect as a relative difference instead, i.e. as RTE(a1, a2) = θa1/θa2 (Rubin
2010; VanderWeele 2015). When the outcome is binary this corresponds to a causal
risk ratio. The asymptotic distribution of the corresponding estimator may be derived
in similar fashion but rather than working on the original scale it is often more desir-
able to work on a logarithmic scale. To wit, consider the logarithm of the relative
treatment effect, log(RTE(a1, a2)) = log(θa1) − log(θa2), as our target parameter
for which it is assumed that θa1, θa2 > 0. This parameter is naturally estimated by
log(̂RTEn(a1, a2)) = log(θ̂a1n ) − log(θ̂a2n ). We then obtain the following result.

Corollary 9 Let a1, a2 be two interventions such that μ(β; x) is dominated square
integrable and that ∂

∂β
μ(β; x) is dominated integrable with respect to Xai around β0

for i = 1, 2. Assume also that θa1 and θa2 are positive. Then log(̂RTEn(a1, a2))
P→

log(RTE(a1, a2)) and

√
n

(
log(̂RTEn(a1, a2)) − log(RTE(a1, a2))

)
d→ N (0,�a1,a2)
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for n → ∞ with

�a1,a2 = Var

(
1

θa1

(
μ(β0;Xa1) + E

(
∂

∂β
μ(β0;Xa1)

)
β̇(Z)

)

− 1

θa2

(
μ(β0;Xa2) + E

(
∂

∂β
μ(β0;Xa2)

)
β̇(Z)

))

The asymptotic variance may be consistently estimated by

�̂a1,a2
n = 1

n

n∑

i=1

{
1

θ̂
a1
n

(
μ(β̂n;Xa1

i ) +
(
1

n

n∑

j=1

∂

∂β
μ(β̂n;Xa1

j )

)
ˆ̇βn(Zi )

)

− 1

θ̂
a2
n

(
μ(β̂n;Xa2

i ) +
(
1

n

n∑

j=1

∂

∂β
μ(β̂n;Xa2

j )

)
ˆ̇βn(Zi )

)}2

under assumption (9).

4 Estimation of the conditional meanmodel

So far we have considered given an asymptotically linear estimator β̂n of β0. We
will now describe some situations where such an estimator arises. One very general
situation is when β̂n is obtained as a solution to the estimating equation

1

n

n∑

i=1

H(β;Xi )(Yi − μ(β;Xi )) = 0 (20)

for some function H . This is an example of anM-estimator. In this case, β0 is given as
the solution to the limiting estimating equation E(H(β;X)(Y −μ(β;X))) = 0.When
the conditional mean model is correctly specified, then β0 describes the conditional
distribution of Y given X but otherwise β0 corresponds to a best fit of μ(β;X) to
E(Y | X) in the sense of this limiting estimating equation.

One can show that, under certain regularity conditions, such estimators are indeed
asymptotically linear.

Lemma 10 Make the following regularity conditions:

1. x �→ μ(β; x) and x �→ H(β; x) are measurable for all β in a neighborhood of
β0.

2. β �→ μ(β; x) and β �→ H(β; x) are twice continuously differentiable for all x.
3. H(β0;X)(Y − μ(β0;X)) is square integrable.
4. The matrix

M = E

(
∂

∂β
H(β0;X)(Y − μ(β0;X)) − H(β0;X)

∂

∂β
μ(β0;X)

)
(21)
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exists and is invertible.
5. The second-order partial derivatives, ∂2

∂β∂βT H(β; x)(y−μ(β; x)), are dominated
integrable with respect to (X,Y ) in a neighborhood of β0.

Under assumptions 1–5 we have, with a probability tending to 1 as n → ∞, an
estimator (β̂n) solving (20) which is asymptotically linear with influence function

β̇(z) = −M−1H(β0; x)(y − μ(β0; x)), (22)

with z = (y, x). That is

β̂n = β0 + 1

n

n∑

i=1

β̇(Zi ) + oP(n
−1/2) (23)

and β̇(Z) is square integrable with mean zero.
In particular,

√
n(β̂n − β0)

d→ N (0,M−1�(M−1)T ) (24)

as n → ∞, with � = Var

(
H(β0;X)(Y − μ(β0;X))

)
.

Proof The is a direct consequence of Theorem 5.41 and 5.42 of van der Vaart (2000).
��

If the conditional mean model is correctly specified, then the matrix M reduces
to E(−H(β0;X) ∂

∂β
μ(β0;X)). Our estimate of M is, however, based on (21) as it is

robust against model misspecification. Thus, we estimateM by

M̂n = 1

n

n∑

i=1

(
∂

∂β
H(β̂n;Xi )(Yi − μ(β̂n;Xi )) − H(β̂n;Xi )

∂

∂β
μ(β̂n;Xi )

)
.

and the influence function of (22) by

ˆ̇βn(z) = −M̂−1
n H(β̂n; x)(y − μ(β̂n; x)). (25)

This estimator of the influence function can be seen to satisfy the condition in (9)
under the assumptions of Lemma 10, and hence we conclude that the results of this
paper apply to the situation where this type of M-estimator is used to estimate β0 in
the initial step.

The generalized linear model framework offers a way of fitting some conditional
mean models by M-estimation. This means that existing generalized linear model
software can be used to obtain the relevant regression parameter estimates even
if it is not desirable to work under the distributional assumptions of generalized
linear models. The distribution of the outcome, Y , given covariates X, sometimes
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referred to as the family, determines a function v : R → R usually called the vari-
ance function. A link function g : R → R determines the conditional mean model
μ(β;X) = g−1(βT f (X)) or μ(β;X) = m(βT f (X)) if m denotes the inverse of the
link function. Here, x �→ f (x) is a vector function that determines how X enters the
model technically, e.g., potentially with various interaction terms or with quadratic,
cubic, or spline terms. The estimating equation, stemming from the corresponding
maximum likelihood estimation, is then

n∑

i=1

f (Xi )
m′(βT f (Xi ))

v(m(βT f (Xi )))
(Yi − m(βT f (Xi ))) = 0.

In particular, this is an exampleofM-estimationwithH(β; x) = f (x)m′(βT f (x))/v(m
(βT f (x))). If the link function of interest is canonical for the family specified then
m′(βT f (x)) = v(m(βT f (x))), leaving H(β; x) = f (x).

All standard choices ofm and v in the generalized linear model framework are seen
to satisfy the first two assumptions of Lemma 10 and the remaining three assump-
tions are some that we are usually willing to assume. Hence we see that generalized
linear models, which include important regression models such as linear and logistic
regression, are all covered by our setup.

5 Simulations

In this section we evaluate the properties of the variance estimator proposed in the
paper. First, we compare the performance of the asymptotic variance estimator to
that of bootstrapping. Next, we compare the asymptotic variance estimator to the
estimator proposed by Terza (2016) and Bartlett (2018) and investigate the impact of
model misspecification. The Stata code used to carry out the simulations is available
at https://github.com/snhansen/variance-estimation-gcomp-stata.

5.1 Comparison with bootstrapping

We consider here a scenario where the average treatment effect, ATE(1, 0) = θ1 −
θ0, is the parameter of interest. We estimate this by ̂ATEn(1, 0) = θ̂1n − θ̂0n and as
estimators of its standard error we consider (17) as well as bootstrapping. For the
bootstrapping procedure, we calculate confidence intervals in two ways: by a Wald
confidence interval and by the empirical 2.5- and 97.5-percentile.

As the data generating process, we consider a binary treatment variable A ∼
bin(0.5), a continuous covariate B ∼ N (μB, 1) and an outcome Y whose conditional
distribution is given by Y | A = a, B = b ∼ N (β0 + β1a + β2b + β3ab, 1). In this
case, the average treatment effect is ATE(1, 0) = β1 + β3 · μB . Simulations were run
with (β0, β1, β2, β3) = (0, 1,−1, 3) and μB = 2, which implies that ATE(1, 0) = 7.

A linear regression model with interaction between A and B was used as the condi-
tional meanmodel which is then correctly specified. Sample sizes of 100 and 200were
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Fig. 1 Empirical distribution of standard error estimates using the asymptotic variance estimator and boot-
strapping. Scenarios considered are sample sizes of n = 100, 200 and number of bootstrap samples of
k = 50, 100, 200

considered and for the bootstrapping procedure we used 50, 100 and 200 bootstrap
samples. For each configuration, 10,000 simulations were done.

In Fig. 1 we see the distribution of the 10,000 estimates of the standard error using
the asymptotic estimator and bootstrapping, respectively. We note that the variation of
the estimates based on bootstrapping is generally much larger compared to estimates
based on the asymptotic approach.We do however see that, as the number of bootstrap
samples increases, the variation of the bootstrap estimator decreases and it seems to
converge towards that of the asymptotic estimator.

In Table 1we calculated the coverage probabilities based on the 10,000 simulations.
For the bootstrap approach we considered a Wald confidence interval as well as the
interval given by the 2.5- and 97.5-percentile of the 10,000 estimates. The pattern here
is the same. The asymptotic approach has coverage probabilities closer to 95 % in all
scenarios, however, as the number of bootstrap samples increases, the normal-based
confidence intervals do equally well. The confidence interval based on percentiles
seem to be inferior to the two other approaches in most of the scenarios considered
here.
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Table 1 Coverage probabilities (average running time in seconds) over 10,000 simulations for the asymp-
totic variance estimator and bootstrap estimators

Estimator k = 50 k = 100 k = 200

n = 100

Asymptotic 94.7 (0.12 s) 94.1 (0.22 s) 94.6 (0.19 s)

Bootstrap (Wald) 94.1 (30.6 s) 94.0 (117 s) 94.5 (204 s)

Bootstrap (percentile) 91.9 (30.6 s) 93.3 (117 s) 94.2 (204 s)

n = 200

Asymptotic 94.7 (0.11 s) 95.0 (0.20 s) 94.9 (0.12 s)

Bootstrap (Wald) 94.2 (31.5 s) 94.8 (113 s) 94.8 (239 s)

Bootstrap (percentile) 91.6 (31.5 s) 94.2 (113 s) 94.3 (239 s)

The bootstrap procedure is based on 50, 100 and 200 bootstrap samples (k), and we consider here a scenario
with either 100 or 200 observations in total (n)

In Table 1 the average computational time (over the 10,000 simulations) is also
given. Here we see that the time needed for the bootstrap approach quickly increases
with the sample size and number of bootstrap samples as expected.

5.2 Model misspecification

Consider now an estimator β̂n based on a misspecified conditional mean model. This
means that there is no β0 such that E(Y | X) = μ(β0;X) for the given mean function
μ. As discussed in Sect. 3, the simplification used to arrive at (18) is not warranted
in this case and the estimate based on this simplified expression may potentially be
biased.

To investigate the magnitude of this bias, we compare coverage probabilities using
the variance estimators based on (16) and (18). To do so, we assume that Y | A =
a, B = b,C = c ∼ N (α1a+α2ab+α3bc, 1) and that B ∼ N (0, 1) andC ∼ N (0, 1)
are independent of each other. We also assume that A | C = c ∼ bin(1, pc) where
logit(pc) = γ c. Under this data generating process, the average treatment effect is
ATE(1, 0) = α1.

We now consider using g-computation with the conditional mean model

μ(β; (A, B,C)) = β0 + β1A + β2B + β3AB + β4C .

This is a misspecified model as it fails to capture the interaction between B andC . The
parameter targeted under this model is β1 and onemay show that β1 = α1 owing to the
independence between B and (A,C). This means that, despite using a misspecified
model, the parameter targeted by this incorrect model, β1, does in fact correspond to
the average treatment effect, α1, which is what we are interested in.

Simulationswere done in two scenarios: (α1, α2, α3) = (3, 4, 3) and (α1, α2, α3) =
(−1,−5, 2) and with γ values of 0, 1 and 3 and sample sizes 100, 500 and 1000. The
results are shown in Table 2.
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Table 2 Coverage probabilities over 10,000 simulations using the complete and simplified expressions for
the asymptotic variance under a misspecified conditional mean model

n = 100 n = 500 n = 1000
γ = 0 γ = 1 γ = 3 γ = 0 γ = 1 γ = 3 γ = 0 γ = 1 γ = 3

Scenario 1

Complete 94.1 94.5 93.9 94.8 95.2 94.9 94.6 95.1 95.1

Simplified 94.3 97.9 99.1 94.8 98.2 99.3 94.6 98.6 99.4

Scenario 2

Complete 94.1 93.0 92.7 94.6 94.7 94.7 94.4 94.7 94.8

Simplified 94.0 89.2 88.6 94.6 91.2 91.1 94.4 91.3 90.1

We consider here two scenarios: (1) (α1, α2, α3) = (3, 4, 3) and (2) (α1, α2, α3) = (−1, −5, 2) and
varying degrees of dependency between A and C given by γ being 0, 1 or 3. We consider sample sizes of
100, 500 and 1000

We see that when the correlation between A and C is zero (γ = 0), then the two
estimators result in similar coverage probabilities. However, when there is a substantial
correlation between A and C , the simplified variance estimator will yield coverage
probabilities far from 95%. This is because the termwhich is omitted in the simplified
expression is non-zero and its magnitude increases with the correlation between A
and C . We also see that the simplified estimator can yield coverage probabilities well
above and well below 95 % depending on the scenario, so that it can not be used as a
conservative estimator either.

The above example corresponds to a situation where one is interested in the effect
of some exposure A where, prior knowledge indicates an interaction between A and
B, and where we wish to adjust for a confounder C . Most commonly the variable
C is adjusted for by including their main effect and no interactions. In this specific
situation, themodel wasmisspecified in such away that no bias was created, that is, the
target parameter β1 and the parameter of interest α1 were identical. Although this is a
realistic example, we will expect misspecification to induce bias more often than not.
In this case, the target parameter will be E(μ(β0; (1, B,C))−E(μ(β0; (0, B,C)) for
some β0 which will not have an immediate causal interpretation. We will, however,
still expect the simplified estimator to have poorer coverage compared to the complete
estimator for this quantity.

6 Data example

Consider the publicly available data set from the observational study by Conors Jr
et al. (1996) on the effect of right heart catherization (RHC) on the length of stay for
patients admitted to an intensive care unit (ICU).1 The data set includes information
on n = 5735 patients admitted to an ICU for 1 of 9 prespecified disease categories.
Information included length of stay in the ICU, disease category, RHC use within the
first 24h, sex, age, income category as well as a number of clinical measurements.

1 Data available at https://hbiostat.org/data/.
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The objective of the study was to investigate the relationship between the use of
RHC during the first 24h of care in the ICU and subsequent survival, length of stay,
intensity of care and cost of care. Here we consider only the relationship between RHC
use and length of stay andwewill quantify this by the average treatment effect. That is,
length of stay serves as the outcome, Y , and RHC use serves as the primary covariate,
A.We assume conditional exchangeablity given disease category, sex, age and income,
so these covariates collectively is what we denote byB. A linear regression model will
be used as the conditional mean model meaning thatμ(β;X) = Xβ withX = (A,B).

We start by showing step-by-step how the estimating procedure works in the sce-
nariowhereweconsidermain effects of the categorical variablesRHC(yes/no), disease
category (1–9), sex (male/female) and income category (1–4) and where age enters
linearly. This means that β has dimension k = 15 if an intercept is included. Solving
the estimating equation of (20) with H(β; x) = x is, in this case, the same as the least
squares approach andmaximum likelihood estimation if the outcome follows a normal
distribution. With an estimate, β̂n , at hand, we calculate the two potential outcome
means based on (4) for a = 0, 1 and subtract the two. If Yi andXi = (Ai ,Bi ) denotes
the observed outcome and observed covariates for the i th individual, respectively, and
Xa
i = (a,Bi ) for a = 0, 1, then these are obtained by

θ̂an = 1

n

n∑

i=1

μ(β̂n;Xa
i ) = 1

n

n∑

i=1

Xa
i · β̂n

We thus obtain an estimate of the average treatment effect of̂ATEn(1, 0) = θ̂1n − θ̂0n =
3.82.

Next, we turn to estimating the variance by (17). If Xd denotes the design matrix,

that is, the n×k matrix whose i th row isXi , then M̂n = − 1
nX

T
d Xd and the i th row of ˆ̇β

is given by ˆ̇β i = −(M̂n)
−1Xi (Yi −Xi β̂n) so that

ˆ̇β is an n×k matrix. Finally, we note
that ∂

∂β
μ(β̂n;Xa

i ) = Xa
i and so we arrive at an estimate of the asymptotic variance of

�̂1,0 = 0.548. Using this we obtain a Wald confidence interval of [2.38, 5.28].
In Table 3, the average treatment effect, standard error andWald confidence interval

is given for different specifications of the conditional mean model. We consider the
following four specifications:

1. Main effects of RHC, disease category, sex, income category and age (linear)
2. Main effects of RHC, disease category, sex, income category and age (linear) with

interaction between RHC and disease category.
3. Main effects of RHC, disease category, sex, income category and age (restricted

cubic spline) with interaction between RHC and disease category.
4. Main effects of RHC, disease category, sex, income category and age (restricted

cubic spline) with interaction between RHC and disease category and interaction
between RHC and sex.

The results of Table 3 show that across the four models, estimates of the effect
of RHC use on length of stay range between 3.59 and 3.89 days. The corresponding
standard errors across the four models are very similar and hence the choice of model
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Table 3 Estimate, standard error
based on (17) and 95 % Wald
confidence interval for the
average treatment effect of RHC
on length of hospital stay using
four different conditional mean
models

Model Estimate Standard error 95% CI

1 3.82 0.741 [2.38, 5.28]
2 3.89 0.742 [2.44, 5.35]
3 3.59 0.742 [2.14, 5.05]
4 3.61 0.742 [2.16, 5.06]

does not appear to have a large impact on the conclusion of the analysis. The compu-
tational time for calculating the estimate and standard error was around 100 ms for all
four models.

The results were obtained using the Stata function gcomp_effects available at
https://github.com/snhansen/variance-estimation-gcomp-stata. The code used for the
example is available in the repository as well.

7 Discussion

We have derived the asymptotic distribution for estimators using g-computation of
various causal parameters for a time-fixed exposure. This includes potential outcome
means and average treatment effects, in the entire population but also in subgroups.
The results are derived in a very general setup that requires only the existence of an
asymptotically linear estimator of the parameters in the conditional mean model and
a well-behaved estimator of its influence function. We saw that this setup includes
when M-estimation is used as the estimation technique which the generalized linear
models framework is an example of. In particular, we saw that important regression
models such as linear and logistic regression are covered by this. As the results in the
paper concerns the asymptotic behaviour of these estimators, we can only guarantee
their stated properties in large samples. In small samples, the confidence intervals
produced by the methods in this paper can, for example, have coverage far from 95 %
even though models are correctly specified.

The existence of an asymptotically linear estimator of the parameters, β0, in the
conditional mean model is guaranteed by the regularity conditions of Lemma 10.
In particular, the assumption that M is invertible is crucial for the identification of
β0 and this may be an issue in the setting of sparse data, positivity violations and
overparameterized models. In the causal inference literature, it is common practice to
also invoke a positivity assumption for identification of potential outcome means. The
positivity assumption states that P(A = a | B) > 0 almost surely for all a considered
(Petersen et al. 2012). This is typically necessary to ensure the identification of β0.
However, positivity violations can be addressed by introducing additional parametric
assumptions, although these assumptions cannot be tested from the data.Consequently,
violations of positivity or near-positivity generally pose a threat to the invertibility of
M and, consequently, the identification of β0. Therefore, caution should be exercised
in such cases.
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Based on the asymptotic distribution, a plug-in estimator was proposed as an esti-
mator of its variance.We showed that, undermild regularity assumptions, this is indeed
a consistent estimator. We evaluated its properties, such as coverage and variability, in
a simulation study and showed how it compared to bootstrapping. The conclusion was
that, compared to bootstrapping with too few bootstrap samples, it had better coverage
and less variability around the asymptotic variance. When the number of bootstrap
samples increased, this difference appeared to diminish however. The other obvious
advantage of the plug-in estimator is the time needed to compute it. Bootstrapping
is arguably the most dominant method for obtaining variance estimates of complex
estimators but even with a simple conditional mean model, a small sample size and a
modest number of bootstrap samples, the procedure is relatively slow. This obviously
scales badly with increasing complexity of the conditional mean model, increasing
sample size and number of bootstrap samples.

Because bootstrapping is a slow procedure, the analyst might be tempted or perhaps
even forced to use relatively few bootstrap samples. This results, however, in a variance
estimator that is more variable compared to the plug-in estimator. When there is a
choice between two estimators of the asymptotic variance, both being unbiased, we
argue that the less variable estimator will be preferred. Although both estimators will
yield confidence intervals with the correct coverage probability, at least assuming a
large enough sample, the power of the corresponding statistical tests will generally be
larger using the less variable estimator. This seems like an appealing property.

In the simulations, we had to keep the number of bootstrap samples below 200
to ensure that simulations finished within a reasonable amount of time. Of course it
is preferable with more bootstrap samples. Practical examples using more than 200
bootstrap samples do exist (Snowden et al. 2011; Keil et al. 2014; Wang et al. 2017;
Westreich et al. 2012). Still, examples with 200 bootstrap samples are plenty (Wang
and Arah 2015; Breskin et al. 2020). Moreso, a recent R package has implemented
the g-computation method with 200 bootstrap samples as the default because, as the
authors note, using more bootstrap samples “can result in potentially long runtimes,
depending on the computing power of the user’s computer” (Grembi and McQuade
2022).

In most practical examples, we will expect the conditional mean model to be mis-
specified to some degree. In this case, we have argued that the target parameter is
E(μ(β0;Xa)) where β0 is a sort of best fit of μ(β;X) to E(Y | X) and hence we
will expect a discrepancy between the target parameter and the parameter of interest,
E(Y (a)). Our hope is that, by picking a sufficiently flexible model, the discrepancy
between the two will be small however. In this situation, we would want to estimate
our target, E(μ(β0;X)), unbiasedly but also to estimate its standard error unbiasedly.
Being able to do so is what enables us to calculate confidence intervals with the correct
coverage. Unbiased estimation of the standard error is ensured by using the variance
estimator in (17) but not by using the simplified estimator in (18). Using the simpli-
fied estimator can, as we have seen in simulations, yield coverage probabilities much
below or above the wanted 95%.

As an alternative to the two-step approach of this paper, one could consider formu-
lating the two steps as two estimating equations and use (stacked) M-estimation. The
sandwich variance estimator from the stacked M-estimation approach corresponds to
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the variance estimator of this paper. ThisM-estimation approachhas been implemented
in the Python library delicatessen as pointed out by a reviewer.

The results of the paper only apply to time-fixed exposures. With time-varying
exposures, g-computation is much more complex and determining the asymptotic
distribution becomes much more involved (Robins and Hernán 2009). The main result
of Theorem 2 can, however, in combination with the delta method, be used to find
the asymptotic distribution of any causal parameter which can be expressed as a
smooth function of non-nested potential outcomemeans. Formeans of nested potential
outcomes, which are used to define key parameters in e.g. mediation analysis and
scenarioswhere exposures aremeasured atmultiple time points, the results here cannot
immediately be extended as it involves more than one conditional mean model.
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Appendix A: Theoretical results

Lemma 11 Let X be a random variable with values in X and let � ⊆ R

p. Let also
g : X × � → R be a function such that θ �→ g(θ; x) is continuous at θ0 for all x
and such that g(θ0; x) is dominated integrable with respect to X in a neighborhood
around θ0. Consider an i.i.d. sample X1,X2, . . . of X and assume that an estimator

θ̂n exists with the property that θ̂n
P→ θ0. Then

1

n

n∑

i=1

g(θ̂n;Xi )
P→ E(g(θ0;X))

as n → ∞.

Proof A uniform law of large numbers ensures that

sup
θ∈K

∣∣∣∣
1

n

n∑

i=1

g(θ;Xi ) − E(g(θ0;X))

∣∣∣∣
P→ 0
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for all compact sets K including θ0 small enough. Since θ̂n
P→ θ0, the probabilities

P(‖θ̂n − θ0‖ ≤ ε) can be made arbitrarily close to 1 by choosing n large enough,
which ensures the desired convergence. ��

Appendix B: Proof of Proposition 1

Consider, for fixed x, the mapping [0, 1] � t �→ μ̃n(t; x) = μ(β0 + t(β̂n − β0); x)
which is differentiable with derivative

μ̃′
n(t; x) = ∂

∂β
μ(β0 + t(β̂n − β0); x)(β̂n − β0).

Now, the identity

μ̃(1; x) − μ̃(0; x) = μ̃′(0; x) +
∫ 1

0
(μ̃′

n(t; x) − μ̃′
n(0; x))dt

translates into

μ(β̂n; x) − μ(β0; x) = ∂

∂β
μ(β0; x)(β̂n − β0) + R1,n(x), (B1)

where

R1,n(x) =
∫ 1

0

(
∂

∂β
μ(β0 + t(β̂n − β0); x) − ∂

∂β
μ(β0; x)

)
(β̂n − β0)dt .

Inserting (3) into (B1) yields

μ(β̂n; x) = μ(β0; x) + 1

n

n∑

i=1

β̇(Zi )
∂

∂β
μ(β0; x) + R1,n(x) + R2,n(x) (B2)

with R2,n(x) = n−1/2 ∂
∂β

μ(β0; x)Un for some sequence (Un) of random variables

with Un
P→ 0 whose existence is guaranteed by (3). Thus,

θ̂an = θa + 1

n

n∑

i=1

θ̇a(Zi ) + 1

n

n∑

i=1

R1,n(Xa
i ) + 1

n

n∑

i=1

R2,n(Xa
i ) + 1

n

n∑

i=1

R3,n(Zi ),

where for z = (y, x)

R3,n(z) =
(
1

n

n∑

i=1

β̇(z)
)(

1

n

n∑

i=1

∂

∂β
μ(β0; xa) − E

(
∂

∂β
μ(β0;Xa)

))
.

123



S. N. Hansen, M. Overgaard

What is left to show is that all three remainder terms are oP(n−1/2).
For the second term, we have that

√
n
1

n

n∑

i=1

R2,n(Xa
i ) = Un

1

n

n∑

i=1

∂

∂β
μ(β0;Xa

i )

in which Un is oP (1) and the remaining part is OP (1) by the law of large numbers
and hence their product is oP (1).

For the third term, we have that

√
n
1

n

n∑

i=1

R3,n(Zi ) =
(√

n
1

n

n∑

i=1

β̇(Zi )

)(
1

n

n∑

i=1

∂

∂β
μ(β0;Xa

i ) − E

(
∂

∂β
μ(β0;Xa)

))

in which the first factor is OP (1) by the central limit theorem and the latter factor is
oP (1) by the law of large numbers and hence their product is oP (1).

For the first term, we define

g(β; x) =
∫ 1

0

∣∣∣∣
∂

∂β
μ(β0 + t(β − β0); x) − ∂

∂β
μ(β0; x)

∣∣∣∣dt

and since β �→ g(β; x) is seen to be continuous at β0 and dominated integrable with
respect to Xa around β0 we have from Lemma 11 that

1

n

n∑

i=1

g(β̂n;Xa
i ) = oP(1).

Now we note that |β̂n − β0| = OP(n−1/2) as a consequence of (3), and hence the
inequality

∣∣∣∣
1

n

n∑

i=1

R1,n(Xa
i )

∣∣∣∣ ≤ |β̂n − β0|
1

n

n∑

i=1

g(β̂n;Xa
i )

implies that the remainder term is OP(n−1/2)oP(1) = oP(n−1/2) as wanted.
The square integrability of θ̇a(Z) follows from μ(β0;Xa) and β̇(Z) both being

assumed square integrable and its mean is given by

E(θ̇a(Z)) = E(μ(β0;Xa)) − θa + E

(
∂

∂β
μ(β0;Xa)

)
E(β̇(Z)) = 0

since E(β̇(Z)) = 0.
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Appendix C: Proof of Theorem 3

If we let bn,i = μ(β̂n;Xa
i ) − θ̂an and cn = 1

n

∑n
j=1

∂
∂β

μ(β̂n;Xa
j ), then we may write

�̂
a
n = 1

n

n∑

i=1

(
bn,i + cn

ˆ̇βn(Zi )
)⊗2

.

Now we define

�̃
a
n = 1

n

n∑

i=1

(
bn,i + cnβ̇(Zi )

)⊗2

and note that �̃
a
n → P�̂

a
n as a consequence of Lemma 11 of the Appendix. Moreover,

we have the decomposition

�̂
a
n = �̃

a
n + Ra

1,n + Ra
2,n + (Ra

2,n)
T

where

Ra
1,n = 1

n

n∑

i=1

(
cn(

ˆ̇βn(Zi ) − β̇(Zi ))
)⊗2

and

Ra
2,n = 1

n

n∑

i=1

(
bn,i + cnβ̇(Zi )

)(
cn(

ˆ̇βn(Zi ) − β̇(Zi ))
)T

.

If |·| denotes the max-norm, then we have

|Ra
1,n| ≤ 1

n

n∑

i=1

|cn( ˆ̇βn(Zi ) − β̇(Zi ))|2

≤ k2|cn|2 1
n

n∑

i=1

| ˆ̇βn(Zi ) − β̇(Zi )|2

≤ k2|cn|2g2n
1

n

n∑

i=1

f (Zi )
2

which is seen to converge in probability to 0 as |cn|2 P→ |E( ∂
∂β

μ(β0;Xa))|2 by

Lemma 11, 1
n

∑n
i=1 f (Zi )

2 → PE( f (Z)2) and gn
P→ 0. For the second remainder

term we have
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|Ra
2,n|2 ≤ 1

n2

n∑

i=1

|(bn,i + cnβ̇(Zi ))|2|(cn( ˆ̇βn(Zi ) − β̇(Zi ))
T |2

≤ 1

n

n∑

i=1

|(bn,i + cnβ̇(Zi ))|2 1
n

n∑

i=1

|(cn( ˆ̇βn(Zi ) − β̇(Zi ))
T |2

by the Cauchy-Schwarz inequality. Now, the first factor can be bounded by

1

n

n∑

i=1

|bn,i |2 + k2|cn|2 1
n

n∑

i=1

|β̇(Zi )|2

which is seen to converge in probability to k2|E( ∂
∂β

μ(β0;Xa))|2E(|β̇(Z)|2). Now the
result follows as the second factor converges to 0 in probability.
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