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Abstract
In this paper, structural properties of (progressive) hybrid censoring schemes are estab-
lished by studying the possible data scenarios resulting from the hybrid censoring
scheme. The results illustrate that the distributions of hybrid censored random vari-
ables can be immediately derived from the cases of Type-I and Type-II censored data.
Furthermore, it turns out that results in likelihood and Bayesian inference are also
obtained directly which explains the similarities present in the probabilistic and sta-
tistical analysis of these censoring schemes. The power of the approach is illustrated
by applying the approach to the quite complex unified Type-II (progressive) hybrid
censoring scheme. Finally, it is shown that the approach is not restricted to (progres-
sively Type-II censored) order statistics and that it can be extended to almost any kind
of ordered data.

Keywords Likelihood inference · Exponential distribution · Hybrid censoring ·
Generalized order statistics · Progressive hybrid censoring · Progressive censoring ·
Modularization

1 Introduction

Hybrid censoring schemes and related inference have received great attention in the
last decade. Various hybrid censoring schemes have been proposed and applied to
either order statistics or progressively Type-II censored data. Most papers in this
area develop likelihood and Bayesian inference for both a special hybrid censoring
scheme and a particular (lifetime) distribution. For a survey on the hybrid censoring
schemes proposed and related inferential procedures, we refer to the recentmonograph
Balakrishnan et al. (2023) and to the review Balakrishnan and Kundu (2013).

While comparing the various publications on (progressive) hybrid censoring, it
becomes evident that there exist many structural similarities regarding results, deriva-
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tions, properties, conclusions, etc. A first attempt to understand the structure and
concept has been presented in Górny and Cramer (2018b) who proposed the so-called
modularization approach. The basic idea behind this approach is a decomposition of
the joint distribution into some basic modules with an identical probabilistic structure.
This paper revisits the approach proposed in Górny and Cramer (2018b), simplifies
and refines it, so that it can be easily used for both analysing known hybrid censoring
schemes and designing new ones.

In fact, hybrid censoring can be interpreted as a decision rule or design which tells
the experimenter when to stop the experiment based on some prefixed time thresholds
Ti as well as some involved observed (ordered) failure times Xmi :n (where the param-
eters mi are prefixed by the design of the hybrid censoring scheme). For instance,
suppose that n objects with lifetimes X1, . . . , Xn are put on a life test which is subject
to unified Type-II hybrid censoring with parameters k < m and T1 < T2 (details on
the four-parameter scheme proposed in Balakrishnan et al. (2008) are presented sub-
sequently). The decision tree generating the unified Type-II hybrid censored sample
as well as the respective decision rules are illustrated in Fig. 1. It should be noted that
this hybrid censoring scheme ensures a minimum of k measurements. Furthermore,
all failures will be observed when the maximum measurement Xn:n does not exceed
the time threshold T1.

Considering the ordered sample X1:n ≤ · · · ≤ Xn:n of lifetimes, one gets four
possible sampling situations due to the design of the hybrid censoring scheme (see
Table 1). The test duration is given by the expression

(Xk:n ∨ T2) ∧ [Xm:n ∨ (T1 ∧ Xn:n)]

Fig. 1 Decision tree and rules for unified Type-II hybrid censoring with parameters k < m and time
thresholds T1 < T2 (cf. Balakrishnan et al. 2023)
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Table 1 Possible sampling situations under unified Type-II hybrid censoring

Scenario no. Resulting sample Decision rule Type

Counter based Failure based

1© X1:n , . . . , XD1:n D1 ≥ m Xm:n ≤ T1 I

2© X1:n , . . . , Xm:n D1 < m ≤ D2 Xk:n ≤ T1 < Xm:n II

3© X1:n , . . . , XD2:n k ≤ D2 < m Xk:n ≤ T2 < Xm:n I

4© X1:n , . . . , Xk:n D2 < k T2 < Xk:n II

(the min- and max-operators are defined by x ∧ y = min{x, y}, x ∨ y = max{x, y}).
Therefore, counting by Di the failures not exceeding Ti , one gets various sampling
situations. In particular, we get four scenarios as illustrated in Table 1. The respective
conditions result from the position of the failure times Xk:n < Xm:n to the thresholds
T1 < T2 (or, equivalently, from the relation of the parameters k < m to the counter
values D1 ≤ D2).

Type I means that the sample size is not precisely determined in this case so that it
is random. For Type II, the sample size is fixed provided that the respective condition
is satisfied. These two situations have to be handled separately in the analysis of the
hybrid censored data (and, of course, for statistical inference based on the data).

So far, this modularization concept has mainly been developed to derive the exact
distribution of the maximum likelihood estimator in case of exponentially distributed
lifetimes.Górny andCramer (2018b) pointedout that the (conditional) joint cumulative
distribution function of hybrid censored data can be decomposed in modules of the
same typemeaning that these components can be evaluated using the same expressions
(for an illustrative complex example, see (Górny and Cramer 2018a)). As a major
result, they found that the density functions of the maximum likelihood estimator of
the mean can be expressed as linear combination of B-spline functions for any hybrid
censoring scheme proposed in the literature so far.

However, as we will show subsequently, the respective similarities are more far-
reaching. In fact, we will illustrate that inferential results based on the likelihood
function (e.g., maximum likelihood estimators, approximate maximum likelihood
estimators) as well as Bayesian inference under any hybrid censoring scheme can
be traced back to the well-known cases of Type-I and Type-II censoring, respectively.
This particularly applies to both the derivation of the estimators and the related prob-
abilistic analysis. As a matter of fact, the results under hybrid censoring can directly
be deduced applying the modularization approach (based on the law of total probabil-
ity) and the decompositions of the hybrid censoring schemes presented in Tables 3,
4 and 5. Moreover, we illustrate in Sect. 4, that this approach yields a simple method
to find the likelihood function for a given hybrid censoring scheme. The results are
briefly illustrated for exponentially and Weibull distributed lifetimes. For exponential
distributions, it is shown that the maximum likelihood estimator can be expressed
in terms of the total time on test of the hybrid censored life testing experiment for
any hybrid censoring scheme (of course, provided the maximum likelihood estima-
tor exists). Using the basic conditional distributions of the total time on test given the
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counter Di presented in Cramer and Balakrishnan (2013) and Cramer et al. (2016), the
distributions can be easily obtained for any hybrid censoring scheme. Finally, we point
out in Sect. 5 that our approach can be directly applied to other models of ordered data
and particularly to generalized order statistics and related submodels. This means that
the presented ideas can be easily used to analyse hybrid censored data from these kind
of ordered data. This includes particularly progressive hybrid censoring which has be
extensively discussed in the literature. It turns out that the modularization approach
yields immediately the desired results by taken into account the results on Type-I
and Type-II censoring of progressively Type-II censored data (see Balakrishnan and
Cramer 2014, 2023).

Throughout, we illustrate the power of the proposed approach by the unified Type-
II hybrid censoring scheme originally introduced by Balakrishnan et al. (2008) (see
Table 1 and, e.g., Panahi and Sayyareh 2015; Balakrishnan et al. 2023) since it is one of
themore complicated hybrid censoring schemes but has the advantage that a minimum
of k observations is guaranteed. This avoids the issue of an empty sample. However,
conditioning on the event that at least one failure has been observed, analogous results
hold for hybrid censoring schemes with possibly zero observations (see Remark 3.4
for some comments in this direction).

2 Preliminaries

We consider a sample of order statistics X1:n, . . . , Xn:n based on an iid sample
X1, . . . , Xn with common (absolutely continuous) cumulative distribution function
F and density function f . Moreover, we consider hybrid censoring schemes with the
following scheme parameters

(i) failure numbers 1 ≤ m1 < · · · < ma ≤ n, a ∈ N,
(ii) time thresholds T1 < · · · < Tb, b ∈ N,

which are supposed known (andfixed) for a given hybrid censoring scheme throughout.
These parameters are present in the design of the hybrid censoring schemes (seeTable 2
for the scheme parameters of the most important hybrid censoring schemes). Notice
that a and b may be arbitrary integers. However, so far, no hybrid censoring schemes
have been proposedwith a, b exceeding 3. Themost complex hybrid censoring scheme
considered so far seems to be the one discussed in Górny and Cramer (2018a) with
a = b = 3 (see Table 5).

Time thresholds are present in many hybrid censoring models. In order to avoid
trivialities, we assume throughout that such a threshold Ti is included in the support
of the baseline cumulative distribution function F , that is, 0 < F(Ti ) < 1. For each
threshold Ti , we introduce the random counter Di = D(Ti ) by

Di =
n∑

j=1

1(−∞,Ti ](X j :n), i ∈ {1, . . . , b}. (2.1)

The effectively observed sample size under a hybrid censoring scheme will be
denoted by DHCS. For particular hybrid censoring schemes, we introduce a special
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notation for the involved counter DHCS. For instance, DI and DII denote the correspond-
ing random counters under Type-I and Type-II hybrid censoring, respectively. On the
other hand, we will use the same notation for progressive hybrid censoring schemes
(see Sect. 5). This reflects the fact that the observed sample size DHCS depends only on
the observed failure times and the design of the hybrid censoring scheme but neither on
the construction of the data nor on the underlying distributional assumptions. In fact,
for a given hybrid censoring scheme, DHCS can be written as some function ϒHCS of
D1 (or Di if more than one threshold are involved). The function ϒHCS is independent
of the particular ordered data and depends only on the design of the hybrid censoring
scheme. The random counters introduced in (2.1) will play an important role in the
probabilistic analysis of hybrid censoring schemes. In fact, the equivalence

Di ≥ � ⇐⇒ X�:n ≤ Ti (2.2)

for � ∈ {1, . . . , n} and i ∈ {1, . . . , b} will be very useful in the following deriva-
tions. Furthermore, it is well-known that Di has a binomial distribution with support
{0, . . . , n} and probability mass function (see, e.g., Balakrishnan et al. 2023)

Pr(Di = d) =
(
n

d

)
Fd(Ti )(1 − F(Ti ))

n−d , d ∈ {0, . . . , n}. (2.3)

We denote the joint cumulative distribution function and density function of the first
d order statistics X1:n, . . . , Xd:n by F1,...,d:n and f1,...,d:n , respectively. The cumulative
distribution function and density function of a single order statistic Xd:n is denoted by
Fd:n and fd:n , respectively. In case of a parametric family of distributions, we add the
parameter as a subscript, that is, Fθ , Fθ;d:n etc.

3 Structure of hybrid censoring schemes

Froma structural point of view, hybrid censoringmodels dependonboth the (complete)
sample of order statistics X1:n, . . . , Xn:n and a randomcounter DHCSwhich determines
the (observed) sample size under the particular hybrid censoring scheme, that is, the
effectively observed sample is given by

X1:n, . . . , XDHCS:n (3.1)

with random sample size DHCS. Thus, given DHCS = d(> 0), the first d failures
times X1:n, . . . , Xd:n are observed. Of course, for some hybrid censoring schemes it
is possible that no failures are observed, that is, DHCS = 0. This happens when Type-I
(or time) censoring with a threshold T is an essential part of the censoring scheme.
However, in that case, it is known that all censored lifetimes must exceed T . Thus, the
samplemay formally be considered as non-empty but filled with constant observations
T . In particular, in any hybrid censoring scheme, the sample can be augmented so that
the sample has exactly n observations,
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X1:n, . . . , XDHCS:n, T , . . . , T︸ ︷︷ ︸
n−DHCS times

(see, e.g., Cramer and Balakrishnan 2013). However, although avoiding formally the
situation of an empty sample, this does not solve the inferential problems caused by
the censoring procedure. Therefore, inference is usually carried out conditionally on
the event {DHCS > 0} for those hybrid censoring schemes with Pr(DHCS = 0) > 0.
In is worth mentioning that the hybrid censoring schemes published so far can be
categorized in two groups: hybrid censoring schemes with

(i) bounded test duration but possibly sample size equal to zero, that is, Pr(DHCS =
0) > 0, and

(ii) unbounded test duration but minimum guaranteed sample size, that is,
Pr(DHCS > 0) = 1.

The random counter DHCS of some hybrid censoring schemes depends on the
random variables X1:n, . . . , Xn:n only via the vector Db = (D1, . . . , Db) of ran-
dom counters (see (2.1)) and some deterministic function ϒHCS : {0, . . . , n}b −→
{0, . . . , n}, that is,

DHCS = ϒHCS(Db). (3.2)

Interestingly, the duration of the hybrid censored life test is given by a function ϒ∗
HCS

which results fromϒHCS bymerely replacing D1, . . . , Db byT1, . . . , Tb and theparam-
etersm1, . . . ,ma by the respective order statistics Xm1:n, . . . , Xma :n , respectively. This
observation, that is,

WHCS = ϒ∗
HCS(T1, . . . , Tb) (3.3)

can be taken from Table 2 by comparing columns three and four. Furthermore, as
pointed out in Sect. 5, the functions ϒHCS and ϒ∗

HCS depend only on the design of
the hybrid censoring procedure but not on the kind of ordered data (except for the
assumption that the data is (almost surely strictly) ordered).

Remark 3.1 In order to have a proper definition of ϒHCS, we assume technically
throughout that at least one threshold T1 is involved in the construction of a hybrid
censoring scheme. However, practically ϒHCS can be independent of the counter Di

connected to a threshold Ti so that the threshold has no impact on the sample size.
For instance, to model a complete sample with sample size n, we choose b = 1 and
ϒHCS(d1) = n, that is, ϒHCS is a constant function. For Type-II censoring with m
failures to observe, one has b = 1 and ϒHCS(d1) = m.

Basic examples using the threshold explicitly are Type-I censoring (b = 1,
ϒHCS(d1) = d1) and Type-I hybrid censoring (b = 1, ϒHCS(d1) = d1 ∧ m where
1 ≤ m ≤ n is a fixed integer). For other hybrid censoring schemes, the function ϒHCS
can be taken from Table 2.

To study distributions of the hybrid censored data as well as related statistics, the
law of total probability will be utilized in the analysis of hybrid censored samples as
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follows. In order to illustrate the idea, we consider for brevity the case of a single
threshold T1 with corresponding random counter D1. Using that the events {D1 = d},
d = 0, . . . , n, form a decomposition of the space � = ⋃n

d=0{D1 = d}, we find

Pr(X j :n ≤ t j , 1 ≤ j ≤ DHCS) =
n∑

d=0

Pr(X j :n ≤ t j , 1 ≤ j ≤ ϒHCS(d), D1 = d).

(3.4)

This illustrates that we can combine those probabilities (w.r.t. the values of D1) where
ϒHCS(·) is constant. Therefore, the image ϒHCS({0, . . . , n}) ⊆ {0, . . . , n}, that is, the
support of DHCS, can be used to identify the different data scenarios.

Example 3.2 For the Type-I and Type-II hybrid censoring scheme, the representation
in (3.4) can be written as follows.

(i) For Type-I hybrid censoring, (3.4) is given by

Pr(X j :n ≤ t j , 1 ≤ j ≤ DI) =
m−1∑

d=0

Pr(X j :n ≤ t j , 1 ≤ j ≤ d, D1 = d)

+ Pr(X j :n ≤ tm, D1 ≥ m)

=
m−1∑

d=1

Pr(X j :n ≤ t j , 1 ≤ j ≤ d, D1 = d)

+ Pr(X j :n ≤ tm, D1 ≥ m).

Therefore, the Type-I hybrid censoring scheme can be decomposed into the m
parts {D1 = d}, d = 0, . . . ,m − 1, and {D1 ≥ m} corresponding to

ϒI(d) = d, d ∈ {0, . . . ,m − 1}, ϒI(d) = m, d ∈ {m, . . . , n}.

Note that D1 = 0 is equivalent to DI = 0 which implies an empty sample. This
case is excluded in the above probability on the left hand side by the condition
1 ≤ j ≤ DI. As mentioned above, this illustrates the need for conditional
inference in this model (see also Remark 3.4).

(ii) For Type-II hybrid censoring, (3.4) can be written as

Pr(X j :n ≤ t j , 1 ≤ j ≤ DII) = Pr(X j :n ≤ tm, D1 < m)

+
n∑

d=m

Pr(X j :n ≤ t j , 1 ≤ j ≤ d, D1 = d).

Hence, theType-II hybrid censoring schemecanbedecomposed into then−m+1
parts {D1 < m} and {D1 = d}, d = m, . . . , n. The function

ϒII(d) = m, d ∈ {0, . . . ,m − 1}, ϒII(d) = d, d ∈ {m, . . . , n}.
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Table 3 Hybrid censoring schemes with a single time threshold and corresponding images of ϒHCS

Decomposition of image of ϒHCS and module type
B O A
{D1 < m�} {D1 = d} {D1 ≥ m�}

Censoring scheme m� d m�

Complete – – 0

Type-II – – 0

Type-I – 0, . . . , n − 1 n

Type-I hybrid – 0, . . . ,m − 1 m

Type-II hybrid m m, . . . , n − 1 n

Generalized type-I hybrid k k, . . . ,m − 1 m

Parameters are as in Table 2

Similar (butmore complicated) expressions to those presented in Remark 3.2 can be
obtained for other hybrid censoring schemes. In order to establish such representations,
we decompose the preimage of ϒHCS as follows. For a single threshold T1, we have
the following three different situations:

(i) single element type {d}, that is, {D1 = d};
(ii) initial part type {0, . . . ,m� − 1}, that is, {D1 < m�};
(iii) end part type {m�, . . . , n}, that is, {D1 ≥ m�}.
The resulting decompositions are summarized in Table 3 for the respectivewell-known
hybrid censoring schemes. As mentioned above, we get for Type-I and Type-II hybrid
censoring the following decompositions

Type-I hybrid censoring: ϒ−1
I ({0, . . . , n}) =

m⋃

d=0

ϒ−1
I ({d})

=
( m−1⋃

d=0

{D1 = d}
)

∪ {D1 ≥ m},

Type-II hybrid censoring: ϒ−1
II ({0, . . . , n}) =

n⋃

d=m

ϒ−1
II ({d})

= {D1 < m}∪
( n−1⋃

d=m
{D1=d}

)
∪{D1≥n}.

(3.5)

since {D1 = n} = {D1 ≥ n} (which means that we observe the complete sample).
This representation in (3.5) is more convenient so that we will use it subsequently in
order to avoid the discussion of the particular case {D1 = n}. It is somewhat different
from the other ones since Xn:n is the largest observation and, thus, has no successor.

In case of a second threshold T2, a fourth scenario has to be taken into account:

(iv) mid part type {m�
�}, that is, {D1 < m�

�, D2 ≥ m�
�}.
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Details for the corresponding hybrid censoring schemes are provided in Table 4. As
an example, the preimage of ϒuII can be decomposed as

ϒ−1
uII ({0, . . . , n}) =

m⋃

d=0

ϒ−1
uII ({d})

= {D2 < k} ∪
( m−1⋃

d=k

{D2 = d}
)

∪ {D1 < m, D2 ≥ m} ∪
( n⋃

d=m

{D1 = d}
)

.(3.6)

By construction of the unified Type-II hybrid censoring scheme, the function ϒuII is
given by

ϒuII(d1, d2) = k, d2 ∈ {0, . . . , k − 1},
ϒuII(d1, d2) = d2, d2 ∈ {k, . . . ,m − 1},
ϒuII(d1, d2) = m, d1 ∈ {0, . . . ,m − 1}, d2 ∈ {m, . . . , n},
ϒuII(d1, d2) = d1, d1 ∈ {m, . . . , n}.

Note that d1 ≤ d2 since T1 ≤ T2.
In case of more thresholds, additional scenarios are introduced in the same intuitive

manner. For unified Type-III hybrid censoring with thresholds T1 < T2 < T3 and
parameters k < m, the decompositions are given in Table 5. Tables 3, 4 and 5 clearly
illustrate the design of the hybrid censoring scheme and the respective implications
on the probabilistic analysis.

Considering the particular function ϒHCS of an hybrid censoring scheme, we find
from the above observations that Eq. (3.4) can be written as a sum of the probabilities

O: Pr(X j :n ≤ t j , 1 ≤ j ≤ d, Di = d) = FX1:n ,...,Xd:n ,Di=d(td),
A: Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di ≥ m�) = FX1:n ,...,Xm� :n ,Di≥m�

(tm� ),
B: Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di < m�) = FX1:n ,...,Xm� :n ,Di<m�

(tm� ),
AB: Pr(X j :n ≤ t j , 1 ≤ j ≤ m�

�, Di < m�
�, Di+1 ≥ m�

�)

= FX1:n ,...,Xm�
� :n ,Di<m�

�,Di+1≥m�
� (tm�

�
)

with appropriately chosen values for d,m�
�,m�,m� (see Tables 3, 4 and 5). Inspired

by Górny and Cramer (2018b), these cases are called module types O, A, B, AB.
Furthermore, notice that

Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di < m�
�, Di+1 ≥ m�

�)

= Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di+1 ≥ m�
�)

− Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di ≥ m�
�)

= FX1:n ,...,Xm�
� :n ,Di+1≥m�

� (tm�
�
) − FX1:n ,...,Xm�

� :n ,Di≥m�
� (tm�

�
)

since Di ≤ Di+1 so that module type AB can be evaluated using module type A with
different random counters.
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Therefore, in order to evaluate (3.4), it is sufficient to consider the decomposition
of the hybrid censoring scheme as given in Tables 3, 4 and 5, the probability mass
functions of Di (see (2.3)) as well as

FX1:n ,...,Xd:n ,Dj=d , FX1:n ,...,Xm� :n ,Dj≥m�

, and FX1:n ,...,Xm� :n ,Dj<m� (3.7)

for Dj , j = 1, . . . , b, as well as some d, m�, and m�, respectively. Finally, it should
be mentioned that

Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di < m�) = Pr(X j :n ≤ t j , 1 ≤ j ≤ m�)

− Pr(X j :n ≤ t j , 1 ≤ j ≤ m�, Di ≥ m�)

= FX1:n ,...,Xm� :n (tm� )

− FX1:n ,...,Xm� :n ,Dj≥m� (tm� ),

so that only the first two cases in (3.7) remain (see also Cramer et al. 2016). Therefore,
the expressions belonging to module types O and A are sufficient to determine the
distribution of the hybrid censored sample given in (3.1).

Now, it has been shown in Cramer and Balakrishnan (2013), that

Pr(X j :n ≤ t j , 1 ≤ j ≤ �, Di ≥ �) = F1,...,�:n(t�−1, t� ∧ Ti ) = F1,...,�:n(t� ∧ Ti ),

(3.8)

Pr(X j :n ≤ t j , 1 ≤ j ≤ �, Di = �) = 1[Ti ,∞)( min
�+1≤ j≤m

t j )
{
F1,...,�:n(t� ∧ Ti )

− F1,...,�+1:n(t� ∧ Ti , Ti )
}

(3.9)

with � chosen appropriately. These expressions illustrate that the joint cumulative
distribution function of hybrid censored order statistics can be written in terms of
the joint cumulative distribution functions F1,...,d:n with some d ∈ {1, . . . , n}. As
an example, consider unified Type-II hybrid censoring with ϒuII and the respective
decomposition given in (3.6). Then, for this relatively complicated hybrid censoring
scheme, we find

Pr(X j :n ≤ t j , 1 ≤ j ≤ DuII) = Pr(X j :n ≤ t j , 1 ≤ j ≤ k, D2 < k)

+
m−1∑

d=k

Pr(X j :n ≤ t j , 1 ≤ j ≤ d, D2 = d)

+ Pr(X j :n ≤ t j , 1 ≤ j ≤ m, D1 < m, D2 ≥ m)

+
n∑

d=m

Pr(X j :n ≤ t j , 1 ≤ j ≤ d, D1 = d).

Taking into account the identities (3.8) and (3.9) as well as

Pr(X j :n ≤ t j , 1 ≤ j ≤ m, D1 < m, D2 ≥ m)
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= Pr(X j :n ≤ t j , 1 ≤ j ≤ m, D2 ≥ m)

− Pr(X j :n ≤ t j , 1 ≤ j ≤ m, D1 ≥ m),

we obtain directly the following theorem.

Theorem 3.3 Consider the unified Type-II hybrid censoring scheme with functionϒuII
and respective decomposition as given in (3.6). Then, for t1, . . . , tn ∈ R, the joint
cumulative distribution function of the data is given by

Pr(X j :n ≤ t j , 1 ≤ j ≤ DuII) = F1,...,k:n(tk) − F1,...,k:n(tk ∧ T2)

+
m−1∑

d=k

1[T2,∞)

(
min

d+1≤ j≤m
t j

) {
F1,...,d:n(td ∧ T2) − F1,...,d+1:n(td ∧ T2, T2)

}

+ F1,...,m:n(tm ∧ T2) − F1,...,m:n(tm ∧ T1)

+
n−1∑

d=m

1[T1,∞)

(
min

d+1≤ j≤n
t j

){
F1,...,d:n(td ∧ T1) − F1,...,d+1:n(td ∧ T1, T1)

}

+ F1,...,n:n(tn ∧ T1). (3.10)

Remark 3.4 In cases where Pr(DHCS = 0) > 0, that is, the hybrid censored experiment
may terminate without observing a failure, the distribution will be obtained condition-
ally on the event {DHCS > 0} (see, e.g., Type-I (hybrid) censoring or generalized
Type-II hybrid censoring). Therefore, instead of (3.4), we consider

Pr(X j :n ≤ t j , 1 ≤ j ≤ DHCS | DHCS > 0)

= 1

Pr(DHCS) > 0)
Pr(X j :n ≤ t j , 1

≤ j ≤ DHCS)

which obviously can be evaluated by analogy with (3.4).

4 Joint density functions and likelihood functions

An important application of the representations obtained in Sect. 3 is the derivation
of the joint density function of the hybrid censored sample X1:n, . . . , XDHCS:n and
the (random) sample size DHCS = ϒHCS(Db). Notice that, once the hybrid censored
sample is observed, one can reconstruct the particular data situation. This means that
we exactly know which censoring scenario has led to the observed measurements. In
order to find the respective density functions, we need only to consider the censoring
scenario and the respective cumulative distribution function.

For illustration, we consider unified Type-II hybrid censoringwhich has two thresh-
olds T1 and T2. Let DuII = �. First, without loss of generality, we can assume
t1 < · · · < t� since the density function will be zero otherwise. For the cases T2 < tk ,
T1 < tm ≤ T2, and tn ≤ T1, we get directly the corresponding density function of the
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first order statistics from the representation in (3.8) (see (4.1)). Suppose t� ≤ T2 < t�+1
for some � ∈ {k, . . . ,m−1}. Then, D2 = � and, according to (3.9), the corresponding
part of the cumulative distribution function is given by

F1,...,�:n(t�) − F1,...,�+1:n(t�, T2).

Then, using the marginal density functions of order statistics, it is easy to see that the
corresponding density function is given by

n!
(n − �)!

( �∏

j=1

f (t j )

)
F
n−�

(T2).

The same argument can be used in the case t� ≤ T1 < t�+1 for some � ∈ {m, . . . , n−1}.
Summing up, we get the following expression for the joint density function of the
unified Type-II hybrid censored sample from Theorem 3.3.

Theorem 4.1 Consider the unified Type-II hybrid censoring scheme. Then, the joint
density function of the measurements X j :n, 1 ≤ j ≤ DuII, and the (random) sample
size DuII is given by

f X j :n ,1≤ j≤DuII,DuII(t�, �)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,...,�:n(t�), T2 < t�
n!

(n−�)!
∏�

j=1 f (t j )F
n−�

(T2) t� ≤ T2 < t�+1 for some � ∈ {k, . . . ,m − 1}
f1,...,�:n(t�), T1 < t� ≤ T2
n!

(n−�)!
∏�

j=1 f (t j )F
n−�

(T1) t� ≤ T1 < t�+1 for some � ∈ {m, . . . , n − 1}
f1,...,�:n(t�), t� ≤ T1 or � = n

0, otherwise

.

(4.1)

For the other hybrid censoring schemes, the joint density function can be obtained
in the same manner so that we do not present details here. Respective expressions can
be found in Balakrishnan et al. (2023).

The preceding discussion illustrates that the joint density function of a hybrid
censored sample can be easily obtained along the same lines as shown above for the
unified Type-II hybrid censoring scheme by considering the parameters and module
types given in Tables 3, 4 and 5 and the ordered arguments t1 < · · · < t� with
DHCS = �. Notice that for hybrid censoring schemes with Pr(DHCS = 0) > 0, one
has to consider conditional density functions, that is, f X j :n ,1≤ j≤DHCS,DHCS|DHCS>0 (see
comments in Remark 3.4).

Clearly, (4.1) yields the likelihood function. As a consequence, we obtain directly
from Theorem 4.1 the following corollary.

Corollary 4.2 Given a parametric model with density functions fθ , θ ∈ � ⊆ R
p, and

an observed sample x1, . . . , x�, �, the likelihood function is given by
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L (θ | x1, . . . , x�, �)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fθ;1,...,�:n(x�), T2 < x�

n!
(n−�)!

∏�
j=1 fθ (x j )F

n−�

θ (T2) x� ≤ T2 < x�+1 for some � ∈ {k, . . . ,m − 1}
fθ;1,...,�:n(x�), T1 < x� ≤ T2
n!

(n−�)!
∏�

j=1 fθ (x j )F
n−�

θ (T1) x� ≤ T1 < x�+1 for some � ∈ {m, . . . , n − 1}
fθ;1,...,�:n(x�), x� ≤ T1 or � = n

(4.2)

Introducing the notationWHCS andw for the test duration and observed test duration
(see Table 2), respectively, we find the following compact form of the likelihood
function of hybrid censored order statistics.

Theorem 4.3 Consider a hybrid censoring scheme applied to order statistics’ data.
Then, given hybrid censored data x1, . . . , x� with DHCS = �, the likelihood function
can be written as

L (θ | x1, . . . , x�, �) = n!
(n − �)!

( �∏

j=1

fθ (x j )

)
F
n−�

θ (w), (4.3)

where w denotes the observed test duration induced by the applied hybrid censoring
scheme.

Notice that the mathematical structure of this function does not depend on the
particular (hybrid) censoring scheme. Of course, the realizations of both the sample
size DHCS = � and the test durationWHCS = w depend on the structure of the (hybrid)
censoring scheme. But, once the data has been observed, the mathematical treatment
is the same for all hybrid censoring schemes. Therefore, independently of the (hybrid)
censoring scheme, the derivation of maximum likelihood estimates is along the same
lines.

4.1 Exponentially distributed lifetimes

Suppose that the lifetimes are iid exponentially distributed random variables with
mean ϑ > 0. Then, from Theorem 4.3, the log-likelihood function for given hybrid
censored data x1, . . . , x�, � is given by

L ∗(ϑ | x1, . . . , x�, �) = ln
n!

(n − �)! − � ln ϑ − 1

ϑ

�∑

j=1

x j + (n − �)w

ϑ

= ln
n!

(n − �)! − � ln ϑ − 1

ϑ
TTT� (4.4)
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with test durationw under the hybrid censoring scheme and total time on test statistic

TTT� =
�∑

j=1

x j + (n − �)w. (4.5)

Using standard arguments (see, e.g., Balakrishnan and Cramer 2014, Section 12.1),
the maximum likelihood estimator of ϑ can be easily obtained from (4.4) for any given
hybrid censoring scheme.

Theorem 4.4 Given a hybrid censored sample of exponentially distributed lifetimes
with mean ϑ , the maximum likelihood estimator of ϑ is given by

ϑ̂HCS = 1

DHCS

( DHCS∑

j=1

X j :n + (n − DHCS)WHCS

)
= TTTDHCS

DHCS
(4.6)

provided DHCS > 0. TTTDHCS = ∑DHCS
j=1 X j :n + (n−DHCS)WHCS denotes the total time

on test under the hybrid censoring scheme as given in (4.5).

In order to find the distribution of the maximum likelihood estimator, we can again
utilize the modularization approach. In case of unified Type-II hybrid censoring, the
result given in (3.6) leads to the following expression for the cumulative distribution
function of the maximum likelihood estimator

F ϑ̂uII
ϑ (t) = Prϑ(ϑ̂uII ≤ t) = Prϑ(ϑ̂uII ≤ t, D2 < k) +

m−1∑

d=k

Prϑ(ϑ̂uII ≤ t, D2 = d)

+ Prϑ(ϑ̂uII ≤ t, D1 < m, D2 ≥ m) +
n∑

d=m

Prϑ(ϑ̂uII ≤ t, D1 = d)

= Prϑ(TTTk ≤ kt, D2 < k) +
m−1∑

d=k

Prϑ(TTTd ≤ dt, D2 = d)

+ Prϑ(TTTm ≤ mt, D1 < m, D2 ≥ m) +
n∑

d=m

Prϑ(TTTd ≤ t, D1 = d).

Using the same ideas leading to the expression (3.10), the density function of the
maximum likelihood estimator can now be obtained from the conditional density
functions f TTT�|Di≥�

ϑ , f TTT�|Di<�
ϑ and f TTT�|Di=�

ϑ . As illustrated in Balakrishnan et al.
(2023), these conditional density functions can be expressed compactly in terms of
B-spline functions. Expressions for the conditional density functions can be found
in Balakrishnan et al. (2023, Theorems 5.7 and 5.21). Hence, the density function of
ϑ̂uII (and more general of ϑ̂HCS) can be written as a linear combination of B-spline
functions. For brevity, we do not present details here.
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Furthermore, the above results can be used to conduct Bayesian inference. Suppose
that ϑ has an inverse gamma prior I�(λ, β) with density function

π(ϑ) = λβ

�(β)
ϑ−(β+1)e−λ/ϑ , ϑ > 0, (4.7)

where β > 0 and λ > 0 are the hyper-parameters. Using the general expression of
the likelihood function in (4.3) for the exponential distribution, the posterior density
function p(· | data) of ϑ becomes

p(ϑ | data) = (TTTd + λ)d+β

�(d + β)
ϑ−(d+β+1)e−(TTTd+λ)/ϑ , ϑ > 0, (4.8)

where the total time on test TTTd is defined in (4.5). Since the posterior density
function is the density function of an inverse gamma distribution with parameters
d +β > 2 and TTTd +λ, the Bayesian estimator of ϑ under squared-error loss, being
the posterior mean, is simply obtained as

ϑ̂B; HCS = TTTDHCS + λ

DHCS + β − 1
(4.9)

provided DHCS + β > 1. For particular hybrid censoring schemes, we refer to Draper
and Guttman (1987), Kundu (2007), Kundu and Pradhan (2009), Kundu et al. (2013),
Bayoud (2014), and Balakrishnan et al. (2023). Of course, the results can also be
utilized for two-parameter exponential distributions (see Chan et al. 2015).

4.2 Weibull distributed lifetimes

As a second example,we consider brieflyWeibull distributed lifetimeswith cumulative
distribution function Fϑ,β(t) = 1 − exp(−(t/ϑ)β), t ≥ 0. Then, we find from (4.3)
in Theorem 4.3 the log-likelihood function

L ∗(ϑ, β | x1, . . . , x�, �) = ln
n!

(n − �)! − � log(β/ϑ) + (β − 1)
�∑

j=1

log x j

− 1

ϑ

�∑

j=1

xβ
j − n − �

ϑ
wβ. (4.10)

Clearly, this function has the same structure as the log-likelihood function under Type-
I and Type-II censoring. This finding leads us directly to the following theorem by
applying the results of Balakrishnan and Kateri (2008) to the present situation.

Theorem 4.5 ConsiderWeibull distributed lifetimeswith cumulative distribution func-
tion as given above. Then, the maximum likelihood estimators ϑ̂ and β̂ of ϑ and β exist
uniquely for every hybrid censoring scheme (provided DHCS = � > 0). In particular,
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ϑ̂ = ϑ̂(β̂) = 1

�

⎛

⎝
�∑

j=1

x β̂
j + (n − �)wβ̂

⎞

⎠

and β̂ is the unique solution of the equation

0 = �

β
−

∑�
j=1 x

β
j log x j + (n − �)wβ logw

ϑ̂(β)
+

�∑

j=1

log x j .

Furthermore, well-known numerical procedures can be used to compute the maxi-
mum likelihood estimates (see, e.g., Rinne 2008 and references given therein).

Relevant references on hybrid censoredWeibull data are, e.g., Kundu (2007), Baner-
jee and Kundu (2008), Habibi Rad and Yousefzadeh (2014).

The result in (4.10) can also be used to derive directly approximate maximum
likelihood estimates as has been done under Type-II censoring by Balakrishnan and
Varadan (1991) and under Type-I and Type-II (hybrid) censoring by Kundu (2007)
and Banerjee and Kundu (2008), respectively. Similar comments as those for the
exponential distribution apply to Bayesian inference for hybrid censored Weibull data
(see, e.g., Zhu 2020).

4.3 Lifetimes having other distributions

In the preceding two sections on exponentially and Weibull distributed lifetimes, we
have illustrated that the results obtained under Type-I and Type-II censoring can be
directly applied to determine the maximum likelihood estimates, approximate maxi-
mum likelihood estimates, and Bayesian estimates under an arbitrary hybrid censoring
scheme. The same comment is true for any other distribution! In this regard, we have
to determine only the respective estimates under Type-I and Type-II censoring. Once
these are available, we can use the same methodology (e.g., solving the likelihood
equations), by considering the values of the sample size DHCS and the test duration
WHCS of the particular hybrid censoring scheme. As a consequence, we get the same
expressions (or equations to be solved) for any hybrid censoring scheme choosing these
quantities appropriately. As examples, one may have a look at, e.g., Sen et al. (2018),
Zhu et al. (2019), Arabi Belaghi and Noori Asl (2019) for log-normal, Birnbaum-
Saunders, and Burr XII distributions. For a survey on related references dealing with
both various hybrid censoring schemes and miscellaneous distributions, we refer to
the extensive bibliography provided in Balakrishnan et al. (2023).

5 Beyond order statistics: application to other kinds of ordered data

In the preceding sections, we have considered order statistics from an iid sample
X1, . . . , Xn . However, a given hybrid censoring scheme can be applied to any (almost
surely strictly) ordered data X(1) < · · · < X(n). Therefore, in this section we assume
that the underlying data X(1), . . . , X(n) is only (almost surely) strictly ordered. For
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example, choosing suitable distributional assumptions, this approach includes a variety
of models of ordered random variables like (upper) record data, minimal repair data,
generalized order statistics, jump times of some continuous time stochastic processes
(non-homogeneous Poisson processes, birth-death processes, renewal processes),….
It is worth mentioning that there is no restriction imposed on the dependence struc-
ture. Therefore, the following discussion also includes order statistics from dependent
random variables X1, . . . , Xn .

In fact, the definition of the sample size and the test duration is identical to the order
statistics’ case, that is, (2.1) is generally given as

Di =
n∑

j=1

1(−∞,Ti ](X( j)). (5.1)

This yields the same expressions as in Table 2 with X j :n replaced by X( j), j ∈
{1, . . . , n}. In particular, we get the same function ϒHCS as in (3.2), that is DHCS =
ϒHCS(Db), since ϒHCS depends only on the structure of the hybrid censoring scheme
but neither on the lifetimes nor on their distribution. Therefore, we can directly use
the modularization approach leading to the same decomposition and module types.
Notice that we use in the subsequent derivations only that the random variables are
ordered.

As an example, we consider again unified Type-II hybrid censoring but now for
the data X(1), . . . , X(n). Then, by analogy with (5.2), we get the joint cumulative
distribution function of X(1), . . . , X(DuII)

Pr(X( j) ≤ t j , 1 ≤ j ≤ DuII) = Pr(X( j) ≤ t j , 1 ≤ j ≤ k, D2 < k)

+
m−1∑

d=k

Pr(X( j) ≤ t j , 1 ≤ j ≤ d, D2 = d)

+ Pr(X( j) ≤ t j , 1 ≤ j ≤ m, D1 < m, D2 ≥ m)

+
n∑

d=m

Pr(X( j) ≤ t j , 1 ≤ j ≤ d, D1 = d)

= F(1,...,k)(tk) − F(1,...,k)(tk ∧ T2)

+
m−1∑

d=k

1[T2,∞)

(
min

d+1≤ j≤m
t j

){
F(1,...,d)(td ∧ T2) − F(1,...,d+1)(td ∧ T2, T2)

}

+ F(1,...,m)(tm ∧ T2) − F(1,...,m)(tm ∧ T1)

+
n−1∑

d=m

1[T1,∞)

(
min

d+1≤ j≤n
t j

) {
F(1,...,m)(td ∧ T1) − F(1,...,d+1)(td ∧ T1, T1)

}

+ F(1,...,n)(tn ∧ T1), (5.2)
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where F(1,...,�) denotes the joint cumulative distribution function of X(1), . . . , X(�).
The similarity of the expressions in (5.2) and (3.10) of Theorem 3.3 is striking. This
enables us to state the following general theorem.

Theorem 5.1 Consider a hybrid censoring scheme applied to (almost strictly) ordered
data X(1) < · · · < X(n) where F(1,...,�) denotes the joint cumulative distribution
function of the random variables X(1), . . . , X(�), 1 ≤ � ≤ n.

Then, the joint distribution of the hybrid censored data and the corresponding
counter DHCS has the same structure as that obtained for hybrid censored order
statistics’ data. In order to get the corresponding cumulative distribution function,
the cumulative distribution function F1,...,�:n of the first � order statistics has to be
replaced by F(1,...,�) only for a given index �.

Moreover, the derivation of the joint density function can also be carried out as
for order statistics provided that the joint density function has a special form. In
particular, if X(1), . . . , X(n) are generalized order statistics based on some absolutely
continuous cumulative distribution function F with density function f and parameters
γ1, . . . , γn > 0, that is, the joint density function is given by (seeKamps 1995; Cramer
2006)

f(1,...,n)(tn) =
( n∏

j=1

γ j

) n∏

j=1

f (t j )F
γ j−γ j+1−1

(t j ), t1 < · · · < tn .

First, the marginal density function of the first � generalized order statistics is given
by (γn+1 ≡ 0)

f(1,...,�)(t�) =
( �∏

j=1

γ j

)( �−1∏

j=1

f (t j )F
γ j−γ j+1−1

(t j )

)
f (t�)F

γ�−1
(t�).

Then, as in Sect. 4, we get for t� ≤ T2 < t�+1 that

F(1,...,�)(t�) − F(1,...,�+1)(t�, T2)

has the density function

( �∏

j=1

γ j

)( �∏

j=1

f (t j )F
γ j−γ j+1−1

(t j )

)
F

γ�+1
(T2).

Thus, for example, we get under unified Type-II censoring, the joint density function
presented in the following theorem (cf. (4.1)).

Theorem 5.2 Consider the unified Type-II hybrid censoring scheme. Then, the joint
density function of the hybrid censored generalized order statistics X( j), 1 ≤ j ≤ DuII,
and the (random) sample size DuII is given by
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f X( j),1≤ j≤DuII,DuII (t�, �)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(1,...,�)(t�), T2 < t�( ∏�
j=1 γ j

)( ∏�
j=1 f (t j )F

γ j−γ j+1−1
(t j )

)
F

γ�+1
(T2) t� ≤ T2 < t�+1, � ∈ {k, . . . , . . . ,m − 1}

f(1,...,�)(t�), T1 < t� ≤ T2( ∏�
j=1 γ j

)( ∏�
j=1 f (t j )F

γ j−γ j+1−1
(t j )

)
F

γ�+1
(T1) t� ≤ T1 < t�+1, � ∈ {m, . . . , n − 1}

f(1,...,�)(t�), t� ≤ T1 or � = n

(5.3)

As for order statistics, we notice that, in general, we have only two types of den-
sity functions. Thus, given an observed sample x1, . . . , x�, � and choosing w as the
test duration given in Table 2 of the particular hybrid censoring scheme, we get the
following result as a generalization of Theorem 4.3.

Theorem 5.3 Consider a parametric model with density functions fθ , θ ∈ � ⊆ R
p.

Suppose that X(1), . . . , X(n) are generalized order statistics based on the absolutely
continuous cumulative distribution function Fθ with density function fθ and parame-
ters γ1, . . . , γn > 0.

Then, given an observed hybrid censored sample x1, . . . , x�, � of the generalized
order statistics and the counter of the hybrid censoring scheme, the likelihood function
is given by

L (θ | x1, . . . , x�, �) =
( �∏

j=1

γ j

)( �∏

j=1

fθ (x j )F
γ j−γ j+1−1
θ (x j )

)
F

γ�+1
θ (w),

(5.4)

where w denotes the test duration induced by the hybrid censoring scheme.

Notice that the expression in (5.4) equals the density function fθ;(1,...,�)(x�) when
w = x�. This case corresponds to the marginal distribution of the first � generalized
order statistics. In case w equals a threshold Ti , the above density function can be
interpreted as joint density function of a Type-I censored sample of generalized order
statistics and Di = � with Di given in (5.1). It seems that this model has not been
discussed in the literature so far. But, the derivation of the joint density function can
be directly taken from the results in Burkschat et al. (2016) who considered Type-I
hybrid censored sequential order statistics (from exponential distributions).

In case of exponential lifetimes, we get from Theorem 5.3 a similar expression
as in the case of order statistics, that is, the log-likelihood function for given hybrid
censored data x1, . . . , x�, � is given by

L ∗(ϑ | x1, . . . , x�, �) = ln
�∏

j=1

γ j − � ln ϑ − 1

ϑ
TTT� (5.5)
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with test duration w induced by the applied hybrid censoring scheme and total time
on test statistic

TTT� =
�∑

j=1

(γ j − γ j+1)x j + γ�+1w. (5.6)

Then, the maximum likelihood estimator of ϑ can be established for any given
hybrid censoring scheme (cf. Kamps 1995; Cramer and Kamps 2003).

Theorem 5.4 Given a hybrid censored sample of generalized order statistics based
on an exponential distribution with mean ϑ and parameters γ1, . . . , γn, the maximum
likelihood estimator of ϑ is given by

ϑ̂HCS = 1

DHCS

( DHCS∑

j=1

(γ j − γ j+1)X j :n + γDHCS+1WHCS

)
= TTTDHCS

DHCS

provided DHCS > 0.

Similar comments as given in Sects. 4.1–4.3 apply to these data, too. Here, it should
be mentioned that the distribution of the random counter Di given in (5.1) is of great
interest. Of course, it is no longer binomially distributed as in the order statistics’
case. In particular, one has to calculate its probability mass function, that is, for d ∈
{0, . . . , n},

Pr(Di = d) =

⎧
⎪⎨

⎪⎩

Pr(Ti < X(1)), d = 0

Pr(X(d) ≤ Ti < X(d+1)), d ∈ {1, . . . , n − 1}
Pr(X(n) ≤ Ti ), d = n

=

⎧
⎪⎨

⎪⎩

1 − F(1)(Ti ), d = 0

F(d)(Ti ) − F(d+1)(Ti ), d ∈ {1, . . . , n − 1}
F(n)(Ti ), d = n

.

Therefore, we need expressions for the one dimensional marginal distribution
functions F(d) of generalized order statistics to compute these probabilities. Such
expressions can be found in, e.g., Cramer and Kamps (2003).

In order to give a brief review of some results available in the literature, we provide
some additional information on particular models like progressive Type-II censoring
and record values.

Remark 5.5 (i) Hybrid censoring of progressively Type-II censored data has been
widely discussed in the literature. Since it can be seen as a particular case
of generalized order statistics, the above considerations apply directly to so-
called progressive hybrid censoring. A detailed review of respective results
can be found in Chapter 6 of Balakrishnan et al. (2023). In particular, it turns
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out that, using the modularization approach, the inferential and probabilis-
tic results obtained under progressive hybrid censoring parallel those available
under hybrid censoring. Of course, the results are somewhat more complicated
since the distribution of progressively Type-II censored order statistics is more
complicated than that of order statistics (see Balakrishnan and Cramer 2014).
However, the structure of the results relies only on the structure of hybrid
censoring scheme, that is, it depends on the random counter and the func-
tion ϒHCS. In this regard, many results (like (conditional) distribution of the
maximum likelihood estimation for exponentially distributed lifetimes) can be
easily adapted using the respective distributions, probability mass functions,
etc.

(ii) Epstein (1954) considered a Type-I hybrid censoring model called ‘hybrid
censoring with replacement’. A closer look at this model shows that this model
equals Type-I censoring of record values (for details on record values, see
Arnold et al. 1998 or Nevzorov 2001). The model has been further studied in,
e.g., Ebrahimi (1986). From the preceding comments, it is clear that inferential
and probabilistic results can be directly obtained using the results for Type-I
and Type-II censored record values. First results along the lines of the present
study have recently been reported in Berzborn and Cramer (2023). Further
research on this model is ongoing and will be presented in the near future.
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