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Abstract
Skewness and kurtosis are natural characteristics of a distribution. While it has long
been recognized that they are more intrinsically entangled than other characteristics
like location and dispersion, this has recently been made more explicit by Eberl and
Klar (Stat Papers 65:415–433, 2024) with regard to orders of kurtosis. In this paper, we
analyze the implications of this entanglement on kurtosis measures in general and for
several specific examples. As a key finding, we show that kurtosis measures that are
defined in the classical order-based way, which is analogous to measures of location,
dispersion and skewness, do not exist. This raises serious doubts about the frequent
application of such measures to skewed data. We then consider old and new proposals
for kurtosis measures and evaluate under which additional conditions they measure
kurtosis in a meaningful way. Somemeasures also allowmore specific representations
of the influence of skewness on the measurement of kurtosis than are available in a
general setting. This works particularly well for a family of newly introduced density-
based kurtosis measures.

Keywords Asymmetric distributions · Kurtosis · Skewness · Dispersion measures ·
Stochastic orders

1 Introduction

Pearson (1895) introduced the concept of kurtosis in the formof the fourth standardized
moment. Contrary to location, dispersion and skewness, which can also be measured
using (standardized) moments, it took a long time for kurtosis to be understood as a
more general concept (Chissom 1970; Darlington 1970). Bickel and Lehmann (1975)
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defined a measure of kurtosis as a “suitable ratio” of two measures of scale or dis-
persion without going into more detail. In the same paper, a general approach for the
definition of characteristics of probability distributions was laid out using stochastic
orderings. This idea was picked up by Oja (1981), who incorporated work on con-
vex transformations by van Zwet (1964) to define a class of stochastic orderings that
can be used as foundation for the measurement of location, dispersion, skewness and
kurtosis. His crucial property for a kurtosis measure κ is that F � G for distribution
functions F and G and a suitable stochastic order of kurtosis� implies κ(F) ≤ κ(G).
Here, the usual choice for the order � is≤s , which means that the function F ◦G−1 is
concave-convex, where F and G are assumed to be continuous and strictly increasing.
In the years since, a number of alternative kurtosis measures have been proposed.Most
of them are based on quantiles (see, e.g., Ruppert 1987; Balanda and MacGillivray
1988; Moors 1988 and Jones et al. 2011) with a notable exception being a measure
based on L-moments by Hosking (1989).

Kurtosis measures are frequently used in different fields of applications, ranging
from environmental science to finance and insurance. Here, it is commonplace that
these measures are applied to skewed distributions, see Cooper (2020) and López-
Martín et al. (2022) for specific examples and Eberl and Klar (2024) for a broader
overview. In contrast, it has long been established in the statistical literature that a
major problem arising in the treatment of kurtosis is its intrinsic entanglement with
skewness. This is already implied by the fact that the orders of kurtosis by van Zwet
(1964) and Oja (1981) are only defined for symmetric distributions. More recently,
Blest (2003) and Jones et al. (2011) have presented approaches to construct skewness-
invariant measures of kurtosis that are based on moments and quantiles, respectively.

Eberl and Klar (2024) examine the relationship between skewness and orders of
kurtosis, which work as a foundation for the measurement of kurtosis. There, the
drawbacks of earlier approaches by MacGillivray and Balanda (1988) and Balanda
and MacGillivray (1990) are pointed out and the compatibility of two major types of
kurtosis orders with asymmetric distributions is analyzed in detail. The first order is a
generalization of≤s , and the second is≤3, which is defined via F ◦G−1 being convex
of order three. This order is stronger than ≤s and is a canonical choice in view of
basic orders of location, dispersion and skewness. It is established that these kurtosis
orders are not transitive for distributions with different skewness, which implies that
these orders cannot be characterized by appropriate measures of kurtosis. In order
to circumvent this problem, so-called transitivity sets are introduced that consist of
equally skewed distributions and it is shown that the fundamental kurtosis order ≤3 is
transitive on these sets.

In this paper, we examine and discuss the implications of these results for mea-
sures of kurtosis. Specifically, we show that no meaningful kurtosis measures exist
that fulfil a slight modification of the usual order-based defining properties. This result
follows directly from the non-transitivity of the aforementioned kurtosis orders shown
by Eberl and Klar (2024). The emerging doubt as to whether kurtosis measures are
still meaningful is then answered as follows: we consider a number of kurtosis mea-
sures considered in the literature as well as new proposals and analyze whether they
are compatible with kurtosis orderings if they are restricted to transitivity sets. Sub-
sequently, one of the first ideas concerning the systematic measurement of kurtosis
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by Bickel and Lehmann (1975), namely considering ratios of dispersion measures, is
evaluated. The analysis of the kurtosis measures is concluded by a comparison of their
numerical values for a few specific distributions as well as the proposal of empirical
counterparts along with some of their asymptotic properties.

2 Kurtosis orders and transitivity sets

In this section, we summarize several definitions and results from Eberl and Klar
(2024). Throughout the paper, we assume that all distribution functions are three times
differentiable and have interval support. We also adopt the notation from Eberl and
Klar (2024) as we denote the interior of the support of a distribution function F by DF

and assume f = F ′ to be strictly positive on DF . The set of all distribution functions
that satisfy these assumptions is denoted by P . Furthermore, X always denotes a
random variable with distribution function F .

The followingdefinition is amodifiedversion of thosemadebyOja (1981) andEberl
and Klar (2024) whereas the term relative inverse distributions function is adopted
from Müller and Stoyan (2002).

Definition 1 Let F,G ∈ P and k ∈ N0.

(a) The function

RFG : DF → DG, x �→ G−1(F(x))

is said to be the relative inverse distribution function (RIDF) from F to G. We
also define the modification �FG : DF → R, x �→ RFG(x) − x .

(b) F is said to precede G in the order of the k-th convex characteristic, denoted by
F ≤k G, if �

(k)
FG ≥ 0 holds. Here, we assume that the k-th derivative �

(k)
FG of

�FG exists.

Note that, for k ≥ 2, F ≤k G is equivalent to R(k)
FG ≥ 0. For k = 0, 1, 2, the order

of the k-th convex characteristic coincides with basic orders of location, dispersion
and skewness: ≤0 is the usual stochastic order ≤st , ≤1 is the dispersive order ≤disp

and≤2 is the convex transformation order≤c by van Zwet (1964) (see also Oja 1981).
Although the kurtosis order ≤3 follows the same pattern, it is rarely mentioned in the
literature. A much more popular kurtosis order is ≤s , which was proposed by van
Zwet (1964) and subsequently utilized by Oja (1981) and Groeneveld and Meeden
(1984), among others. It is defined in the following, along with a generalization by
Eberl and Klar (2024).

Definition 2 Let F,G ∈ P and t0 ∈ R.

(a) F is said to be less kurtotic than G in concave-convex sense, denoted by F ≤s G,
if

R′′
FG(x)

{
≤ 0, if x < 0,

≥ 0, if x > 0.
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(b) F is said to be less kurtotic than G in the generalized concave-convex sense with
threshold t0, denoted by F ≤t0

gs G, if there exists a pFG ∈ [0, 1] such that

R′′
FG(x)

{
≤ t0, if x < pFG,

≥ t0, if x > pFG .

Eberl and Klar (2024) proved the following results concerning the relationship
between the kurtosis orders and their transitivity properties. Define

γ
p
D : P → R, F �→ f ′(F−1(p))

( f (F−1(p))2

for p ∈ (0, 1), which satisfies the crucial property of a skewnessmeasure as it preserves
the convex transformation order ≤2 (see Eberl and Klar 2024). Furthermore, define
T t
D,p = {F ∈ P : γ

p
D(F) = t} for p ∈ (0, 1), t ∈ R. Note that S ⊆ T 0

D,1/2 holds,
where S denotes the subset of P containing all symmetric distributions.

Theorem 3 For F,G ∈ P , F ≤t0
gs G for all t0 ∈ R is equivalent to F ≤3 G.

Theorem 4 (a) Neither the order ≤3 nor ≤t0
gs is transitive on P for any t0 ∈ R.

(b) The order ≤3 is transitive on the set T t
D,p for all p ∈ (0, 1), t ∈ R.

3 Measures of kurtosis: (non-)existence

Contrary to kurtosis orders, measures of kurtosis are often applied to asymmetric dis-
tributions (see, e.g., Wheeler 1975; Hanook et al. 2013 and the references in Eberl and
Klar 2024). Measures are mostly chosen based on historical relevance and ease of use,
typically resulting in the fourth standardized moment. Since this practice obviously
lacks rigour, we start out by giving a general framework for the definition of kurtosis
measures. Let Q ⊆ P be the subset of all distributions for which a given kurtosis
measure candidate is defined. Oja (1981) called a mapping κ : Q → R a measure of
kurtosis, if it satisfies the following two properties:

(K1) κ(aX + b) = κ(X) for all a ∈ R\{0}, b ∈ R and F ∈ Q,
(K2) κ(F) ≤ κ(G) for all F,G ∈ Q such that F ≤K G for some kurtosis order ≤K .

This definition is in line with that of measures of central location, dispersion and
skewness as given by, e.g., Oja (1981). The crucial property is (K2), requiring that the
measure preserves a certain order with respect to the relevant characteristic. However,
an evaluation of kurtosis measures with respect to this property has only been done
under the assumption of symmetry in the literature (van Zwet 1964, Ruppert 1987 or
Hosking 1989).

Based onEberl andKlar (2024), the order≤3 seems to be superior to the generalized
concave-convex order ≤t0

gs for three major reasons. First, while ≤3 is unambiguous,
≤t0

gs depends on the threshold t0 for which there exists no obvious choice if the distri-
bution is asymmetric. Second, ≤3 is stronger than ≤t0

gs for any threshold t0, meaning
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that the former imposes a more fundamental requirement on corresponding kurtosis
measures. Third, ≤3 is transitive if it is restricted to sets of constant density-based
skewness, which could not be shown for ≤t0

gs . The order ≤3 is also the kurtosis ana-
logue of the fundamental orders≤0,≤1 and≤2 for location, dispersion and skewness.
However, by refining the counterexample for the general transitivity of≤3 in Eberl and
Klar (2024), we observe that even this most basic requirement for a kurtosis measure
cannot be satisfied in a meaningful way. For that, define the strict version ≺ of any
stochastic order � by F ≺ G, if F � G and G � F .

Theorem 5 (a) There exists no mapping κ : P → R such that F ≤3 G implies
κ(F) ≤ κ(G) and F <3 G implies κ(F) < κ(G) for all F,G ∈ P .

(b) Let t0 ∈ int(R′′
FG(DF )). There exists no mapping κ : P → R such that F ≤t0

gs G
implies κ(F) ≤ κ(G) and F <

t0
gs G implies κ(F) < κ(G) for all F,G ∈ P .

Proof (a) As in Example 5 in Eberl and Klar (2024), we consider the following dis-
tributions:

F : [0, 1] → [0, 1], t �→ t3,

G : [0, 1] → [0, 1], t �→ t,

H : [0, 1] → [0, 1], t �→ 1 − 3
√
1 − t .

Note that F,G, H ∈ P . Eberl and Klar (2024) proved that F ≤3 G and G ≤3 H
holds, but also F �3 H . Note that this does not imply H ≤3 F as ≤3 is not a total
relation.
Now we assume that there exists a mapping κ : P → R that preserves the order
≤3. It follows that κ(F) ≤ κ(G) ≤ κ(H). We now contradict this by showing
H ≤3 F , which then implies H <3 F and κ(H) < κ(F). To this end, it holds
that

RHF (t) : [0, 1] → [0, 1], t �→ F−1(H(t)) =
(
1 − (1 − t)1/3

)1/3
.

It follows that, for t ∈ [0, 1],

R′
HF (t) = 1

9

(
1 − (1 − t)1/3

)−2/3
(1 − t)−2/3,

R′′
HF (t) = 2

27

(
1 − (1 − t)1/3

)−2/3
(1 − t)−5/3 − 2

81

(
1 − (1 − t)1/3

)−5/3
(1 − t)−4/3,

R′′′
HF (t) = 10

81

(
1 − (1 − t)1/3

)−2/3
(1 − t)−8/3 − 4

81

(
1 − (1 − t)1/3

)−5/3
(1 − t)−7/3

+ 10
729

(
1 − (1 − t)1/3

)−8/3
(1 − t)−2.

Now,
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H ≤3 F ⇔ R′′′
HF (t) ≥ 0 ∀t ∈ [0, 1]

⇔ 10
81

(
1 − (1 − t)1/3

)2 − 4
81

(
1 − (1 − t)1/3

)
(1 − t)1/3

+ 10
729 (1 − t)2/3 ≥ 0 ∀t ∈ [0, 1]

⇔ (1 − t)2/3 − 27
17 (1 − t)1/3 + 45

68 ≥ 0 ∀t ∈ [0, 1]

⇔
(
(1 − t)1/3 − 27

34

)2 ≥ − ( 3
17

)2 ∀t ∈ [0, 1].

Since the last inequality is obviously true for all t ∈ [0, 1], this concludes the
proof.

(b) Let Fi denote the cdf of aWeibull distributed randomvariablewith shape parameter
i > 0 and consider the triple (Fj , Fk, F�) with 2� < k and � ∈ (

j
2 , j). It follows

that the conditions j /∈ (k, 2k), k /∈ (�, 2�) and � ∈ (
j
2 , j) are satisfied. According

to the consideration of the Weibull distribution in Section 4.1 of Eberl and Klar
(2024), these three conditions are, in order, equivalent to Fj ≤t0

gs Fk , Fk ≤t0
gs F�

and F� <
t0
gs Fj , thus concluding the proof by contradiction.

��
Obviously, the statement of Theorem 5 is also valid if the set P is replaced by any

other set of distributions that includes the three used for the counterexample or any
other triple of distributions that poses an analogous contradiction.

Since there is an additional assumption made in Theorem 5, we cannot conclude
that there is no kurtosis measure that satisfies property (K2) on a sufficiently rich set
of distributions. This is due to the fact that the mapping κT ≡ k for some k ∈ R

is a trivial kurtosis measure which satisfies properties (K1) and (K2). Likewise, the
mapping κT ≡ 0 is a measure of central location, dispersion and skewness. To exclude
the trivial measure, property (K2) could be extended to

(K2′) κ(F) ≤ κ(G) for all F,G ∈ Q such that F ≤K G and κ(F) < κ(G) for all
F,G ∈ Q such that F <K G for some kurtosis order ≤K with strict version
<K .

Then, Theorem 5 proves that there exist no kurtosis measures based on the kurtosis
orders ≤3 or ≤t0

gs . Furthermore, we can conclude that there exist no kurtosis measures
based on any kurtosis order which is weaker than ≤3 in both the strict and non-strict
version.

Since the proof of Theorem 5 is based upon the intransitivity of ≤3, the question
arises how kurtosis measures behave on the transitivity sets of ≤3. However, that
question needs to be addressed separately for each candidate, which is done in the
following section. There, we focus on the fulfilment of (K2) for≤3 and the generalized
concave-convex order.

123



Measures of kurtosis: inadmissible for asymmetric distributions?

4 Measures of kurtosis: examples and properties

4.1 The standardized fourthmoment

The earliest attempt at measuring kurtosis is attributed to Pearson (1895) and is given
by the standardized fourth moment

κM : L4 → R, X �→ E

[(
X − μX

σX

)4
]

(denoted by β2 by Pearson), where Ln ⊆ P denotes the set of all distributions with
finite n-th moment for n ∈ N. Ever since, the concept of kurtosis and what it describes
has been much discussed. However, its oldest measure is still its most prominent one
and is often understood as synonymous with the notion of kurtosis itself (see, e.g.,
McAlevey and Stent 2018 or Crack 2022). The use of κM as a kurtosis measure is
in agreement with the use of the first three (standardized) moments as measures of
central location, dispersion and skewness, respectively. The fourth moment, however,
is the first that cannot be standardized with respect to a lower moment, namely the
third one. The fact that κM is not invariant to skewness (in terms of the standardized
third moment γM ) is reflected in the inequality

κM (X) ≥ (γM (X))2 + 1, F ∈ L4 (1)

(Pearson 1916, p. 432). The inequality states that a distribution that is strongly skewed
in either direction necessarily has a higher kurtosis than less skewed distributions. For
example, consider a normally distributed random variable Z . Since κM (Z) = 3, it is
less kurtotic with respect to κM than any random variable that is sufficiently skewed
to satisfy |γM (X)| >

√
2 (like, e.g., X ∼ Exp(λ), λ > 0, with γM (X) = 2). Hence,

distributions are generally not comparable with respect to κM if they exhibit a large
difference in skewness. For symmetric distributions, the measure κM preserves the
order ≤s (van Zwet 1964, pp. 20–21). The fact that ≤0

gs is generally weaker than ≤3
and equivalent to ≤s for symmetric distributions gives the following result.

Theorem 6 If the mapping κM is restricted to the domain S, it satisfies property (K2)
for the kurtosis orders ≤3 and ≤0

gs .

In fact, the result by van Zwet includes more than that: it states that every even
standardized moment higher than the second satisfies property (K2) if restricted to
symmetric distributions. This is related to the fact that the 2k-th moment, k ≥ 2,
can only be standardized with respect to the first two moments and not with respect to
higher moments. Analogously, it is easy to show that the generalization of the standard
deviation to 2k

√
E[(X − μX )2k] is a measure of dispersion for all k ≥ 1, since, contrary

to the kurtosis measure, the dispersion is not standardized out of the measure. Because
there is no way of standardizing with respect to kurtosis, the difference in terms of
kurtosis is still represented in higher-order standardized even moments.
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4.2 Quantile-based approaches tomeasuring kurtosis

Without any differentiability assumptions, convexity of order k can be defined based
on differences: Oja (1981) considers determinants of matrices, while Eberl and Klar
(2024) consider divided differences. Both approaches are equivalent (see, e.g.,Nørlund
1926). The connection of quantile-based measures of location, dispersion and skew-
ness with the corresponding orders of convex characteristics is best established using
these difference-based definitions of convexity (see, e.g., Oja 1981). Thus, we also
follow this approach for measures and orders of kurtosis. Usage of divided differences
yields that F ≤3 G is equivalent to

G−1(p3)−G−1(p2)
F−1(p3)−F−1(p2)

− G−1(p2)−G−1(p1)
F−1(p2)−F−1(p1)

F−1(p3) − F−1(p1)
−

G−1(p2)−G−1(p1)
F−1(p2)−F−1(p1)

− G−1(p1)−G−1(p0)
F−1(p1)−F−1(p0)

F−1(p2) − F−1(p0)
≥ 0

(2)

for all 0 < p0 < p1 < p2 < p3 < 1. This equivalence has previously been established
by Eberl and Klar (2024), who used it to define a quantile-based kurtosis functional.
Contrary to a conventionalmeasure, this functional quantifies the difference in kurtosis
between two given distributions and allows the functional to be compatible with the
order ≤3 in the sense that it is non-negative for arbitrary distribution functions F,G
with F ≤3 G.

Here, we use (2) as a basis for conventional kurtosis measures. Since (2) cannot
generally be rewritten in a way that is symmetric in F and G, we assume that F
is a symmetric distribution function, and choose 0 < α < η < 1/2. Further, put
p0 = α, p1 = η, p2 = 1 − η, p3 = 1 − α, and define c = F−1(η) − F−1(α) =
F−1(1−α)− F−1(1−η) and d = F−1(1−η)− F−1(η). Then, (2) takes the specific
form

1

c

(
G−1(1 − α) − G−1(α)

)
−

(
2

d
+ 1

c

) (
G−1(1 − η) − G−1(η)

)
≥ 0.

This is equivalent to

F−1(1 − α) − F−1(α)

F−1(1 − η) − F−1(η)
≤ G−1(1 − α) − G−1(α)

G−1(1 − η) − G−1(η)
. (3)

As a consequence, for 0 < α < η < 1/2, the mapping

κ
α,η
Q : P → R, F �→ F−1(1 − α) − F−1(α)

F−1(1 − η) − F−1(η)
(4)

preserves the order ≤3 on the subset S ⊆ P of symmetric distributions. The same is
true for the alternative mapping

κ
α,η
QA : P → R, F �→ F−1(1 − α) − 3F−1(1 − η) + 3F−1(η) − F−1(α)

F−1(1 − η) − F−1(η)
,
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which is structurally more similar to the kurtosis functional by Eberl and Klar (2024).
κ

α,η
QA(F) ≤ κ

α,η
QA(G) can be equivalently transformed into (3) by adding 3 on either

side. As ≤3, ≤0
gs is also preserved by both quantile-based measures, as the following

result shows.

Theorem 7 Let 0 < α < η < 1/2. If the mappings κ
α,η
Q and κ

α,η
QA are restricted to the

domain S, they both satisfy property (K2) for the kurtosis orders ≤3 and ≤0
gs .

Proof Let F,G ∈ S satisfy F ≤0
gs G. It is sufficient to show κ

α,η
Q (F) ≤ κ

α,η
Q (G).

Since RFG is antisymmetric, it is concave on supp(F) ∩ (−∞, 0] and convex on
supp(F) ∩ [0,∞). Because of F−1( 12 ) = 0, this is equivalent to

G−1(p2) − G−1(p1)

F−1(p2) − F−1(p1)
− G−1(p1) − G−1(p0)

F−1(p1) − F−1(p0)

{
≤ 0 , if 0 < p0 < p1 < p2 ≤ 1

2 ,

≥ 0 , if 1
2 ≤ p0 < p1 < p2 < 1.

(5)

Because of the symmetry of F and G, one of the two inequalities is redundant and we
limit ourselves to the upper inequality. By applying p0 = α, p1 = η, p2 = 1

2 to the
upper part of (5), we obtain

F−1(1 − α) − F−1(α)

F−1(1 − η) − F−1(η)
= F−1( 12 ) − F−1(α)

F−1( 12 ) − F−1(η)
= F−1(η) − F−1(α)

F−1( 12 ) − F−1(η)
+ 1

≤ G−1(η) − G−1(α)

G−1( 12 ) − G−1(η)
+ 1 = G−1( 12 ) − G−1(α)

G−1( 12 ) − G−1(η)
= G−1(1 − α) − G−1(α)

G−1(1 − η) − G−1(η)

The outer identities follow from the symmetry of F andG, which yields F−1(1−α)−
F−1( 12 ) = F−1( 12 ) − F−1(α) (and the same if F is replaced by G or α is replaced
by η). ��

In fact, Theorem 7 is still true, if only the less kurtotic distribution F is assumed to
be symmetric. This is already clear for≤3 from the derivation of (3), but the following
explanation for≤0

gs offersmore insight into how that relates to the relationship between
kurtosis and skewness.

Let 0 < α < η < 1
2 and F ∈ S,G ∈ P with F ≤0

gs G. Then, (5) still holds.

By choosing p0 = α, p1 = η, p2 = 1
2 in the upper case of (5) and choosing p0 =

1
2 , p1 = 1 − η, p2 = 1 − α in the lower case, we obtain

G−1( 12 ) − G−1(α)

G−1( 12 ) − G−1(η)
≥ F−1( 12 ) − F−1(α)

F−1( 12 ) − F−1(η)

= F−1(1 − α) − F−1( 12 )

F−1(1 − η) − F−1( 12 )
≤ G−1(1 − α) − G−1( 12 )

G−1(1 − η) − G−1( 12 )
. (6)
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Since κ
α,η
Q (F) and κ

α,η
Q (G) are weighted averages of the one-sided quantities in (6),

it follows

κ
α,η
Q (F) ≤ min

{
G−1( 12 ) − G−1(α)

G−1( 12 ) − G−1(η)
,
G−1(1 − α) − G−1( 12 )

G−1(1 − η) − G−1( 12 )

}
(7)

≤ G−1( 12 ) − G−1(η)

G−1(1 − η) − G−1(η)

G−1( 12 ) − G−1(α)

G−1( 12 ) − G−1(η)

+ G−1(1 − η) − G−1( 12 )

G−1(1 − η) − G−1(η)

G−1(1 − α) − G−1( 12 )

G−1(1 − η) − G−1( 12 )

= κ
α,η
Q (G). (8)

Inequality (7) is basically the same inequality that was used to prove Theorem 7 and its
tightness is influenced by both F and G. However, the tightness of inequality (8) only
depends on G with equality holding if G is symmetric, suggesting that an increase of
asymmetry for G tends to decrease the tightness of the inequality κ

α,η
Q (F) ≤ κ

α,η
Q (G).

The measures κ
α,η
Q and κ

α,η
QA have appeared quite often in the literature, see Rup-

pert (1987), Balanda and MacGillivray (1988), and Jones et al. (2011), where further
references can be found. Specific choices of the parameters in the literature are η = 1

4
and α = 0.05 or α = 0.01. Alternative parameter choices can be obtained through
equidistant evaluation of the quantile function. For example, the quintile-based mea-
sure κ

1/5,2/5
QA was introduced in Jones et al. (2011, p. 90), motivated by the analogy

with Bowley’s skewness measure γ
1/4
Q , which takes second differences instead of third

ones. Furthermore, Moors (1988, p. 26) defined the octile-based measure

M = F−1( 78 ) − F−1( 58 ) + F−1( 38 ) − F−1( 18 )

F−1( 68 ) − F−1( 28 )
.

Noting

M = κ
1/8,2/8
Q − κ

3/8,2/8
Q = κ

1/8,2/8
Q −

(
κ
2/8,3/8
Q

)−1
,

it follows that M preserves the orders ≤3 and ≤gs for symmetric distributions as well.

4.3 Density-based approaches tomeasuring kurtosis

In this section, we consider kurtosis measures based on the density and its derivatives.
The proposed quantities at times bear a resemblance to those used in Critchley and
Jones (2008), where a similar idea is addressed using a different approach.

Eberl and Klar (2024) showed that

γ
p
D : P → R, F �→ − f ′(F−1(p))

( f (F−1(p))2
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satisfies the crucial property of a skewness measure for all p ∈ (0, 1), i.e. it preserves
the order≤2. In fact, it is easy to see that R′′

FG(x) ≥ 0 for all x ∈ DF , and thereby also
F ≤2 G, is equivalent to γ

p
D(F) ≤ γ

p
D(G) for all p ∈ (0, 1). The defining inequalities

�FG(x) ≥ 0 and �′
FG(x) ≥ 0 of the orders ≤0 and ≤1 of location and dispersion

can be transformed in a similar way. By defining ν
p
D(F) = F−1(p), p ∈ (0, 1), as

a location measure and τ
p
D(F) = ( f (F−1(p)))−1 as a dispersion measure, it can be

shown that F ≤0 G is equivalent to ν
p
D(F) ≤ ν

p
D(G) for all p ∈ (0, 1) and that

F ≤1 G is equivalent to τ
p
D(F) ≤ τ

p
D(G) for all p ∈ (0, 1).

In order to use the same methodology for measures of kurtosis, we first calculate

R′′′
FG(t) =

(
1

g(RFG(t))

)5

·
[
f ′′(t)(g(RFG(t)))4 − 3 f (t) f ′(t)(g(RFG(t)))2g′(RFG(t))

+ 3( f (t))3(g′(RFG(t)))2 − ( f (t))3g(RFG(t))g′′(RFG(t))
]
.

Based on this, we find

F ≤3 G ⇔ f ′′(t)(g(RFG(t)))4 − ( f (t))3g(RFG(t))g′′(RFG(t))

≥ 3
[
f (t) f ′(t)(g(RFG(t)))2g′(RFG(t)) − ( f (t))3(g′(RFG(t))2)

]
∀t ∈ DF

⇔ f ′′(t)
( f (t))3

− g′′(RFG(t))

(g(RFG(t)))3
≥ 3

f ′(t)
( f (t))2

g′(RFG(t))

(g(RFG(t)))2
− 3

(g′(RFG(t)))2

(g(RFG(t)))4

∀t ∈ DF

⇔ f ′′(F−1(p))

( f (F−1(p)))3
− g′′(G−1(p))

(g(G−1(p)))3

≥ 3
g′(G−1(p))

(g(G−1(p)))2

(
f ′(F−1(p))

( f (F−1(p)))2
− g′(G−1(p))

(g(G−1(p)))2

)
∀p ∈ (0, 1). (9)

By plugging in the definition of γ
p
D, p ∈ (0, 1), F ≤3 G is equivalent to

f ′′(F−1(p))

( f (F−1(p)))3
− g′′(G−1(p))

(g(G−1(p)))3
≥ 3γ p

D(G)(γ
p
D(F) − γ

p
D(G)) ∀p ∈ (0, 1).

If we now assume that both F and G are symmetric, γ 1/2
D (F) − γ

1/2
D (G) = 0 holds

for the specific choice p = 1
2 . In that case, F ≤3 G implies

− f ′′(F−1( 12 ))

( f (F−1( 12 )))
3

≤ − g′′(G−1( 12 ))

(g(G−1( 12 )))
3
.

This suggests that a reasonable choice for a density-based kurtosis measure is obtained
as the special case p = 1

2 from the following class of mappings

κ
p
D : P → R, F �→ − f ′′(F−1(p))

( f (F−1(p)))3
, (10)
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where p ∈ (0, 1). By plugging this into (9), we see that F ≤3 G is equivalent to

κ
p
D(G) − κ

p
D(F) ≥ 3γ p

D(G)(γ
p
D(F) − γ

p
D(G)) ∀p ∈ (0, 1). (11)

Additionally, swapping the roles of F and G yields that G ≤3 F is equivalent to

κ
p
D(G) − κ

p
D(F) ≤ 3γ p

D(F)(γ
p
D(F) − γ

p
D(G)) ∀p ∈ (0, 1). (12)

Now, if κ
p
D is heuristically understood to measure kurtosis and γ

p
D is understood to

measure skewness, this statement can be interpreted as follows: if two distributions are
equally skewed, the right sides of both (11) and (12) vanish, meaning that the kurtosis
comparison between F and G is centred around zero. G exhibits more kurtosis than
F , if κ

p
D(G) ≥ κ

p
D(F), and vice versa, with both cdf’s being equivalent in terms of

kurtosis, if the two quantities are equal. This behaviour can be summarized as follows.

Theorem 8 Let t ∈ R and p ∈ (0, 1). If F,G ∈ T t
D,p satisfy F ≤3 G, then κ

p
D(F) ≤

κ
p
D(G).

It can be shown that κ
p
D satisfies (K1), if and only if p = 1

2 . Thus, for any t ∈ R,

κ
1/2
D restricted to the set T t

D is a measure of kurtosis in the sense of (K1) and (K2).
Note that T 0

D is a superset of S.
However, the situation gets more complex if F and G differ in terms of skewness.

Define �
p
FG = 3γ p

D(G)(γ
p
D(F) − γ

p
D(G)) as the lower limit for F ≤3 G and u p

FG =
3γ p

D(F)(γ
p
D(F) − γ

p
D(G)) as the upper limit for G ≤3 F , both for all p ∈ (0, 1).

Since

u p
FG − �

p
FG = 3(γ p

D(F) − γ
p
D(G))2 ≥ 0,

the centre of their comparison in terms of skewness extends to an interval of length
3(γ p

D(F)−γ
p
D(G))2. Hence, the bigger the difference in skewness is between the two

distributions, the larger the interval that is associated with equivalence with respect
to the kurtosis order ≤3. The aforementioned centre of the kurtosis comparison not
only extends to an interval but also shifts, depending on the concrete values of γ

p
D(F)

and γ
p
D(G) and, more specifically, on their signs. It is easy to see from the definitions

that �
p
FG and u p

FG have the same sign, if and only if γ
p
D(F) and γ

p
D(G) have the

same sign. Note that �pFG and u p
FG having the same sign means that κ p

D(F) = κ
p
D(G)

for all p ∈ (0, 1) implies F <3 G if this sign is negative and G <3 F if it is
positive. Furthermore, 0 is contained in the interval [�pFG, u p

FG ], around which the
kurtosis comparison is centred, if and only if γ

p
D(F) and γ

p
D(G) have differing signs

(including the case that either is zero).
The interplay of the difference of kurtosis measures and the upper and lower limits

with respect to the order ≤3 is considered in the following for the example of Weibull
distributions.

Example 9 Let X ∼ Weib(1) with cdf F and let Y ∼ Weib(k) with cdf G for k > 0,
where Weib(k) denotes the Weibull distribution with shape parameter k and scale
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Fig. 1 Graph of the difference of density-based kurtosis measures for the Weib(1) and the Weib(k)-
distribution

parameter 1. The difference κ
p
D(G)−κ

p
D(F) for p = 1

2 is plotted in Fig. 1 as a function

of k. Additionally, the plot shows in red the lower and upper limits �
1/2
FG and u1/2FG from

(11) and (12). All three graphs are obviously zero at k = 1 since F = G holds in that
case. For 1 < k < 2, we have κ

1/2
D (G) − κ

1/2
D (F) > u1/2FG . This observation is in line

with F <3 G holding for exactly those values of k as mentioned in Eberl and Klar
(2024) because of the equivalence

F <3 G ⇔ F ≤3 G and G �3 F ⇔ κ
p
D(G) − κ

p
D(F) ≥ �

p
FG ∀p ∈ (0, 1) and

∃p0 ∈ (0, 1) : κ
p0
D (G) − κ

p0
D (F) > u p0

FG .

(13)

In this case, the latter inequality holds for p0 = 1
2 . The observation κ

1/2
D (G) −

κ
1/2
D (F) < �

1/2
FG for 1

2 < k < 1 is in accordance with the fact that G <3 F
holds in a similar way. This is not immediately obvious from Fig. 1 but can be vali-
dated by rescaling the plot window. The fact that κ

1/2
D (G) − κ

1/2
D (F) ∈ [�1/2FG, u1/2FG]

holds for k < 1
2 and k > 2 is an implication of F =3 G. For the same reason,

κ
p
D(G) − κ

p
D(F) ∈ [�pFG, u p

FG ] follows for all p ∈ (0, 1).
Note that the family of Weibull distributions decreases in skewness with respect

to ≤2 as k increases. Hence, the sign change of both �
1/2
FG and u1/2FG at k = 1 stems

from the fact that γ 1/2
D (G) − γ

1/2
D (F) changes its sign from positive to negative. The

additional sign change of �
1/2
FG at k ≈ 3.26 stems from γ

1/2
D (G) changing sign. The
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Weibull distribution changes from right-skewed to left-skewed around that value of k
with the exact value being determined by the utilized skewness measure.

Overall, (11) and (12) suggest that the comparison of distributions in terms of
kurtosis has to account for possible differences in skewness. The same observation
is made in Sects. 4.1 and 4.2. In the first case, the evidence comes in the form of the
well-known inequality (1). In the second case, it is shown that the tightness of the
inequality κ

α,η
Q (F) ≤ κ

α,η
Q (G) is reduced if F or G are markedly skew or if they

exhibit a large difference in skewness.
A similar statement can be made about the density-based measurement of kurtosis

in this section. However, compared to the ideas from Sect. 4.2, the inequalities (11)
and (12) represent the influence of skewness on the measurement of kurtosis in a more
precise way. Since these inequalities also characterize the kurtosis order≤3, this helps
to understand why it is difficult to meaningfully apply the order to distributions with
a significant difference in skewness.

Similarly to the quantile-based kurtosis functional κα
QF , α ∈ (0, 1

2 ), by Eberl
and Klar (2024), which preserves the order ≤3 in the sense that F ≤3 G implies
κα
QF (F,G) ≥ 0, we can now define a density-based kurtosis functional by

κ
p
DF (F,G) = κ

p
D(G) − κ

p
D(F) − 3γ p

D(G)
(
γ
p
D(F) − γ

p
D(G)

)

for all p ∈ (0, 1). An advantage κ
p
DF has over κα

QF is that it characterizes the order≤3

in the sense that F ≤3 G is equivalent to κ
p
DF (F,G) ≥ 0 for all p ∈ (0, 1). However,

neither κ
p
DF nor κα

QF is symmetric in their two arguments F and G.
Another connection between density- and quantile-based measures is that the for-

mer can be obtained as a limiting case of the latter. This is also true for corresponding
measures of dispersion and skewness as discussed in the following remark.

Remark 10 Let F ∈ P .

(a) The canonical quantile-basedmeasures of location are quantiles themselves,which
can be seen as density-based measures of location, as stated in the beginning of
this section.

(b) The canonical quantile-based measure of dispersion is the interquantile distance
(see, e.g., Müller and Stoyan 2002). In order to obtain a symmetric quantity, we
define τα

Q(F) = F−1(1−α)−F−1(α), α ∈ (0, 1
2 ). Obviously, limα↗ 1

2
τα
Q(F) = 0

holds. In order to obtain a derivative, we multiply with a factor that only depends
on α and not on F itself, which vanishes for α ↗ 1

2 . This yields

lim
α↗ 1

2

1

1 − 2α
· τα

Q(F) = lim
α↗ 1

2

F−1(1 − α) − F−1(α)

(1 − α) − α

=
(
F−1

)′ (1

2

)
= 1

f (F−1( 12 ))
= τD(F).
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(c) A quantile-based skewness measure that is structurally similar to the previously
presented quantities is given by

γ α
D(F) = F−1(1 − α) − 2F−1( 12 ) + F−1(α)

F−1(1 − α) − F−1(α)

(see, e.g., Groeneveld and Meeden 1984). After multiplying with a similar α-
dependent factor as before, we now obtain the limiting value for α ↗ 1

2 by
rewriting the resulting termas the ratio of a second-order and afirst-order difference
quotient

lim
α↗ 1

2

4

1 − 2α
· γ α

Q(F) = 4 · lim
α↗ 1

2

F−1(1−α)−2F−1( 12 )+F−1(α)

(1−2α)2

F−1(1−α)−F−1(α)
1−2α

=
(
F−1

)′′
( 12 )(

F−1
)′

( 12 )

= − f ′(F−1( 12 ))

( f (F−1( 12 )))
2

= γD(F),

where we used that

(
F−1

)′′
(p) =

(
1

f (F−1(p))

)′
= − f ′(F−1(p))

( f (F−1(p)))3

for p ∈ (0, 1).
(d) The quantile-based kurtosis measure that seems to be most closely related to τα

Q

and γ α
Q is κ

α,η
QA because it has a higher-order difference in its numerator. Because

κ
α,η
QA is dependent upon two parameters 0 < α < η < 1

2 , further assumptions have
to bemade to calculate a meaningful limit. In order to obtain a natural continuation
of the previous limits, α and η are chosen in such away that the evaluation points of
the quantile function are equidistant. Hence, we choose η = 1

2 −β and α = 1
2 −3β

for a β ∈ (0, 1
6 ), meaning that the distance between to neighbouring evaluation

points is fixed to 2β. After slightly altering the previously used rescaling factor,
the following limit is obtained for β ↘ 0

lim
β↘0

2

β2 · κ
1
2−3β, 12−β

QA (F) = 8 · lim
β↘0

F−1( 12+3β)−3F−1( 12+β)+3F−1( 12−β)−F−1( 12−3β)

(2β)3

F−1( 12+β)−F−1( 12−β)

2β

=
(
F−1

)′′′
( 12 )(

F−1
)′

( 12 )
= − f ′′(F−1( 12 ))

( f (F−1( 12 )))3
+ 3

(
f ′(F−1( 12 ))

( f (F−1( 12 )))2

)2

= κ
1/2
D (F) + 3(γ 1/2

D (F))2. (14)

In contrast to the two previous parts, we do not obtain the already known density-
based measure as the limiting value. However, if the limit above is defined as an
alternative density-based kurtosis measure, most of the results concerning κD can
be replicated.
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Particularly, if we define

κ
p
DA : P → R, F �→ κ

p
D(F) + 3(γ p

D(F))2,

we obtain that F ≤3 G is equivalent to

κ
p
DA(G) − κ

p
DA(F) ≥ 3γ p

D(F)(γ
p
D(G) − γ

p
D(F)) ∀p ∈ (0, 1). (15)

This lower bound coincides with �
p
GF , the lower bound for the corresponding

difference of measures κ
p
D with the roles of F and G reversed. Therefore, κ

p
DA

also preserves the order≤3, if F andG are equally skewed in the sense of γ p
D(F) =

γ
p
D(G), or if one of the cdf’s (in this case F) is symmetric and p = 1

2 .

4.4 Expectile-based approaches tomeasuring kurtosis

Eberl andKlar (2022, 2023) presentedmethods for the quantification of dispersion and
skewness using expectiles. Expectiles are generalized quantiles and possess a number
of desirable quantities. In the cited papers, expectile-based measures of dispersion
and skewness were defined analogously to the quantile-based measures τα

Q and γ α
Q in

the present paper by simply substituting the quantile function for the corresponding
expectile function. In the context of this paper, we denote these measures by τα

E
and γ α

E . Since the resulting quantities are at times difficult to analyze, their limits
analogous to those obtained in Remark 10 were considered since they are easier to
handle; they are given by τEL(X) = E[|X − μX |] (the mean absolute deviation) and
by γEL(F) = 2F(μF ) − 1. In this section, we proceed similarly for measures of
kurtosis.

For any cdf F ∈ L1 with eF denoting the corresponding expectile function, we
define an expectile-based kurtosis measure by

κ
α,η
E (F) = eF (1 − α) − 3eF (1 − η) + 3eF (η) − eF (α)

eF (1 − η) − eF (η)
, 0 < α < η <

1

2
.

We use the analogue to κ
α,η
QA instead of the equivalent analogue to κ

α,η
Q because the

former is better suited for determining its limiting value, as noted in Remark 10. In
contrast to the expectile-based measures considered in Eberl and Klar (2022, 2023),
the expectile kurtosis κ

α,η
E has the major problem that it is not known whether it

preserves any kurtosis order on some subset of distributions like S. Thus, its limiting
value is needed to draw a connection to kurtosis orders. We consider the same limit
as in (14) and replace the quantile function with the corresponding expectile function,
yielding

lim
β↘0

2

β2 · κ
1
2−3β, 12−β

E (F) = 8 · lim
β↘0

eF ( 12+3β)−3eF ( 12+β)+3eF ( 12−β)−eF ( 12−3β)

(2β)3

eF ( 12+β)−eF ( 12−β)

2β
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= (eF )′′′ ( 12 )
(eF )′ ( 12 )

. (16)

The first two derivatives of the expectile function eF , evaluated at 1/2, are given by

e′
F (1/2) = 2τEL(F),

e′′
F (1/2) = 8τEL(F) · (2F(μF ) − 1)

(see Eberl and Klar 2022). To shorten the following calculations, we use the abbre-
viation δF = τEL(F). The third derivative at 1/2 can be calculated similarly to the
second, which utilizes the general form of the first derivative, given by

e′
F (α) = E[|X − eF (α)|]

(1 − α)F(eF (α)) + α (1 − F(eF (α)))
, α ∈ (0, 1)

(see Holzmann and Klar 2016). If we denote the numerator and the denominator by
u(α) and v(α), respectively, we obtain

e′′′
F ( 12 ) = lim

α↗ 1
2

u′′(α)(v(α))2 − 2u′(α)v′(α)v(α) + 2u(α)(v′(α))2 − u(α)v′′(α)v(α)

(v(α))3
.

This can be calculated using

u(α) = E[|X − eF (α)|] α→ 1
2→ δF ,

u′(α) = e′
F (α)(2F(eF (α)) − 1)

α→ 1
2→ e′

F ( 12 )(2F(μF ) − 1) = 2δFγEL (F),

u′′(α) = e′′
F (α)(2F(eF (α)) − 1) + 2(e′

F (α))2 f (eF (α))
α→ 1

2→ 8δF
(
(γT (F))2 + δF f (μF )

)
and

v(α) = (1 − α)F(eF (α)) + α(1 − F(eF (α)))
α→ 1

2→ 1
2 ,

v′(α) = (1 − 2F(eF (α))) + (1 − 2α) f (eF (α))e′
F (α)

α→ 1
2→ −γEL(F),

v′′(α) = (1 − 2α) f ′(eF (α))(e′
F (α))2 + (1 − 2α) f (eF (α))e′′

F (α) − 4 f (eF (α))e′
F (α)

α→ 1
2→ −8 f (μF )δF

(see also Eberl and Klar 2022). Hence,

e′′′
F ( 12 ) = 8

[
2δF

(
(γEL (F))2 + δF f (μF )

) + 2δF (γEL (F))2 + 2δF (γEL (F))2 + 4 f (μF )δ2F
]

= 48δF
(
δF f (μF ) + (γEL (F))2

)
.
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By plugging this into (16), we obtain the limiting expectile-based kurtosis measure

lim
β↘0

2

β2 · κ
1
2−3β, 12−β

E (F) = (eF )′′′ ( 12 )
(eF )′ ( 12 )

= 48δF
(
δF f (μF ) + (γEL(F))2

)
2δF

= 24
(
δF f (μF ) + (γEL(F))2

)
.

Disregarding the factor 24, we define the mapping

κEL : L1 → R, F �→ τEL(F) · f (μF ) + (γEL(F))2. (17)

If we restrict that mapping to symmetric distributions, the second summand vanishes,
as then, γT (F) = 0. In that case, κEL satisfies the requirements for a kurtosis measure.

Theorem 11 If the mapping κEL is restricted to the domain S, it satisfies (K1) and
(K2) for the kurtosis orders ≤3 and ≤0

gs .

Proof Let F ∈ S.We start by showing thatκEL satisfies (K1) in two steps. Toprove that
κEL(aX + b) = κEL(X) for all a > 0 and b ∈ R, note that τEL(aX + b) = aτEL(X)

and

faX+b(E[aX + b]) = 1

a
f

(
E[aX + b] − b

a

)
= 1

a f (μF ).

For (K1), it remains to be shown that κEL(−X) = κEL(X), which is implied by
τEL(−X) = τEL and f−X (E[−X ]) = f (−E[−X ]) = f (μF ).

Now, assume F,G ∈ S such that F ≤0
gs G. Since κEL satisfies (K1), it is

invariant under shifts and rescaling, and we may assume without restriction that
μF = μG = 0 and f (μF ) = g(μG). It follows from F ≤0

gs G as well as
F,G ∈ S that RFG is concave on (−∞, 0] ∩ DF and convex on [0,∞) ∩ DF .
Thus, R′

FG(t) = f (t)/g(RFG(t)), t ∈ DF , is decreasing for t ≤ 0 and increasing
for t ≥ 0. Therefore, the function R′

FG reaches its global minimum f (μF )/g(μG) =
f (0)/g(0) = 1 at 0. (Since both F and G are symmetric, their medians and means
coincide, yielding RFG(0) = 0.) It follows that R′

FG(t) ≥ 1 for all t ∈ DF , which
is equivalent to F ≤1 G. Since τEL is a dispersion measure (see Hürlimann 2002, p.
15), τEL(F) ≤ τEL(G) holds, concluding the proof. ��

In fact, the result above holds for any mapping κ : S → R, F �→ τ(F) f (ν(F)),
where ν is an arbitrary measure of central location and τ is an arbitrary measure of
dispersion. The second generalization is valid because the fact that τEL is a dispersion
measure is the only property of τEL that is utilized in the proof of Theorem 11. The
mean can be replaced by any other location measure since all location measures are
equal on a symmetric distribution.

We make use of this flexibility by centring the kurtosis measure around the median
instead of around the mean. The resulting mapping

κEM : L1 → R, F �→ E[|X − F−1( 12 )|] · f (F−1( 12 )), (18)
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involves the mean absolute deviation around the median and preserves the order ≤3
under weaker assumptions.

Theorem 12 Let t ∈ R. If F,G ∈ T t
D,1/2 satisfy F ≤3 G, then κEM (F) ≤ κEM (G).

Proof Since κEM is invariant to affine linear transformations (for analogous reasons
as κEL on S), we can assume without restriction that F−1( 12 ) = G−1( 12 ) = 0 and
f (F−1( 12 )) = g(G−1( 12 )). According to Proposition 12 in Eberl and Klar (2024),
1/2 is a so-called inflection value for all pairs F,G ∈ T t

D,1/2 with F ≤3 G, meaning

that RFG is concave on (−∞, F−1(1/2)]∩ supp(F) and convex on [F−1(1/2),∞)∩
supp(F). Noting F−1(1/2) = 0 and that the mapping F �→ E[|X − F−1(1/2)|] is
also a dispersion measure (see Hürlimann 2002, p. 15), the remainder of the proof is
analogous to that of Theorem 11. ��

4.5 Ratios of dispersionmeasures as measures of kurtosis

As mentioned in the introduction, one of the first attempts to construct kurtosis mea-
sures in a general way was made by Bickel and Lehmann (1975, pp. 469–470), where
they announced to define a kurtosis measure as a ‘suitable’ ratio of two (possibly
rescaled) dispersion measures. Of the measures we have discussed in Sect. 4, several
fit this description.

The most obvious instance is the quantile-based measure κ
α,η
Q , which is defined

as a wider interquantile range divided by a more narrow interquantile range. Any
interquantile range is by definition a measure of dispersion. The situation is similar
for the expectile kurtosis κE , which is equivalent to a ratio of two interexpectile
ranges τE . While any interexpectile range is a dispersion measure (see Eberl and Klar
2023), the ratio could not be shown to preserve the order ≤3 on any notable subset of
distributions.

Another example is the expectile limit measure around the median, which can be
rewritten as

κEM (F) = E[|X − F−1( 12 )|]
τD(F)

.

Finally, themoment-basedmeasure κM is equivalent to themonotonically transformed

4
√

κM (F) =
4
√

E[(X − μF )4]
σF

, F ∈ L4.

Here, two measures κ1 and κ2 are said to be equivalent, if κ1(F) ≤ κ1(G) is
equivalent to κ2(F) ≤ κ2(G) for all cdf’s F and G. Since the generalized standard
deviation 2k

√
E[(X − μF )2k] is also a dispersion measure for all k ∈ N (see Sect. 4.1),

4
√

κM is also a ratio of two dispersion measures. The other kurtosis measures in this
work have no obvious representation as a ratio of two dispersion measures. Hence,
while the rather vague definition from Bickel and Lehmann (1975) has some merit, it
does not seem to coincide with the order-based approach.

123



A. Eberl, B. Klar

A pattern can be observed for kurtosis measures that are ratios of two dispersion
measures. In all cases, the dispersion measure in the numerator puts more emphasis on
the tails of the distribution relative to the measure in the denominator, which focuses
more on the centre of the distribution. This begs the question as to why these kinds
of constructions tend to preserve the order ≤3, at least on the subset of symmetric
distributions. While the notion of ’putting more emphasis on the tails’ seems to be
too vague to obtain any general rigorous result explaining this behaviour, the proof
of Theorem 11 is fairly instructive for this kind of situation. If F,G ∈ S, F �= G
satisfy F ≤0

gs G, then the function R′
FG is decreasing up to 0 and increasing from

there on. We now assume that the more centre-focused dispersion measures τC in the
denominator satisfies τC (F) = τC (G). If τC not only preserves the dispersive order
≤1 but also its strict version<1, then neither R′

FG > 1 nor R′
FG < 1 is true. It follows

that there exists a t0 ∈ DF ∩ [0,∞) such that R′
FG(t) > 1 holds for |t | ≥ t0. If the

more tail-focused dispersion measure τT in the numerator is sufficiently similar to
τC , then τT (F) ≤ τT (G) follows from the fact that the dispersions of F and G are
similar around the centre (since τC (F) = τC (G)) and that F is more dispersed than
G on the tails (since R′

FG(t) > 1 for large absolute values of t). Overall, the mapping
F �→ τT (F)/τC (F) then preserves the concave-convex order ≤0

gs and therefore also
the order ≤3.

This similarity in the construction of a number of kurtosis measures strengthens
the interpretation of the concept of kurtosis by Balanda and MacGillivray (1988),
who describe kurtosis as “the location- and scale-free movement of probability mass
from the shoulders of a distribution into its center and tails”. The density of a typical
symmetric and unimodal distribution that is very kurtotic has a sharp peak in the
centre, declines steeply away from it, and has fat tails. Thus, the dispersion of the
distributionmostly lies far away from its centre. If a distribution exhibits little kurtosis,
the shoulders of its density are very prominent compared to its centre and tails. Here,
the dispersion of the distribution ismostly close to the centre. Overall, a centre-focused
dispersion measure τC tends to take larger values for distributions with less kurtosis,
and a tail-focused dispersion measure τT tends to take larger values for more kurtotic
distributions. This is illustrated in Fig. 2.

4.6 Numerical comparison of the different kurtosis measures

Since measures of kurtosis are much more prevalent in applied sciences than in the
mathematical literature, we briefly compare the numerical values of the measures
considered in the previous subsections. For that, we use three families of distributions:
Student’s t-distribution, the beta distribution and the sinh-arcsinh distribution. To
simplify the notation, we denote κQ = κ

0.05,0.25
Q , κD = κ0.5

D and κ
0.05,0.25
E throughout.

Furthermore, note that κEL = κEM holds for symmetric distributions.
First, we consider Student’s t-distribution, which is a classical example for a one-

parameter familiy of symmetric distributions that varies in terms of kurtosis. The
values of all six kurtosis measures analyzed in this paper are plotted in Fig. 3. Instead
of κE we consider κE + 3, which is structurally equivalent to κQ and always takes
non-negative values. The different measures all behave similarly with large values and
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Fig. 2 Illustration: the centre-focused dispersion measure τC is smaller for the more kurtotic distribution G
in blue and larger for the less kurtotic distribution F in orange. The opposite is the case for the tail-focused
dispersion measure τT . (Here: τC = τ0.25Q and τT = τ0.01Q )

a steep decline for a small number of degrees of freedom. The curves then all flatten
out as the parameter increases. The levels at which they flatten out as well as the exact
shapes of the curves vary between the different measures. This can partly be explained
by the fact that some of them are only defined for sufficiently high degrees of freedom.

Next, we use the beta distribution, which depends on two shape parameters α, β >

0. We consider the symmetric case α = β, as well as α = 5β, i.e. asymmetric,
left-skewed distributions. The values of the kurtosis measures in both scenarios are
shown in Fig. 4. The curves in the symmetric case behave similarly to those for the t-
distribution as they all have a similar shape andmostly differ in scale and shift. The fact
that the distribution becomes more kurtotic for increasing parameter values coincides
with its visual perception. For small values of α, κD takes negative values because the
density function is then left-curved at its center rather than right-curved as it usually
is for symmetric unimodal distributions. In the asymmetric case, however, the six
kurtosis measures behave very differently: some are increasing, some are decreasing
and some are neither. This is because the skewness of the distribution interferes with
the measurement of its kurtosis by introducing ambiguity.

Finally, we consider the sinh-arcsinh distribution introduced by Jones and Pewsey
(2009). A random variable X is said to be sinh-arcsinh-distributed with skewness
parameter ν ∈ R and (inverse) kurtosis parameter τ > 0, if

Z = Sν,τ (X) = sinh(τ · arsinh(X) − ν)

is standard normal. This distribution family is superior to other skewness-kurtosis-
families for several reasons: its density, quantile function and moments can easily be
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Fig. 3 Values of the six considered kurtosis measures for Student’s t distribution tν with varying degrees
of freedom ν > 0
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Fig. 4 Values of the six considered kurtosis measures the beta distribution B(α, β) with varying shape
parameters α, β > 0

calculated, it includes the standard normal distributions in the interior of the param-
eter space, and, most importantly, its kurtosis parameter exhibits strong invariance
properties with respect to its skewness parameter (Eberl and Klar 2024). Besides the
symmetric case ν = 0, we consider the asymmetric, right-skewed case of ν = 1. The
corresponding values of the kurtosis measures are plotted in Fig. 5. In the symmetric
case, all kurtosis measures again behave similarly. As one would expect, all curves
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Fig. 5 Values of the six considered kurtosis measures for the sinh-arcsinh distribution SAS(ν, τ ) with
varying skewness parameter ν ∈ R and (inverse) kurtosis parameter τ > 0

are decreasing. While the differences in the shapes of the curves are larger in the
asymmetric case, all kurtosis measures except κD are still decreasing as a function
of τ . This behaviour persists if the degree of skewness is increased further, and we
conjecture that this is related to the fact that the skewness and kurtosis parameters
of this distribution family are not entangled (see Eberl and Klar 2024, Theorem 23).
The peculiar behaviour of the density-based kurtosis measure is explained by the fact
that it evaluates the distribution only in a local way. For symmetric unimodal distri-
butions, the density evaluated at the median (which then coincides with the mode) is
right-curved, resulting in κD > 0. However, in the right-skewed case, the median is
typically larger than the mode and then lies within a long left-curved area of the den-
sity, leading to κD < 0. In order to understand what information is actually conveyed
by this value of the kurtosis measure, one has to take the values of the corresponding
density-based skewness measure γD into account in the sense of (11).

4.7 Empirical counterparts of the different measures of kurtosis

The asymptotic distribution of the empirical moment kurtosis, i.e. the fourth standard-
ized empirical moment, can be found in Borroni and De Capitani (2022, Theorem
2). In the following, we briefly discuss the empirical counterparts of the remaining
kurtosis measures. Details run along the lines of the corresponding skewness measures
(Eberl and Klar 2020), and are omitted.

Let X1, . . . , Xn be independent and identically distributed random variables with
X1 ∼ F . Further, let q̂p denote the empirical p-quantile. Then, for 0 < α < η < 1/2,
the obvious plug-in estimator of κ

α,η
Q in (4) is κ̂

α,η
Q = (q̂1−α − q̂α)/(q̂1−η − q̂η), and
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standard arguments yield the asymptotic normality

√
n

(
κ̂

α,η
Q − κ

α,η
Q

)
D−→ N

(
0, σ 2

κQ

)
,

where σ 2
κQ

depends on α, η and F . Similarly, one can construct plug-in estimators of

κ
α,η
QA and M .

For estimating κ
1/2
D in (10), one needs estimates of the density f and its second

derivative. This is commonly achieved by using a kernel density estimator f̂h and its
second derivative f̂ ′′

h , where h denotes the bandwidth. Then, a possible estimator is

κ̂
1/2
D = − f̂ ′′

h (q̂1/2)/( f̂h(q̂1/2)
3).

Since the optimal bandwidth for estimation of the r th derivative is of order n−1/(2r+5),
one can show that the AMISE converges to zero with rate n−4/(2r+5) (Scott 1992).
Hence, very large sample sizes are necessary compared to the rate n−1 for quantile-
based measures to obtain a comparably accurate estimate.

Assuming a finite secondmoment and using the asymptotics of empirical expectiles
(Holzmann andKlar 2016), it can be proved that the estimator κ̂α,η

E = (ê1−α −3ê1−η+
3êη − êα)/(ê1−η − êη) of κ

α,η
E in (16) satisfies

√
n

(
κ̂

α,η
E − κ

α,η
E

) D−→ N
(
0, σ 2

κE

)
,

where σ 2
κE

depends on α, η and F . On the other hand, the plug-in estimator of κEL in
(17), given by

κ̂EL = f̂h(X̄)

n∑
j=1

|X j − X̄ |/n + (
2Fn(X̄) − 1

)2
,

again suffers from a rate of convergence slower than n−1, but not to the same extent as
κ̂
1/2
D . The same remark applies to the plug-in estimator of κEM in (18). In summary,

estimators for all measures of kurtosis are readily available. Estimators involving the
estimation of the density or its derivative need larger sample sizes. This concerns
κ
1/2
D in particular, which is why this measure should only be used for theoretical

considerations.

5 Conclusion

As shown in this work, kurtosis measures in the traditional sense do not exist, due to
the intrinsic entanglement between skewness and kurtosis. This implies that kurtosis
cannot be measured in the same way as location, dispersion and skewness, and the
same also holds for all higher convex characteristics. One possible solution to this
problem is given by the kurtosis functional introduced by Eberl and Klar (2024),
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which quantifies the difference in kurtosis between two given distributions. Another
approach, which allows the kurtosis of a single distribution to be quantified, is pursued
throughout Sect. 4 of this paper by restricting kurtosis measures to transitivity sets of
the order ≤3. However, most of the results are only valid if the measure is restricted to
the specific transitivity set S of symmetric distributions. In particular, this is true for
the moment- and quantile-based measures, the two most well-known quantities in the
literature. The only kurtosis measures that preserve ≤3 on more general transitivity
sets are κ

p
D and κEM , both of which are computed by evaluating the density of the

distribution in question. This makes it difficult to apply these measures to data.
Some of the results on the preservation of ≤3 by kurtosis measures on transitiv-

ity sets also shed some light on how notable differences in skewness influence the
behaviour of these measures. An instructive example of this are formulas (11) and
(12) on the relationship between the density-based measures of skewness and kurto-
sis. They can be interpreted as follows: as long as two distributions F andG are equally
skewed, their kurtosis values are perfectly comparable. However, as the distributions
start to differ in skewness, a window of indistinguishability in terms of kurtosis opens
up. If the difference of the kurtosis values lies within this window, neither of the two
distributions can be pointed out as being more kurtotic as F =3 G holds. If the two
distributions are differently skewed in the same direction, zero is not even included in
this window of indistinguishability. Thus, differences in skewness obscure the view
on the comparison in terms of kurtosis.

Although the interaction with skewness is not equally explicit for other kurtosis
measures, they do exhibit tendencies pointing in a similar direction. For the quantile-
based measure κ

α,η
Q , the kurtosis order is preserved by respective one-sided quantities

that measure kurtosis on either side of the center of the distributions. However, the
weights in their weighted average which gives the overall kurtosis measure are depen-
dent on the skewness of the involved distributions. If themargin between the one-sided
quantities is not wide enough relative to the skewness difference, no meaningful dif-
ference in terms of kurtosis can be established.

That considerable skewness in either direction interferes with the measurement of
kurtosis is also represented in the fact that the square of a related skewness measure
plays an additive role in a number of kurtosis measures. Obviously, this is the case
in the well-known inequality between the moment-based measures of skewness and
kurtosis. This is even more explicit in the kurtosis measures κ

p
DA and κEL , where the

closely related skewness measure features as a squared summand in the definition.
A goal in future research is to find a general approach to construct kurtosis mea-

sures in a way that incorporates the intrinsic influence of skewness. Similarly, a more
rigorous foundation underlying the idea of kurtosis measures as ratios of dispersion
measures and how this incorporates skewness would be desirable.
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