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Abstract
Bayesian networks are awidely-used class of probabilistic graphicalmodels capable of
representing symmetric conditional independence between variables of interest using
the topology of the underlying graph. For categorical variables, they can be seen as
a special case of the much more general class of models called staged trees, which
can represent any non-symmetric conditional independence. Here we formalize the
relationship between these two models and introduce a minimal Bayesian network
representation of a staged tree, which can be used to read conditional independences
intuitively. A new labeled graph termed asymmetry-labeled directed acyclic graph
is defined, with edges labeled to denote the type of dependence between any two
random variables. We also present a novel algorithm to learn staged trees which only
enforces a specific subset of non-symmetric independences. Various datasets illustrate
the methodology, highlighting the need to construct models that more flexibly encode
and represent non-symmetric structures.

Keywords Asymmetric graphical models · Bayesian networks · Context-specific
independence · Staged trees · Structural learning

1 Introduction

Probabilistic graphical models give an intuitive and efficient representation of the
relationships between random variables of interest. Bayesian networks (BNs) (see
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e.g. Darwiche 2009) are the most commonly used graphical model and have been
applied in a variety of real-world applications. One of the main limitations of BNs is
that they can only represent symmetric conditional independences, which in practice
can be too restrictive.

For this reason, Boutilier et al. (1996) introduced the notion of context-specific inde-
pendence, meaning that independences hold only for specific values, or contexts, of the
conditioning variables. Extensions of BNs encoding context-specific independences
are usually defined by associating a tree representation to each vertex of the network
(Cano et al. 2012; Friedman andGoldszmidt 1996; Talvitie et al. 2019), by labeling the
edges (Pensar et al. 2015; Hyttinen et al. 2018), or by using some alternative approach
(Chickering et al. 1997; Geiger and Heckerman 1996; Poole and Zhang 2003). In
recent years there has been a growing interest in formalizing context-specific inde-
pendence (Corander et al. 2019; Shen et al. 2020) and in generalizing other graphical
models with non-symmetric dependencies (Nyman et al. 2016; Pensar et al. 2017).

Except for Jaeger et al. (2006) and Pensar et al. (2015), BNs embellished with
context-specific independence lose their intuitiveness since all the model information
cannot be succinctly represented in a unique graph. Staged trees (Smith and Anderson
2008;Collazo et al. 2018) are probabilistic graphicalmodels that, starting fromanevent
tree, represent non-symmetric conditional independence statements via a coloring of
its vertices. Coloring has recently been found to provide a valuable embellishment to
other graphical models (Højsgaard and Lauritzen 2008; Massam et al. 2018).

As demonstrated by Smith andAnderson (2008) andDuarte and Solus (2023), every
BNcanbe represented as a staged tree.However, the class of staged treemodels ismuch
more general and can represent both symmetric and context-specific, partial and local
independences (Pensar et al. 2016). Furthermore, awide array ofmethods to efficiently
investigate real-world applications have been introduced for staged trees, including
user-friendly software (Carli et al. 2022), inferential routines (Görgen et al. 2015),
structural learning (Freeman and Smith 2011), dealing with missing data (Barclay
et al. 2014), causal reasoning (Thwaites et al. 2010) and identification of equivalence
classes (Görgen et al. 2018), to name a few. Such techniques are generally not available
for other graphical models embedding non-symmetric independences, thus making
staged trees a viable and efficient option for applied analyses.

Our first contribution is a deeper study of the relationship between BNs and staged
trees. We introduce a minimal BN representation of a staged tree that embeds all
its symmetric conditional independences. Importantly, this allows us to introduce a
criterion to identify all symmetric conditional independences implied by the model,
which has proven to be a very challenging task (Thwaites and Smith 2015).

Reading non-symmetric independences directly from the staged tree is even more
challenging. Our second contribution is a novel definition of classes of dependence
among variables and the introduction of methods to identify the appropriate class from
the staged tree. The presence or absence of edges in aBNencodes either (conditionally)
full dependence or independence between two variables. However, the flexibility of the
staged tree enables us to model and consequently identify intermediate relationships
between variables, namely context-specific, partial, or local (Pensar et al. 2016).

As a result, our third contribution is the definition of a new class of directed
acyclic graphs (DAGs), termed asymmetry-labeled DAGs (ALDAGs), by coloring
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edges according to the type of relationship existing between the corresponding vari-
ables. Learning algorithms for ALDAGs, which use any structural learning algorithm
for staged trees (see e.g. those included in the R package stagedtrees, Carli et al.
2022), are discussed below and applied to various datasets. Our fourth contribution
is the definition of a new visualization of dependence, called the dependence subtree,
which shows how a variable is related to only those directly affecting it, namely its
parents in the associated ALDAG. The use of such a tool is showcased in our data
applications below.

Structural learning of generic staged trees is hard, due to the explosion of the model
search space as the number of variables increases (see e.g. Duarte and Solus 2021).
For this reason, recent research has focused on sub-classes of staged tree models: Carli
et al. (2023) defined naive staged trees which have the same number of parameters of
a naive BN over the same variables; Leonelli and Varando (2024b) considered simple
staged trees which have a constrained type of partitioning of the vertices; Leonelli
and Varando (2022) introduced k-parents staged trees which limit the number of vari-
ables that can have a direct influence on another; Duarte and Solus (2021) defined
CStrees which only embed symmetric and context-specific types of independence.
Our last contribution is the introduction of a novel algorithm, called context-specific
backward hill-climbing (CSBHC), to learn a new class of staged trees whose staging
is restricted. In particular, the proposed algorithm learns staged trees whose corre-
sponding ALDAGs have a restricted subset of labels, those associated to the search of
context-specific independences only: see Sect. 5.3.1 for more details.

The code to replicate our analyses is available at https://github.com/stagedtrees/
stagedtrees_aldag. Datasets are freely available from the associated references.

2 Bayesian networks and conditional independence

Let G = ([p], F) be a directed acyclic graph (DAG) with vertex set [p] = {1, . . . , p}
and edge set F . Let X = (Xi )i∈[p] be categorical random variables with joint mass
function P and sample space X = ×i∈[p]Xi . For A ⊂ [p], we let XA = (Xi )i∈A

and xA = (xi )i∈A where xA ∈ XA = ×i∈AXi . We say that P is Markov to G if, for
x ∈ X,

P(x) =
∏

k∈[p]
P(xk |x�k ),

where �k is the parent set of k in G and P(xk |x�k ) is a shorthand for P(Xk =
xk |X�k = x�k ). Assuming X is topologically ordered according to G (i.e. a linear
ordering of [p] for which only pairs (i, j) where i appears before j in the order can
be in the edge set), the ordered Markov condition implies conditional independences
of the form

Xi ⊥⊥ X[i−1] | X�i , (1)

which are equivalent to

P(xi |x[i−1]\�i , x�i ) = P(xi |x�i ), for all x[i] ∈ X[i]. (2)
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Fig. 1 Learned BN for the
Titanic dataset

C

S

G A

Definition 1 The Bayesian network model (associated to G) is

MG = {P ∈ �|X|−1 | P is Markov to G},

where �|X|−1 is the (|X| − 1)-dimensional probability simplex.

Henceforth, we assume that the natural ordering of the positive integers [p] respects
the topological order of the BN. Furthermore, we assume that P is strictly positive
as common when probabilities are learned using smoothed maximum likelihood or
Bayesian estimators.

To illustrate our methodology, we use throughout the paper the Titanic dataset
(Dawson 1995), which provides information on the fate of the Titanic passengers,
available from the datasets package bundled in R. Titanic includes four cat-
egorical variables: Class (C) has four levels while Gender (G), Survived (S)
and Age (A) are binary. The BN learned using the hill-climbing algorithm imple-
mented in the R package bnlearn (Scutari 2010) is reported in Fig. 1 and embeds
the conditional independence Age ⊥⊥ Gender | Class,Survived only. Only one
topological order of the variables exists and is henceforth used: C, G, S, A.

2.1 Non-symmetric conditional independence

BNs have the capability of expressing only symmetric conditional independences of
the form in (1) and (2). The most common non-symmetric extension of conditional
independence is the so-called context-specific independencewhich is often represented
by associating a tree to each vertex of a BN (Boutilier et al. 1996). Let A, B and C be
three disjoint subsets of [p]. We say that XA is context-specific independent of XB

given context xC ∈ XC if

P(xA|xB, xC ) = P(xA|xC ) (3)

holds for all (xA, xB) ∈ XA∪B and write XA ⊥⊥ XB |xC . The condition in (3) reduces
to standard conditional independence in (1) if it holds for all xC ∈ XC .

Pensar et al. (2016) introduced a more general definition of non-symmetric con-
ditional independence called partial conditional independence. We say that XA is
partially conditionally independent of XB in the domain DB ⊆ XB given context
XC = xC if

P(xA|xB, xC ) = P(xA|x̃B, xC ) (4)
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holds for all (xA, xB), (xA, x̃B) ∈ XA × DB and write XA ⊥⊥ XB |DB, xC . Clearly,
(3) and (4) coincide if DB = XB . Furthermore, the sample space XB must contain
more than two elements for a non-trivial partial conditional independence to hold.

A final condition is the so-called local conditional independence, first discussed in
Chickering et al. (1997). For i ∈ [p] and an A ⊂ [p] such that A ∩ {i} = ∅, local
conditional independence expresses equalities of probabilities of the form

P(xi |xA) = P(xi |x̃A) (5)

for all xi ∈ Xi and two xA, x̃A ∈ XA. Notice that in terms of generality, (3) 	 (4)
	 (5). Condition (5) simply states that some conditional probability distributions are
identical, where no discernable patterns as in (3) and (4) can be detected.

Differently to any other probabilistic graphical model, the class of staged trees that
we review next is able to graphically represent and formally encode any of the types
of conditional independences defined in (2)–(5).

3 Staged trees

Differently fromBNs, whose graphical representation is a DAG, staged trees visualize
conditional independence using a colored tree. Let (V , E) be a directed, finite, rooted
tree with vertex set V , root node v0, and edge set E . For each v ∈ V , let E(v) =
{(v,w) ∈ E} be the set of edges emanating from v and C be a set of labels.

An X-compatible staged tree is a triple T = (V , E, θ), where (V , E) is a rooted
directed tree and:

1. V = v0 ∪ ⋃
i∈[p] X[i];

2. For all v,w ∈ V , (v,w) ∈ E if and only if w = x[i] ∈ X[i] and v = x[i−1], or
v = v0 and w = x1 for some x1 ∈ X1;

3. θ : E → L = C × ∪i∈[p]Xi is a labelling of the edges such that θ(v, x[i]) =
(κ(v), xi ) for some function κ : V → C. The function k is called the colouring of
the staged tree T .

If θ(E(v)) = θ(E(w)) then v and w are said to be in the same stage. The equivalence
classes induced by θ(E(v)) form a partition of the internal vertices of the tree in stages.

Points 1 and 2 above construct a rooted tree where each root-to-leaf path, or equiva-
lently each leaf, is associated with an element of the sample space X. Then, a labeling
of the edges of such a tree is defined where labels are pairs with one element from a
set C and the other from the sample space Xi of the corresponding variable Xi in the
tree. By construction, X-compatible staged trees are such that two vertices can be in
the same stage if and only if they correspond to the same sample space, and therefore,
by construction, if they are at the same depth in the tree.

Figure2 reports an example of an X-compatible staged tree model for the Titanic
dataset learned with the R package stagedtrees. The coloring given by the func-
tion κ is shown in the vertices and each edge (·, (x1, . . . , xi )) is labeled with xi .
The edge labeling θ can be read from the graph combining the text label and the
color of the emanating vertex. For example, θ(v1, v6) �= θ(v1, v5), while θ(v1, v5) =
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Fig. 2 A staged tree compatible with (Class,Gender,Survived,Age), learned over the Titanic
dataset
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θ(v3, v10). Similarly, θ(v2, v7) = θ(v3, v9), while θ(v2, v7) �= θ(v4, v11). This rep-
resentation of the labeling θ over vertices is equivalent to that over edges, while
being more interpretable, and is henceforth used. There are 29 internal vertices
and the staging is {v0}, {v1, v2}, {v3}, {v4}, {v5, v10}, {v6}, {v7, v9}, {v8, v12}, {v11},
{v13, v15, v16, v17, v19, v25, v26, v27, v28}, {v14, v21}, {v18}, {v20, v22} and {v23, v24}.

The parameter space associated to anX-compatible staged tree T = (V , E, θ)with
labeling θ : E → L is defined as

�T =
⎧
⎨

⎩ y ∈ R
|θ(E)| | ∀ e ∈ E, yθ(e) ∈ (0, 1) and

∑

e∈E(v)

yθ(e) = 1

⎫
⎬

⎭ . (6)

Equation (6) defines a class of probability mass functions over the edges emanating
from any internal vertex coinciding with conditional distributions P(xi |x[i−1]), x ∈ X

and i ∈ [p].
Let lT denote the leaves of a staged tree T . Given a vertex v ∈ V , there is a unique

path in T from the root v0 to v, denoted as λ(v). The depth of a vertex v ∈ V equals
the number of edges in λ(v). For any path λ in T , let E(λ) = {e ∈ E : e ∈ λ} denote
the set of edges in λ.

Definition 2 The staged tree model MT associated to the X-compatible staged tree
(V , E, θ) is the image of the map

φT : �T → �◦
|lT |−1

y �→
( ∏

e∈E(λ(l)) yθ(e)

)

l∈lT
(7)

Therefore, staged tree models are such that atomic probabilities are equal to the
product of the edge labels in root-to-leaf paths and coincidewith the usual factorization
of mass functions via recursive conditioning.

Conditional independence is formally modeled and represented in staged trees
via the labeling θ . As an illustration, consider the staged tree in Fig. 2 for the
Titanic dataset. The fact that v1 and v2 are in the same stage represents the par-
tial independence Gender ⊥⊥ Class|{1st,2nd}. Considering vertices at depth
two, the green and yellow staging again represents partial conditional indepen-
dences. More interesting is the blue staging of the vertices v5 and v10 which implies
P(S = s | Female,3rd) = P(S = s | Male,1st), i.e. the probability of survival
for females traveling in third class is the same as that of males traveling in first class.
Such a statement is a generic local conditional independence.Considering the last level,
we can notice a very non-symmetric staging structure. As an illustration, consider the
top four vertices v25, v26, v27 and v28 belonging to the same stage. This implies the
context-specific independence Age ⊥⊥ Survived,Gender | Class = Crew. The
staged tree in Fig. 2, embedding the above non-symmetric conditional independences,
gives a more refined representation of the data than the BN in Fig. 1. Indeed, the BIC
of the staged tree can be computed as 10,440.39, while the one of the BN is larger
and equal to 10,502.28 (see Görgen et al. 2022, for a discussion of using the BIC for
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staged trees). A more nuanced evaluation of the performance of staged tree vs BNs is
carried out below in our computational experiment of Sect. 6.

This example illustrates the capability of staged trees to represent any non-
symmetric conditional independence graphically. Although such independences can
be read directly from the tree via visual inspection, it becomes challenging to detect
them as the size of the tree increases. Below we formalize how to assess the type of
conditional independence existing between pairs of random variables.

4 Staged trees and Bayesian networks

Although the relationship between BNs and staged trees was already formalized by
Smith and Anderson (2008), we introduce an implementable routine to transform a
DAG to its equivalent staged tree.

Assume X is topologically ordered with respect to a DAG and consider an X-
compatible staged tree with vertex set V , edge set E and labeling θ defined via the
coloring κ(x[i]) = x�i of the vertices. The staged tree TG , with vertex set V , edge
set E and labeling θ so constructed, is called the staged tree model of G. Importantly,
MG = MTG , i.e. the two models are exactly the same since they entail exactly the
same factorization of the joint probability. The staging of TG represents the Markov
conditions associated with the graph G.

As an illustration, Fig. 3 reports the tree TG associated with the BN in Fig. 1. Since
the variables Class, Gender and Survived are fully connected in the BN, the
associated staged tree is such that vertices at depth one and two are in their own
individual stages. The only symmetric conditional independence embedded in the BN
is represented by joining pairs of vertices at depth three (associated with the variable
Age) in the same stage. Clearly, the staging of the staged tree representing a BN in
Fig. 3 exhibits a lot more symmetry than the one in Fig. 2, which can represent a wide
array of non-symmetric independences.

Our first contribution is the solution to the following inverse problem: given an
X-compatible staged tree T = (V , E, θ) find the corresponding DAG G. This DAG
cannot represent, in general, the same staged tree model, since BNs cannot represent
non-symmetric conditional independences.Nevertheless,weprove thatwe can retrieve
a minimal DAG, in a sense that we formalize next. A proof of the result is in the
“Appendix”.

Proposition 1 Let T = (V , E, θ) be an X-compatible staged tree, with κ : V → C
the vertex labeling that defines θ . Let GT = ([p], FT ) be the DAG with vertex set
[p] and whose edge set FT includes the edge (k, i), k < i , if and only if there exist
x[i−1], x′[i−1] ∈ X[i−1] such that x j = x ′

j for all j �= k and

κ(x[i−1]) �= κ(x′[i−1]). (8)

Then GT = ([p], FT ) is the minimal DAG such that MT ⊆ MGT , in the sense that
for every DAG G = ([p], F) such that 1, . . . , p is a topological order, ifMT ⊆ MG
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Fig. 3 The staged tree representation of the BN in Fig. 1 for the Titanic dataset

then FT ⊆ F. In particular X A ⊥⊥ XB |XC holds in MT if and only if A and B are
d-separated by C in GT .

Corollary 1 In the setup of Proposition 1, MTG = MGTG
.

A staged tree T is therefore a sub-model of the resulting GT which embeds the
same set of symmetric conditional independences. The BNGT is minimal in the sense
that it includes the smallest number of edges among all possible BNs that includeMT

as a sub-model. The models MT and MGT are equal if and only if T embeds only
symmetric conditional independences. As an illustration consider the staged tree in
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Fig. 2. It can be shown using Proposition 1 that the associated BN GT is complete
and therefore it must be that MT ⊆ MGT . Conversely, if the staged tree in Fig. 3 is
transformed into a BN, then using Corollary 1 the resulting BN must be the one in
Fig. 1.

Importantly, Proposition 1 gives a novel criterion to read symmetric conditional
independence statements from a staged tree, by transforming it into a BN whose
structure represents the same equalities of the form in (2). Conditional independence
statements in the staged tree can then be read from the associated BN using the d-
separation criterion (see e.g. Darwiche 2009). For instance, the staged tree in Fig. 2
does not embed any symmetric conditional independence, since the associated BN is
complete.

The “Appendix” gives a detailed implementation of both conversion algorithms,
from BN to staged tree and vice versa.

5 Non-symmetric dependence and DAGs

Proposition 1 identifies if there is a dependence between two random variables in a
X-compatible staged tree T and, in such a case, draws an edge in GT . However, the
staged tree carries much more information about the relationship between the two
variables. In this section, we introduce methods to label the edges of GT so as to
depict some of the information about the non-symmetric independences of T in GT .

5.1 Classes of statistical dependence

First, we need to characterize the type of dependence existing between two random
variables joined by an edge in a DAG G.

Definition 3 Let P be the joint mass function of X
and P be Markov with respect to a DAG G = ([p], F). For each ( j, i) ∈ F we

say that the dependence of Xi from X j is of class

• context, if Xi and X j are context-specific independent given some context xC with
C = �i\{ j}.

• partial, if Xi is partially conditionally independent of X j in a domain D j ⊂ X j

given a context xC with C = �i\{ j}; and Xi and X j are not context-specific
independent given the same context xC .

• local, if none of the above hold and a local independence of the form P(xi |x�i ) =
P(xi |x̃�i ) is valid where x j �= x̃ j .

• total, if none of the above hold.

Notice that if the class of dependence between Xi and X j is context or partial,
then there may also be local independence statements as in (5) involving these two
variables. Similarly, the dependence between Xi and X j can be both context and partial
with respect to two different contexts. On the other hand, if their class of dependence
is local, then, by definition, there are no context-specific or partial equalities.
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Proposition 1 paves the way to assess the class of dependence existing between Xi

and X j . In particular, one has to check if there are equalities of the form (8) for all
or some x[i] ∈ X[i] and, if so, to which class they correspond. A discussion of the
implementation of such checks is in the “Appendix”. As illustrated in Sect. 6, these
can be performed quickly, although all combinations of ancestral variables have to be
considered.

5.2 Asymmetry-labeled DAGs

An edge in a BN represents, by construction, a total dependence between two random
variables. However, the flexibility of staged trees allows us to assess if such depen-
dence is of any other of the classes introduced in Definition 3. This observation leads
us to define a new graphical representation, that we term asymmetry-labeled DAG
(ALDAG), where edges are colored depending on the type of relationship between
variables.

Formally, let G be a DAG and F its edge set and

LA = {‘context’, ‘partial’, ‘context/partial’, ‘local’, ‘total’}

be the set of edge labels marking the type of dependence.

Definition 4 An ALDAG is a pair (G, ψ) where G = ([p], F) is a DAG and ψ is a
function from the edge set of G to LA, i.e. ψ : F → LA. We say that a joint mass
function P is compatible with anALDAG (G, ψ) if P isMarkov toG and additionally
P respects all the edge labels given by ψ ; that is, for each ( j, i) ∈ F , Xi is ψ(i, j)
dependent from X j .

Henceforth, we represent the labeling by coloring the edges of the ALDAG. Stan-
dard BNs have an ALDAG representation where all edges have label ‘total’. Notice
that standard features of BNs are also valid over ALDAGs: for instance, the already-
mentioned d-separation criterion. Furthermore, probability queries can be efficiently
answered from the ALDAG using any of the standard propagation algorithms of BNs
(e.g. using junction trees, Koller and Friedman 2009). In Leonelli and Varando (2023),
we formalized the use of ALDAGs to explore the equivalence class of staged trees
and therefore learn complex causal relationships from observational data. Additional
potential features of ALDAGs are discussed in the conclusions below.

ALDAGs share features with labeled DAGs of Pensar et al. (2015), but they differ
in two critical aspects: first, labeled DAGs can only embed context-specific indepen-
dencewhile ALDAGs represent any asymmetric independence; second, labeledDAGs
specifically report the contexts over which independences hold, while ALDAGs do
not. There are two reasons behind this: on one hand, the specific independences in
ALDAGs can be read from the associated staged tree; on the other, for applications
with a larger number of variables, the required contexts are often too complex to be
reported within the DAG.

As an illustration of ALDAGs consider the staged tree for the Titanic data in
Fig. 2 which, using Proposition 1, is transformed into the ALDAG in Fig. 4. Although
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Fig. 4 An ALDAG for the
Titanic dataset constructed
from the staged tree in Fig. 2.
The edge coloring is:
red—context; blue—partial;
green—local (color figure
online)

C

G

S A

the ALDAG does not carry all the information stored in the staged tree, which is quite
complex to read, it intuitively describes the classes of dependence among the random
variables. The blue edges denote a partial dependence between Class and any other
variable. The red edges denote that Age has a context dependence with Gender and
Survived. Notice importantly that in the standard BN, which does not have the flex-
ibility to embed non-symmetric independences, the variables Age and Gender were
considered conditionally independent. Lastly, the green edge between Gender and
Survived implies that there is only a local dependence between these two variables,
and therefore there is no specific pattern guiding the equalities of probabilities between
these two variables. Such extended forms of dependence better describe the fate of
the Titanic passengers since, as already noticed, the BIC of the associated staged tree
is smaller than the one of the BN.

5.3 Constructing ALDAGs

ALDAGs can be obtained from estimated staged trees, and, in particular, with the
following routine: (i) learn a staged tree model T from data, using, for instance, any of
the algorithms in stagedtrees; (ii) transform T into GT as in Proposition 1; (iii)
assign a label to each edge ofGT by checking the equalities in (8) that hold in T . Steps
(ii) and (iii) are implemented in the stagedtrees R package using the algorithms
in the “Appendix”. Illustrations of the checks in step (iii) are given in Sect. 5.3.1 below.

The most critical and computationally expensive step of learning an ALDAG is
the staged tree learning step (i). There is a large literature on learning staged trees
from data (Carli et al. 2022, 2023; Cowell and Smith 2014; Freeman and Smith
2011; Leonelli and Varando 2024b; Silander and Leong 2013). Here we consider
the available algorithms implemented in the stagedtrees R package (Carli et al.
2022). In particular, we will use the following algorithms, which work with a fixed
order of the variables (see Carli et al. 2022, for more details):

• a hill-climbing (HC) algorithm which at each step either joins or splits vertices of
the tree in stages by optimizing a model score (usually the BIC);

• a backward (hill-climbing) (BHC) algorithm which, at each step, can only join
stages together by optimizing a model score.

• a novel backward algorithm which iteratively add context-specific independences
(CSBHC, see Sect. 5.3.1).

123



Staged trees and asymmetry-labeled DAGs

Furthermore, any of the above-mentioned algorithms can be used within the dynamic
programming approach of Cowell and Smith (2014) to choose an optimal order of the
variables (Leonelli and Varando 2023).

AnALDAGcan also be obtained as a refinement of theDAGof aBNby the addition
of edge labels indicating the class of dependence. Given a DAG G, the following steps
implement such a refinement: (i) transform G into the staged tree TG using any of
the topological orders of variables; (ii) run a backward hill-climbing algorithm using
TG as starting model and obtain a new tree T ; (iii) transform T into GT and apply
the edge-labeling. The resulting ALDAG has an edge set equal to or a subset of the
edge set of G. Furthermore, the edge set is now labeled and denoting the classes of
dependence.

DAGs with tree-parametrized CPTs (as in Hyttinen et al. 2018; Pensar et al. 2016;
Talvitie et al. 2019) and staged tree methods are very similar approaches that use trees
to represent conditional probabilities. In particular, the statistical models represented
by staged tree andDAGswith tree-CPTs are, in principle, equivalent. Even the learning
algorithm proposed by Pensar et al. (2016) consists of a heuristic search using splitting
and joining operations on each CPT tree, similar to the hill-climbingmoves mentioned
above. In the staged tree approach, the difference is that we do not assume a sparse
DAG between variables by default and do not search both a DAG and sparse CPTs. Of
course, restricting to sparse DAGs and searching over refinements only is beneficial
from a computational perspective, and it has been proposed and shown to be effective
for staged trees (Barclay et al. 2013; Leonelli and Varando 2022). Furthermore, in
the context of staged trees, we are able to restrict the model search in meaningful
ways, for instance, by only considering context-specific independences as in the novel
algorithm introduced in Sect. 5.3.1 below. Unfortunately, we are not aware of any
available implementation of these related methods, and we are thus unable to run any
empirical comparisons.

For the purpose of this paper, when learning ALDAGs as a refinement of BNs, we
select one topological order of the variables at random (the one automatically provided
by bnlearn). In Leonelli and Varando (2024a), we have developed algorithms that
select the best staged tree out of all compatible orders to a DAG or its CPDAG.

5.3.1 Searching context-specific independences

The flexibility of staged trees to represent any non-symmetric independence has three
major drawbacks: first, reading independences from the tree can become complex;
second, learning trees from data can be computationally very expensive; third, repre-
senting larger systems can become challenging. To address the first two difficulties,
we introduce a new heuristic search for the stage structure, motivated by our new defi-
nition of the ALDAG. In particular, we consider a backward hill-climbing algorithms
that, for each variable, iteratively adds context-specific independence relationships
to optimize a given score (e.g. BIC), called CSBHC. In particular, at each step, the
algorithm searches all possible additional context-specific conditional independences
of the form,

Xi ⊥⊥ X j |XC = xC j < i
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Fig. 5 A staged tree learned with the proposed CSBHC algorithm over the Titanic dataset and its
associated ALDAG. The edge coloring is: red—context; purple—context/partial; black—total (color figure
online)

whereC = [i]\{i, j} and thus xC ∈ XC is a context specified by all variables preceding
Xi in the tree except X j .

The algorithm is based on the construction of stage matrices, summarizing the
staging of the vertices at a specific depth with respect to a preceding variable. These
are fully defined in the “Appendix”; we just give the intuition behind them here.
Figure5 reports the staged tree learned with the CSBHC algorithm for the Titanic
dataset. Consider the variable Age corresponding to vertices v13 − v28 and number
the stages from bottom to top of the tree (blue—1; red—2; green—3; yellow—4;
pink—5). The stage matrix of Age with respect to Survived is

(
1 2 3 2 2 2 5 2
1 1 4 2 2 2 5 5

)
, (9)

where each row is associated with an element of the sample space of Age (first row—
Child; second row—adult), and each column is a context defined by all preceding
variables to Age excluding Survived (for instance, the first column represents Class
= 1st and Gender = Male). The equality of all elements in a column represents a
context-specific independence. For instance, the fourth column of the stage matrix,
including only the label 2, represents the independence between Age and Survived
when Class = 2nd and Gender = Female. The CSBHC algorithm searches context-
specific independences by setting elements of individual columns in stage matrices
equal to each other at each iteration.
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Figure5 further reports the ALDAG learned with the CSBHC algorithm, including
edges with total, context, and context/partial labels. Notice that the combination of
multiple context-specific independences with respect to a variable may lead to a partial
independence with another. To see this, consider the stage matrix of Age with respect
to Class, equal to

⎛

⎜⎜⎝

1 1 2 1
3 4 2 2
2 2 2 2
5 5 2 5

⎞

⎟⎟⎠ .

The third column represents the independence between Age and Class in the context
Gender = Female and Survived = No. The fourth column has two elements equal to
each other (in positions 2, 4 and 3, 4), representing a partial conditional independence
(conditionally on Gender = Female and Survived = Yes, the probability distribution of
Age is the same for travelers of 2nd and 3rd Class). Notice that this partial conditional
independence is equivalent to the combination of the context-specific independences
betweenAge andSurvived forGender = Female andClass = 2nd or 3rd.More formally,
the fact that the 4th and 6th columns of the matrix in Eq. (9) have all elements equal
implies context-specific independeces. However, since the elements are equal in the
two columns (coded as 2), this generates a partial conditional independence. For this
reason, the CSBHC algorithm can also identify context/partial types of relationships.

The staged tree in Fig. 5 has a BIC of 10,479, which is worse than the one of the
generic staged tree (BIC = 10,440), but still better than the BN (BIC = 10,502), again
highlighting the need for models embedding non-symmetric independences.

6 Applications

We now consider a variety of datasets commonly used in the probabilistic graphical
models literature. First, we carry out an experiment to assess the performance of
ALDAGs as well as the complexity of our routines. Then we consider two additional
real-world applications to illustrate the capabilities of staged trees and ALDAGs.

6.1 Computational experiment

Nine datasets, which are either available in R packages or downloaded from the UCI
repository, are considered. For each dataset, a DAG is first learned by optimizing the
BIC score (using a tabu greedy search, Scutari 2010) and then both the BHC and
the proposed CSBHC algorithms are used to refine the DAG to a staged tree. The
learned staged trees are then transformed into ALDAGs using Algorithm 2 given in
the “Appendix”. Additionally, the test log-likelihood for a holdout test set is computed.
The above is repeated for all 20 repetitions of a 20-fold cross-validation scheme. The
results, summarized in Tables 1, 2 and 3, suggest the following:
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Table 1 Results of the data experiments

Variables Edg. ALDAG-BHC Edg. ALDAG-CSBHC

Abalone 9 (5, 10, 0, 0, 5) (8.5, 11.5, 0, 0, 0)

Breastcancer 10 (4, 0, 3, 0, 0) (7, 0, 0, 0, 0)

Creditapproval 14 (11, 2, 0, 0, 1) (11, 3, 0, 0, 0)

Housevotes 17 (10, 9, 0, 0, 6) (13, 13, 0, 0, 0)

Indianliver 11 (8.5, 1, 0, 0, 5) (14, 1, 0, 0, 0)

Nursery 9 (0, 0.5, 5, 3, 0) (5, 1.5, 0, 2, 0)

Phdarticles 6 (3, 0, 1, 0, 0) (4, 0, 0, 0, 0)

Tic-tac-toe 10 (1, 0, 11, 0, 0) (6.5, 6, 0, 0, 0)

Titanic 4 (0, 1, 3, 0, 1) (4, 1, 0, 0, 0)

Edg. ALDAG-∗ columns report the median (across the 20-folds repetition) number of edges by type (total,
context, partial, context/partial, local) in the two ALDAGs obtained by refinement of the DAG with BHC
and CSBHC algorithms respectively

• Staged trees provide a more refined representation of the datasets considered than
the standard BN (lower BICs in Table 1), thus highlighting the need to consider
models which embed asymmetric conditional independences to untangle complex
dependence structures.

• DAG refined with both BHC and CSBHC obtain comparable log-likelihood on
holdout test sets (Table 2), showing that the additional flexibility of the models
does not necessarily translate into over-fitting.

• Only a small fraction of the edges learned via BN structural search algorithms are
related to a symmetric dependence between variables. All but two ALDAGs have
a number of edges with a label that is not total (see Table 1).

• The construction of the ALDAG does not impose a computational burden with
computational times comparable to the staged tree model selection step. Further-
more, the experiment shows that the methods are efficiently implemented even for
a medium-large number of variables.

6.2 Aspects of everyday life

We next illustrate the use of staged trees to uncover dependence structures using
data from the 2014 survey “Aspects on everyday life” collected by ISTAT (the Italian
National Institute of Statistics) (ISTAT 2014). The survey collects information from
the Italian population on a variety of aspects of their daily lives. For the purpose
of this analysis we consider five of the many questions asked in the survey: do you
practice sports regularly? (S = yes/no); do you have friends you can count on? (F
= yes/no/unsure); do you believe in people? (B = yes/no); what’s your gender (G
= male/female); what grade would you give to your life? (L = low/medium/high).1

Instances with a missing answer were dropped, resulting in 38,156 answers to the

1 The original grade is numeric between zero and ten and it has been aggregated as follows: 0–5/low;
6–8/medium; 9–10/high.
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Table 3 Median elapsed time (in
s) for the data experiments
across the 20-fold
cross-validation repetitions

DAG BHC CSBHC ALDAG

Abalone 0.0655 0.1140 0.1015 0.00950

Breastcancer 0.0130 0.0190 0.0705 0.28050

Creditapproval 0.0170 0.0135 0.0995 0.42250

Housevotes 0.0250 0.0390 0.3400 0.83925

Indianliver 0.0255 0.0130 0.0220 0.02675

Nursery 0.1085 0.3280 0.1005 0.10000

Phdarticles 0.0185 0.0050 0.0080 0.00325

Tic-tac-toe 0.0170 0.0765 0.0745 0.09400

Titanic 0.0165 0.0325 0.0145 0.00150

The DAG column reports the seconds to estimate the DAG; The
columnsBHCandCSBHCreport the seconds needed to refine theDAG
to a staged tree, with the BHC and the CSBHC algorithms respectively;
lastly the ALDAG column contains the time to build the ALDAG from
the staged trees

B

G

L

S

F B

G

L

S

F B

G

L

S

F

Fig. 6 BN for the aspects of everyday life data (left) as well as ALDAGs over the same data associated
to the staged trees learned with BHC (center) and CSBHC (right). The edge coloring is: red—context;
blue—partial; violet—context/partial; green—local; black—total (color figure online)

survey. Our aim is to analyze how various factors affect the life grade of the Italian
population.

A BN with the variable life grade (L) as downstream variable is learned using
the hill-climbing function (optimizing the BIC score) in the bnlearn package by
blocklisting all outbound edges from L. The learned DAG is reported in Fig. 6 (left).
This embeds the symmetric conditional independence L,B,F⊥⊥G|S: given the level of
sports activity, gender has no effect on life grade, trust in people, and the availability
of friends. The learned BN has a BIC of 251,781.

A staged tree over the same dataset is learned as follows. First, we learn a staged tree
with the hill-climbing algorithm (optimizing BIC score) and considering all possible
orders of the variables but life grade (L), which we then fix as the last variable of the
tree. The resulting staged tree is plotted in Fig. 7 (left).

The staging of the life grade variable reveals a complex dependence pattern from
which interesting conclusions can be drawn. For instance, conditionally on whether
individuals believe in people, life grade does not depend on gender for those that prac-
tice sports and have friends they can count on (stages v37–v40). Similarly, conditionally
on whether individuals believe in people, the distribution of life grade is the same for
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Fig. 7 Staged tree learned using the hill-climbing algorithm (left) and the CSBHC algorithm (right) over
the aspects of everyday life data with variables’ order S, F, G, B, L

male individuals that practice sports who either have friends or are unsure about it
(stages v37, v38, v41, v42). It can also be noticed that gender almost has no effect on
whether individuals believe in others, the only dependence existing for individuals that
practice sports and are unsure about having friends (stages v19–v20). These are just a
few of the many conclusions that can be drawn from the tree, and a whole explanation
is beyond the scope of this analysis.

Although the staged tree in Fig. 7 can still be visually inspected, it is already rather
extensive, with 72 leaves and 45 internal vertices. Its associated ALDAG in Fig. 6
(middle) provides a compact summary of the dependence structure and shows that all
variables are related to each other according to different types of dependence.

An alternative tree is learned with the CSBHC algorithm over the same dataset
and variable ordering and is reported in Fig. 7 (right). The tree has a staging that is
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Table 4 Variables from the 2012 ISTAT enterprise innovation survey

Name Explanation Levels

GP Belongs to an industrial group Yes/no

LARMAR Main market Regional/national/international

INPDDG Product innovation 2010–2012 Yes/no

INPDSV Service innovation 2010–2012 Yes/no

INPD Other innovations 2010–2012 Yes/no

INABA Abandoned innovation 2008–2010 Yes/no

INONG Ongoing innovation from 2008–2010 Yes/no

CO Cooperation agreements for innovation Yes/no

ORG New organization practices Yes/no

MKT New marketing practices Yes/no

PUB Contracts with public institutions Yes/no

EMP Number of employees 10–49/50–249/> 250

EMPUD Employees with degree 0%/1–10%/> 10%

RD Research and development Yes/no

GROWTH Increased revenue 2012/2010 Yes/no

a lot more symmetric than the one of the generic staged tree. For instance, it states
that life grade is independent of gender and the availability of friends conditionally
on whether you believe in people and on conducting sports activity (stages v33–v44).
Also, the staging of the vertices v9–v20 reports that, given a specific level of sports
activity and the availability of friends, gender does not affect whether an individual
believes in people. The associated ALDAG in Fig. 6 (right) is therefore not complete
and has a missing edge from G to B. It can also be noticed that edges are only of
type total or context. Compared to the standard BN, both ALDAGs show additional
patterns of dependence that can be retrieved because the assumption of symmetric
dependence was relaxed.

Notice that both the generic staged tree and the alternative staged tree obtained with
CSBHC, provide a better description of the dependence structure of the data since
they have lower BICs than the one associated with the BN, 251,648 and 251,673,
respectively.

6.3 Enterprise innovation

We next consider data from the 2012 Italian enterprise innovation survey, again col-
lected by ISTAT (ISTAT 2015). The survey reports information about medium-sized
Italian companies and their involvement with innovation in the 3-year period between
2010 and 2012. The aim of the analysis is to assess which factors related to innovation
are connected with changes in the company revenue.

Out of the many questions in the survey, we consider 14 factors that could influence
the revenue of an enterprise. The variables considered are summarized in Table 4.
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Fig. 8 BN (without considering edge coloring) and ALDAG for the enterprise innovation survey data. The
edge coloring is: red—context; blue—partial; violet—context/partial; green—local; black—total (color
figure online)

Fig. 9 ALDAG for the enterprise innovation survey data learned with the CSBHC algorithm. The edge
coloring is: red—context; violet—context/partial; black—total (color figure online)

Instanceswith amissing answerwere dropped, resulting in 8938 answers to the survey.
In this case, it is unfeasible to study the staged tree directly since it would have more
than 100 k leaves, making it impossible to visualize its staging.

Therefore, we follow the alternative strategy outlined in Sect. 5.3 of creating an
ALDAG as a refinement of a BN. Thus, we first learn a BN from data, reported in Fig. 8
(by not considering the edge coloring). Interestingly, the BN suggests that the only two
factors that have a direct influence on the change of revenue of a company (GROWTH)
are the number of employees (EMP) and whether it carried out innovations of other
types in the past 3 years (INPD)—meaning not product or service innovations.

The resulting BN is refined into an ALDAG using the backward hill-climbing
algorithm, which can only join stages together and is reported in Fig. 8. Of the original
35 edges, only five are still of type total, embedding symmetric dependences. All other
edges are colored, indicating that there are types of dependence in the data that cannot
be represented symmetrically. This is confirmed by the BIC of the ALDAG, which is
equal to 133,689, much lower than the one of the BN (134,311).

123



G. Varando et al.

The CSBHC is also used to refine the learned BN, and the associated ALDAG is
reported in Fig. 9. This consists of 14 total, 20 context, and 2 context/partial edges,
confirming the presence of non-symmetric patterns in the data. This ALDAG also
gives a more refined representation of the variables’ relationships, having a BIC of
133,872.

Since GROWTH is independent of all other variables conditionally on EMP and
INPD and our interest is in assessing how factors are relevant for the change of rev-
enue, we can construct a tree with these three variables only and delete all those that
are conditionally independent. We call such a tree the dependence subtree. This is
reported in Fig. 10 for GROWTH and the ALDAG in Fig. 8. It shows the staging of
the variable GROWTH using only its parents in the associated ALDAG. The staging
tells us that for larger companies the probability of revenue change does not depend on
other innovations, and it is the same as for medium-sized companies that invested in
other innovations (stages v7–v9). Medium-sized companies that did not invest in other
innovations have the same probability of revenue change as small ones that did invest
in other innovations (stages v5–v6). Importantly, larger enterprises and medium-sized
ones that invested in other innovations have a larger probability of increasing revenue
(0.61). On the other hand, smaller companies that did not invest in other innovations
are more likely to decrease their revenue since their probability of increasing is only
0.47.

An algorithm for constructing the dependence subtree is based on a simple variation
of those given in the “Appendix”. Dependence subtrees are extremely powerful since
they allow us to visualize the dependence structure of GROWTHbymeans of the small
tree in Fig. 10, without having to investigate the full staged tree having more than 100k
leaves. Dependence subtrees are most useful when the associated ALDAG is sparse.
They aim to represent the local dependence structure in the conditional probability
of a node given its parents. Thus, although using a different type of representation
based on coloring, they are in spirit equivalent to tree-parametrized CPTs that have
been extensively studied in the literature (e.g. Hyttinen et al. 2018; Pensar et al. 2016;
Talvitie et al. 2019).

7 Discussion

Staged trees are a flexible class of models that can represent highly non-symmetric
relationships. This richness has the drawback that independences are often difficult
to assess and visualize intuitively through its graph. This paper introduces methods
that summarize the symmetric and non-symmetric relationships learned from data via
structural learning by transforming the tree into a DAG. As a result, we introduced a
novel class of graphs extending DAGs by labeling their edges. Our data applications
showed the superior fit to data of such models as well as the information they can
provide in real domains.

Datasets currently modeled with staged trees consist of at most 15–20 variables, as
in the enterprise innovation application of Sect. 6.3. One of the difficulties in dealing
with larger numbers of variables is the exponential growth of the size of the underlying
event tree. However, the ALDAG paves the way for new methods to learn complex
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Fig. 10 The dependence subtree associated to the ALDAG in Fig. 8 for the variable GROWTH. The variable
order is (EMP, INPD, GROWTH)

asymmetric dependencieswhichdonot require the constructionof thewhole event tree.
Such methods would remind already developed approaches that represent asymmetry
in the CPTs of BNs using trees or decision graphs (e.g. Pensar et al. 2016). Different
from standard methods, though, they would construct the edge set of the underlying
DAG by taking into account asymmetric information in the data.

The new DAG edge labeling is based on the identification of the class of depen-
dence. A different possibility would be to define a dependence index between any
two variables, which measures how different their relationship is from total depen-
dence/independence. By learning a staged tree from data, we could label the edges of
a BNwith such indexes. The definition of such models is the focus of current research.

This work provides a first criterion for reading any symmetric conditional indepen-
dence from a staged tree. Algorithms to assess generic non-symmetric conditional
independence statements still need to be developed. Here we have provided an
intermediate solution to this problem by characterizing whether a non-symmetric
independence exists. In future work, we plan to provide a conclusive solution to non-
symmetric independence queries.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declaration

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123



G. Varando et al.

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Proof of Proposition 1

For the proof we use the following Lemma.

Lemma 1 Let T = (V , E, θ) and T ′ = (V , E, θ ′) be two staged trees with same tree
(V , E). We have thatMT ⊆ MT ′ if and only if for each e, f ∈ E, θ ′(e) = θ ′( f ) ⇒
θ(e) = θ( f ).

The result follows directly from the definition of MT .
The proof of Proposition 1 starts by showing that MT ⊆ MGT . We have

that MGT = MTGT
and let θ ′ be the labeling of TGT . Both T and TGT are X-

compatible staged tree and thus share the same vertex and edge set. Suppose that
for x[i−1], y[i−1] ∈ X[i−1], κ(x[i−1]) �= κ(y[i−1]). We define now a sequence of nodes
x[i i−1] = x0[i−1], . . . , x

i−1
[i−1] = y[i−1] in X[i−1] ⊆ V as following,

x0[i−1] = x[i−1], xhj =
{
xh−1
j j > h

y j j ≤ h
.

Define h0 = min{h s.t. κ(xh[i−1]) �= κ(xh−1
[i−1])}. We have that k(x[i−1]) = · · · =

κ(xh0−1
[i−1]) �= κ(xh0[i−1]) and thus, by construction of GT , (h0, i) ∈ FT that in turn

implies θ ′(x[i−1], xi ) �= θ ′(y[i−1], xi ) for all xi ∈ Xi .
We thus have MT ⊆ MTGT

= MGT by Lemma 1.
Assume now G = ([p], F) is a DAG with 1, . . . , p as a topological ordering

and such that MT ⊆ MG , then MT ⊆ MTG and if γ is the labeling of TG we
have that γ (e) = γ ( f ) ⇒ θ(e) = θ( f ) for each e, f ∈ E by Lemma 1. Let
(k, i) ∈ FT be an edge of GT , then by construction there exist x[i−1], x′[i−1] ∈ X[i−1]
with x j = x ′

j , j �= k such that κ(x[i−1]) �= κ(x′[i−1]). Hence, γ (x[i−1], (x[i−1], xi )) �=
γ (x′[i−1], (x′[i−1], xi ))) and it is easy to see that this implies (h, i) ∈ F by construction
of TG .

Appendix B Algorithms’ implementations

The implemented algorithms work with X-compatible staged trees T = (V , E, θ).
There are different ways to practically implement staged trees, here we use a represen-
tation similar to the R package stagedtrees (Carli et al. 2022). In particular, let X
be a random vector taking values in X = ×i∈[p]Xi and assume there are total orders
over each Xi . Then X[i] has an induced lexicographic total order. The node labeling
(or coloring) κ in the X-compatible staged tree definition can be represented by a
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Algorithm 1 DAG to X-Compatible Stratified Staged Tree
Require: A DAG G = ([p], F) such that 1, . . . , p is a topological order of G.
Ensure: The stage vectors s1, . . . , sp−1 encoding anX-compatible stratified staged tree T such thatMT =

MG .
1: for i = 1 to p − 1 do
2: si = [1]
3: for j = 1 to i do
4: if j ∈ �i+1 then
5: si = [s × X j : s ∈ si ]
6: else
7: si = [s × [1, . . . , 1] : s ∈ si ]
8: end if
9: end for
10: end for

sequence of vectors of symbols s1, s2, . . . , s p−1 where s j = (κ(v))v∈X[ j] ∈ C|X[ j+1]|
is the vector of coloring and X[ j+1] is the set of nodes of T with depth j , ordered
with respect to the induced lexicographic order. The vectors s1, . . . , s p−1 represent
the stages of the tree and thus we refer to them as stage vectors.

Algorithm 1 describes the pseudo-code for the conversion algorithm that takes
as input a DAG over [p] and outputs an X-compatible staged tree. We assume that
1, . . . , p is a topological ordering of the DAG nodes, if not a simple permutation is
sufficient before applying the algorithm.

Algorithm 2 is an implementation of the conversion from staged trees to DAGs.
The algorithm records additional information about the type of dependence between
variables, so that it can be used to define the corresponding ALDAG.

Algorithm 3 is the pseudo-code of the context specific backward hill-climbing
algorithm described in Sect. 5.3.1.

In the pseudo-code for Algorithms 2 and 3 we use the following notation: vec(A)

is the column-wise vectorization of a matrix A and matm,n(a) is the column-wise
(m, n)-matrix-filling such that vec(matm,n(a)) = a and matm,n(vec(A)) = A, where
a is a vector of symbols of length mn and A is a matrix of symbols of dimensions
(m, n).

Both Algorithms 2 and 3 are based on the following observation. For every i ∈
[p − 1] consider the following i matrices of stage symbols obtained iteratively:

Ai = matmi ,ni (si ) where mi = |Xi |, ni = lenght(si )/mi

A j = matm j ,n j (vec(At
j+1)) where m j = |X j |, n j = lenght(si )/m j

Then we have that for each j ≤ i we can easily read the context, partial and local
conditional independences between Xi+1 and X j from the matrix of stages A j . Each
row in the matrix A j corresponds to a level of the variable X j and each column
corresponds to a context of the type x[i]\ j . Thus, for example, if a column of A j has
all elements equal, it means that, for the particular context, the value of X j does not
affect the conditional probability for Xi+1; hence Xi+1 is conditional independent
of X j given the specific context. If a subset of a column has all equal elements, the
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conditional independence is partial. And finally, if some elements of the matrix A j

are equal and belong to different columns then the independence is only local.

Algorithm 2 X-Compatible Staged Tree to DAG

Require: An X-compatible staged tree T encoded with stage vectors s1, . . . , sp−1.
Ensure: A minimal DAG G = ([p], F) such that MT ⊆ MG and a labeling of its edges ψ defining an

ALDAG.
1: G = (V , E = ∅)

2: for i = 1 to p − 1 do
3: a = si

4: for j = i to 1 do
5: N = length(a)

6: m = |X j | and n = N/m
7: A = matm,n(a)

8: ck = |{Au,k : u ∈ [m]}|, k ∈ [n]
9: ru = |{Au,k : k ∈ [n]}|, u ∈ [m]
10: if max{ck : k ∈ [n]} > 1 then
11: # j is a parent of i + 1
12: E = E ∪ {( j, i + 1)}
13: # check the type of dependence
14: if min{ck : k ∈ [n]} = m then
15: r = ∑

i∈[m]|{Au,k : k ∈ [n]}|
16: d = |{Au,k : u ∈ [m], k ∈ [n]}|
17: if r �= d then
18: ψ( j, i + 1) = local
19: end if
20: else if min{ck : k ∈ [n]} = 1 then
21: # there is at least one context specific indep.
22: if ∃k ∈ [n] s.t. 2 < ck < m then
23: # there is also a partial indep.
24: ψ( j, i + 1) = context/partial
25: else
26: ψ( j, i + 1) = context
27: end if
28: else
29: ψ( j, i + 1) = partial
30: end if
31: a = vec(At )
32: else
33: a = (A1,1, . . . , A1,n) # all rows of A are equal, and j is not a parent of i + 1
34: end if
35: end for
36: end for

123



Staged trees and asymmetry-labeled DAGs

Algorithm 3 Context-specific backward hill-climb (CSBHC)

Require: A starting X-compatible staged tree T encoded with stage vectors s1, . . . , sp−1; a dataset D of
observations from X; The score f : (T ,D) �→ R to be optimized.

Ensure: An X-compatible staged tree
fbest = f (T , D), compute initial score
for i = 1 to p − 1 do

repeat
a = si the stage vector of T for variable Xi+1
N = length(a) = ∏

j∈[i]|X j |
for j = i to 1 do

m = |X j | and n = N/m
A = matm,n(a)

for α column of A do
let T ′ be the staged tree obtained from T by joining together the stages in α

if f (T ′, D) > fbest then
Tbest = T ′
fbest = f (T ′, D)

end if
end for
a = vec(At )

end for
T = Tbest

until no improvement in score is possible
end for
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