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Abstract
L p-quantiles are a class of generalized quantiles defined as minimizers of an asym-
metric power function. They include both quantiles, p = 1, and expectiles, p = 2,
as special cases. This paper studies composite L p-quantile regression, simultane-
ously extending single L p-quantile regression and composite quantile regression.
A Bayesian approach is considered, where a novel parameterization of the skewed
exponential power distribution is utilized. Further, a Laplace prior on the regression
coefficients allows for variable selection. Through a Monte Carlo study and appli-
cations to empirical data, the proposed method is shown to outperform Bayesian
composite quantile regression in most aspects.

Keywords Skewed exponential power distribution · L p-quantile regression · Markov
chain Monte Carlo

1 Introduction

Conventional regression analysis, based on the ordinary least squares (OLS) frame-
work, plays a vital role in exploring the relationship amongst variables. It is, however,
well known that the OLS estimator is not robust to deviations from normality of the
response in the form of heavy-tailed distributions or outliers. As a robust alternative,
quantile regression (QR), introduced by Koenker and Bassett (1978), has become
a popular paradigm to describe a more complete conditional distribution informa-
tion. One caveat is that QR can have arbitrarily small relative efficiency compared
to the OLS estimator based on a single quantile. Further, the quantile regression at
one quantile may provide more efficient estimates than for another quantile. Zou and
Yuan (2008) proposed the simultaneous estimation over multiple quantiles, with equal
weights assigned to each quantile considered, to abate the issues of the single quan-
tile regression. Zhao and Xiao (2014) extended the composite quantile regression to
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unequal weights for each quantile. A Bayesian estimation procedure for the composite
model with unequal weights was outlined by Huang and Chen (2015).

A different set of issues with QR regression is from the perspective of axiomatic
theory. Artzner et al. (1999) provide a foundation of coherent risk measures, where it’s
shown that quantiles are not coherent as they don’t satisfy the criterion of subadditivity,
see, e.g. Bellini et al. (2014) for more details. Generalized quantiles represent a sepa-
rate extension of QR, which addresses the issues with quantiles as a risk measure, and
is based on modifying the asymmetric linear loss function of quantiles by considering
more general loss functions. Newey and Powell (1987) introduced expectiles as mini-
mization of an asymmetric squared function. Chen (1996) introduced L p-quantiles as
the minimization of an asymmetric power function, which includes both the expectile
and quantile loss functions as special cases. As L p-quantiles are coherent risk mea-
sures, they have gained much recent popularity in actuarial applications and extreme
value analysis (Bellini et al. 2014; Usseglio-Carleve 2018; Daouia et al. 2019; Konen
and Paindaveine 2022). Apart from coherency, the usage of L p-quantiles is mainly
motivated by their flexibility, bridging between the robustness of quantiles and the sen-
sitivity of expectiles. However, the L p-quantile approach is not without drawbacks,
mainly that L p-quantiles does not have an interpretation as direct as ordinary quan-
tiles. For a general discussion on relating the interpretation of L p-quantiles to ordinary
quantiles, see Jones (1994).

This paper aims to extend L p-quantile regression to composite L p-quantile regres-
sion from the Bayesian perspective, emulating the extension for ordinary quantiles by
Huang andChen (2015). Bayesian single L p-quantile regression, based on the Skewed
exponential power distribution (SEPD) (Komunjer 2007; Zhu and Zinde-Walsh 2009),
has been considered by Bernardi et al. (2018); Arnroth and Vegelius (2023). However,
maximization of the likelihood of the SEPD corresponds to the minimization of a
transformation of the L p-quantile loss function. Therefore, a novel parametrization
of the SEPD, based directly on the loss function of L p-quantiles, is introduced. Com-
pared to the single L p-quantile setting, the composite extension significantly alleviates
the issues of interpretation as the parameters of interest for the Bayesian composite
L p-quantile regression (BCLQR) are the same as those of Bayesian composite quan-
tile regression (BCQR). Hence, results based on L1-quantiles and L p-quantiles will
be directly comparable. Furthermore, following Huang and Chen (2015), the issue of
variable selection is simultaneously considered by considering a Laplace prior for the
regression coefficients, which translates into a L1 penalty on the regression coeffi-
cients, i.e., Lasso (Tibshirani 1996).

The article is organized as follows. In Sect. 2, the BCLQR method with a lasso
penalty on the regression coefficients is introduced. Section3 presents numerical
results with applications to both simulated and empirical data. Finally, discussion
and conclusions are put in Sect. 4.
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2 Bayesian composite Lp-quantile regression

Consider the following linear model

y = b0 + xTβ + ε, (1)

where x ∈ Rm is the m-dimensional covariate, β ∈ Rm is the m-dimensional vector
of unknown parameters, b0 ∈ R is the intercept, y ∈ R is the response, and ε is the
noise. The conditional τ th L p-quantile of y|x is

b0 + xTβ + qτ = bτ + xTβ,

where qτ is the τ th L p-quantile of ε for τ ∈ (0, 1), independent of x. For a random
variable z with cumulative density function F , the τ th L p-quantile is defined as (Chen
1996)

qτ = argmin
q

∫
ρτ,p(z − q)dF(z), (2)

where ρτ,p(·) is an asymmetric power function defined as

ρτ,p(y) = |τ − I (y ≤ 0)||y|p. (3)

For a random sample (y1, x1), . . . , (yn, xn), the τ th L p-quantile regression model
estimates bτ and β by solving

(b̂τ , β̂) = argminbτ ,β

n∑
i=1

ρτ,p(yi − bτ − xTi β), (4)

By setting p = 1 in (4), we retain the standard quantile regression estimator. To recast
minimization of (4) into maximization of a likelihood function, we assume the noise
term in (1) to follow a density of the form

f (y; τ, p) = Kτ,p exp{−|τ − I (y ≤ 0)||y|p} = Kτ,p exp{−ρτ,p(y)}, (5)

where p > 0 and K−1
τ,p = �(1+1/p)(τ−1/p + (1− τ)−1/p). The density function (5)

corresponds to a re-scaling of the skewed exponential power distribution (Komunjer
2007; Zhu and Zinde-Walsh 2009). Furthermore, setting p = 1 directly retains the
asymmetric Laplace distribution utilized for Bayesian quantile regression (Kozumi
and Kobayashi 2011). For scale σ > 0 and location μ ∈ R, the density is

p(y;μ, σ, τ, p) = σ−1 f
(
σ−1(y − μ); τ, p

)
. (6)

The reparametrization η = σ p shall be considered in the sequel, with a prior placed
directly on η, which simplifies the subsequent MCMC sampling scheme. Following
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Huang and Chen (2015) and Zhao and Xiao (2014), composite L p-quantile regression
is defined as

(b̂τ1 , . . . , b̂τK , β̂) = argminbτ1 ,...,bτK ,β

n∑
i=1

{
K∑

k=1

wkρτk ,p(yi − bτk − xTi β)

}
, (7)

where 0 < τ1 < . . . < τK < 1 are quantile levels and 0 < wk < 1 is the weight of the
kth component, where w = (w1, . . . , wK )T is defined on the (K − 1)-dimensional
simplex {w ∈ [0, 1]k : ∑k

i=1 wk = 1}. Note that, unlike fitting K independent quantile
models, (7) assumes the sameβ across quantiles. By fixing p = 1 in (7), the estimation
procedure of Huang and Chen (2015) is retained.

The joint distribution of y = (y1, . . . , yn)T given X = (
xT1 , . . . , xTn

)T for a
composite model is

p( y|X,β, b,w, p, σ ) =
n∏

i=1

(
K∑

k=1

wk pτk (yi |xi , bτk ,β, η, p)

)
, (8)

where b = (bτ1 , . . . , bτK )T and

pτk (yi |xi , bτk ,β, σ, p) = Kτk ,p

η1/p
exp

{
−1

η
ρτk ,p

(
yi − xTi β − bτk

)}
.

To solve (8), we introduce a matrix C for cluster assignment whose i, kth element,
Cik , is equal to 1 if the i th subject belongs to the kth cluster, otherwise Cik = 0. C
is treated as a missing value and we start from the complete likelihood which has the
form

p( y|X,β, b,w, σ, p, τ ,C) =
n∏

i=1

K∏
k=1

[
wk pτk (yi |xi , bτk ,β, σ, p)

]Cik

= 1

ηn/p�(1 + 1/p)n

K∏
k=1

⎛
⎝ wk

τ
1
p
k + (1 − τk)

1
p

⎞
⎠

nk

exp

{
−1

η

n∑
i=1

K∑
k=1

Cikρτk ,p

(
yi − xTi β − bτk

)}
,

where nk = ∑n
i=1 Cik .

To perform variable selection, we consider the standard Laplace prior for β

π(β) = 1

2m
exp

⎧⎨
⎩−

m∑
j=1

|β j |
⎫⎬
⎭ .
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A Dirichlet prior is considered for w,

π(w) = Dirichlet(α1, . . . , αK ),

with α1 = . . . = αK = 0.1. The priors of σ and p are set to

π(η) = IG(0.1, 0.1) and π(p) = U(0, 5),

where IG(a, b) denotes the inverse Gamma distribution with shape a and scale b and
U(a, b) denotes the continuous Uniform distribution on [a, b]. Here, the upperbound
on p was set to 5 which was sufficiently high to not impact the posterior samples of
p in Sect. 3 meaningfully. Also, from a practical perspective, limiting the values of
p to not be too large is motivated by the increased flatness around the mode of the
SEPD as p increases, which could cause issues for a MCMC procedure. It’s worth
noting that, from a practitioner’s perspective, the most intuitive approach is to restrict
the prior on p to a continuous distribution within the range p ∈ [1, 2]. As such, the
interpretation of the procedure is along the lines of a bridge between the robustness of
quantiles and the sensitivity of expectiles. We avoid such restrictions here however to
allow for increased flexibility of the estimation procedure. Additionally, we treat the
quantile specific intercepts as described in Huang and Chen (2015), setting π(b) ∝ 1.
Such an improper prior yields a proper posterior for the single L p-quantile regression
(Arnroth and Vegelius 2023). The posterior distribution is thus given by

π(β, b, η, p| y, X) ∝ p( y|X, b, η, p, τ ,C)π(β)π(η)π(w)π(p). (9)

A MCMC procedure is utilized to sample from (9). The conditional distribution of
β is

π(β| y, X, τ , b,C,w, η, p, λ) ∝ exp⎧⎨
⎩−1

η

n∑
i=1

K∑
k=1

Cikρτk ,p

(
yi − xTi β − bτk

)
− λ

m∑
j=1

|β j |
⎫⎬
⎭ , (10)

of which the normalizing constant is unknown. Due to the possible large dimension
of β, the Metropolis adjusted Langevin algorithm (MALA) is used to sample (10)
efficiently. Proposals are generated as

β ′ = β + ε2β

2
A∇βL(β) + εβ

√
AZ,

where L(β) is the log of (10), A = (XT X)−1, and Z ∼ Nm(0, I). Note that XT X is
used rather than the Hessian due to issues with positive definiteness for some values
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of p. Ignoring non-differentiability of | · | at 0, the gradient is

∇βL(β) = p

η

K∑
k=1

[
(1 − τk)

∑
i∈N1,k

|xTi β + bτk − yi |p−1xi

− τk
∑

i∈N2,k

Cik |yi − xTi β − bτk |p−1xi

]
− λ,

where N1,k = {i : yi < xTi β + bτk and Cik = 1} and N2,k = {i : yi > xTi β +
bτk and Cik = 1}. The acceptance probability is then given by

ϕβ(β ′,β) = 1 ∧ π(β ′| y, X, τ , b,C,w, η, p, λ)q(β|β ′)
π(β| y, X, τ , b,C,w, η, p, λ)q(β ′|β)

,

where q(β|β ′) = N (
β|β ′ + ε2β/2A∇β ′L(β ′), ε2β A

)
and a ∧ b = min{a, b}.

The conditional distribution for the LP-quantile specific intercepts is

π(b| y, X, τ ,β,C,w, η, p) ∝

exp

{
−1

η

n∑
i=1

K∑
k=1

Cikρτk ,p

(
yi − xTi β − bk

)}
. (11)

As forβ, theMALAis consideredusingonly thefirst order derivative of (11). Proposals
are thus generated as

b′ = b + ε2b

2
∇bL(b) + εZ,

where ∇bL(b) has kth element

∂

∂bτk

L(b) = p

η

[
(1 − τk)

∑
i∈N1

Cik |xTi β + bτk − yi |p−1

− τk
∑
i∈N2

Cik |yi − xTi β − bτk |p−1
]
,

where N1 = {i : yi < xTi β + bτk } and N2 = {i : yi > xTi β + bτk } The acceptance
probability is then given by

ϕb(b
′, b) = 1 ∧ π(b′| y, X, τ ,β,C,w, η, p)q(b|b′)

π(b| y, X, τ ,β,C,w, η, p)q(b′|b) ,

where q(b|b′) = N (
b|b′ + ε2b/2∇b′L(b′), ε2b I

)
.

The conditional distribution of η is

π(η| y, X, τ ,β, b,C,w, p) ∝ 1

η
n
p +a1
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exp

{
−1

η

(
n∑

i=1

K∑
k=1

Cikρτk ,p

(
yi − xTi β − bτk

)
+ a2

)}
.

Hence

η| y, X, τ ,β, b,C,w, p ∼

IG
(
n

p
+ 1 + a1,

n∑
i=1

K∑
k=1

Cikρτk ,p

(
yi − xTi β − bτk

)
+ a2

)
.

The conditional distribution of p is given by

π(p|y, X, τ ,β, b,C,w, η)

∝ 1

�(1 + 1/p)n

K∏
k=1

⎛
⎝ 1

τ
1
p
k + (1 − τk)

1
p

⎞
⎠

nk

exp

{
−1

η

n∑
i=1

K∑
k=1

Cikρτk ,p

(
yi − xTi β − bτk

)}
I(0,5](p), (12)

where IX (x) is the indicator function defined as 1 if x ∈ X and 0 otherwise. The
normalizing constant of (12) is unknown, so p is sampled via Metropolis Hastings
with proposals generated as p′ ∼ N(0,5](p, ε2p), whereNA(μ, σ ) denotes the normal
distribution with location μ and variance σ truncated to the setA. The corresponding
acceptance probability is

ϕp(p
′, p) = 1 ∧ π(p′| y, X, τ ,β, b,C,w, η)

π(p| y, X, τ ,β, b,C,w, η)

�
( 5−p

εp

) − �
(−p

εp

)
�
( 5−p′

εp

) − �
(−p′

εp

) ,

where �(·) denotes the standard normal cumulative distribution function.
The conditional distribution of the component weights is

p(w| y, X, τ ,β, b,C, p, η) ∝
K∏

k=1

w
nk+αk
k ∝ Dirichlet(n1 + α1, . . . , nK + αK ).

The conditional distribution of C i = (Ci1, . . . ,CiK )T is a multinomial distribution

p(C i |yi , xi , τ ,β, b, p, η)

∝
K∏

k=1

⎡
⎣ wk

τ
1
p
k + (1 − τk)

1
p

exp
{ − η−1ρτk ,p

(
yi − xTi β − bτk

) }
⎤
⎦
Cik
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∝ Multinomial(1, p̂1, . . . , p̂k),

where

p̂k = wk
[
τ

−1/p
k + (1 − τk)

−1/p
]
exp{−Cikρτk ,p(yi − bτk − xTi β)/η}∑K

k=1 wk
[
τ

−1/p
k + (1 − τk)−1/p

]
exp{−Cikρτk ,p(yi − bτk − xTi β)/η}

.

3 Numerical studies

3.1 Simulation

In this section, Monte Carlo simulations are done to compare the performance of
Bayesian regularized composite L p-quantile regression and Bayesian regularized
composite quantile regression. Julia (Bezanson et al. 2017) was used to produce the
results.1 Note that priors for BCQR are set as in Huang and Chen (2015). We consider
the linear model where data are generated from

yi = xTi β + εi , i = 1, . . . , n, (13)

where xi is sampled from N (0, I) and multiple error distributions are considered
for εi . Note that the error distributions have been chosen based on those consid-
ered in Huang and Chen (2015), and all results are stable over different parameters
than those reported. In the sequel, MN shall denote the mixture of normal distri-
butions, 0.5N (−2, 1) + 0.5N (2, 1), and ML the mixture of Laplace distributions,
0.5Lap(−2, 1) + 0.5Lap(2, 1) and the dimension of β is denoted by m. Two set-
tings are considered where the first is the dense case with n = 200 and m = 8
where β = 1. For the second setting, the sparse case, n = 100 and m = 20 with
(β1, β2, β5)

T = (0.5, 1.5, 0.2)T , where β j is the j th position of β, and the remaining
coefficients are set to 0. The root mean square error (RMSE) is used to compare differ-
ent methods, RMSE(β̂) = E(||β̂ −β||), where β̂ is taken as the mean of the posterior
sample. For each simulated datum, the first 3000 sweeps of the chains are discarded
as burn-in. Then, an additional 10, 000 sweeps are performed, with every 5th sweep
kept to reduce the serial correlation of the chains. As in Huang and Chen (2015), the
number of components is fixed to K = 9 with τk = k/(K +1) for k = 1, . . . , 9. Other
values of K have been considered, however, results are not sensitive to this choice, so
results over multiple K are not displayed. The simulations are repeated 1000 times.

Results in terms of RMSE for both settings are found in Table 1. The proposed
methodoutperformsBCQRfor all distributions except themixtureLaplace distribution
for setting 1, where the results are very similar. As expected, the results are close for
the Laplace error distribution, highlighting that BCQR is a special case of BCLQR,
with p = 1.

For the sparse case, the variable selection properties of BCQR and BCLQR are
compared. Denote the number of correctly classified non-zero coefficients, true posi-

1 Version 1.9.0 was used, code can be found at https://github.com/lukketotte/CompositeLPQR.
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Table 1 Summary table of RMSE over 1000 replications of simulated data, standard errors in parenthesis

N (0, 1) MN Lap(0, 1) ML Gam(1, 1) B(2, 2)

Setting 1 BCQR 0.215 0.265 0.228 0.282 0.066 0.042

(0.055) (0.078) (0.068) (0.092) (0.022) (0.011)

BCLQR 0.199 0.246 0.224 0.284 0.057 0.037

(0.051) (0.066) (0.065) (0.099) (0.021) (0.009)

Setting 2 BCQR 0.495 0.725 0.590 0.879 0.273 0.110

(0.096) (0.205) (0.136) (0.253) (0.069) (0.020)

BCLQR 0.464 0.683 0.584 0.876 0.269 0.103

(0.085) (0.180) (0.126) (0.211) (0.072) (0.022)

Table 2 Summary of variable selection by comparison of true and false positives and overall accuracy for
the sparse settingwithmean over 1000 replications of simulated data reported, standard errors in parenthesis

N (0, 1) MN Lap(0, 1) ML Gam(1, 1) B(2, 2)

TP BCQR 2.422 1.996 2.214 1.721 2.837 3.0

BCLQR 2.439 1.936 2.214 1.617 2.860 3.0

FP BCQR 0.578 1.004 0.787 1.279 0.163 0.0

BCLQR 0.561 1.064 0.787 1.383 0.140 0.0

OA BCQR 0.921 0.898 0.916 0.893 0.953 0.952

(0.075) (0.077) (0.063) (0.077) (0.068) (0.068)

BCLQR 0.935 916 0.920 0.901 0.960 0.970

(0.059) (0.058) (0.054) (0.056) (0.068) (0.04)

tives, by TP and the number of incorrectly classified zero coefficients, false positives,
by FP. A coefficient is classified as non-zero if the 95% highest posterior density inter-
val does not cover zero. Note that both TP and FP are at most 3 from the specification
of β. Otherwise, it is classified as zero. We also denote a correctly classified 0 as a true
negative (TN), and define overall accuracy (OA) as (T N + T P)/20. Table 2 shows
that the methods perform similarly, in terms of TP and FP, except for the mixture
Laplace case, where BCQR performs better than BCLQR. Further, for the OA, the
proposed method outperforms BCQR with respect to all error distributions.

3.2 Empirical data

In this section, the proposed method is applied to empirical data and compared with
BCQR. As in Huang and Chen (2015), 10-fold cross-validation is used to evaluate
the performance of the two methods, with accuracy measured by the mean absolute
prediction error (MAPE) and corresponding standard deviation evaluated on the test
data. As in the simulation study, the number of components is fixed to K = 9 with
τk = k/(K + 1) for k = 1, . . . , 9.
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Fig. 1 MAP estimates and 95% credible sets for all parameters based on BCLQR and BCQR for the entire
Boston housing data

3.2.1 Boston housing data

The Boston housing data were first analyzed by Harrison Jr and Rubinfeld (1978) and
has been used extensively in the context of Bayesian quantile regression, see, e.g.,
Huang and Chen (2015); Kozumi and Kobayashi (2011); Li et al. (2010). The data
consists of 506 observations and were obtained from the MASS (Venables and Ripley
2002) package in R (R Core Team 2021).2 The relationship between log-transformed
median value of owner-occupied housing (in 1000 USD) and the remaining 13 vari-
ables is considered, for details on the parameters see Venables and Ripley (2002). We
draw 30, 000 samples from the posterior with the first 5000 discarded as the transient
phase. The posterior sample is thinned down to every 5th sample.

The MAPE of BCLQR is 0.137, with a standard deviation of 0.032. Similarly, the
MAPE of BCQR is 0.139, with a standard deviation of 0.031. Thus we find that the
proposed method performs slightly better. In Fig. 1, the estimators are compared for
the complete data, where differences are generally negligible, however the parameter
Crim stands out in terms of interval width and MAP estimate. The intervals of Fig. 1
shows that the the procedures gives the same result in terms of variable selection.
In Table 3, MAP estimates and corresponding standard deviation for six regression
coefficients are presented. Table 3 also includes effective sample size (ESS), which
shows that the efficieny in exploration of the posterior for the two MCMC sampling
schemes are quite different. BCLQR is generally more efficient. For more details on
ESS, see, e.g., Section 11.5 of Gelman et al. (2014).

In Fig. 2, the result for quantile specific intercepts and mixture weights are dis-
played. The main difference between BCLQR and BCQR is that the weights of the
former concentrates to a much larger degree than the latter, as seen in Fig. 2b. The
concentration explains the larger degree of oscillation of the intercepts for BCLQR
over quantiles, in relation to the intercepts of BCQR, as seen in Fig. 2a.

2 R version used was 4.3.0 and MASS package version 7.3.
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Table 3 ESS of the MCMC procedures and estimated regression coefficients for the entire Boston housing
data, with standard error in parenthesis

Parameter Estimate ESS

BCLQR BCQR BCLQR BCQR

Zn 0.012 (0.009) 0.013 (0.009) 795 483

Tax −0.091 (0.018) −0.087 (0.016) 1216 141

Rm 0.149 (0.011) 0.164 (0.013) 39 210

Rad 0.085 (0.017) 0.082 (0.018) 1105 138

Ptratio −0.061 (0.008) −0.062 (0.007) 1005 473

Nox −0.030 (0.013) −0.029 (0.012) 256 261

Lstat −0.130 (0.014) −0.130 (0.014) 61 231

Indus 0.017 (0.012) 0.018 (0.011) 1336 283

Dis −0.071 (0.011) −0.070 (0.012) 855 262

Crim −0.171 (0.140) −0.175 (0.202) 140 68

Chas 0.016 (0.006) 0.014 (0.005) 1006 1156

Black 0.055 (0.007) 0.056 (0.007) 836 569

Age −0.043 (0.013) −0.045 (0.010) 589 209

Fig. 2 Comparison over quantiles τ ∈ {0.1, 0.2, . . . , 0.9} for estimation on entire Boston data

3.2.2 Body measurement data

In this section, the body measurement data, which was first analysed by Heinz et al.
(2003), is considered. The data consists of 507 observations and were downloaded
from the Brq package in R (R Core Team 2021).3 The relationship between body
weight and 24 other variables is considered. See Heinz et al. (2003) for details on the
data and descriptions of the independent variables. We draw 30, 000 samples from the
posterior with the first 5000 discarded as the transient phase. The posterior sample is
thinned down to every 5th sample.

The MAPE of BCLQR is 1.577, with a standard deviation of 0.221. The MAPE
of BCQR is 1.680 with a standard deviation of 0.242. Thus we find that the proposed

3 Brq package version 3.0.
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Fig. 3 Point estimates and 95% credible sets for all parameters based on BCLQR and BCQR for the entire
Body measurement data

method performs better then BCQR. The result from the estimation of the whole
sample is shown in Fig. 3, with 95% credible sets. In terms of variable selection, the
procedures differs on the variables ShouldGi, KneeSk and Gender. The interval of
BCLQR for ShouldGi covers 0 whilst that of BCQR does not, vice versa for KneeSk
and Gender.

MAP estimates, standard deviation and ESS for all regression coefficients are pre-
sented in Table 4. The difference in ESS for the posterior samples of β is much greater
for the Body measurement data in comparison to the Boston housing data. This is
most likely due to the joint sampling of β in our MCMC procedure, as compared to
each index of β being sampled individually in BCQR (Huang and Chen 2015).

In Fig. 4, the results for quantile specific intercepts and mixture weights are dis-
played where patterns similar to those noted in Fig. 2 can be seen.
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Fig. 4 Comparison over quantiles τ ∈ {0.1, 0.2, . . . , 0.9} for entire Body measurement data

Table 4 ESS of the MCMC procedures and estimated regression coefficients for the entire body measure-
ment data, with standard error in parenthesis

Parameter Estimate ESS
BCLQR BCQR BCLQR BCQR

WristSk 0.187 (0.184) 0.131 (0.181) 1813 80

WristGi −0.284 (0.267) −0.288 (0.297) 777 39

WaistGi 4.063 (0.291) 4.035 (0.326) 1498 26

ThighGi 1.113 (0.237) 1.090 (0.237) 1071 50

ShoulGi 0.569 (0.324) 0.710 (0.353) 311 45

NavelGi −0.099 (0.205) −0.027 (0.250) 1591 46

KneeSk 0.420 (0.189) 0.276 (0.186) 896 56

KneeGi 0.604 (0.197) 0.591 (0.237) 1271 70

HipGi 1.493 (0.303) 1.551 (0.328) 1211 49

Height 2.83 (0.165) 2.786 (0.163) 1167 91

Gender −0.581 (0.252) −0.559 (0.281) 1283 39

ForeaGi 1.266 (0.373) 1.471 (0.367) 905 31

ElbowSk 0.218 (0.226) 0.193 (0.221) 939 62

ChestGi 1.131 (0.387) 0.947 (0.369) 554 51

CheDiSk 0.439 (0.219) 0.471 (0.213) 750 85

CheDeSk 0.609 (0.161) 0.618 (0.145) 1203 168

CalfGi 0.972 (0.184) 0.942 (0.193) 1203 109

BitrSk −0.060 (0.159) −0.037 (0.151) 1677 104

BiilSk 0.223 (0.134) 0.221 (0.150) 1072 100

BicepGi 0.691 (0.343) 0.611 (0.320) 961 35

BiacSk 0.009 (0.182) 0.006 (0.164) 831 120

AnkleSk 0.216 (0.175) 0.287 (0.175) 1261 93

AnkleGi 0.010 (0.160) 0.021 (0.146) 1937 164

Age −0.460 (0.115) −0.472 (0.118) 1048 159
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4 Conclusions

In this paper, we present an efficient Bayesian method that extends the approach
of Huang and Chen (2015) to combine multiple L p-quantile regressions for both
inference and variable selection. A simulation study demonstrates that the proposed
method performs as well as, or even better than, Bayesian composite quantile regres-
sion (BCQR). BCQR outperforms the proposed method only in terms of true positives
for variable selection accuracy for some specific error distributions. However, when
considering true negatives as well, the proposed method surpasses BCQR across all
error distributions. This performance improvement holds true for both sparse and dense
settings, underscoring the versatility of L p-quantiles, which encompass quantiles and
expectiles through the parameter p as special cases, in contrast to ordinary quantiles

Comparisons using empirical data reveal that the proposed method outperforms
BCQR in terms of prediction error during 10-fold cross-validation. Furthermore, the
overall effective sample size of the regression coefficients in Bayesian composite
L p-quantile regression (BCLQR) is higher for the parameters of interest in practical
applications, indicating more efficient exploration of the posterior distribution.

For future research, it may be valuable to relax the assumption of a fixed number of
quantiles in the composite model. Additionally, treating discretized quantiles, {τk}Kk=1,
as continuous variables and considering aDirichlet process as a prior on the component
weights could be explored. Extending BCQR to infinite mixtures remains an open
and intriguing possibility. Another promising avenue is to study the specific case of
BCLQR with a fixed p = 2, essentially composite expectile regression.
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