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Abstract
The problem of optimal estimation of location and scale parameters of absolutely
continuous distributions, by means of two-dimensional confidence regions based on
L-statistics, is considered. The case, when the sample size is random and tends to
infinity, is studied. The paper can be considered as a supplement to Zaigraev and
Alama-Bućko (Metrika 81:283–305, 2018) in case of samples of random size.

Keywords Sample of random size · Optimal confidence region · Order statistics ·
L-statistics

1 Introduction

The problem of optimal confidence interval/region estimation is one of the classical
problems of Mathematical Statistics. Although, it has mainly been investigated for a
single unknown parameter, the multivariate case has also quite a rich history, starting
with confidence regions of rectangular shape (see, e.g., S̆idák 1967) and ending with
those of arbitrary shape (see, e.g., Czarnowska and Nagaev 2001; Alama-Bućko et al.
2006; Zaigraev and Alama-Bućko 2013, 2017, 2018). But in all the cases only samples
of non-random size have been taken into account.

Here, the samples of random size are studied and the case of two unknown param-
eters is considered, where the first parameter ϑ1 ∈ R is location and the second
parameter ϑ2 > 0 is scale. Therefore, two-dimensional confidence regions as esti-
mators of ϑ = (ϑ1, ϑ2) are considered. A solution to the problem of construction of
the optimal confidence region for large samples was obtained, e.g., in Zaigraev and
Alama-Bućko (2013, 2018). Thus, this note can be considered as a supplement to
Zaigraev and Alama-Bućko (2018) in case of samples of random size.
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Traditionally, the size of the available sample is assumed to be deterministic, but
in practice the size of the data available for statistical analysis can be often treated
as random. Indeed, quite often the number of observations available is unknown until
the end of the recording process and also can be treated as an (random) observation.
This is the case, for example, in insurance statistics, where in different accounting
periods the numbers of insurance claims are different. Or in medical statistics, where
the number of patients with a particular disease varies from month to month due,
e.g., to seasonal factors or from year to year due, e.g., to some epidemic. In these
cases, the number of observations available, as well as the observations themselves,
are previously unknown and should be treated as random.

In this note, we discuss the problem described above for samples of random size
and compare the quality of estimators constructed from samples of random and non-
random size.

We start with notation, assumptions and a review of the construction of the optimal
confidence region given in Zaigraev and Alama-Bućko (2018) for samples of non-
random size (Sect. 2), while our main result is given in Sect. 3. In that section we
essentially use the results from Korolev (2000) and Bening and Korolev (2005).

2 Notation and recollections

Let x = (x1, x2, . . . , xn) be a sample from a distribution Pϑ , that is {xi }ni=1 are
assumed to be independent real-valued random variables having the distribution Pϑ .

Let F = F(0,1) be the continuous distribution function corresponding to P(0,1) and let

F−1(p) = inf{v ∈ R : F(v) � p}, 0 < p < 1

be the quantile function. The distribution P(0,1) is assumed to be absolutely continu-
ous with the density function f . Let xm1:n, xm2:n, . . . , xmk :n be the order statistics
corresponding to the sample x, 1 � m1 < m2 < . . . < mk � n, and let
0 < p1 < p2 < . . . < pk < 1 be such numbers that mi/n − pi = o(n−1/2), as
n → ∞, and f (F−1(pi )) > 0, i = 1, . . . , k. In what follows we confine ourselves
with the case of central order statistics (the treatment of the more general case for
samples of deterministic size is detailed in Zaigraev and Alama-Bućko (2018)).

We propose to base the construction of optimal confidence region for ϑ on L-
statistics t1(·) and t2(·) being the asymptotically best linear unbiased estimators of ϑ1
and ϑ2, respectively. As it is well-known (see, e.g., Masoom Ali and Umbach (1998)
or Zaigraev and Alama-Bućko (2018)), these estimators look as follows:

t1(x) =
k∑

j=1

a j xm j :n, t2(x) =
k∑

j=1

b j xm j :n,
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where

a = (a1, . . . , ak) = uV−1uT 1kV−1 − 1kV−1uTuV−1

uV−1uT 1kV−11Tk − (1kV−1uT )2
,

b = (b1, . . . , bk) = 1kV−11Tk uV
−1 − 1kV−1uT 1kV−1

uV−1uT 1kV−11Tk − (1kV−1uT )2
,

1k = (1, . . . , 1) ∈ R
k, u = (F−1(p1), . . . , F−1(pk)), V = (Vi j )ki, j=1 with

Vi j = pi (1 − p j )

f (F−1(pi )) f (F−1(p j ))
, 1 � i � j � k.

Note that the well-known result on the form of the asymptotic distribution of selected
central order statistics, established by Mosteller (see Mosteller (1946) or David and
Nagaraja (2003), Subsection 10.3), is used here.

Let α ∈ (0, 1) be a given small number, while y = (y1, y2, . . . , yn) be a sample
from the distribution P(0,1). Denote Tn(y) = (−t1(y)/t2(y), 1/t2(y) − 1). Taking a
set An ∈ B2 such that P(0,1)

(√
nTn(y) ∈ An

) = 1 − α, one can obtain

P(θ1,θ2)

(√
n

(
θ1 − t1(x)

t2(x)
,
θ2 − t2(x)

t2(x)

)
∈ An

)
= 1 − α

(here B2 denotes the σ -algebra of Borel subsets of R2).
Thus, the set

BAn (x) = (t1(x), t2(x)) + (t2(x)/
√
n)An (1)

is a confidence region of level 1− α for ϑ; its quality can be characterized by the risk
function defined as

R(ϑ, BAn ) = Eϑλ2(BAn (x)) = λ2(An)Eϑ t
2
2 (x)/n, (2)

where λ2 is the Lebesgue measure on B2. Under the assumption that the density
function gn of Tn(y) is continuous and such that

λ2({v ∈ R
2 : gn(v) = z}) = 0 ∀z > 0,

the confidence region BA∗
n
with

A∗
n = {v ∈ R

2 : ḡn(v) � zα}
is optimal among all the confidence regions of the form (1), that is it has the smallest
value of (2) (see Einmahl and Mason (1992)), where zα is defined by the equation

∫

A∗
n

ḡn(v)dv = 1 − α,
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and ḡn(v) = (1/n)gn(v/
√
n) is the density function of

√
nTn(y). Moreover, Zaigraev

and Alama-Bućko (2017; 2018), have established that
√
nTn(y) has asymptotically,

as n → ∞, 2-dimensional normal distributionN2(0,W ) and the set A∗
n, as n → ∞,

tends to the ellipse A0 = {v ∈ R
2 : vW−1vT � 2 ln α−1}, where

W =
[
a
b

]
V

[
a
b

]T

=
[
aV aT aVbT

aVbT bVbT

]
.

Therefore,

lim
n→∞ λ2(A

∗
n) = λ2(A0) = 2π

√
detW ln α−1.

Since limn→∞ Eϑ t22 (x) = θ22 limn→∞ E(0,1)t22 (y) = θ22 , the order of the risk function
R(ϑ, BA∗

n
) for positive and finite limit value of detW is 1/n, as n → ∞.

3 Main result

From now on the notation
D�⇒ means the convergence of random variables or random

vectors in distribution. Let (Nn)n�1 be a sequence of integer-valued non-negative
random variables such that Nn and x1, x2, . . . , xn are independent for any n. We
assume that
(A) Nn → ∞ in probability, Nn/n

D�⇒ Y , as n → ∞, and ENn = n ∀n ∈ N, where
Y is a non-degenerate random variable having an absolutely continuous distribution
with a distribution function G and a density function g.

The next example contains a sequence (Nn)n�1, for which condition (A) is fulfilled.

Example Assume that a random variable X has a negative binomial distribution with
parameters r > 0 and p ∈ (0, 1) (denote as NB(r , p) distribution), i.e.

P(X = k) =
(
r + k − 1

k

)
pr (1 − p)k, k = 0, 1, 2, . . .

with EX = r(1 − p)/p. If r is non-integer, then
(r+k−1

k

)
is interpreted as

(
r + k − 1

k

)
= �(r + k)

k!�(r)
.

Note that NB(1, p) is the geometric distribution (denoted further as Geo(p)).

Bening and Korolev (2005) show that if the random variable Nn has NB(m/2,

m/(m + 2n)) distribution given m > 0, n ∈ N, then Nn/n
D�⇒ Um/2, as n → ∞,

where Um/2 is a random variable having the gamma distribution G(m/2,m/2) (it is
the scaled χ2

m distribution) with the density

d(t) = (m/2)m/2tm/2−1e−mt/2

�(m/2)
, t > 0. (3)
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In particular, if the random variable Nn has Geo(1/(n + 1)) distribution, n ∈ N,

then Nn/n
D�⇒ U1 (U1 has the standard exponential distribution), as n → ∞.

The next result is due to Korolev (2000) and describes the asymptotic distribution of
selected central order statistics in case of samples of random size. It can be considered
as a generalization of Mosteller’s result.

Theorem 1 Assume that assumptions made in Sect. 2 and assumption (A) hold. As
n → ∞,

√
n(ym1:Nn − F−1(p1), . . . , ymk :Nn − F−1(pk))

D�⇒ Zk,V /
√
Y ,

where Zk,V stands for the random vector having the k-variate normal distribution
Nk(0, V ). The distribution function and the density of the limit distribution can be
written as

H(v) =
∫ ∞

0

V (u1/2v)dG(u), v ∈ R

k,

h(v) =
∫ ∞

0
uk/2ϕV (u1/2v)g(u)du, v ∈ R

k,

respectively, where 
k,V and φk,V denotes the distribution function and the density
corresponding to Nk(0, V ), respectively.

It is worth noting that the limit distribution, established in Theorem 1, belongs to
the class of elliptical distributions.

The adaptation of Theorem 1 to the random variables (Nn)n�1, having negative
binomial distributions, gives the following result.

Corollary If the random variable Nn hasNB(m/2,m/(m+2n)) distribution, n ∈ N,

then under the conditions of Theorem 1, as n → ∞,

√
n(ym1:Nn − F−1(p1), . . . , ymk :Nn − F−1(pk))

D�⇒ Tk(m, V ),

where Tk(m, V ) is a random vector having k-dimensional Student distribution with
the density

h(v) = �((m + k)/2)

�(m/2)mk/2πk/2(detV )1/2

(
1 + 1

m
vV−1vT

)−(m+k)/2

, v ∈ R
k . (4)

If the random variable Nn has Geo(1/(n + 1)) distribution, n ∈ N, then the above
limit distribution is Tk(2, V ).

In what follows, let G(s), s > 0, be the Laplace transform of the function g, while
G−1 be the inverse function to G, that is

s = G−1(α) ⇐⇒ G(s) =
∫ ∞

0
e−sug(u)du = α.
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The inverse function exists since the derivative

G′(s) = −
∫ ∞

0
e−usug(u)du

is always negative.
The next result determines the asymptotic of the optimal confidence region in case

of samples of random size.

Theorem 2 Under the conditions of Theorem 1,

1.
√
nTNn (y)

D�⇒ Z2,W /
√
Y , as n → ∞, and the density of the limit distribution

has the form

h(v) =
∫ ∞

0
uϕ2,W (

√
uv)g(u)du, v ∈ R

2. (5)

In particular, if the random variable Nn hasNB(m/2,m/(m + 2n)) distribution,
n ∈ N, then the randomvector Z2,W /

√
Y has T2(m,W ) distribution; if the random

variable Nn has Geo(1/(n + 1)) distribution, n ∈ N, then the random vector
Z2,W /

√
Y has T2(2,W ) distribution.

2. The set A∗
n,as n → ∞, tends to the ellipse A′

0 = {v ∈ R
2 : vW−1vT � 2G−1(α)},

and

lim
n→∞ λ2(A

∗
n) = λ2(A

′
0) = 2π

√
detWG−1(α).

Proof The proof of the first part is based on Theorem 1 and the limit distribution of√
nTNn (y), that established similarly as the limit distribution of the corresponding

statistic for the samples of non-random size (see Corollary 1 of Zaigraev and Alama-
Bućko (2018)). As to the proof of the second part, note that the function h, defined by
(5), can be written as

h(v) = 1

2π
√
detW

∫ ∞

0
exp

(
−u

2
vW−1vT

)
ug(u)du

= − 1

2π
√
detW

G′
(
vW−1vT

2

)
, v ∈ R

2.

The set A∗
n, as n → ∞, approximates the set A′

0 = {v ∈ R
2 : h(v) � z′α}, where

z′α is defined by the equality

∫

A′
0

h(v)dv = 1 − α. (6)
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Since

G′′(s) =
∫ ∞

0
e−usu2g(u)du > 0 ∀s > 0,

the function −G′ is monotonically decreasing, that is why

h(v) � z′α ⇐⇒ vW−1vT

2
� a (7)

for some a > 0 and, moreover, λ2(A′
0) = 2aπ

√
detW .

Changing the variables in (6): v1 = r cosβ, v2 = r sin β, r � 0, β ∈ [0, 2π), we
obtain

1 − α =
∫

{v:h(v)�z′α}
h(v)dv

= 1

2π
√
detW

∫ 2π

0
dβ

∫ √
2a

σ(β)

0
rdr

∫ ∞

0
exp

(
−u

2
r2σ 2(β)

)
ug(u)du

= 2

2π
√
detW

∫ 2π

0

dβ

σ 2(β)

∫ √
a

0
zdz

∫ ∞

0
e−uz2ug(u)du,

where σ 2(β) = [cosβ sin β]W−1[cosβ sin β]T . Since

∫ √
a

0
2uze−uz2dz = 1 − e−ua,

we obtain

1 − α = 1

2π
√
detW

∫ 2π

0

dβ

σ 2(β)

∫ ∞

0
(1 − e−ua)g(u)du. (8)

From (7) it follows that taking z′α = 0 we get a = +∞, and the same reasoning as
above leads us to the formula

1

2π
√
detW

∫ 2π

0

dβ

σ 2(β)
= 1. (9)

Substituting (9) in (8), we have

1 − α = 1 −
∫ ∞

0
e−uag(u)du = 1 − G(a) ⇐⇒ a = G−1(α)

and λ2(A′
0) = 2π

√
detWG−1(α). �
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Remark 1 The value λ2(A′
0) = 2π

√
detWG−1(α) from Theorem 2 is larger than

λ2(A0) = 2π
√
detW ln α−1 from Sect. 2. Indeed, since EY = 1, from Jensen’s

inequality it follows that EαY > αEY = α, i.e.

∫ ∞

0
αug(u)du = G(ln α−1) > α ⇐⇒ ln α−1 < G−1(α).

Example (continuation) If the random variable Nn has NB(m/2,m/(m + 2n)) dis-
tribution, n ∈ N, then the function h has the form (see (4) for k = 2):

h(v) = �(m/2 + 1)

�(m/2)mπ
√
detW

(
1 + 1

m
vW−1vT

)−m/2−1

, v ∈ R
2.

In this case the function g is defined by (3) and

G(s) =
∫ ∞

0
e−sug(u)du =

(
1 + 2s

m

)−m/2
, s > 0,

while

G−1(α) = m

2

(
α−2/m − 1

)
, α ∈ (0, 1).

Therefore, A′
0 = {v ∈ R

2 : vW−1vT � m
(
α−2/m − 1

)}, and

lim
n→∞ λ2(A

∗
n) = λ2(A

′
0) = πm

(
α−2/m − 1

) √
detW .

Evidently, λ2(A′
0) > λ2(A0) ⇐⇒

m(α−2/m − 1) > 2 ln α−1 ∀m > 0 ∀α ∈ (0, 1).

The last inequality is a consequence of the known inequality: x − 1 > ln x ∀x > 1.
Moreover, note that m(α−2/m − 1) → 2 ln α−1, as m → ∞.

Remark 2 If the distribution of Y is degenerate and Nn/n → 1 in probability, as
n → ∞, then the results for samples of random size do not differ from those, obtained
when the sample size is non-random (Sect. 2).
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