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Abstract
In this paper, we study properties of a series–parallel system. The component lifetimes
may be dependent and non-identically distributed (DNID) discrete random variables.
We consider the number of failed components upon system failure. We derive the
probability mass function and the expected value of this quantity. In addition, we find
the conditional probabilities corresponding to this variate given some partial informa-
tion about the system failure. We also provide a numerical example to demonstrate
the theoretical results.
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1 Introduction

Coherent systems are used to model mathematically sophisticated technical devices
composed of simple components. According to Barlow and Proschan (1975), a struc-
ture consisting of n components is known as a coherent system if it has no irrelevant
components (a component is irrelevant if it does notmatterwhether or not it isworking)
and the system is monotone in every component (that is, replacing a failed component
by a working component cannot cause a working system to a fail).

The reliability properties of coherent systems have been extensively studied in
recent years, see for example (Kelkinnama and Asadi 2019; Eryilmaz and Pekalp
2020; Li and Li 2020; Pitzen and Burkschat 2020; Roy and Gupta 2020; Navarro
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et al. 2021; Kelkinnama and Eryilmaz 2023). Most results are known to hold for
the systems composed of components whose lifetimes have absolutely continuous
distributions. With a continuity assumption the reliability analysis is easier, because
the probability of ties between component failures is equal to zero. However, the
discrete models occur very often, for example, when we consider a system in which
component lifetimes represent the numbers of turn-on and switch-off up to failures or
a system whose components may fail only at moments of shocks that occur in discrete
time. For more details and recent advances on the study of the reliability properties
of coherent systems composed of components with discrete lifetimes, we refer the
reader to Weiss (1962), Young (1970), Tank and Eryilmaz (2015), Dembińska
(2018), Dembińska and Goroncy (2020), Dembińska and Jasiński (2021), Jasiński
(2021b), Dembińska et al. (2021) and Dembińska and Eryilmaz (2021). The classical
monograph here is Unnikrishnan Nair et al. (2018).

For coherent systems, among other things, intensified interest are shown in the study
of the number of failed components in the system under various conditions. Asadi and
Berred (2012) investigated this quantity in a coherent system at some time t when the
system is assumed to still be working and the component lifetimes are independent
identically distributed (IID) absolutely continuous random variables (rvs). Jasiński
(2021a) extended their results by dropping the continuous and IID assumptions. Under
two different criteria this rv was considered by Hashemi and Asadi (2020) who next
used these results to the optimal corrective and preventive maintenance of coherent
systems with IID component lifetimes. The number of failed components in a failed or
operative k-out-of-n system consisting of multiple types of components was studied
by Eryilmaz (2018) and in a working arbitrary coherent system by Jasiński (2022).
The k-out-of-n system, k = 1, . . . , n, is a coherent system that works as long as at least
k of its n components work. Under the assumption that the component lifetimes of the
k-out-of-n system are discretely distributed, Davies and Dembińska (2019) looked
at the number of failed components upon system failure. This quantity is very useful
in maintaining the system in optimum working condition. If we know its distribution,
then we can better plan how many components would need to be repaired or replaced
when the system fails. Dembińska and Eryilmaz (2021) considered this quantity in
the series–parallel systems, that is, systems composed of disjoint parallel modules
being serially connected. They focused on the number of failed components in each
module at the time when the system fails and the component lifetimes are discretely
distributed. They assumed that all components within the system are independent and
each module has identical components while different modules have different types
of components. Among future research problems they proposed the extension of their
results to the case when the components are dependent. In this paper, we concentrate
our studies on this situation. We use the concept of minimal cut sets of the system. We
consider a series–parallel systemwhen the component lifetimes areDNID discrete rvs.
In Sect. 2, we derive the exact distribution of the rv X(T ), i.e., the number of failed
components in a series–parallel system at the time when the system breaks down
and fails. Then, we use it to determine the conditional probabilities of X(T ) given
some partial information about the system failure. In Sect. 3, we provide a numerical
example to demonstrate the theoretical results obtained in previous section.
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Throughout the paper we use the following notation. We write I(·) for the indicator
function, that is I(A) = 1 if the event A occurs and I(A) = 0 otherwise. The domain
of I(·) is a Boolean domain consisting of exactly two elements whose interpretations
include false and true. For A = {a1, a2, . . . , a|A|} with 1 ≤ a1 < a2 < . . . <

a|A| ≤ n,P A denotes the set of all permutations ( j1, j2, . . . , j|A|) of (a1, a2, . . . , a|A|).
Moreover, P A

s , s = 0, . . . , |A| and P A
s,r , 0 ≤ s < r ≤ |A|, stand for the subsets of

P A consisting only of permutations satisfying

j1 < j2 < . . . < js, js+1 < js+2 < . . . < j|A|,

and

j1 < j2 < . . . < js, js+1 < js+2 < . . . < jr , jr+1 < jr+2 < . . . < j|A|,

respectively. It is understood that P A
0,r = P A

r and P A
s,n = P A

s . We also use the
following conventions:

⋂
i∈∅ Ai = Ω and

∏
i∈∅ ai=1. The first one means that an

empty intersection is equal to the whole sample space and the second one means that
an empty product is equal to 1.

2 Main result

Consider a coherent system composed of n components numbered 1, . . . , n. Let us
denote by T the system lifetime. The discrete component lifetimes T1, . . . Tn are
allowed to be DNID rvs having cumulative distribution functions (cdfs) Fi (t) =
P(Ti ≤ t), i = 1, . . . , n, with support on finite or infinite subsets of the set of
non-negative integers. Then pi (t) = P(Ti = t) is the probability mass function (pmf)
corresponding to Fi , Fi (t−) = P(Ti < t) and Fi (t) = 1 − Fi (t). T1:n ≤ . . . ≤ Tn:n
stand for order statistics from T1, . . . Tn .

Let us denote by X(T ) the number of failed components at the moment of the
coherent system failure. Our aim is to find the exact distribution of the rv X(T ). We
use the concept of minimal cut sets of the system. We say that C ⊂ {1, . . . , n} is a cut
set of a coherent system if the failure of all components with indices in C guarantees
the failure of the system. A cut set is said to be minimal if it does not contain any strict
subset being a cut set. Then the system lifetime can be represented as

T = min
1≤ j≤s

max
i∈C j

Ti , (1)

where C1, . . . ,Cs are the minimal cut sets, see Navarro et al. (2007, p. 176). This
means that a system works if at least one component in every minimal cut set works.
Equivalently, a system fails if all components in at least one minimal cut set fail.

We assume that theminimal cut sets are pairwise disjoint, which implies the equality∣
∣
⋃s

j=1 C j
∣
∣ = ∑s

j=1 |C j |.We can treat them as the disjoint modules which are serially
connected. Hence the system can be decomposed into s disjoint modules. The only
systems with such structure are the series–parallel systems. Observe that when one
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module fails, other modules can work without any hindrance. To fix the broken system
we only need to fix the broken module. Such structure of the system enables the
operator to more efficient use of resources and avoid high unexpected costs.

For abbreviation, let m̃=min {|C1|, . . . , |Cs |}. We start with finding the probabili-
ties of the events {X(T )= w, T = t}, w = m̃, . . . , n, t ∈ N.

Lemma 1 Consider a coherent system composed of n components where its mini-
mal cut sets are pairwise disjoint. We assume that the discrete component lifetimes
T1, . . . , Tn are DNID rvs and t ∈ N. Then for any w = m̃, . . . , n, we have

P(X(T ) = w, T = t) =
s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w ≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠

|Ck1 |
∑

m1=1

· · ·
|Ck j |∑

m j=1

·
|Cz1 |−1
∑

r1=0

|Cz1 |−r1−1
∑

v1=0

· · ·
|Czs− j |−1
∑

rs− j=0

|Czs− j |−rs− j−1
∑

vs− j=0
︸ ︷︷ ︸

r1+v1+...+rs− j+vs− j=w−∑ j
l=1

∣
∣Ckl

∣
∣

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)
, (2)

where Cz1 , . . . ,Czs− j are the minimal cut sets which are not the elements of the union
⋃ j

l=1 Ckl and P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)
can be expressed as follows

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)
=

∑

h(k1)∈PCk1
m1

· · ·
∑

h(k j )∈P
Ck j
m j

·
∑

h(z1)∈PCz1
r1,r1+v1

· · ·
∑

h(zs− j )∈PCzs− j
rs− j ,rs− j+vs− j

P

(
h(k1),...,h(k j )

h(z1),...,h(zs− j )
B

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)

,

with h(ki ) =
(
h(ki )
1 , . . . , h(ki )|Cki |

)
, i= 1, . . . , j , h(zi ) =

(
h(zi )
1 , . . . , h(zi )|Czi |

)
, i= 1, . . . , s−

j , and

h(k1),...,h
(k j )

h(z1),...,h
(zs− j )

B
w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

=
⎡

⎢
⎣

j⋂

i=1

⎛

⎜
⎝

⎛

⎝
mi⋂

l=1

{T
h
(ki )
l

= t}
⎞

⎠ ∩
⎛

⎜
⎝

|Cki
|

⋂

l=mi+1

{T
h
(ki )
l

< t}
⎞

⎟
⎠

⎞

⎟
⎠

⎤

⎥
⎦

∩
⎡

⎣
s− j⋂

i=1

⎛

⎝

⎛

⎝
ri⋂

l=1

{T
h
(zi )
l

< t}
⎞

⎠ ∩
⎛

⎝
ri+vi⋂

l=ri+1

{T
h
(zi )
l

= t}
⎞

⎠ ∩
⎛

⎝

|Czi |⋂

l=ri+vi+1

{T
h
(zi )
l

> t}
⎞

⎠

⎞

⎠

⎤

⎦ . (3)

Proof By the representation (1), for w= m̃, . . . , n, we obtain

{X(T )= w, T = t} =
{

X(T )= w, min
1≤ j≤s

max
i∈C j

Ti = t

}
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=
s⋃

j=1

{

X(T ) = w,max
i∈C1

Ti ≥ t, . . . , max
i∈C j−1

Ti ≥ t,max
i∈C j

Ti = t, max
i∈C j+1

Ti ≥ t,

. . . ,max
i∈Cs

Ti ≥ t

}

.

Further, the above union can be also rewritten as the union of pairwise disjoint events

s⋃

j=1

⋃

1≤k1<...<k j≤s

{

X(T )=w, max
i∈Ck1

Ti = . . . = max
i∈Ck j

Ti = t, max
i∈Cz1

Ti > t,

. . . , max
i∈Czs− j

Ti > t

}

,

whereCz1 , . . . ,Czs− j are the minimal cut sets which are not the elements of
⋃ j

l=1 Ckl .
We see at once that we take the union of not empty events for j = 1, . . . , s and
1 ≤ k1 < . . . < k j ≤ s such that the inequality w ≥ ∑ j

l=1

∣
∣Ckl

∣
∣ holds. Hence

P(X(T ) = w, T = t) =
s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w ≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠

·P
(

X(T )=w, max
i∈Ck1

Ti = . . . = max
i∈Ck j

Ti = t, max
i∈Cz1

Ti > t, . . . , max
i∈Czs− j

Ti > t

)

.

Observe that

{

X(T )=w, max
i∈Ck1

Ti = . . . = max
i∈Ck j

Ti = t, max
i∈Cz1

Ti > t, . . . , max
i∈Czs− j

Ti > t

}

=
|Ck1 |
⋃

m1=1

· · ·
|Ck j |⋃

m j=1

|Cz1 |−1
⋃

r1=0

|Cz1 |−r1−1
⋃

v1=0

· · ·
|Czs− j |−1
⋃

rs− j=0

|Czs− j |−rs− j−1
⋃

vs− j=0
︸ ︷︷ ︸

r1+v1+...+rs− j+vs− j=w−∑ j
l=1

∣
∣Ckl

∣
∣

A
w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j ,

where

A
w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j = {

exactly m1 of rvs Tp, p ∈ Ck1 , such that Tp = t,

and |Ck1 | − m1 of rvs Tp, such that Tp < t,

...

exactly m j of rvs Tp, p ∈ Ck j , such that Tp = t,

and |Ck j | − m j of rvs Tp, such that Tp < t,
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exactly r1 of rvs Tp, p ∈ Cz1, such that Tp < t,

exactly v1 of rvs Tp, p ∈ Cz1 , such that Tp = t,

and |Cz1 | − r1 − v1 of rvs Tp, such that Tp > t,

...

exactly rs− j of rvs Tp, p ∈ Czs− j , such that Tp < t,

exactly vs− j of rvs Tp, p ∈ Czs− j , such that Tp = t,

and |Czs− j | − rs− j − vs− j of rvs Tp, such that Tp > t
}
.

Because the events A
w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j , m1 = 1,. . ., |Ck1 |,. . .,m j = 1,. . ., |Ck j |, r1 =

0,. . ., |Cz1 | − 1, v1 = 0,. . ., |Cz1 | − r1 − 1, . . . rs− j = 0,. . ., |Czs− j | − 1, vs− j =
0,. . ., |Czs− j |−rs− j − 1, are pairwise disjoint, we get

P

(

X(T )=w, max
i∈Ck1

Ti = . . . = max
i∈Ck j

Ti = t, max
i∈Cz1

Ti > t, . . . , max
i∈Czs− j

Ti > t

)

=
|Ck1 |
∑

m1=1

· · ·
|Ck j |∑

m j=1

|Cz1 |−1
∑

r1=0

|Cz1 |−r1−1
∑

v1=0

· · ·
|Czs− j |−1
∑

rs− j=0

|Czs− j |−rs− j−1
∑

vs− j=0
︸ ︷︷ ︸

r1+v1+...+rs− j+vs− j=w−∑ j
l=1

∣
∣Ckl

∣
∣

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)
.

But

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)
=

∑

h(k1)∈PCk1
m1

· · ·
∑

h(k j )∈P
Ck j
m j

·
∑

h(z1)∈PCz1
r1,r1+v1

· · ·
∑

h(zs− j )∈PCzs− j
rs− j ,rs− j+vs− j

P

(
h(k1),...,h(k j )

h(z1),...,h(zs− j )
B

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)

,

where h(ki ) =
(
h(ki )
1 , . . . , h(ki )|Cki |

)
, i = 1, . . . , j , h(zi ) =

(
h(zi )
1 , . . . , h(zi )|Czi |

)
, i =

1, . . . , s − j , and

h(k1),...,h(k j )

h(z1),...,h(zs− j )
B

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

=
(

m1⋂

l=1

{T
h

(k1)

l
= t}

)

∩
⎛

⎝

|Ck1 |
⋂

l=m1+1

{T
h

(k1)

l
< t}

⎞

⎠ ∩ . . . ∩
(m j⋂

l=1

{T
h

(k j )

l

= t}
)

∩
⎛

⎝

|Ck j |⋂

l=m j+1

{T
h

(k j )

l

< t}
⎞

⎠

∩
(

r1⋂

l=1

{T
h

(z1)

l
< t}

)

∩
⎛

⎝
r1+v1⋂

l=r1+1

{T
h

(z1)

l
= t}

⎞

⎠ ∩
⎛

⎝

|Cz1 |
⋂

l=r1+v1+1

{T
h

(z1)

l
> t}

⎞

⎠ ∩ . . .

∩
(rs− j⋂

l=1

{T
h

(zs− j )

l

< t}
)

∩
⎛

⎝
rs− j+vs− j⋂

l=rs− j+1

{T
h

(zs− j )

l

= t}
⎞

⎠ ∩
⎛

⎝

|Czs− j |⋂

l=rs− j+vs− j+1

{T
h

(zs− j )

l

> t}
⎞

⎠ ,
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which completes the proof. �	
In Example 1 given below, we demonstrate the application of Lemma 1.

Example 1 Consider a series–parallel system with the lifetime

T = min {T1,max {T2, T3}}. (4)

Notice that this system has two disjoint minimal cut sets, which are serially connected,
namely, C1 = {1}, C2 = {2, 3}. We assume that the components are at risk for failure
in a discrete manner. It follows that the lifetimes T1, T2, T3 are discretely distributed
rvs. Suppose that during such a lifetime, there are cycles, and in each cycle the i th
component is exposed to a shock, which it survives with probability pi ∈ (0, 1),
i = 1, 2, 3. Moreover, in each cycle there is a common shock to all three components,
which all of them survive with probability θ ∈ (0, 1) and neither of them survives
with probability 1 − θ . The events of surviving the different shocks are independent
of each other and from cycle to cycle. When a component fails, it remains forever
inoperative.

Let the rvs Ti , i = 1, 2, 3, denote the number of cycles up to and including the
failure of the i th component. Under the above assumptions, they are DNID rvs with
the following joint survival function

P (T1 > t1, T2 > t2, T3 > t3) = pt11 pt22 pt33 θmax {t1,t2,t3}, t1, t2, t3 = 0, 1, 2, . . . ,
(5)

see Esary and Marshall (1973) for more details.
Combining (5) with Lemma 1, we obtain

P (X(T )=1, T = t) = P (T1= t, T2> t, T3> t)

= P (T1> t − 1, T2> t, T3> t)−P (T1> t, T2> t, T3> t)

= (1 − p1)p
t−1
1 pt2 p

t
3θ

t , t = 1, 2, . . . .

Further, we immediately obtain

P (T1= t, T2= t, T3> t) = P (T1= t, T2> t − 1, T3> t)−P (T1= t, T2> t, T3> t)

= (1 − p1)p
t−1
1 (1 − p2)p

t−1
2 pt3θ

t , t = 1, 2, . . . ,

P (T1= t, T2< t, T3> t) =
t−1∑

x=1

P (T1= t, T2= x, T3> t)

= (1 − p1)p
t−1
1 (1 − pt−1

2 )pt3θ
t , t = 1, 2, . . . ,

which leads to

P (X(T )=2, T = t) = P (T1= t, T2= t, T3> t) + P (T1= t, T2> t, T3= t)

+ P (T1> t, T2= t, T3= t)+P (T1= t, T2< t, T3> t)+P (T1= t, T2> t, T3< t)
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+ P (T1> t, T2= t, T3< t)+ P (T1> t, T2< t, T3= t)

= θ t
[
pt−1
1 pt−1

2 pt−1
3 (p3(1− p1)(1− p2)+ p2(1− p1)(1− p3)+ p1(1− p2)(1− p3))

+pt−1
1 (1 − p1)

(
pt3(1 − pt−1

2 ) + pt2(1 − pt−1
3 )

)

+pt1

(
(1 − p2)p

t−1
2 (1 − pt−1

3 ) + (1 − p3)p
t−1
3 (1 − pt−1

2 )
)]

, t = 1, 2, . . . .

Finally, observe that for t = 1, 2, . . .

P (T1= t, T2= t, T3= t)= P (T1= t, T2= t, T3> t−1)−P (T1= t, T2= t, T3> t)

= pt−1
1 pt−1

2 pt−1
3 θ t−1[1−θ(p1+ p2+ p3)+θ(p1 p2+ p2 p3+ p1 p3)−θ p1 p2 p3] ,

P (T1= t, T2= t, T3≤ t) = P (T1= t, T2= t) − P (T1= t, T2= t, T3> t)

= pt−1
1 pt−1

2 θ t−1 [1 − θ(p1 + p2) + θ p1 p2 − pt3θ(1 − (p1 + p2) + p1 p2)
]
,

which implies

P (X(T )=3, T = t)=P (T1= t, T2= t, T3< t)+P (T1= t, T2< t, T3= t)

+P (T1= t, T2= t, T3= t)

= pt−1
1 θ t−1

[
pt−1
2

(
1−θ(p1 + p2)+ θ p1 p2− θ pt3(1 − (p1 + p2) + p1 p2)

)

+ pt−1
3

(
1−θ(p1 + p3)+ θ p1 p3− θ pt2(1 − (p1 + p3) + p1 p3)

)

− pt−1
2 pt−1

3 (1−θ(p1 + p2 + p3)+ θ(p1 p2 + p2 p3 + p1 p3)− θ p1 p2 p3)
]
,

t = 1, 2, . . . .

According to the expressions obtained in Example 1, it is a natural question about
receiving their closed-forms in specific situations. Observe that knowing the depen-
dence structure between T1, . . . , Tn , we can simplify the formula given in Lemma
1. For example, we can consider the case when T1, . . . , Tn are exchangeable, that is
for any permutation (h1, . . . , hn) of (1, . . . , n), the random vector (Th1, . . . , Thn ) has
the same distribution as (T1, . . . , Tn). From the practical point of view it means that
the component lifetimes have identical distributions, but they can affect one another
within the system. If in Example 1 the equality p1 = p2 = p3 holds, i.e., when
each component survives the shock in single cycle with the same probability, we
obtain exchangeable rvs T1, T2, T3. Moreover, we can consider series–parallel sys-
tems, where T1, . . . , Tn are independent. In these particular cases Lemma 1 has the
following closed-forms.

Corollary 1 Under the assumptions of Lemma 1, if moreover T1, . . . , Tn are exchange-
able, then the probability of the event {X(T ) = w, T = t} is given by (2) with

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)

=
j∏

l=1

(|Ckl |
ml

) s− j∏

l=1

( |Ckl |
rl ,ml

)

P

(
h(k1),...,h(k j )

h(z1),...,h(zs− j )
B
t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)

,

123



Failed components in a series–parallel system upon system failure… 191

where
( a
b,c

) = a!
b!c!(a−b−c)! and h(k1),...,h(k j )

h(z1),...,h(zs− j )
B
t;m1,...,m j
r1,v1,...,rs− j ,vs− j defined in (3) do not

depend on permutations h(k1), . . . , h(k j ), h(z1), . . . , h(zs− j ). Hence the natural choice
is to choose the simplest possible values, e.g., h(k1) = (

1, . . . , |Ck1 |
)
,…,h(k j ) =(∑ j−1

l=1 |Ckl | + 1, . . . ,
∑ j

l=1 |Ckl |
)

and h(z1) = (
1, . . . , |Cz1 |

)
, …, h(zs− j ) =

(∑s− j−1
l=1 |Czl | + 1, . . . ,

∑s− j
l=1 |Czl |

)
.

Corollary 2 Under the assumptions of Lemma 1, if moreover T1, . . . , Tn are indepen-
dent such that Ti has cdf Fi and pmf pi , i = 1, . . . , n, then the probability of the event
{X(T ) = w, T = t} is given by (2) with

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)

=
∑

h(k1)∈PCk1
m1

m1∏

l=1

p
h

(k1)

l
(t)

|Ck1 |
∏

l=m1+1

F
h

(k1)

l
(t−) · · ·

∑

h(k j )∈P
Ck j
m j

m j∏

l=1

p
h

(k j )

l

(t)

|Ck j |∏

l=m j+1

F
h

(k j )

l

(t−)

∑

h(z1)∈PCz1
r1,r1+v1

r1∏

l=1

F
h

(z1)

l
(t−)

r1+v1∏

l=r1+1

p
h

(z1)

l
(t)

|Cz1 |
∏

l=r1+v1+1

F
h

(z1)

l
(t) · · ·

∑

h(zs− j )∈PCzs− j
rs− j ,rs− j+vs− j

rs− j∏

l=1

F
h

(zs− j )

l

(t−)

rs− j+vs− j∏

l=rs− j+1

p
h

(zs− j )

l

(t)

|Czs− j |∏

l=rs− j+vs− j+1

F
h

(zs− j )

l

(t).

(6)

In the model of IID component lifetimes, the probability (6) has the form

P
(
A

w,t;m1,...,m j
r1,v1,...,rs− j ,vs− j

)
=
(|Ck1 |

m1

)

pm1(t)F |Ck1 |−m1(t−) · · ·
(|Ck j |

m j

)

pm j (t)F |Ck j |−m j (t−)

·
( |Cz1 |
r1, v1

)

Fr1(t−)pv1(t)F
|Cz1 |−r1−v1

(t) · · ·
( |Czs− j |
rs− j , vs− j

)

Frs− j (t−)pvs− j (t)F
|Czs− j |−rs− j−vs− j

(t).

By Lemma 1, we are ready to determine the probability mass function of X(T ), i.e.,
the number of failed components upon system failure.

Theorem 1 Under the assumptions of Lemma 1, for any w = m̃, . . . , n, we have

P(X(T ) = w) =
∞∑

t=1

P(X(T ) = w, T = t), (7)

where the probabilities P(X(T ) = w, T = t), t ∈ N, can be computed by the use of
the formula (2).
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Notice that the expected value E(X(T )) provides information about the mean number
of failed components at the time of the series–parallel system failure.

Corollary 3 Applying Theorem 1, E(X(T )) can be computed as follows

E(X(T )) =
n∑

w=m̃

wP(X(T ) = w). (8)

Now we consider two situations when the rv X(T ) depends on the time of the system
failure. Firstly, we assume that the failure time of the series–parallel system is known
to be T = t . Under this condition, we calculate the probability of the number of failed
components X(T ), i.e., P(X(T ) = w|T = t), w = m̃, . . . , n. Secondly, suppose that
a series–parallel system is still working at time t and we compute the corresponding
conditional probabilities, i.e., P(X(T ) = w|T > t), w = m̃, . . . , n. To establish
these conditional probabilities we need to recall the results concerning the reliability
function of the system lifetime T .

Under the assumption that T1,. . .,Tn are DNID discrete rvs, Dembińska and
Goroncy (2020, (4.3)) used the representation (1) to establish the expression for the
survival function of T as follows

P(T > t) = 1 −
s∑

j=1

(−1) j+1
∑

1≤k1<...<k j≤s

P

(

max
p∈⋃ j

l=1 Ckl

Tp ≤ t

)

=
s∑

j=1

(−1) j+1
∑

1≤k1<...<k j≤s

P

(

max
p∈⋃ j

l=1 Ckl

Tp > t

)

. (9)

If we know the dependence structure between T1, . . . , Tn , then the expression (9) can
be simplified in particular cases. Thus

P(T > t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1
βi

(

1−P

(
i⋂

l=1
{Tl ≤ t}

))

, if T1, . . . , Tn are exchangeable,

n∑

i=1
βi

(

1−
i∏

l=1
Fl(t)

)

, if T1, . . . , Tn are independent,

n∑

i=1
βi
(
1−Fi (t)

)
, if T1, . . . , Tn are IID,

(10)

where

βi =
s∑

j=1

(−1) j+1
∑

1≤k1<...<k j≤s

I

⎛

⎝
∣
∣

j⋃

l=1

Ckl

∣
∣ = i

⎞

⎠ .

Using the representation (1) and the fact that the minimal cut sets are pairwise disjoint,
we can also obtain considerably simpler forms of (10) in the independent and IID cases
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(cf. the method of derivation of the formula (3) in Dembińska and Eryilmaz (2021)).
It follows that

P(T > t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s∏

i=1

(

1−
|Ci |∏
l=1

F
h(i)
l

(t)

)

, if T1, . . . , Tn are independent,

s∏

i=1

(
1 − F |Ci |(t)

)
, if T1, . . . , Tn are IID,

(11)

where h(i)
1 , . . . , h(i)

|Ci | are the indices of the component lifetimes in the minimal cut set
Ci , i = 1, . . . , s, respectively.

Theorem 2 Let the assumptions of Lemma 1 hold and t ∈ N be such that P(T = t) >

0. Then, for w = m̃, . . . , n,

P(X(T ) = w|T = t) = P (X(T ) = w, T = t)

P(T = t)
, (12)

where the probabilities P (X(T ) = w, T = t) and P(T = t) can be obtained from
(2) and (9), respectively.

Theorem 3 Under the assumptions of Theorem 2 with “P(T = t) > 0” replaced by
“P(T > t) > 0”, we have

P(X(T ) = w|T > t) =
∑∞

u=t+1 P (X(T ) = w, T = u)

P(T > t)
, (13)

where again the probabilities P (X(T ) = w, T = u) and P(T > t) are given in (2)
and (9), respectively.

Corollary 4 Combining Corollaries 1 and 2 with (10) (alternatively with (11)), we
get the simplified forms of (7), (12) and (13), when T1, . . . , Tn are exchangeable or
independent not necessarily identically distributed or IID rvs, respectively.

From the practical point of view, there is a problem to use software to calculate the
probabilities given in (7) and (13) and consequently the expectation in (8) when the
support of the rv Ti is not finite. Notice that the sums

∑∞
t=1 in (7) or

∑∞
u=t+1 in

(13) may consist of infinitely many positive summands and we are not able to add
all these summands using software. We propose a truncation method to solve these
problems. We first fix the desired accuracy of the result (a > 0). Next we decide how
many elements of the infinite summation to include during calculations to obtain this
accuracy. More precisely, to compute the probability (7), we split the infinite series
into two parts as follows

P (X(T ) = w) =
t0∑

t=1

P (X(T ) = w, T = t) +
∞∑

t=t0+1

P (X(T ) = w, T = t) ,
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and t0 is chosen so that

∞∑

t=t0+1

P (X(T ) = w, T = t) ≤ a. (14)

Thus the approximate formula P (X(T ) = w) ≈ ∑t0
t=1 P(X(T ) = w, T = t) gives

an error not greater than a. Now we are interested in finding t0 satisfying (14). Since∑∞
t=1 pi (t) = 1, i = 1, . . . , n, it easily seen that for any ε > 0 there exists t0 such

that

Fi (t0) =
∞∑

t=t0+1

pi (t) ≤ ε for every i = 1, . . . , n. (15)

By Lemma 1,

P(X(T ) = w, T = t)

≤
s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠

|Ck1 |
∑

m1=1

∑

h(k1)∈PCk1
m1

· · ·
|Ck j

|
∑

m j=1

∑

h
(k j )∈P

Ck j
m j

·
|Cz1 |−1
∑

r1=0

|Cz1 |−r1−1
∑

v1=0

∑

h(z1)∈PCz1
r1,r1+v1

· · ·
|Czs− j |−1
∑

rs− j=0

|Czs− j |−rs− j−1
∑

vs− j=0

∑

h
(zs− j )∈P

Czs− j
rs− j ,rs− j+vs− j

max
i∈{1,...,n} pi (t)

≤ max
i∈{1,...,n} pi (t)

s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠

|Ck1 |
∑

m1=1

(|Ck1 |
m1

)

· · ·
|Ck j

|
∑

m j=1

(|Ck j |
m j

)

·
|Cz1 |−1
∑

r1=0

|Cz1 |−r1−1
∑

v1=0

( |Cz1 |
r1, v1

)

· · ·
|Czs− j |−1
∑

rs− j=0

|Czs− j |−rs− j−1
∑

vs− j=0

( |Czs− j |
rs− j , vs− j

)

.

Since
∑|Ckl |

ml=1

(|Ckl |
ml

)=2|Ckl |−1, l=1, . . . , j , and
∑|Czl |−1

rl=0

∑|Czl |−rl−1
vl=0

(|Czl |
rl ,vl

)=3|Czl | −
2|Czl |, l = 1, . . . , s − j , we obtain

P(X(T ) = w, T = t)

≤ max
i∈{1,...,n} pi (t)

s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠
j∏

l=1

(
2|Ckl | − 1

)

·
s− j∏

l=1

(
3|Czl | − 2|Czl |

)

≤ (p1(t)+ . . . + pn(t))
s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠
j∏

l=1

(
2|Ckl | − 1

)

123



Failed components in a series–parallel system upon system failure… 195

·
s− j∏

l=1

(
3|Czl | − 2|Czl |

)
. (16)

We conclude from (15) that

∞∑

t=t0+1

P(X(T )=w, T = t)

≤
s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠
j∏

l=1

(
2|Ckl |−1

)s− j∏

l=1

(
3|Czl | − 2|Czl |

)

·
∞∑

t=t0+1

(p1(t) + . . . + pn(t)) ≤ ãnε,

where

ã =
s∑

j=1

∑

1≤k1<...<k j≤s

I

⎛

⎝w≥
j∑

l=1

∣
∣Ckl

∣
∣

⎞

⎠
j∏

l=1

(
2|Ckl | − 1

) s− j∏

l=1

(
3|Czl | − 2|Czl |

)
. (17)

Hence if ε ≤ a
n ã , then

∑∞
t=t0+1 P(X(T ) = w, T = t) ≤ a. Notice that we have

proved the following proposition.

Proposition 1 Let T1, . . . , Tn be DNID discrete rvs. If t0 satisfies the condition

max
i∈{1,...,n} Fi (t0) ≤ a

n ã
, (18)

with ã defined in (17), then the approximate formula

P(X(T ) = w) ≈
t0∑

t=1

P(X(T ) = w, T = t) (19)

gives an error not greater than a.

In particular cases, that is when T1, . . . , Tn are exchangeable or IID rvs, we can use a
weaker condition than (18).

Proposition 2 If T1, . . . , Tn are exchangeable or IID rvs and t0 satisfies the condition

F1(t0) ≤ a

ã
,

with ã defined in (17), then we can use the approximate formula given in (19).
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Proof Observe that if T1,. . .,Tn are exchangeable or IID rvs, then maxi∈{1,...,n}Fi (t0) in
(18) can be replaced by F1(t0) as well as maxi∈{1,...,n} pi (t) and (p1(t)+ . . .+ pn(t))
in (16) by p1(t). Then using the inequality (16), we get the following estimation

∞∑

t=t0+1

P(X(T ) = w, T = t) ≤ ã
∞∑

t=t0+1

p1(t) = ãF1(t0) ≤ a,

which is precisely the assertion of Proposition 2. �	
Similarly as P(X(T ) = w), we can compute numerically the conditional probability
P(X(T ) = w|T > t) from Theorem 3. We only need to use the approximate formula
P(X(T ) = w|T > t) ≈ ∑t0

u=t+1 P(X(T ) = w, T = u)/P(T > t), where we
choose t0 to control the error of the approximation of no more than a fixed level of
accuracy a > 0. To find t0, we can proceed analogously to the proof of Proposition 1.
It suffices to replace a in (18) by aP(T > t).

Finally, we are interested in computing numerically the mean number of failed
components at the moment of the coherent system failure, i.e., E(X(T )) given in (8)
with an error not greater than a > 0. Suppose that all maximal admissible errors of
computing single probabilities P (X(T ) = w), w = m̃, . . . , n are equal. We denote
their common value by amax . Hence computing E(X(T )) we make an error which is
not greater than

∑n
w=m̃ w amax = (m̃+n)(n−m̃+1)

2 amax . Taking amax = 2a
(m̃+n)(n−m̃+1)

we are ready to approximate the values of E(X(T )).

Proposition 3 Under the assumptions of Lemma 1, E(X(T )) given in (8) can be com-
puted with an error not greater than a > 0, by the use of the approximate formula
(19) for the probabilities P(X(T ) = w), w = m̃, . . . , n, with t0 chosen so that the
condition in (18) holds with a > 0 replaced by amax = 2a

(m̃+n)(n−m̃+1) .

3 Numerical examples

In this section we present an example illustrating the theoretical results obtained in
Sect. 2. In particular, we demonstrate the application of Corollary 4, and within these
Proposition 2. According to Proposition 2, in the computational results we need to
fix a level of accuracy. For all tables presented for the following example we take
a = 0.00005.

Example 2 Consider a series–parallel system with the lifetime given in (4), where
T1, T2, T3 are assumed to be IID rvs such that T1 has a geometric distribution geo(p),
where p ∈ (0, 1) and

F(t) = 1 − (1 − p)t , F(t) = (1 − p)t , t = 0, 1, 2, . . . . (20)

Consequently, for t = 1, 2, . . . ,

p(t) = p(1 − p)t−1, F(t−) = 1 − (1 − p)t−1. (21)
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Table 1 P(X(T ) = w) for the
coherent system with the
lifetime (4) for various p

p \ w 1 2 3

p = 0.2 0.2623 0.6630 0.0747

(57) (59) (61)

p = 0.6 0.1026 0.5788 0.3187

(14) (15) (15)

p = 0.9 0.0090 0.2465 0.7445

(6) (6) (6)

With the fact that the system has two serially connected disjoint minimal cut sets
C1 = {1}, C2 = {2, 3}, we are interested in computing numerically the probabilities
P(X(T ) = w), w = 1, 2, 3, for various p. Notice that combining Lemma 1 with (20)
and (21), we obtain

P(X(T ) = 1, T = t)=F
2
(t)p(t)= p(1 − p)3t−1,

P(X(T ) = 2, T = t)=F(t)p(t)
[
3p(t) + 4F(t−)

]

= p(1 − p)2t−1
[
4 − (1 − p)t−1(4 − 3p)

]
,

P(X(T ) = 3, T = t)= p2(t)
[
p(t) + 2F(t−)

]

= p2(1 − p)2t−2
[
2 − (1 − p)t−1(2 − p)

]
.

Now to get the desired results it suffices to apply Corollary 4 (and Proposition 2).
The probabilities P(X(T ) = w), w = 1, 2, 3, for various p ∈ (0, 1), are presented
in Table 1. In addition, in brackets, underneath each corresponding probability, we
provide the values of t0 (the number of summands sufficient in the sum to obtain the
fixed accuracy). Next, we demonstrate some conditional probabilities obtained using
Corollary 4 (and Proposition 2). For selected values of t , in Table 2 we compute the
conditional probabilities that at the moment of the coherent system failure exactly w,
w = 1, 2, 3, components were broken, given that the system failure occurred at time
t , i.e., P(X(T ) = w|T = t). Similarly, for selected values of t , in Table 3 we give the
conditional probabilities that w, w = 1, 2, 3, components were broken at the moment
of failure of the coherent system, given that the system survived beyond time t , i.e.,
P(X(T ) = w|T > t). In addition, for the accuracy a = 0.00005 we provide values
of t0 (see Proposition 2 and the comments after it). They are again in brackets. In
Fig. 1 the conditional probabilities P(X(T ) = t |T = t) and P(X(T ) = w|T > t)
are illustrated as functions of t = 1, 2, . . . , 30 for w = 1, 2, 3. We see at once that the
conditional probabilities P(X(T ) = 2|T = t), P(X(T ) = 3|T = t) and P(X(T ) =
2|T > t), P(X(T ) = 3|T > t) are increasing functions of t = 1, 2, . . . , 30, while
the probabilities P(X(T ) = 1|T = t) and P(X(T ) = 1|T > t) are decreasing.

In Table 4 we provide the expected values of the number of failed components at the
moment of the coherent system failure. They were obtained by the use of the formula
(8) and Proposition 3.
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Table 2 Conditional probability P(X(T ) = w|T = t) for the coherent system with the lifetime (4) for
various t when p = 0.2

w \ t 1 2 5 10 20 30

w = 1 0.5517 0.3107 0.1008 0.0262 0.0026 0.0003

w = 2 0.4138 0.6214 0.8021 0.8663 0.8867 0.8887

w = 3 0.0345 0.0680 0.0971 0.1075 0.1108 0.1111

Table 3 Conditional probability P(X(T ) = w|T > t) for the coherent system with the lifetime (4) for
various t when p = 0.2

w \ t 1 2 5 10 20 30

w = 1 0.1749 0.1234 0.0514 0.0149 0.0015 0.0002

(58) (60) (65) (74) (94) (114)

w = 2 0.7383 0.7826 0.8446 0.8761 0.8876 0.8887

(60) (62) (67) (76) (96) (116)

w = 3 0.0868 0.0940 0.1040 0.1090 0.1109 0.1111

(62) (63) (68) (78) (97) (117)

Table 4 Expectation E(X(T ))

for the coherent system with the
lifetime (4) for various p

p = 0.2 p = 0.6 p = 0.9

E(X(T )) 1.8124 2.2161 2.7355

4 Summary and conclusions

In this paper, we have considered series–parallel systems. Their reliability properties
are very useful in practical situations. The series–parallel systems are suitable for
modeling various systems such as, e.g. coal feeding system and port oil transportation
system, see (Levitin and Amari 2009) and (Kołowrocki 2003) for more details. As
it has been shown, studying the number of failed components in such system upon its
failure is very important in optimal system design. We analyze systems whose com-
ponent lifetimes are discretely distributed. The conclusions of this paper correspond
to the results obtained by Davies and Dembińska (2019), who considered k-out-of-
n systems and by Dembińska and Eryilmaz (2021), who examined series–parallel
systems with independent component lifetimes. However, they were interested in the
numbers of broken components in each module, not the total number of the broken
components, at the time of the failure of a series–parallel system.

The study of the number of failed components in an arbitrary coherent system at
the time when the system breaks down and fails will be among our future research
problems. This quantity for multi-state series–parallel systems might be also very
interesting.
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Fig. 1 Conditional probabilities P(X(T ) = w|T = t) and P(X(T ) = w|T > t), w = 1, 2, 3, for the
coherent system with the lifetime (4) as functions of t = 1, 2, . . . , 30 when p = 0.2

Acknowledgements I would like to express my sincere thanks to the associate editor and two anonymous
referees for their constructive comments and suggestions which improved the presentation of the paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Asadi M, Berred A (2012) On the number of failed components in a coherent operating system. Statist
Probab Lett 82:2156–2163

123

http://creativecommons.org/licenses/by/4.0/


200 K. Jasiński
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