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Abstract
An online changepoint detection procedure based on conditional expectiles is intro-
duced. The key contribution is threefold: nonlinearity of the underlying model
improves the overall flexibility while a parametric form of the unknown regres-
sion function preserves a simple and straightforward interpretation; The conditional
expectiles, well-known in econometrics for being the only coherent and elicitable
risk measure, introduce additional robustness—especially with respect to asymmetric
error distributions common in various types of data; The proposed statistical test is
proved to be consistent and the distribution under the null hypothesis does not depend
on the functional form of the underlying model nor the unknown parameters. Empir-
ical properties of the proposed real-time changepoint detection test are investigated
in a simulation study and a practical applicability is illustrated using the Covid-19
prevalence data from Prague.

Keywords Asymmetric least squares · Changepoint test · Conditional expectiles ·
Online detection · Coherent risk measure

1 Introduction

It is a common task—not only in statistics—to provide procedures for detecting and
estimating changepoints in all kinds of mathematical and stochastic models. Such pro-
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cedures are also important from a practical point of view and they may be often crucial
in many real life problems. For instance, detecting a changepoint in some data generat-
ing model may trigger some model retraining mechanisms or, more frequently, it may
govern important decisions effecting specific subjects or even the whole population—
such as different pandemic restrictions related to the recent Covid-19 infection spread.
On the other hand, the estimation of changepoints may lead to some correction proce-
dures, specific treatment implementations, additional target-specific decisions, or just
a deeper understanding of the underlying data generating process.

Considering the basic stochastic principles of the changepoint detection and var-
ious estimation methods, two different approaches are usually adopted in practical
implementations. If the whole data sample is available at the very beginning of the
analysis, the detection algorithm is called an offline procedure. If the data arrive in
time (usually in an observation-by-observation manner) and the changepoint detection
algorithm runs concurrently as new observations appear, such algorithms are referred
to as online procedures.

In this paper, we focus on the online regime, where the proposed changepoint detec-
tion algorithmwill be applied for a nonlinear parametric regression model. In addition
to this nonlinearity, the conditional expectile estimation of the unknown parameters
is adopted—similarly as in Newey and Powell (1987) where, however, the authors
investigated a simple linear model instead—to have a coherent risk measure while
also accounting for possibly asymmetric random error distributions. The changepoint
detection itself is performed in terms of a consistent statistical test which is based on an
accumulating dataset used in each consecutive step of the proposed online procedure.

There is a vast literature available on both—the offline and online changepoint
detection strategies considering different models and various technical assumptions.
Bearing in mind just the online procedures, Nedényi (2018) proposed an online testing
approachbasedon aCUSUMtest statistic to detect changes in a parameter of a discrete-
time stochastic process. Linear regression models with independent error terms are
considered in Chu et al (1996) and Horváth et al (2004), where a standard least squares
estimator is employed. Possible detection delays in a sequential changepoint test for a
multiple linear regression model are discussed in Aue et al (2009). Linear regression
models with dependent observations are investigated in Fremdt (2015) and the online
changepoint detection procedures within autoregressive times series are studied, for
instance, in Hušková et al (2007). Some generalizations for multivariate cases can be
found in Aue et al (2009) or Hoga (2017) and their results are further generalized in
Barassi et al (2020) where a semiparametric CUSUM test is proposed to perform the
online changepoint detection for various correlation structures of nonlinear multivari-
ate regressionmodels with dynamically evolving volatilities. Nonlinear integer-valued
times series are also discussed from this perspective in Lee and Lee (2019). A very nice
overall review of the online procedures can be also found in Basseville and Nikiforov
(1993).

The method presented in this paper advocates the idea of semi-parametric CUSUM
approaches in a combination with some robustness with respect to the underlying error
terms. Firstly, a nonlinear regression model is assumed to govern the data generating
process. Although the underlying regression function is deterministic, it is allowed
to be nonlinear with respect to a set of unknown parameters. This introduces a rela-
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tively flexible class of possible functions. Second, despite the independent error terms
assumed for the proposed online detection regime, there are no restrictive assumptions
imposed on the underlying error distribution and, in particular, substantial robustness
is achieved with the proposed expectile estimation that also allows for asymmetric and
heavy-tailed error distributions. The conditional expectiles define the only coherent
and elicitable risk measure (see, for instance, Bellini et al (2018) or Ziegel (2016))
which is particularly important in situations where some risk related assessment is
needed. Moreover, despite many similarities with conditional quantiles, the condi-
tional expectiles are well-known to be viable also in situations when the conditional
quantiles fail (see Philipps (2022) for a more comprehensive comparison). Third, the
proposed test statistic follows, under the null hypothesis of no change, a relatively
simple distribution which does not depend on the underlying regression function nor
the set of the unknown parameters. Finally, the whole procedure can be implemented
in a straightforward way and all necessary calculations performed within the proposed
online regime can be easily obtained. Thus, the presented real-time changepoint detec-
tion method has a great potential for a practical applicability which goes way beyond
the Covid-19 example illustrated at the end.

The rest of the paper is structured as follows: The underlying data and the corre-
sponding changepointmodel are described in the next section.A real-time changepoint
detection in terms of a formal statistical test is introduced in Sect. 3. The asymptotic
properties of the proposed test are also detailed there. In Sect. 4, finite sample proper-
ties are investigated and the Covid-19 prevalence data from Prague, Czech Republic,
are analysed using the proposed methodological framework. Section5 concludes with
some final remarks. All theoretical proofs and further technical details are postponed
to the Appendix.

2 Asymmetric least squares with changepoint

Let us consider a set of historical data denoted as {(Yi ,X�
i )�; i = 1, . . . ,m} for some

deterministic q-dimensional vector of explanatory variables X i = (Xi1, . . . , Xiq)
�

and some integerm ∈ N. The data are assumed to followageneral nonlinear parametric
regression model

Yi = f (Xi ,β) + εi , i = 1, . . . ,m, (1)

where f (·,β) is an explicit function depending on some unknown vector parameter
β = (β1, . . . , βp)

� ∈ � ⊆ R
p with the true (unknown) value denoted as β0 ∈ R

p.
A different approach could consider X i ’s as random vectors, however, we concentrate
on the fixed design as we want to adopt a robust (i.e., distribution-free) approach
with only minimal assumptions being imposed on the underlying data distribution.
Nevertheless, with respect to the forthcoming theory, analogous results for the random
design can be derived as well (all under some technical assumptions needed for the
deterministic convergences to become convergences in probability).

After the historical data are observed, another Tm ∈ N observations are measured
instantly for both—the response variable Yi and the explanatory vectorXi ∈ Υ ⊆ R

q ,
both for i = m + 1, . . . ,m + Tm . The underlying model for these new observations—
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online data—is assumed to take an analogous form

Yi = f (Xi ,β i ) + εi , i = m + 1, . . . ,m + Tm, (2)

where the underlying regression functional form remains the same and β i ∈ R
p. For

the parameter vectors {β i }m+Tm
i=m+1 in (2), it is either assumed that their true (unknown)

values are all equal to β0 (thus, there is no changepoint present in the overall combined
model (1) and (2)) or, instead, there is some specific index k0m ∈ {1, . . . , Tm − 1} such
that β i = β0 for all i = m + 1, . . . ,m + k0m , while β i �= β0 for i = m + k0m +
1, . . . ,m + Tm . In such case, there is a changepoint (located at k0m) present in the
model generating the online data {(Yi ,X�

i )�; i = m + 1, . . . ,m + Tm}.
The error terms {εi }1≤i≤m+Tm from the overall model (1) and (2) are assumed to be

independent and, moreover, they all follow the same distribution. A generic random
error term from the underlying distribution is denoted as ε. The idea is to use the
historical data to estimate the unknown parameter vector β ∈ R

p. Later, the online
data—starting from the observation index i = m + 1—are measured in real-time
while asking a question for each new observation i ≥ m + 1 whether the underlying
model remains unchanged (i.e., β i = β0) or there is some change detected in terms of
the unknown parameter vectors β i ∈ R

p. If there is no changepoint detected for the
given i then all available observations are used in the next step to ask the same question
regarding the new—most recent observation. Thewhole changepoint detection process
stops at the first observation i ∈ {m + 1, . . . ,m + Tm} for which there is a statistical
evidence that β i �= β0.

From a formal theoretical point view, at the first step, the historical data
{(Yi ,X�

i )� : i = 1, . . . ,m} are used to obtain a conditional expectile estimator
for the unknown parameter vector β ∈ R

p. In particular, for a given expectile index
τ ∈ (0, 1) the expectile function is defined as

ρτ (x) =
∣
∣
∣
∣
τ − I{x<0}

∣
∣
∣
∣
x2, for x ∈ R, (3)

and the corresponding expectile estimator of the unknown (true) parameter vector
β0 ∈ R

p from the model in (1) is defined as

β̂m ≡ argminβ∈Rp

m
∑

i=1

ρτ

(

Yi − f (Xi ,β)
)

, (4)

where β̂m = (

β̂m1, . . . , β̂mp
)� ∈ R

p. It is straightforward to verify that for τ = 1/2
the expectile estimate β̂m defined by (4) reduces to a standard (nonlinear) least squares
(LS) estimator of β0 ∈ R

p. In general, the τ th expectile of the given distribution can
be interpreted as a hypothetical mean of some other distribution that would be obtained
if the values above the expectile in the original distribution would occur τ

1−τ
times

more frequently. Thus, the choice of τ ∈ (0, 1) can be also seen in terms of some
“exploratory” approach that somehow “balances” the distribution towards the (zero)
mean and it provides a useful information about the skewness and possible outly-
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ing/extreme observations. Also note, that depending on the choice of the regression
function f , the minimization problem in (4) may or may not be a convex problem.
This restricts the choice of the algorithm used to obtain the final solution. For numer-
ical issues and different techniques for fitting nonlinear models we refer to Chambers
(1973). Computational aspects are further discussion in Sect. 4.

In the second step, the expectile estimator β̂m obtained from the historical data
{(Yi ,X�

i )�; i = 1, . . . ,m} is used to perform a real-time changepoint detection in
the online data {(Yi ,X�

i )�; i = m + 1, . . . ,m + Tm} in terms of a formal statistical
test of the null hypothesis

H0 : β i = β0, for i = m + 1, . . . ,m + Tm; (5)

against the alternative hypothesis

H1 :∃k0m ∈ {1, . . . , Tm − 1}
such that

{

β i = β0, i = m + 1, . . . ,m + k0m;
β i = β1 i = m + k0m + 1, . . . ,m + Tm,

(6)

where β0 �= β1. The proposed test statistic, sensitive to the null hypothesis, is defined
as

T (m) = sup
1≤k≤Tm

‖S(m, k)‖∞
z(m, k, γ )

, (7)

for a standard supremum norm ‖·‖∞, a regularization function z(m, k, γ ) ≡ m1/2(1+
k/m)(k/(k + m))γ for some γ ∈ [0, 1/2), and

S(m, k) ≡ J−1/2
m (β̂m)

m+k
∑

i=m+1

∇ f (Xi , β̂m)gτ (̂εi ), (8)

where gτ (x) ≡ ρ′
τ (x) = 2τ xI{x≥0} +2(1− τ)xI{x<0} stands the first derivative of the

expectile function ρτ (x) and ε̂i = Yi − f (X i , β̂m) are so-called expectile residuals for
i = 1, . . . ,m,m + 1, . . . ,m + Tm . Similarly, by hτ (x) ≡ ρ′′

τ (x) = 2τ I{x≥0} + 2(1−
τ)I{x<0} we denote the second derivative of ρτ (x). In addition,∇ f (Xi , β̂m) stands for
a p-dimensional vector of the first partial derivatives ∂

∂β
f (X i , β̂m) evaluated at the

expectile estimate β̂m , and

Jm(β̂m) ≡ Var [gτ (ε)]
m

m
∑

i=1

∇ f (Xi , β̂m)∇�f (Xi , β̂m), (9)

where J−1/2
m (β̂m) in (8) denotes the inverse of the square root matrix (in a sense of the

Cholesky factorization) of Jm(β̂m). A formal decision with respect to the null hypoth-
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esis in (5) is done by comparing the test statistic in (7) with the corresponding quantile
of the limit distribution, which is a functional of a Wiener process (see Theorem 2).
Details regarding the behaviour of the test statistic under the null hypothesis and the
alternative hypothesis are derived in the next section.

Remark 1 In practical applications, the theoretical quantity Var [gτ (ε)] in (9) is
typically unknown. However, the corresponding finite sample counterpart S2gτ̂

=
1

(m−1)

∑m
i=1

[

gτ̂ (̂εi )
]2 can be used instead as a plug-in estimate, where τ̂ ∈ (0, 1)

(implicitly) solves 1
m

∑m
i=1 gτ (̂εi ) = 0 (i.e., the empirical version of the theoretical

assumption E[gτ (ε)] = 0) and {̂εi }mi=1 are the model-based residuals. The empirical
estimates for the theoretical quantities Var [gτ (ε)], E[gτ (ε)], and τ ∈ (0, 1) are all
based on the historical data {(Yi ,X�

i )�; i = 1, . . . ,m}.

3 Theoretical results

Besides a p-dimensional vector ∇ f (x,β) = ∂ f (x,β)/∂β, for any x ∈ Υ and β ∈ �

let, analogously,∇2 f (x,β) ≡ ∂2 f (x,β)/∂β2 be a (p× p)-dimensional matrix of the
second partial derivatives. In addition, let ∇2

j f (x,β) ≡ (

∂2 f (x,β)/(∂βl∂β j )
)

1≤l≤p,
which is again a p-vector for each j ∈ {1, . . . , p}. Finally,Vm(β) stands for a (p× p)-
dimensional matrix being defined as Vm(β) ≡ m−1∑m

i=1 ∇ f (Xi ,β)∇�f (Xi ,β) and
for any two constants a, b ∈ R let a ∨ b = max(a, b) and a ∧ b = min(a, b).

3.1 Model assumptions

Considering the overall changepointmodel in (1) and (2), the theoretical results formu-
lated in this section rely on the set of assumptions stated below. For a better organization
of the whole paper, the assumptions are split into five groups, (A)–(E).
ASSUMPTION (A):

(A1) The parameter space � ⊆ R
p is a compact set and the design space Υ ⊆ R

q is
assumed to be bounded;

(A2) For each i ∈ {1, . . . , ,m,m + 1,m + Tm}, the partial derivatives ∇ f (Xi ,β) and
∇2 f (Xi ,β) all exist and, moreover, ∇ f (Xi ,β) is continuous on Υ × �;

(A3) For qm(β) ≡ Card{i ∈ {1, . . . ,m}; f (Xi ,β) �= f (Xi ,β
0)} and every β ∈ �

such that β �= β0 it holds, that 0 < limm→∞ qm/m ≤ 1.

ASSUMPTION (B): The density function of the random error terms {εi }m+Tm
i=1 (the

generic error term ε respectively) is continuous and strictly positive in zero.
ASSUMPTION (C): There exists a positive definitematrixV(β0) such thatVm(β0) =
m−1∑m

i=1 ∇ f (Xi ,β
0)∇�f (Xi ,β

0) −→ V(β0) for m → ∞.

ASSUMPTION (D): The model errors {εi }m+Tm
i=1 are independent and identically dis-

tributed (i.i.d.)with a continuous distribution, such thatE[ε4i ] < ∞ andE[gτ (εi )] = 0.
Assumptions (A), (B), and (C) are common conditions needed to show a strong

consistency of the conditional expectile estimate β̂m defined in (4). Analogous condi-
tions are used, for instance, by Choi et al (2003). Similarly, Assumption (D) is quite
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standard for the expectile models (e.g., Gu and Zou (2016), Kim and Lee (2016), or
Ciuperca (2022)).

3.2 Asymptotic behaviour of the expectile estimator

In order to study the asymptotic behaviour of the expectile estimator β̂m defined in
(4) let us consider the p-square matrix

� ≡ E[hτ (ε)]V(β0).

In addition to Assumption (A2), it is also required to impose slightly stricter assump-
tions on the matrix of the second partial derivatives ∇2 f (x,β).
ASSUMPTION (E): The elements of ∇2 f (x,β) are all bounded for any x ∈ Υ and
for β from a neighborhood of β0 of radius of the order m−1/2.

The assumption above is a common property which is—under Assumption (A1)—
satisfied by any function f which is continuous onϒ×�. It is considered, for instance,
for a sequential test in a nonlinear changepoint model in Ciuperca (2013) where an
ordinary least squares (LS) estimation framework was used instead. For the expectile
estimation framework proposed in this paper, the asymptotic behaviour of the estimator
in (4) is formulated in the next proposition.

Proposition 1 Under Assumptions (A)–(E),

β̂m = β0 + �−1 1

m

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi ) + oP(m−1/2), asm → ∞.

If the regression function f is linear in β ∈ �, then the asymptotic behaviour in the
proposition reduces to a special case of Proposition 1 fromCiuperca (2022). Similarly,
if the regression function f in (1) is nonlinear in β ∈ �, but the random error terms
follow some normal distribution N (0, σ 2) with σ 2 < ∞, the asymptotic behaviour in
Proposition 1 gives the results of Theorem 2.1 in Seber and Wild (2003).

3.3 Test statistic under H0 and H1

The asymptotic behaviour of the test statistic defined in (7) is investigated in this
section under both—the null hypothesis in (5) and the alternative hypothesis in (6).
Note that that the vectors of parameters β0,β1 ∈ �, where β0 �= β1, are both
unknown. Let Jm(β) ≡ Var [gτ (ε)]Vm(β), forβ ∈ �, be a p×pmatrix—a theoretical
(deterministic) version of its empirical counterpart—the p× pmatrix Jm(β̂m) defined
in (9). Considering the size m ∈ N for the historical data and the size Tm ∈ N for the
online data there are two specific possibilities which should be considered separately.

• if limm→∞ Tm/m = ∞ for either Tm = ∞ or Tm < ∞, then such a scenario is
called an open-end procedure;

• if limm→∞ Tm/m = T for Tm < ∞ where T ∈ (0,∞), then such a scenario is
called a closed-end procedure.
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By a common convention, it is usually assumed that for the open-end procedures it
holds that T = ∞.

Theorem 2 Let Assumptions (A)–(E) be satisfied. Then, under H0,

T (m) ≡ sup
1≤k≤Tm

‖S(m, k)‖∞
z(m, k, γ )

L−→
m→∞ sup

0<t<L(T )

‖Wp(t)‖∞
tγ

,

where {Wp(t); t ∈ (0,∞)} is a p-dimensional Wiener process where L(T ) = 1 for
the open-end procedure and L(T ) = T /(1 + T ) for the closed-end procedure.

The test statistic in Theorem 2 is based on the expectile estimator β̂m of the true
parameter vector β0 ∈ � calculated from the historical data. However, the limit
process is the same as for the expectile estimator in the linear model considered in
Ciuperca (2022), or the quantile estimator proposed in Zhou et al (2015). On the other
hand, the test statistic is different from that proposed by Ciuperca (2013) or Horváth
et al (2004) where the authors rather considered the CUSUM type statistic based on
the least squares residuals of the linear model or the nonlinear model respectively.

In addition, the asymptotic behaviour of the test statistic under the null hypothesis
in Theorem 2 does not depend on the underlying form of the nonlinear regression
function f nor the true value β0 as was the case for the test statistic applied for the
parametric nonlinear model proposed in Ciuperca (2013). Therefore, the test statistic
in Theorem 2 generally less restrictive, it is easier to use, and more straightforward to
apply also for the least squares estimation (i.e., when τ = 1/2).

For the behaviour of the test statistic under the alternative hypothesis, more caution
is needed. The model in (1) changes after the historical data and this change must be
identifiable. Consequently, some reasonable assumptions are needed for the difference
between the true parameter vectors β0 and β1 and, also, the underlying regression
function f . Specific details are formulated in the next theorem.

Theorem 3 Let Assumptions (A)–(E) be satisfied and let m1/2‖β0 − β1‖2 → ∞ as
m → ∞. If there exists C > 0 such that

1

ms

∥
∥
∥
∥
∥
∥

m+k̃m∑

i=m+k0m+1

ci∇ f (Xi ,β
0)
[

f (Xi ,β
1) − f (Xi ,β

0)
]

∥
∥
∥
∥
∥
∥

∞
> C > 0

for some constants |ci | ∈ [2(τ ∧ (1 − τ)), 2(τ ∨ (1 − τ))], then

sup
1≤k≤Tm

‖S(m, k)‖∞
z(m, k, γ )

P−→
m→∞ ∞.

Considering the assertions of both theorems together, the statistical test based on
the proposed test statistics in (7) is proved to be consistent. The decision rule can be
defined directly by considering the corresponding quantiles of the limit process from
Theorem 2.
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Example 1 For a simple linear function f (x,β) = β0 + β1x , the unknown vector
parameters β0 = (β0

1 , β
0
2 )

� ∈ � and β1 = (β1
1 , β

1
2 )

� ∈ �, and x ∈ ϒ ⊆ R one just
need that � ⊆ R

2 is a compact set, ϒ is bounded, and (β1
1 − β0

1 )(β
1
2 − β0

2 ) �= 0 for
the assumptions in (A1)–(A3) to hold. Assumption (B) is typically valid for common
(continuous) error distributions. Assumptions (C) and (E) are satisfied trivially by the
linearity of f . Finally, Assumption (D) can not be usually verified in a straightforward
way but a sample estimate for τ ∈ (0, 1) can be used such that the empirical counterpart
of the equation E[gτ (εi )] = 0 is satisfied.

Example 2 For a nonlinear function f (x,β) = exp{−β1e−β2x } (the Gompertz curve
for x ∈ ϒ) with β0 = (β0

1 , β
0
2 )

� ∈ � and β1 = (β1
1 , β

1
2 )

� ∈ � for � =
(0,∞) × (0,∞) and some bounded ϒ ⊂ R it is easy to see that ∇ f (x,β) =
(− f (x,β)e−β2x , f (x,β)β1xe−β2x )� is continuous on ϒ × � and ∇2 f (x,β) exists.
Thus, for (A1)–(A3) to hold, one just needs that (β1

1 − β0
1 )(β

1
2 − β0

2 ) �= 0. Assump-
tion (C) can be shown in a straightforward way and the remaining assumptions are
analogous to Example 1.

On the basis of the results obtained above one can define a stopping time—i.e., the
first observation for which the null hypothesis in (5) is rejected in favor of the alter-
native hypothesis—considering the significance level α ∈ (0, 1). The corresponding
changepoint estimate is defined as

k̂m ≡

⎧

⎪⎨

⎪⎩

inf
{

k ≥ 1; sup1≤k≤Tm
‖S(m,k)‖∞
z(m,k,γ )

> cα(γ )
}

;

∞, if sup1≤k≤Tm
‖S(m,k)‖∞
z(m,k,γ )

≤ cα(γ ) for all k = 1, . . . , Tm,

where cα(γ ) is (1− α)-quantile of the distribution of sup0<t<L(T ) ‖Wp(t)‖∞/tγ .
Note, that k̂m is the corresponding index referring to the online data only (i.e., k̂m ∈
{1, . . . , Tm}). Thus, from the overall point of view, the underlying model changes after
m + k̂m observations. It holds that limm→∞ P[̂km < ∞ | H0 true] = α and, similarly,
limm→∞ P[̂km < ∞ | H1 true] = 1. Hence, the proposed test is consistent.

4 Empirical study

Finite sample properties of the proposed real-time changepoint detectionmethod based
on the expectile estimator defined in (4) are closely investigated in this section. Firstly,
the empirical level of the test is assessed under various settings and the empirical power
of the test is investigated for various changepoint scenarios. In the second part, the
proposed methodology is also applied to analyze the Covid-19 prevalence data from
Prague, Czech Republic, in order to link some authorities’ decisions to the real-time
pandemic situation.

4.1 Simulation experiment

The main concept of the simulation study is analogous to that presented in Choi et al
(2003). However, instead of a simple exponential function used for the underlying
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Table 1 Simulation results under the null hypothesis (with the theoretical value of τ = 0.5 for the symmetric
distributions and the empirical estimate τ̂ = 0.0719 in terms of Remark 1 for the asymmetric distribution)

Distribution m β̂1 | Std.Er. β̂2 | Std.Er. Scenario 1 Scenario 2 Scenario 3
β1 = 10.00 β2 = 5.00 Tm = 10 Tm = m/2 Tm = m log(m)

N (0, 1) 20 10.52 (2.832) 5.32 (1.825) 7.74% 7.74% 7.52%

τ = 0.5000 50 10.32 (2.857) 5.20 (1.382) 4.92% 6.08% 5.64%

200 10.24 (2.766) 5.03 (0.808) 5.08% 5.58% 6.54%

N (1, 1) 20 10.18 (2.889) 5.61 (2.020) 5.76% 5.76% 6.28%

τ̂ = 0.0719 50 10.27 (2.869) 5.39 (1.638) 4.08% 3.26% 4.46%

200 10.30 (2.833) 5.08 (0.977) 4.40% 4.26% 4.88%

L(0, 1) 20 10.50 (2.842) 5.32 (1.797) 7.84% 7.84% 9.86%

τ = 0.5000 50 10.37 (2.850) 5.18 (1.374) 4.08% 5.12% 7.38%

200 10.29 (2.769) 5.02 (0.799) 5.06% 4.90% 5.58%

The parameter estimates are reported with the corresponding standard errors (in parentheses) over 5000
Monte Carlo simulations. Relative proportions of false rejections are given for three different scenarios for
Tm reflecting the open-end and closed-end procedures. The nominal level of all the tests is always set to be
α = 0.05

regression, a more complex Gompertz curve of the form

f (x,β) = exp{−β1e
−β2x }

is employed, where β0 = (β1, β2)
� ≡ (10, 5)� and x ∈ (0, 1). The reason is that the

function used inChoi et al (2003) becomes very insensitive to any parameter change for
large xt = t (even for t ≥ 10). A simple iterative grid search algorithm is implemented
to solve (4) and the changepoint test is performed in terms of Theorem 2. For the length
of the historical period there are three different options considered (m ∈ {20, 50, 200}).
Analogously as in Choi et al (2003), three error distributions are used: a symmetric
standard normal distribution (with τ = 0.5), asymmetric normal distribution with
the mean and variance being equal to one (τ̂ = 0.0719), and, finally, a heavy-tailed
(symmetric) Laplace distribution with the zero mean and unit variance (again, τ =
0.5 due to the symmetric property). In order to mimic both situations—the closed-
end scenario and the open-end scenario—there are again tree options considered for
Tm ∈ {10,m/2,m logm}. The empirical results under the null hypothesis (of no
change in the model) are summarized in Table 1 and in Fig. 1. Different values for
the regularization parameter γ ∈ [0, 1/2) were considered as well but no substantial
differences were found, therefore, all reported results are for γ = 0.1 only.

The empirical level of the test seems to properly keep the nominal level of α = 0.05
for all considered scenarios. The results are slightly conservative for the symmetric
distributions (the normal distribution N (0, 1) and the double exponential distribution
L(0, 1)). On the other hand, a slightly underestimated nominal level is observed for
the asymmetric error distribution (the normal distribution N (1, 1)) but the actual dif-
ferences are rather negligible. The corresponding expectile estimates of the unknown
(true) parameters β1 = 10 and β2 = 5 seem both to be consistent for all considered
scenarios and no inconsistences are observed in Table 1.
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Fig. 1 The asymptotic behavior of the empirical Type I error probabilities for three different values of
m ∈ {20, 50, 200}, three error distributions (standard normal, asymmetric normal with unit mean and
variance, and double exponential with zero mean and unit variance) and three different choices of Tm in
order to mimic the closed-end and open-end scenarios

On the other hand, the situation under the alternative hypothesis becomes slightly
more comprehensive as there might be many different changepoint scenarios to pos-
sibly consider and take into account. For brevity purposes, there are only the results
for one representative situation provided in this manuscript, but,any other situations
were considered and compared with rather analogous results among all.

In particular, the following simulation scenarios under the alternative hypothesis
were considered:

• A change occurs either in β1, or in β2, or in both elements of β = (β1, β2)
�

simultaneously;
• A change occurs immediately after the historical data or the changepoint occurs
after the first half of the online data;

• The magnitude of the change is relatively small compared to the true parameter
values (20% change with respect to the true value) or the change is relatively large
(the parameter(s) after the changepoint is(are) doubled);

• Finally, if the changepoint occurs in both elements of β = (β1, β2)
�, the corre-

sponding effects of the changes may act against each other—thus, the resulting
regression function after the change is very similar to the regression function
before the change—or, alternatively, the effects of the changes aim at the same
direction—thus, the regression function after the change is quite different from the
underlying regression function before the change and there is also more power in
the data to reveal such change.

All these situations have, of course, an important impact on the simulation results
and, in particular, the performance of the proposed test in terms of its empirical power.
For illustration purpose, one particular scheme (with the changepoint in β2 only and
the change magnitude being equal to the true value of β2) is reported in Table 2. It
is obvious from the table, that the performance of the proposed test (in terms of the
empirical power) mostly depends on the true changepoint location and the length of
the online data but in all considered situations the proposed test seems to be consistent.

Note that for the situations where the changepoint occurs in the first half of the
online data (the rows denoted as k(1)

m in Table 2), there are some false rejections
(roughly 5%) of the observed rejections in the first half of the online data before the
actual change appears. Such false rejection are not considered in Table 2 and only the
rejections after the first half of the online data are reported. This is also reflected by
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Table 2 Empirical powers of the proposed real-time changepoint test based on 5000 Monte Carlo simula-
tions given for various simulation settings

Dist. m k0m Scenario 1 Scenario 2 Scenario 3
Tm = 10 Tm = m/2 Tm = m log(m)

N (0, 1) 20 k(1)
m 2.79% [0.77 | 0.78] 2.79% [0.77 | 0.78] 2.44% [0.72 | 0.71]

τ = 0.5000 k(2)
m 12.80% [0.31 | 0.22] 12.80% [0.31 | 0.22] 20.40% [0.19 | 0.12]

50 k(1)
m 4.10% [0.73 | 0.76] 4.10% [0.76 | 0.78] 5.20% [0.93 | 0.93]
k(2)
m 13.30% [0.33 | 0.11] 14.60% [0.44 | 0.46] 35.30% [0.32 | 0.25]

200 k(1)
m 6.52% [0.87 | 0.89] 8.99% [0.80 | 0.82] 21.76% [0.83 | 0.85]
k(2)
m 16.70% [0.46 | 0.44] 47.60% [0.46 | 0.49] 96.40% [0.15 | 0.10]

N (1, 1) 20 k(1)
m 2.51% [0.71 | 0.67] 2.51% [0.71 | 0.67] 2.42% [0.62 | 0.55]

τ̂ = 0.0719 k(2)
m 11.20% [0.37 | 0.39] 11.20% [0.37 | 0.39] 23.30% [0.29 | 0.22]

50 k(1)
m 4.20% [0.83 | 0.83] 4.30% [0.83 | 0.83] 5.00% [0.85 | 0.89]
k(2)
m 12.20% [0.43 | 0.46] 13.30% [0.49 | 0.33] 32.30% [0.48 | 0.58]

200 k(1)
m 5.52% [0.82 | 0.84] 7.20% [0.55 | 0.55] 21.71% [0.83 | 0.85]
k(2)
m 14.21% [0.42 | 0.44] 38.00% [0.48 | 0.49] 93.80% [0.18 | 0.15]

L(0, 1) 20 k(1)
m 2.64% [0.77 | 0.78] 2.64% [0.77 | 0.78] 2.29% [0.74 | 0.78]

τ = 0.5000 k(2)
m 11.50% [0.36 | 0.22] 11.50% [0.36 | 0.22] 21.20% [0.24 | 0.16]

50 k(1)
m 3.95% [0.75 | 0.78] 4.10% [0.78 | 0.79] 4.99% [0.81 | 0.86]
k(2)
m 12.90% [0.43 | 0.44] 13.20% [0.48 | 0.50] 37.70% [0.30 | 0.21]

200 k(1)
m 6.70% [0.75 | 0.67] 6.93% [0.80 | 0.79] 24.04% [0.81 | 0.83]
k(2)
m 15.60% [0.40 | 0.47] 37.90% [0.46 | 0.47] 96.40% [0.18 | 0.12]

The change in β2 occurs either in the first half of the online data for k
(1)
m = �Tm/2�+1, or the change occurs

at the very beginning of the online data, thus k(2)
m = 1. The empirical powers for different Tm , different

error distributions, and three sizes of the historical data are given in terms of the relative proportions (using
τ = 0.5 for the symmetric distributions and τ̂ = 0.0719 for the asymmetric distribution). Two changepoint
indicators are also used in the brackets: the average changepoint location index and the median changepoint
location index. Values close to zero stand for an early changepoint detection (zero standing for the detection
at the first available observation) and values close to one mean late changepoint discoveries (one standing
for the detection at the last available observation)

the fact that the average and median changepoint location indicators in the brackets
are always greater than 0.50—which stands for the half of the online data sequence.

The average changepoint location indicator of, let us say, 0.25 indicates that the
changepoint was estimated (when averaged over all simulations) after the first quarter
of the online data. If the median location indicator (the second value in the brackets)
is higher than the average, then the majority of the changepoint recoveries occurred
after the first quarter, but there were also some relatively rear although very early
recoveries (including also the very first online observation). On the other hand, for
the median location indicator being smaller than the average indicator, the majority of
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Fig. 2 Covid-19 positive cases in Prague, Czech Republic. The overall daily increments in the upper panel
and the cumulative counts in the lower panel are—just for better illustration—provided also separately for
males (blue) and females (red). The vertical lines represent the date when the strict pandemic restrictions
being in effect before Christmas 2020 were relaxed. The Gompertz population model in (10) is fitted on the
historical data—the data before the restrictions release in December 1, 2020. The projection of the model
is provided for the future in dashed red. The estimated saturation of K̂ = 189 616 is visualized in doted red

the changepoint recoveries occurred before the first quarter, but there were also some
very late recoveries (including the very last observations).

4.2 Covid-19 prevalence

Relatively recently, the world society was very much effected by the Covid-19 pan-
demic, therefore, we tried to apply the proposed estimation and changepoint detection
method for a nonlinear parametric population risk model—a three parameter Gom-
pertz curve—tomodel the cumulative counts of the Covid-19 positive cases in Prague,
the capital of the Czech Republic, over the period from the first positive case appear-
ance (March 1, 2020) until the end of May 2021. The data, provided for academic
purposes by the Institute of Health Information and Statistics of the Czech Republic
are assumed to follow a typical nonlinear (growth) model in (1), where

f (X i ,β) = K exp
{

− β1e
−β2xi

}

(10)
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Table 3 Parameter estimates for the underlying Gompertz model in (10) for three different data scenarios:
firstly, historical data until restrictions release are considered; Second, the proposed online testing procedure
is applied until the null hypothesis is rejected and the model is retrained. Finally, the all available data are
used to estimate the overall model

Estimation method and data β1 β2 K Objective function

Historical data (until 01/12/2020)

Symmetric least squares (τ = 0.50) 36.04 0.0129 187 811 3.00 × 106

Expectile method (τ = 0.11) 37.97 0.0129 188 576 0.78 × 106

Re-estimation after the change detection (03/12/2020)

Symmetric least squares (τ = 0.50) 35.38 0.0130 180 174 3.27 × 106

Expectile method (τ = 0.19) 36.04 0.0129 179 718 1.92 × 106

All available data (until 26/05/2021)

Symmetric least squares (τ = 0.50) 20.17 0.0096 256 970 10.9 × 106

Expectile method (τ = 0.26) 20.18 0.0095 255 032 8.53 × 106

for the unknown parameter vector β = (β1, β2, K )� ∈ R
3+. The univariate explana-

tory variables X i ≡ xi stand for the current day and the dependent random variables
Yi in (1) reflect the cumulative Covid-19 positive cases at the given day. A similar
population growth model—a five parameter logistic curve—was recently applied in
Chen et al (2020) to predict the overall number of positive Covid-19 cases in the US.
The resulting model, however, turned out to heavily underestimate the true number of
positive cases, which could be also caused by the underlying distributional symmetry
assumption.

In our approach, instead of trying to predict the overall positive cases, we pursue
a slightly different goal: Firstly, the data are split into two parts—the historical data
from the very first Covid-19 positive case in Prague until December 1, 2020 (when
a rather populistic and quite much criticized government decision waved off some of
the strict pandemic restrictions before Christmas) and the online data—arriving after
December 1, 2020. Second, the proposed changepoint test is adopted to test whether
themodel before the government decision and themodel after the government decision
is the same, or not. Finally, the model can be also used to get some predictions of the
overall Covid-19 positive cases over the overall follow-up period.

The data—daily positive cases—are visualized in Fig. 2a. The corresponding cumu-
lative counts are given in the panel below—Fig.2b. The Gompertz model from (10)
is fitted on the historical data thus, the period from March 1, 2020 until December 1,
2020. The estimated parameters are provided in Table 3. The estimated number of the
overall Covid-19 positive cases is K̂ = 188 576, while the true number of all positive
cases reported until May 26, 2021, is 184 959.

The proposed changepoint detection test based on (7) is performed to verify the
stability of themodel trained on thehistorical data, form = 275,while newonline data
are arriving in a step-by-step manner (for Tm = 176). The values for the test statistic in
(7) at each step of the online testing regime are plotted in Fig. 3a. The null hypothesis
of no changepoint in the vector parameter β = (β1, β2, K )� is rejected relatively
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Fig. 3 The test statistic profile for the online data in panel (a) and the first five days only for a more detailed
insight in panel (b); The limit distribution from Theorem 2 with the corresponding 95% sample quantile
c0.95(γ ) = 2.4260, for γ = 0.1, in panel (c); The model residuals from (10) with the corresponding density
estimate, the empirical mean, and the empirical expectile for τ̂ = 0.11, such that the empirical conterpart of
E[gτ (ε)] equals to zero—all in panel (d); Finally, the residual autocorrelation and partial-autocorrelation
plots in panels (e) and (f) respectively

fast—just two days after the government reduced the restrictions—the corresponding
test statistic is T (m) = 4.1618 for m = 275 and the corresponding 95% quantile
of the limit distribution from Theorem 2 is c0.95(γ ) = 2.4260 for γ = 0.1. This
may suggest that the actual change in the model occurred already before the online
data—which can be also seen in Fig. 2—either from the first peak and the consecutive
drop-off in panel (a) or some evident underestimation at the end of the historical data
in panel (b). The estimated parameters for the retrained model after the changepoint
detection are, for comparison, also reported in Table 3. Alternatively, one could also
consider another set of the historical data (and maybe slightly more representative)—
from the very first case until the first culmination (i.e., the beginning of November
2020, thus m = 245) and to test whether the model changes significantly after the
peak as the daily Covid-19 cases start to decrease. The estimated parameters are
very similar (β̂1 = 88.15, β̂2 = 0.0166, and K̂ = 197264) but it takes 8 days for
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the proposed test statistic to detect a significant change in the model. Nevertheless,
despite some obvious correlation among the model-based residuals (Fig. 3d and e) the
estimated model seems to be relatively stable and the proposed changepoint detection
test performs very well.

5 Conclusions

In this paper, we proposed the online procedure for testing stability of a nonlinear para-
metric regressionmodel while taking into account the conditional expectile estimation
framework. There are three main pivots behind the proposed methodology: Firstly, the
nonlinear parametric form of the unknown regression function improves the overall
flexibility of the model while the dependence on the unknown parameters still pre-
serves a relatively simple and straightforward interpretation of the overall regression
function estimate. Second, the expectile estimation method allows for some additional
robustness especially with respect to asymmetric distributions. The estimation algo-
rithm depends on the “asymmetry index” τ ∈ (0, 1), which is usually unknown, but it
can be either anticipated from the data generatingmechanism or some plug-in estimate
can be used instead. Third, the online regime for the changepoint detection makes the
proposed method instantly applicable, which may turn out to be convenient in situ-
ations when real-time decisions and model adaptations are required. Finally, given
the underlying regression function, the whole minimization problem formulated in
(4) does not have to be convex—therefore, we proposed a widely applicable general
iterative grid search algorithm which can be effectively used in practical applications.

The proposed methodological framework enriches the class of online procedures
for changepoint detections. To our best knowledge, the specificmodel setup considered
in this paper has not been studied in the literature yet. The empirical performance is
illustrated through an extensive simulation study. A practical applicability of thewhole
methodological framework is illustrated on a real data example concerning some of
the most recent challenges related to online decision making—especially essential
decisions related to the Covid-19 pandemics made by local and global authorities.
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Appendix A Proofs and technical lemma

Proof of Proposition 1 The expectile estimator β̂m from (4) is the solution of the system
of equations

∂

∂β

m
∑

i=1

ρτ

(

Yi − f (Xi ,β)
) = 0p,

where 0p stands for a zero vector of dimension p. Then, with a probability equal to
1, it holds that

m
∑

i=1

∇ f (Xi , β̂m)gτ (εi + f (Xi ,β
0) − f (Xi , β̂m)) = 0p. (A1)

Since under Assumptions (A), (B), (C) we have β̂m
a.s.−→

m→∞ β0 (see Theorem 2.2 of

Choi et al (2003)) and since for t → 0 we have gτ (ε − t) = gτ (ε) − hτ (ε)t + oP(t),
then using Assumptions (A1) and (A2), we obtain

gτ

(

εi + f (Xi ,β
0) − f (Xi , β̂m)

)

= gτ (εi ) − hτ (εi )
(

f (Xi , β̂m) − f (Xi ,β
0)
)

+oP
(

f (Xi , β̂m) − f (Xi ,β
0)
)

.

Substituting into the relation in (A1) we obtain

0p =
m
∑

i=1

∇ f (Xi , β̂m)

[

gτ (εi ) − hτ (εi )
(

f (Xi , β̂m) − f (Xi ,β
0)
)

+oP
(

f (Xi , β̂m) − f (Xi ,β
0)
)
]

and, since β̂m
a.s.−→

m→∞ β0, using also Assumption (A2) and the Taylor expansion, we

have, for any j = 1, . . . , p, that

0 =
m
∑

i=1

[
∂ f

∂β j
(Xi ,β

0) + ∇2
j f

�(Xi ,β
0 + θ j i (β̂m − β0))(β̂m − β0)

]

×
[

gτ (εi ) − hτ (εi )
(

f (Xi , β̂m) − f (Xi ,β
0)
)+ oP

(

f (Xi , β̂m) − f (Xi ,β
0)
)
]

,

with∇2
j f the column p-vector

(

∂2 f /(∂β j∂βk)
)

1≤k≤p of derivatives of order 2 and θ j i

a random variable such that 0 ≤ θ j i ≤ 1with probability 1. Hence, usingAssumptions
(A1), (A2), (C), and (E), together with the Cauchy–Schwarz inequality and the Taylor
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expansion, we obtain

0p = 1

m

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi ) − 1

m

m
∑

i=1

hτ (εi )∇ f (Xi ,β
0)∇ f �(Xi ,β

0)(β̂m − β0)

+ oP(β̂m − β0). (A2)

By Assymption (C) we can define a p-square invertible matrix

�m ≡ m−1
m
∑

i=1

hτ (εi )∇ f (Xi ,β
0)∇ f �(Xi ,β

0)

and using the relation in (A2) we obtain

β̂m − β0 = �−1
m

1

m

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi )

(

1 + oP(1)
)

, (A3)

or, again, using Assumptions (C) and (D) to get

β̂m = β0 + �−1 1

m

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi )

(

1 + oP(1)
)

,

which proves the given proposition. ��
In order to show the asymptotic behavior of the test statistic under the null hypothesis

in (5) and the alternative hypothesis in (6) let us define a stochastic process

rm,k(u) ≡
m+k
∑

i=m+1

Ri (u), (A4)

for k = 1, . . . , Tm , where u ∈ R
p, such that ‖u‖2 ≤ C for some constant C < ∞. In

addition, let

Ri (u) ≡ ∇ f
(

Xi ,β
0 + m−1/2u

)

gτ

(

Yi − f (Xi ,β
0 + m−1/2u)

)− ∇ f (Xi ,β
0)gτ (εi ),

for i = m + 1, . . . ,m + Tm , where the convergence rate of β̂m derived above is used.
The following lemma is crucial for the proofs of the main theorems.

Lemma 4 Let Assumptions (A1), (A2), (D), and (E) be satisfied and let the null hypoth-
esis in (5) hold. Then, for any constants C1,C2 > 0 and all k ∈ N large enough, there
exists a constant C3 > 0 such that

P

[

sup
‖u‖2≤C1

∥
∥rm,k(u) − E[rm,k(u)]∥∥1 ≥ pC2C3

√

k

m

√

log k

]

≤ 4k−C2
2
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for m ∈ N sufficiently large.

Proof of Lemma 4 For any observation i ∈ {m + 1, . . . ,m + Tm}, any vector u =
(u1, . . . , u p) ∈ R

p such that ‖u‖2 ≤ C1, we can express Ri (u) as

Ri (u) = ∇ f
(

Xi ,β
0 + m−1/2u

)[

gτ

(

Yi − f (Xi ,β
0 + m−1/2u)

)− gτ (εi )
]

+gτ (εi )
[

∇ f
(

Xi ,β
0 + m−1/2u

)− ∇ f (Xi ,β
0)
]

≡ B(1)
i (u) + B(2)

i (u).

(A5)

Both terms in (A5) will be studied separately. Let us start with B(1)
i (u). The function

gτ can be expressed as gτ (x) = 2τ x + 2x(1 − 2τ)I{x<0}. Using the notation vi ≡
f (Xi ,β

0) − f (Xi ,β
0 + m−1/2u) it holds with probability 1 that

gτ

(

Yi − f (Xi ,β
0 + m−1/2u)

)

− gτ (εi )

= 2τvi + 2(1 − 2τ)
[(

εi + vi
)

I{εi<−vi } − εi I{εi<0}
]

. (A6)

Let us consider a random variable Wi ≡ εi
[

I{εi<−vi } − I{εi<0}
]

. It holds that

|Wi | = |εi |I{min(0,−vi )≤εi<max(0,−vi )},

which also implies

P
[|Wi | < |vi |

] = 1. (A7)

The relation in (A6) can be written as

gτ (εi + vi ) − gτ (εi ) = 2τvi + 2(1 − 2τ)
[

Wi + vi I{εi<−vi }
]

, (A8)

which holds with probability one. On the other hand, by Assumptions (A1) and (A2)
we have that ‖∇ f (x,β)‖2 is bounded for all x ∈ Υ and all β ∈ Vm(β0,u), with
Vm(β0,u) = {β; ‖β − β0‖2 ≤ m−1/2‖u‖2}. For the right-hand side of (A8), using
the fact that ‖∇ f (x,β)‖2 is bounded, together with relation (A7), by applying the first
order Taylor expansion to f (Xi ,β

0 +m−1/2u), we have that there exists C > 0 such
that we can write for the left-hand side of (A8)

P
[− Cm−1/2 < gτ (εi + vi ) − gτ (εi ) < Cm−1/2] = 1. (A9)

Using the relations in (A6), (A8), and (A9), together with the fact that ‖∇ f (x,β)‖2
is bounded for all x ∈ Υ and β ∈ Vm(β0,u) and applying the Hoeffding inequality,
we obtain that

P

[∣
∣
∣
∣

m+k
∑

i=m+1

∂ f

∂β j
(Xi ,β

0 + m−1/2u)Gτ (εi , vi )

∣
∣
∣
∣
≥ t

]

≤ 2 exp

(

− 2t2

4C2k/m

)

,
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for all t ∈ R and j = 1, . . . , p, where, for brevity, use used the notation

Gτ (εi , vi ) = [

gτ (εi − vi ) − gτ (εi )
]− E

[

gτ (εi − vi ) − gτ (εi )
]

.

Next, similarly as in the proof of Lemma 1 in Ciuperca (2022), under Assumptions
(A1) and (A2), using the last relation above, we have that for all constantsC1,C4 > 0,
there exists a constant C̃ > 0 such that

P

[∥
∥
∥
∥

m+k
∑

i=m+1

(

B(1)
i (u) − E[B(1)

i (u)])
∥
∥
∥
∥
1

≥ √
2C4C̃ p

√

k

m

√

log k

]

≤ P

[

max
1≤ j≤p

∣
∣
∣
∣

m+k
∑

i=m+1

∂ f

∂β j
(Xi ,β

0 + m−1/2u)Gτ (εi , vi )

∣
∣
∣
∣
≥ √

2C4C̃

√

k

m

√

log k

]

≤ 2k−C2
4 . (A10)

Next, we proceed by studying the random vector B(2)
i (u) from the relation in (A5).

Let us denote its j-th elemen, for j = 1, . . . , p, as

B(2)
i j (u) =

[
∂ f

∂β j
(Xi ,β

0 + m−1/2u) − ∂ f

∂β j
(Xi ,β

0)

]

gτ (εi )

= m−1/2u∇2
j f (Xi ,β

0 + m−1/2θ j iu)gτ (εi ),

for some constants θ j i ∈ [0, 1]. Under Assumption (D), it holds thatVar [gτ (εi )] < ∞
and also E[g2τ (εi )] < C < ∞. Using these two relations, we obtain that

Var [B(2)
i j (u)] ≤ E[(B(2)

i j (u)
)2] ≤ Cm−1‖u‖22‖∇2

j f (Xi ,β
0 + m−1/2θ j iui )‖22,

for each j ∈ {1, . . . , p}, where the Cauchy–Schwarz inequality was applied in the
last step. Moreover, using Assumption (E) we have that for all C1 > 0 there exists
a constant C5 > 0 such that

max
m+1≤i≤m+k

(

max‖u‖2≤C1
‖∇2

j f (Xi ,β
0 + m−1/2u)‖2

)

≤ C5.

Therefore, we also obtain that

m+k
∑

i=m+1

Var [B(2)
i j (u)] = O(k/m). (A11)

For B(2)
i (u), taking into account the relation in (A11) and the fact that B(2)

i j (u)

is uniformly bounded by Cm−1/2, we can use Lemma 4.1 of Ciuperca (2017) for
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δk = k/m. Then, for k ∈ N being sufficiently large, for any constant C6 > 0 and
‖u‖2 < C1, we have

P

[∣
∣
∣
∣

m+k
∑

i=m+1

[

B(2)
i j (u) − E[B(2)

i j (u)]]
∣
∣
∣
∣
≥ (1 + C6)

√

k

m

√

log k

]

≤ 2k−C6 ,

which further implies, similarly as for (A10), that

P

[
∥
∥
∥

m+k
∑

i=m+1

[B(2)
i (u) − E[B(2)

i (u)]]
∥
∥
∥
1

≥ p(1 + C6)

√

k

m

√

log k

]

≤ 2k−C6 . (A12)

Taking now C6 = C2
4 and ˜̃C = 2−1/2(1 + C2

4 )/C4 we get

P

[
∥
∥
∥

m+k
∑

i=m+1

[B(2)
i (u) − E[B(2)

i (u)]]
∥
∥
∥
1

≥ √
2p˜̃CC4

√

k

m

√

log k

]

≤ 2k−C2
4 . (A13)

Moreover, for any constant c > 0 and any two random vectors V1 and V2 of the same
size, it holds that

P[‖V1 + V2‖1 ≥ c] ≤ P[‖V1‖1 + ‖V2‖1 ≥ c] ≤ P

[(

‖V1‖1 ≥ c

2

)

∪
(

‖V2‖1 ≥ c

2

)]

≤ P

[

‖V1‖1 ≥ c

2

]

+ P

[

‖V2‖1 ≥ c

2

]

.

(A14)

For the first inequality in (A14) we used the fact that for any constant c > 0 the event
c ≤ ‖V1 + V2‖1 ≤ ‖V1‖1 + ‖V2‖1 implies, with probability one, also the random
event

(‖V1 + V2‖1 ≥ c
) ⊆ (‖V1‖1 + ‖V2‖1 ≥ c

) ⊆
(

max
(‖V1‖1, ‖V2‖1

) ≥ c/2

)

,

where we considered V1 = B(1)
i (u) − E[B(1)

i (u)] and V2 = B(2)
i (u) − E[B(2)

i (u)].
Taking now the relations in (A10), (A13) and (A14), and the constants C4 = C2,
C3 = 2−3/2 min(C̃, ˜̃C), and c = pC2C3(k/m)1/2(log k)1/2, we obtain that

P

[
m+k
∑

i=m+1

∥
∥Ri (u) − E[Ri (u)]∥∥1 ≥ pC2C3

√

k

m

√

log k

]

≤ 4k−C2
2 ,

for all C2 > 0, which completes the proof of the lemma. ��
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Proof of Theorem 2 If k is fixed then z(m, k, γ ) −→
m→∞∞. With respect to Assumptions

(A1), (A2), (B), and (D), we have that

∥
∥
∥
∥
∥
J−1/2
m (β̂m)

m+k
∑

i=m+1

∇ f (Xi , β̂m)gτ (̂εi )

∥
∥
∥
∥
∥

∞

P−→
m→∞ 0.

Therefore, in this case, we also obtain that

‖S(m, k)‖∞
z(m, k, γ )

P−→
m→∞ 0.

If k → ∞ (i.e., k ≡ km → ∞ form → ∞), then by Lemma 4 we have for u ∈ R
p,

with ‖u‖1 ≤ C1: rm,k(u) = E[rm,k(u)] + OP

(

m−1/2k1/2(log k)1/2
)

.
On the other hand, for E[rm,k(u)] we have, using Assumptions (A1), (A2), (B),

(D), and (E), that

E[rm,k(u)]

=
m+k
∑

i=m+1

∇ f (Xi ,β
0 + m−1/2u)E

[

gτ (εi ) − hτ (εi )
(

f (Xi ,β
0 + m−1/2u) − f (Xi ,β

0)
)

+ oP
(

f (Xi ,β
0 + m−1/2u) − f (Xi ,β

0)
)]

= −
m+k
∑

i=m+1

[

∇ f (Xi ,β
0 + m−1/2u)m−1/2∇ f �(Xi ,β

0)uE[hτ (ε)] + oP(m−1/2)
]

= −E[hτ (ε)] m−1/2
m+k
∑

i=m+1

∇ f (Xi ,β
0)∇ f �(Xi ,β

0)u + o(km−1/2).

Thus, we also have that

rm,k(u) = − m−1/2
E[hτ (ε)]

m+k
∑

i=m+1

∇ f (Xi ,β
0)∇ f �(Xi ,β

0)u

+ OP(m−1/2k1/2(log k)1/2). (A15)

Using the relation in (A3) and taking u = m1/2(β̂m −β0) in the relation in (A15), we
obtain

rm,k(m
1/2(β̂m − β0)) = −m−1V−1

m (β0)

(
m+k
∑

i=m+1

∇ f (Xi ,β
0)∇ f �(Xi ,β

0)

)

×
(

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi ) + oP(m1/2)

)

+ OP

(

m−1/2k1/2(log k)1/2
)
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and, using Assumption (C), also

rm,k(m
1/2(β̂m − β0)) = − km−1

(
m
∑

i=1

∇ f (Xi ,β
0)gτ (εi ) + oP(m1/2)

)

+ OP(m−1/2k1/2(log k)1/2).

On the other hand, by the definition of the randomprocess rm,k , we get,with probability
one, that

rm,k(m
1/2(β̂m − β0)) =

m+k
∑

i=m+1

[∇ f (Xi , β̂m)gτ (̂εi ) − ∇ f (Xi ,β
0)gτ (εi )

]

.

The last two relations imply

m+k
∑

i=m+1

∇ f (Xi , β̂m)gτ (̂εi ) =
m+k
∑

i=m+1

∇ f (Xi ,β
0)gτ (εi ) − km−1

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi )

+oP(km−1/2) + OP(m−1/2k1/2(log k)1/2). (A16)

The rest of the proof follows the same lines as the proof of Theorem 1 in Ciuperca
(2022) using the Komlós–Major–Tusnády (KMT) approximation for independent
random vectors and Theorem 2.1 of Horváth et al (2004). Let us only sketch
the main idea of the end of the proof. By the KMT approximation for indepen-
dent random variables not identically distributed (see Götze and Zaitsev (2009))
for each component of the random vectors

(

J−1/2
m (β0)∇ f (Xi ,β

0)gτ (εi )
)

1≤i≤m and

of
(

J−1/2
m (β0)∇ f (Xi ,β

0)gτ (εi )
)

m+1≤i≤m+Tm
,wehave that for all ν > 3 andm → ∞,

there exists two Wiener processes
{

W1,m(t), t ∈ [0,∞)
}

and
{

W2,m(t), t ∈ [0,∞)
}

of the dimension p such that for the two terms of the right hand side of the relation in
(A16) it holds

sup
1≤k<∞

k−1/ν
∥
∥
∥J−1/2

m (β0)

m+k
∑

i=m+1

∇ f (Xi ,β
0)gτ (εi ) − W1,m(k)

∥
∥
∥∞ = OP(1) (A17)

and
∥
∥
∥J−1/2

m (β0)

m
∑

i=1

∇ f (Xi ,β
0)gτ (εi ) − W2,m(m)

∥
∥
∥∞ = oP(m1/ν). (A18)

By the proof of Theorem 2.1 of Horváth et al (2004), for any T > 0, we have

sup
1≤k<∞

∥
∥W1,m(k) − k

mW2,m(m)
∥
∥∞

z(m, k, γ )

L=
m→∞ max

1≤k≤mT

√
m

∥
∥W1(k/m) − (k/m)W2(1)

∥
∥∞

z(m, k, γ )
(A19)
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and also

max
1≤k≤mT

√
m

∥
∥W1(k/m) − (k/m)W2(1)

∥
∥∞

z(m, k, γ )

L−→
m→∞ sup

0<t<L(T )

‖Wp(t)‖∞
tγ

. (A20)

On the other hand, by Assumptions (C) and (D), together with Proposition 1, we
have that J−1/2

m (β̂m) converges to J−1/2
m (β0) with the convergence rate of the order

m−1/2. Thus, J−1/2
m (β̂m) = J−1/2

m (β0) + OP(m−1/2). The proof of the theorem now
follows by combining this last relation together with the relations in (A16), (A17),
(A18), and (A19). ��

Proof of Theorem 3 It will be shown that there exists an observation with an index
k̃m ∈ {m + 1, . . . ,m + Tm} for which ‖S(m, k̃m)‖∞/z(m, k̃m, γ )

P−→
m→∞ ∞.

We consider the open-end procedure case. Let us consider k̃m = k0m + ms , with
s > 1. Since the function (x+1)(x/(1+x))−γ is increasing in x > 0 for γ ∈ [0, 1/2),
we have, as in the proof of Theorem 1, that there exists C > 0 such that,

‖J−1/2
m (β̂m)

∑m+k0m
i=m+1 ∇ f (Xi , β̂m)gτ

(

εi + f (Xi ,β
0) − f (Xi , β̂m)

)‖∞
z(m, k̃m, γ )

< C < ∞,

(A21)
with probability converging to 1, when m → ∞.

It remains to study
∑m+k̃m

i=m+k0m+1
∇ f (Xi , β̂m)gτ

(

εi + f (Xi ,β
1) − f (Xi , β̂m)

)

or

more precisely, taking into account the convergence rate of β̂m , we are going to study

m+k̃m∑

i=m+k0m+1

∇ f (Xi ,β
0 + m−1/2u)gτ

(

εi + f (Xi ,β
1) − f (Xi ,β

0 + m−1/2u)
)

with u ∈ R
p, ‖u‖2 < C . Consider the following sum

m+k̃m∑

i=m+k0m+1

Ri (u) = −
m+k̃m∑

i=m+k0m+1

∇ f (Xi ,β
0)gτ (εi )

+
m+k̃m∑

i=m+k0m+1

[

∇ f (Xi ,β
0 + m−1/2u)gτ

(

εi

+ f (Xi ,β
1) − f (Xi ,β

0 + m−1/2u)
)]

. (A22)
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Then, taking into account Assumption (D), the expectation E
[
∑m+k̃m

i=m+k0m+1
Ri (u)

]

on

the left hand-side of the equation in (A22) equals to

m+k̃m∑

i=m+k0m+1

∇ f (Xi ,β
0 + m−1/2u)E

[

gτ

(

εi + f (Xi + β1) − f (Xi ,β
0 + m−1/2u)

)]

.

Therefore, it remains to study E
[

gτ

(

εi + f (Xi + β1) − f (Xi ,β
0 + m−1/2u)

)] =
E
[

gτ

(

εi + f (Xi +β1)− f (Xi ,β
0 +m−1/2u)

)− gτ (εi )
]

, where Assumption (D) was
applied. By Lemma 2 of Gu and Zou (2016), we have that there exists a constant ci ,
with |ci | ∈ [2c, 2c̄], such that gτ

(

εi + f (Xi +β1)− f (Xi ,β
0+m−1/2u)

)−gτ (εi ) =
ci
[

f (Xi ,β
1) − f (Xi ,β

0 + m−1/2u)
]

, with probability one. Thus, we obtain

1

k̃m − k0m

∥
∥
∥
∥
∥
∥

m+k̃m∑

i=m+k0m+1

E[Ri (u)]
∥
∥
∥
∥
∥
∥

∞

= 1

k̃m − k0m

∥
∥
∥
∥
∥
∥

m+k̃m∑

i=m+k0m+1

ci∇ f (Xi ,β
0 + m−1/2u)

[

f (Xi ,β
1) − f (Xi ,β

0 + m−1/2u)
]−1

∥
∥
∥
∥
∥
∥

∞
.

Taking into account this last relation, taking into account the fact that for all ci such
that |ci | ∈ [2c, 2c̄] there exists some constant C > 0 such that

1

ms

∥
∥
∥
∥
∥
∥

m+k̃m∑

i=m+k0m+1

ci∇ f (Xi ,β
0)
[

f (Xi ,β
1) − f (Xi ,β

0)
]

∥
∥
∥
∥
∥
∥

∞
> C > 0,

using the Kolmogorov strong Law of Large Numbers for independent not identically
distributed random variables Ri j (u), we finally obtain that

∥
∥
∥
∥
∥
∥

m+k̃m∑

i=m+k0m+1

Ri (u)

∥
∥
∥
∥
∥
∥

∞
= OP

(

(̃km − k0m)‖β1 − β0‖2
)

. (A23)

On the other hand, by the Central Limit Theorem, we also have

m+k̃m∑

i=m+k0m+1

∇ f (Xi ,β
0)gτ (εi ) = OP(̃km − k0m)1/2 = OP(ms/2). (A24)

Therefore, the relations in (A22), (A23), and (A24) together imply

∥
∥J−1/2

m (β0 + u√
m

)
∑m+k̃m

i=m+k0m+1
Ni
∥
∥∞

z(m, k̃m, γ )
= OP(ms/2) + OP

(

ms‖β1 − β0‖2
)

z(m, k̃m, γ )
,
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where, again for brevity, Ni is defined as

Ni = ∇ f
(

Xi ,β
0 + u√

m

)

gτ

(

εi + f (Xi + β1)− f

(

Xi ,β
0 + u√

m

))

.

Moreover, it also hold that

OP(ms/2) + OP

(

ms‖β1 − β0‖2
)

z(m, k̃m, γ )
−→
m→∞∞. (A25)

Since ‖J−1/2
m (β0 + m−1/2u) − J−1/2

m (β0)‖2 −→
m→∞0, where ‖.‖2 is the spectral norm,

the theorem follows by relations in (A21) and (A25). ��
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