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Abstract
The Markov property is shared by several popular models for time series such as
autoregressive or integer-valued autoregressive processes as well as integer-valued
ARCHprocesses. A natural assumptionwhich is fulfilled by corresponding parametric
versions of thesemodels is that the random variable at time t gets stochastically greater
conditioned on the past, as the value of the randomvariable at time t−1 increases. Then
the associated family of conditional distribution functions has a certain monotonicity
propertywhich allows us to employ a nonparametric antitonic estimator. This estimator
does not involve any tuning parameter which controls the degree of smoothing and is
therefore easy to apply. Nevertheless, it is shown that it attains a rate of convergence
which is known to be optimal in similar cases. This estimator forms the basis for a new
method of bootstrappingMarkov chains which inherits the properties of simplicity and
consistency from the underlying estimator of the conditional distribution function.

Keywords Autoregressive process · Bootstrap · INAR · Integer-valued ARCH ·
Markov chain · Stochastic order
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1 Introduction

We consider a time-homogeneous Markov chain (Xt )t∈N0 driven by a transition ker-
nel which satisfies a certain monotonicity property: the conditional distribution of the
random variable at time t gets stochastically greater as the value of the variable at
time t − 1 increases. Such a condition is actually satisfied by several popular mod-
els for time series such as autoregressive or integer-valued autoregressive as well as
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32 M. H. Neumann

integer-valued ARCH processes under natural assumptions on the involved parame-
ters. To be specific, we assume that, for each fixed z, Fx (z) := P(Xt ≤ z | Xt−1 = x)
is antitonic (monotonically non-increasing) in x . This assumption allows us to employ
a nonparametric antitonic estimator ̂Fx (z) of the function x �→ Fx (z). Our estimator
does not involve any tuning parameter which controls the degree of smoothing and is
therefore easy to apply. Moreover, its consistency does not require smoothness prop-
erties of the function x �→ Fx (z); the postulated monotonicity suffices. Theorem 2.1
states that the estimator ̂Fx (z) converges in L1 norm, weighted by the stationary dis-
tribution of the Markov chain, with a rate of n−1/3 which is believed to be the optimal
one.

The estimator of Fx (z) serves as a basis for a new bootstrap method for Markov
chains. Among several other methods, those proposed by Rajarshi (1990) and Paparo-
ditis and Politis (2002) are the closest ones to our proposal. While Rajarshi’s bootstrap
procedure is based on a nonparametric estimate of the one-step transition density,
Paparoditis and Politis (2002) used in their so-called local bootstrap a local resam-
pling of the original data set. In both papers, the proof of consistency of the respective
bootstrapmethod is based on the assumption of a smooth transition density. In contrast,
our approach does not require any smoothness assumption on the transition mecha-
nism; it is merely based on the monotonicity assumption on the Markov kernel. We
show its applicability for Markov chains with state space N0 = {0, 1, 2, . . .}. Consis-
tency of bootstrap can be shown in a most transparent way by a so-called coupling of
the original process and its bootstrap counterpart, i.e. we define versions (˜Xt )t∈N0 and
(˜X∗

t )t∈N0 of these processes on a common probability space (˜�, ˜A, ˜P) such that the
corresponding random variables ˜Xt and ˜X∗

t are equal with a high probability. Some-

what surprisingly, this natural approach was rarely used in statistics. Using Mallows
metric to measure the distance between variables from the original and the bootstrap
process, it was implicitly employed in the context of independent random variables by
Bickel and Freedman (1981) and Freedman (1981). A more explicit use of coupling
was made, in the context of U- and V-statistics, but again in the independent case, by
Dehling and Mikosch (1994) and Leucht and Neumann (2009). For dependent data,
this approach was adopted by Leucht and Neumann (2013), Leucht et al. (2015), and
Neumann (2021). Our second main result, Theorem 3.1, describes the results of our
coupling approach. The stationary distribution P∗

X∗ of the bootstrap process converges
in total variation norm and in probability to that of the original process. The coupled
process is φ-mixing with coefficients decaying at an exponential rate and the corre-
sponding values ˜X0

t and ˜X∗,0
t of a stationary version of the coupled process coincide

with a probability converging to 1. These general results can then be used to prove
bootstrap consistency for specific statistics. The proofs of ourmain theorems and some
auxiliary results a postponed to a final Sect. 4.

2 An estimator of a monotone family of distribution functions

Suppose that we observe random variables X0, X1, . . . , Xn , where X = (Xt )t∈N0 is
a strictly stationary Markov chain with state space D ⊆ R, defined on a probability
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space (�,A, P). We denote the stationary distribution by PX and the corresponding
distribution function by FX . Let (Fx )x∈R defined as Fx (z) = P(Xt ≤ z | Xt−1 = x)
be the corresponding family of conditional distribution functions. We impose the
following as our key assumption.

(A1) For each z ∈ R, the function x �→ Fx (z) is monotonically non-increasing, i.e. if
x1 < x2, then P(Xt ≤ z | Xt−1 = x1) ≥ P(Xt ≤ z | Xt−1 = x2).
In addition we suppose that

(A2) X = (Xt )t∈N0 is strong mixing with exponentially decaying coefficients αX (k),
i.e.

αX (k) = O
(

ρk),

for some ρ ∈ [0, 1).
Assumption (A1) may be paraphrased as follows. If x1 < x2 and if Y1 and Y2 are
random variables following the respective conditional distributions PXt |Xt−1=x1 and
PXt |Xt−1=x2 , then Y2 is stochastically not smaller than Y1. It turns out that this assump-
tion is actually satisfied by popular classes of Markov chain models under natural
assumptions. Here is a list of models we have in mind:

(1) Nonlinear autoregressive processes with non-decreasing link The process X =
(Xt )t∈N0 is assumed to obey the model equation

Xt = f (Xt−1) + εt ∀t ∈ N,

where (εt )t∈N is a sequence of i.i.d. random variables and εt is independent of
Xt−1, . . . , X0. If the function f : R → R is monotonically non-decreasing, then,
for x1 < x2,

P
(

Xt ≤ z | Xt−1 = x1
) = P

(

εt ≤ z − f (x1)
) ≥ P

(

εt ≤ z − f (x2)
)

= P
(

Xt ≤ z | Xt−1 = x2
)

.

Furthermore, if εt has an everywhere positive density and if

∣

∣ f (x)
∣

∣ ≤ γ |x | − ε ∀x ≥ K ,

for some γ < 1, ε > 0, and K < ∞, then the process X has a unique stationary
distribution and satisfies (A2); see e.g. Doukhan (1994).

(2) Branching processeswith immigrationLet X0, (Zt,k)t,k∈N and (εt )t∈N bemutually
independent random variables taking values in N0. We assume that (Zt,k)t,k∈N as
well as (εt )t∈N are sequences of identically distributed random variables. Then
the process X = (Xt )t∈N0 given by

Xt =
Xt−1
∑

k=1

Zt,k + εt ∀t ∈ N
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34 M. H. Neumann

is a branching process with immigration. In the special case of Zt,k ∼ Bin(1, α)

we obtain a so-called first-order integer-valued autoregressive (INAR(1)) process
which was proposed by McKenzie (1985) and Al-Osh and Alzaid (1987). Since
the Zt,k are non-negative random variables, it is obvious that (A1) is fulfilled. If
in addition Eεt < ∞ and EZt,k < 1, then X has a unique stationary distribution
and satisfies (A2); see Pakes (1971).

(3) Poisson-INARCH processes The process X = (Xt )t∈N0 is an integer-valued
ARCH process of order 1 with Poisson innovations (Poisson-INARCH(1)) if

Xt | Ft−1 ∼ Poisson
(

f (Xt−1)
)

,

where Fs denotes the σ -algebra generated by X0, . . . , Xs . If f is monotonically
non-decreasing, then we obtain, for x1 < x2 and Y1 ∼ Poisson( f (x1)), Y2 ∼
Poisson( f (x2)),

P(Xt ≤ z | Xt−1 = x1) = P(Y1 ≤ z) ≥ P(Y2 ≤ z) = P(Xt ≤ z | Xt−1 = x1),

i.e., (A1) is fulfilled. Furthermore, if in addition

f (x) ≤ γ x − ε ∀x ≥ K ,

for some γ < 1, ε > 0, and K < ∞, then X has a unique stationary distribution
and satisfies (A2); see e.g. Theorem 2 in Doukhan (1994, Sec. 2.4, p. 90).

We consider an estimator of Fx (z) = P
(

Xt ≤ z | Xt−1 = x
)

which takes into account
that the function x �→ Fx (z) is monotonically non-increasing under (A1). Nonpara-
metric estimators of monotone functions have a long history and were proposed e.g.
by Brunk (1955) and Ayer et al. (1955). Denote by 1(·) the indicator function. For
z ∈ D and x ∈ {X0, . . . , Xn−1}, we define

̂F (max−min)
x (z) := max

v : v≥x
min

u : u≤x

∑n
t=1 1

(

Xt ≤ z, Xt−1 ∈ [u, v])
#{t ≤ n : Xt−1 ∈ [u, v]} (2.1a)

and

̂F (min−max)
x (z) := min

u : u≤x
max

v : v≥x

∑n
t=1 1

(

Xt ≤ z, Xt−1 ∈ [u, v])
#{t ≤ n : Xt−1 ∈ [u, v]} . (2.1b)

It is well-known that ̂F (max−min)
x (z) = ̂F (min−max)

x (z) for all x ∈ {X0, . . . , Xn−1},
see e.g. Theorem 1 in Brunk (1955) and Theorem 1.4.4 in Robertson, Wright, and
Dykstra (1988, p. 23). As pointed out by Deng and Zhang (2020), (2.1a) and (2.1b)
have to bemodified for x /∈ {X0, . . . , Xn−1}. Since it couldwell happen that an interval
with x ∈ [u, v] does not contain any point from the collection {X0, . . . , Xn−1} we
set nu,v = #{t ≤ n : Xt−1 ∈ [u, v]}, nu,∗ = #{t ≤ n : u ≤ Xt−1}, n∗,v = #{t ≤
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Estimation and bootstrap for stochastically monotone… 35

n : Xt−1 ≤ v}, and define

̂F (max−min)
x (z) := max

v : v≥x, n∗,v>0
min

u : u≤x, nu,v>0

∑n
t=1 1

(

Xt ≤ z, Xt−1 ∈ [u, v])
#{t ≤ n : Xt−1 ∈ [u, v]}

(2.2a)

and

̂F (min−max)
x (z) := min

u : u≤x, nu,∗>0
max

v : v≥x, nu,v>0

∑n
t=1 1

(

Xt ≤ z, Xt−1 ∈ [u, v])
#{t ≤ n : Xt−1 ∈ [u, v]} .

(2.2b)

The estimators ̂F (max−min)
x (z) and ̂F (min−max)

x (z) are both non-increasing in x as the
maxima are taken over non-increasing classes indexed by x and the minima over non-
decreasing classes. Furthermore, for fixed x ∈ D, the mappings z �→ ̂F (max−min)

x (z)
and z �→ ̂F (min−max)

x (z) are non-decreasing which follows from the isotonicity of
the functions z �→ 1(Xt ≤ z, Xt−1 ∈ [u, v]). Furthermore, if X[1], . . . , X[n] is an
enumeration of the values in {X1, . . . , Xn} in non-decreasing order, then it follows that,
again for fixed x ∈ D, the mappings z �→ ̂F (max−min)

x (z) and z �→ ̂F (min−max)
x (z)

are constant on the half-open intervals [X[k], X[k+1]) (k = 1, . . . , n − 1), and attain
the respective values 0 and 1 on (−∞, X[1]) and [X[n],∞). Hence, these estimators
are genuine probability distribution functions.

We choose as our estimator of Fx (z)

̂Fx (z) := (

̂F (max−min)
x (z) + ̂F (min−max)

x (z)
)

/2.

It follows that all of the above properties of ̂F (max−min)
x (z) and ̂F (min−max)

x (z) are
inherited by ̂Fx (z). Its performance is characterized by the following theorem.

Theorem 2.1 Suppose that (A1) and (A2) are fulfilled. Then

sup
z

{

E

[∫

D

∣

∣̂Fx (z) − Fx (z)
∣

∣ dPX (x)

]}

= O
(

n−1/3).

The rate of convergence n−1/3 is known to be optimal in related problems of estimat-
ing a monotone function on the basis of independent random variables; see e.g. Durot
(2002, Theorem 1) and Zhang (2002, Theorem 2.3). We believe that this rate cannot
be improved in our more delicate case of time series data. Note that Mösching and
Dümbgen (2020) considered a nonparametric antitonic estimator of Fx in a regression
context where the dependent variables, conditional on the regressors, are indepen-
dent. They derived under additional Hölder conditions rates of uniform and pointwise
convergence for this estimator.
Our approach to prove this result can be most easily explained if the distribution
function FX is continuous. We split the domain D into kn = �n1/3 intervals Ik =
[xk−1, xk), where x0 = −∞ if D = R, x0 = 0 if D = N0 and, in both cases,
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36 M. H. Neumann

xk = F−1
X (k/kn) = sup{x : FX (x) ≥ k/kn} for k = 1, . . . , kn − 1, xkn = ∞. (As

usual, �a denotes the largest integer less than or equal to a.)We can expect a favorable
behavior of ̂Fx (z) if Nk(ω) := #{t ≤ n : Xt−1(ω) ∈ Ik} is sufficiently large for all k.
Let

An = {

ω : Nk(ω) ≥ n/(2kn) for all k = 1, . . . , kn
}

.

It follows fromLemma4.2 that P(Ac
n) = O(n−1/3). Since

∫

D

∣

∣̂Fx (z)− Fx (z)
∣

∣ dPX (x)
≤ 1 holds with probability 1, we obtain that

E

[∫

D

∣

∣̂Fx (z) − Fx (z)
∣

∣ dPX (x) 1Ac
n

]

≤ P
(

Ac
n

) = O
(

n−1/3). (2.3)

To estimate E
[ ∫

D

(

̂Fx (z)− Fx (z)
)

+ dPX (x) 1An

]

we proceed as follows. For x ∈ Ik ,
k ∈ {2, . . . , kn}, we use the estimate

(

̂Fx (z) − Fx (z)
)+

1An ≤ (

̂Fxk−1(z) − Fxk (z)
)+

1An

≤ max
v : v≥xk−1

{∣

∣

∑n
t=1

[

1(Xt ≤ z) − FXt−1(z)
]

1(Xt−1 ∈ [xk−2, v])∣∣
#{t ≤ n : Xt−1 ∈ [xk−2, v]} 1An

}

+ (Fxk−2(z) − Fxk (z)
)

.

We obtain from Lemma 4.3 that

E

[

max
v : v≥xk−1

{∣

∣

∑n
t=1

[

1(Xt ≤ z) − FXt−1(z)
]

1(Xt−1 ∈ [xk−2, v])∣∣
#{t ≤ n : Xt−1 ∈ [xk−2, v]} 1An

}]

= O
(

n−1/3).

Since

kn
∑

k=2

(

Fxk−2(z) − Fxk (z)
) =

kn
∑

k=2

(

Fxk−2(z) − Fxk−1(z)
) +

kn
∑

k=2

(

Fxk−1(z) − Fxk (z)
)

= (

Fx0(z) − Fxkn−1(z)
) + (

Fx1(z) − Fxkn (z)
) ≤ 2.

we conclude that

kn
∑

k=2

E

[∫

Ik

(

̂Fx (z) − Fx (z)
)+

dPX (x) 1An

]

= O
(

n−1/3).

Furthermore, the rough estimate

E

[∫

I1

(

̂Fx (z) − Fx (z)
)+

dPX (x) 1An

]

≤ PX (I1) ≤ n−1/3
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is obviously true, which leads to

E

[∫

D

(

̂Fx (z) − Fx (z)
)+

dPX (x) 1An

]

= O
(

n−1/3). (2.4)

We can prove

E

[∫

D

(

̂Fx (z) − Fx (z)
)−

dPX (x) 1An

]

= O
(

n−1/3). (2.5)

in complete analogy to (2.4). The result stated in Theorem 2.1 follows from (2.3) to
(2.5). In the general case we have to take into account that the distribution function FX

is not necessarily continuous. This leads to a technically more involved proof which
is presented in full detail in Sect. 4.

The following pictures give an impression of how the functions x �→ Fx (z) are
approximated by ̂Fx (z) for different values of z. We simulated a Poisson-INARCH
process of order 1, where Xt | Xt−1, Xt−2, . . . ∼ Poisson

(

f (Xt−1)
)

and f (x) =
min

{

α0 + α1x, β
}

. The parameters α0 and α1 are chosen as 2.0 and 0.5, respec-
tively, and the truncation constant β is set to 6.0. For a sample size n = 1000 and
z = 0, 1, . . . , 11, the following pictures show Fx (z) (red lines) and a corresponding
estimate ̂Fx (z) (blue lines). These results are quite encouraging except for large values
of x . We conjecture that this deficiency is caused by data sparsity in this region.
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38 M. H. Neumann

3 A new bootstrapmethod for Markov chains

Our estimator ̂Fx (z) can be used for bootstrapping Markov processes, and it is partic-
ularly suitable in case of Markov chains with a finite or countably infinite state space.
In what follows we assume that (Xt )t∈N0 is a stationary Markov chain which has a
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state space D ⊆ N0. Bootstrap variates X∗
t are generated successively according to

a slightly modified variant of our estimator ̂Fx (z). To prove consistency, we retain
our monotonicity condition (A1), however, we replace (A2) by the following stronger
conditionwhich ensures that both the original and the bootstrap process satisfy a useful
mixing condition and possess respective stationary distributions.
(A3) There exist a finite set S = {

y ∈ D : y ≤ s̄ and PX ({y}) > 0
}

, a probability
measure Q on (N0, 2N0), and constants δ > 0, κ > 0, γ > 0, and C < ∞ such that

(i) P(Xt ∈ S | Xt−1 = x) ≥ δ > 0 ∀x ∈ N0,
(ii) P(Xt = y | Xt−1 = x) ≥ κ · Q({y}) ∀x ∈ S, ∀y ∈ N0,
(iii) P(Xt ≥ x) ≤ C e−γ x ∀x ∈ N0.

(A3) (ii) means that the set S is a so-called small set and condition (A3) (i) ensures
that this set can be reached from each point x ∈ �X with a probability not smaller
than δ. It follows from these conditions that

inf
x

P
(

Xt+2 = y | Xt = x
) ≥ δ · κ · Q

({y}) ∀y ∈ N0.

Hence, Doeblin’s minorization condition is satisfied and it follows that the process
(Xt )t∈N0 has a unique stationary distribution PX , is geometrically ergodic, and is
uniform (φ-) mixing with exponentially decaying coefficients.; see e.g. Theorem 1
in Doukhan (1994 Sec. 2.4, p. 88). In particular, a stationary version of the process
satisfies (A2). Note that condition (A3) is satisfied e.g. by a Poisson-INARCH(1)
process if the function f is bounded. While (i) and (ii) are obviously fulfilled, (iii)
follows from the upper tail bound

P
(

Y ≥ λ + x
) ≤ e− x2

2(λ+x) ∀x ≥ 0

which holds for Y ∼ Poisson(λ); see Theorem 1 in Canonne (2017).
Before we fix the definition of our bootstrap process we check to what extent

a process with transition distribution functions ̂Fx (·) satisfies a suitable variant of
condition (A3). It follows from Theorem 2.1 that

̂Fx (z) = Fx (z) + OP
(

n−1/3)

if PX ({x}) > 0. This implies that

P
(

inf
{

̂Fx (y) − ̂Fx (y − 1) : x ∈ S, PX ({x}) > 0
} ≥ κ

2
Q∗({y}) ∀y ∈ N0

)

−→
n→∞ 1,

(3.1)

where e.g.

Q∗({y}) =
{

Q
({y}) if y ≤ ȳ,

0 if y > ȳ
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40 M. H. Neumann

and ȳ such that Q({0, 1, . . . , ȳ}) ≥ 1/2. Hence, a bootstrap process based on ̂Fx (·)
satisfies a variant of (A3) (ii) with a probability tending to 1.

For a variant of (A3) (i) to hold, it is important that infx {̂Fx (s̄) : x ∈ N0} > 0 is
also satisfied with a probability tending to 1. This is not guaranteed to be true since the
estimator ̂Fx (s̄) may get unreliable if x gets large. Indeed, the natural lower estimate
of ̂Fx (s̄) is given by

̂Fx
(

s̄
) ≥ inf

u : u≤x

∑n
t=1 1(Xt ≤ s̄, Xt−1 ∈ [u,∞))

#{t ≤ n : Xt−1 ∈ [u,∞)} .

However, the right-hand side of this inequality can get arbitrarily close to 0 if x is
large since then PX ([x,∞)) gets small. It is actually a well-known shortcoming of
nonparametric isotonic/antitonic estimators that they get unreliable near the ends of
the domain of the explanatory variable. In view of this problem, we modify ̂Fx (z) for
large x . Let

x̃ := sup
{

x : #{t ≤ n : Xt−1 ≥ x} ≥ n2/3
}

.

Then #{t ≤ n : Xt−1 ≥ x̃} ≥ n2/3 > #{t ≤ n : Xt−1 > x̃}. We define

̂
̂Fx (z) :=

{

̂Fx (z) if x ≤ x̃,

̂F̃x (z) if x > x̃
.

In what follows we show that the modified estimator ̂̂Fx (·) actually satisfies
a suitable variant of (A3). To take advantage of Lemma 4.2 we embed the ran-
dom truncation point x̃ between two nonrandom points, x̃l and x̃u . Let x̃l :=
sup

{

x : PX
([x,∞)

) ≥ 2n−1/3
}

and x̃u := sup
{

x : PX
([x,∞)

) ≥ (1/2)n−1/3
}

.
Then PX

([̃xl ,∞)
) ≥ 2n−1/3 ≥ PX

(

(̃xl ,∞)
)

and PX
([̃xu,∞)

) ≥ (1/2)n−1/3 ≥
PX
(

(̃xu,∞)
)

. Since x̃ > x̃u implies that #
{

t ≤ n : Xt−1 > x̃u
} ≥ n2/3 we obtain by

Lemma 4.2 that

P
(

x̃ > x̃u
) ≤ P

(

#
{

t ≤ n : Xt−1 > x̃u
} ≥ n2/3

)

≤ P
(

#
{

t ≤ n : Xt−1 > x̃u
} − nPX

(

(̃xu,∞)
) ≥ n2/3/2

)

= O
(

n−1).

On the other hand, if x̃ ≤ x̃u , then

inf
x
̂
̂Fx
(

s̄
) = ̂F̃x

(

s̄
) ≥ ̂F̃xu

(

s̄
)

.

Therefore,

P
(

inf
x
̂
̂Fx
(

s̄
) ≥ F̃xu

(

s̄
)

/2
)

−→
n→∞ 1. (3.2)
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Furthermore, since x̃ < x̃l implies that #
{

t ≤ n : Xt−1 ≥ x̃l
}

< n2/3 we obtain by
Lemma 4.2 that

P
(

x̃ < x̃l
) ≤ P

(

#
{

t ≤ n : Xt−1 ≥ x̃l
}

< n2/3
)

≤ P
(

#
{

t ≤ n : Xt−1 ≥ x̃l
} − nPX

([̃xl ,∞)
)

< −(n/2)PX
([̃xl ,∞)

)

)

= O
(

n−1).

On the other hand, x̃ ≥ x̃l yields that ̂̂Fx (z) = ̂Fx (z) for all x ≤ x̃l . Hence, we obtain,
for each z ∈ N0,

E

[∫

∣

∣
̂
̂Fx (z) − Fx (z)

∣

∣ dPX (x)

]

= E

[∫

{x : x≤x̃l }
∣

∣̂Fx (z) − Fx (z)
∣

∣ dPX (x)

]

+ PX
(

(̃xl ,∞)
) + O

(

n−1)

= O
(

n−1/3). (3.3)

Nowweare in a position to define our resampling algorithmgenerating the bootstrap
variates:

1. Choose a starting value X∗
0 .

2. For each t ∈ N0, suppose that X∗
0, . . . , X

∗
t have been generated already. Then X∗

t+1
is generated such that is has, conditioned on X∗

0, . . . , X
∗
t and conditioned on the

original sample X0, . . . , Xn , a probability distribution function ̂̂FX∗
t
(·).

In what follows, the symbol P∗ refers to the distribution of the bootstrap variables
conditioned on the original sample, e.g. P∗(X∗

t ∈ A
) = P

(

X∗
t ∈ A | X0, . . . , Xn

)

.
Let Kn = log n/(3γ ). Then (A3)(iii) implies that P(Xt > Kn) = O(n−1/3) and

we obtain from (3.3) that

∞
∑

y=0

∞
∑

x=0

∣

∣P∗(X∗
t+1 = y | X∗

t = x
) − P

(

Xt+1 = y | Xt = x
)∣

∣ PX ({x})

=
Kn
∑

y=0

∞
∑

x=0

∣

∣P∗(X∗
t+1 = y | X∗

t = x
) − P

(

Xt+1 = y | Xt = x
)∣

∣ PX ({x})

+
∞
∑

x=0

(

P∗(X∗
t+1 > Kn | X∗

t = x
) + P

(

Xt+1 > Kn | Xt = x
))

PX ({x})

≤ O
(

Kn n
−1/3)+

∞
∑

x=0

∣

∣P∗(X∗
t+1 > Kn | X∗

t = x
) − P

(

Xt+1 > Kn | Xt = x
)∣

∣

PX ({x}) + 2 P
(

Xt > Kn
)

= OP
(

n−1/3 log n
)

. (3.4)
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Note that for all t ∈ N X∗
t takes values in {X1, . . . , Xn}, i.e. X∗

t lies in the collection
of x with PX ({x}) > 0. Hence, it follows from (3.1) and (3.2) that a process with
transition distribution functions ̂̂Fx (·) satisfies the following Doeblin-type condition
with a probability tending to 1:

inf
x

P∗(X∗
t+2 = y | X∗

t = x
) ≥ inf

x

∑

z∈S
P∗(X∗

t+2 = y | X∗
t+1 = z

)

P∗(X∗
t+1 = z | X∗

t = x
)

≥ κ δ

4
Q∗({y}) ∀y ∈ N0.

This implies that, with a probability tending to 1, the bootstrap process is geometrically
ergodic and has a unique stationary distribution P∗

X∗ .
For a successful application of the bootstrap approximation the following properties

are vitally important: With a probability tending to 1, conditioned on X0, . . . , Xn ,

(a) the stationary distribution P∗
X∗ converges to PX ,

(b) the finite-dimensional distributions of (X∗
t )t converge to those of (Xt )t .

We show these two properties by a coupling of the original process and its bootstrap
counterpart, i.e. we define versions (˜Xt )t∈N0 and (˜X∗

t )t∈N0 on a common proba-
bility space (˜�, ˜A, ˜P) such that the corresponding random variables ˜Xt and ˜X∗

t
are equal with a high probability. We use the technique of maximal coupling [see
e.g. Theorem 5.2 in Chapter I in Lindvall (1992)] and define the transition proba-

bilities π̃ driving the coupled process
(

(˜Xt , ˜X∗
t )
)

t∈N0
as follows. For x, y ∈ N0, let

π(x, y) = P(Xt+1 = y | Xt = x) and π∗(x, y) = P∗(X∗
t+1 = y | X∗

t = x). Then

δx,x∗ = 1

2

∑

y∈N0

∣

∣π(x, y) − π∗(x∗, y)
∣

∣

is the total variation distance between the distributions with respective proba-
bility mass functions π(x, ·) and π∗(x∗, ·). Note that δx,x∗ = ∑

y[π(x, y) −
min{π(x, y), π∗(x∗, y)}] = ∑

y[π∗(x∗, y) − min{π(x, y), π∗(x∗, y)}]. The tran-
sition probabilities of the coupled process are defined as

π̃
(

(x, x∗), (y, y)
) = min

{

π(x, y), π∗(x∗, y)
} ∀x, x∗, y ∈ N0, (3.5a)

and, for x, x∗, y, y∗ ∈ N0 such that y �= y∗,

π̃
(

(x, x∗), (y, y∗)
)

=
{

0 if δx,x∗ = 0,
[π(x,y)−min{π(x,y),π∗(x∗,y)}] [π∗(x∗,y∗)−min{π(x,y∗),π∗(x∗,y∗)}]

δx,x∗ if δx,x∗ �= 0.

(3.5b)
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The corresponding Markov kernel ˜P is defined as

˜P
(

(˜Xt+1, ˜X
∗
t+1) ∈ A | (˜Xt , ˜X

∗
t ) = (x, x∗)

)

=
∑

(y,y∗)∈A

π̃
(

(x, x∗), (y, y∗)
) ∀A ⊆ N0 × N0.

Note that [π(x, y)−min{π(x, y), π∗(x∗, y)}] [π∗(x∗, y)−min{π(x, y), π∗(x∗, y)}]
= 0 for all x, x∗, y ∈ N0, which implies in case of δx,x∗ > 0 that

∑

y∗ : y∗ �=y

[π(x, y) − min{π(x, y), π∗(x∗, y)}] [π∗(x∗, y∗) − min{π(x, y∗), π∗(x∗, y∗)}]
δx,x∗

= [π(x, y) − min{π(x, y), π∗(x∗, y)}]
∑

y∗∈N0

π∗(x∗, y∗) − min{π(x, y∗), π∗(x∗, y∗)}
δx,x∗

= π(x, y) − min{π(x, y), π∗(x∗, y)}.

Therefore we obtain

˜P
(

˜Xt+1 = y | (˜Xt , ˜X
∗
t ) = (x, x∗)

)

=
∑

y∗∈N0

π̃
(

(x, x∗), (y, y∗)
)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

π(x, y) if δx,x∗ = 0,

min{π(x, y), π∗(x∗, y)} + ∑

y∗ : y∗ �=y

[π(x,y)−min{π(x,y),π∗(x∗,y)}] [π∗(x∗,y∗)−min{π(x,y∗),π∗(x∗,y∗)}]
δx,x∗ if δx,x∗ �= 0

= π(x, y) = P
(

Xt+1 = y | Xt = x
)

and, likewise,

˜P
(

˜X∗
t+1 = y∗ | (˜Xt , ˜X

∗
t ) = (x, x∗)

) = π∗(x∗, y∗) = P∗(X∗
t+1 = y∗ | X∗

t = x∗).

Moreover, we have that

˜P
(

˜Xt+1 = ˜X∗
t+1 | (˜Xt , ˜X

∗
t ) = (x, x∗)

) =
∑

y∈N0

min
{

π(x, y), π∗(x∗, y)
}

= 1 − δx,x∗ . (3.6)

Hence, the conditional probability that the two random variables at time t + 1 are
equal is maximized which explains the usage of the term maximal coupling.

The following theorem summarizes the results of our coupling approach. The sta-
tionary distribution P∗

X∗ of the bootstrap process converges in total variation norm
and in probability to that of the original process. With a probability tending to 1, the
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coupled process
(

(˜Xt , ˜X∗
t )
)

t∈N0
is geometrically φ-mixing. And finally, the corre-

sponding values ˜X0
t and ˜X∗,0

t of a stationary version of the coupled process coincide
with a probability converging to 1.

Theorem 3.1 Suppose that (A1) and (A3) are fulfilled. Then

(i) dTV
(

P∗
X∗ , PX

) = O
˜P

(

n−1/3 (log n)2
)

.
(ii) With a probability tending to 1, the process

(

(˜Xt , ˜X∗
t )
)

t∈N0
is φ-mixing with coef-

ficients φ
˜X ,˜X∗(k) decaying at a geometric rate.

(iii) If
(

(˜X0
t ,
˜X∗,0
t )

)

t∈N0
is a stationary version of the coupled process, then

˜P
(

˜X0
t �= ˜X∗,0

t
) = O

˜P

(

n−1/3(log n)2
)

.

These general results can be used to prove bootstrap consistency for specific statis-
tics. Suppose that X0, . . . , Xn are observed and that (A1) and (A3) are fulfilled. To
illustrate our advocated approach, we consider e.g. the parameter θ := P(Xt−1 =
x, Xt = y), which is consistently estimated bŷθn = n−1∑n

t=1 1(Xt−1 = x, Xt = y).
It follows from a central limit theorem for φ-mixing processes (see e.g. Theorem 15.12
in Bradley (2007b)) that

Sn := √
n
(

̂θn − θ
) d−→ Y ∼ N

(

0, σ 2∞
)

,

where σ 2∞ = ∑∞
k=−∞ cov

(

1(X0 = x, X1 = y),1(X |k| = x, X |k|+1 = y)
)

. The
distribution of Sn can be approximated by that of its bootstrap counterpart,

S∗
n := √

n
(

̂θ∗
n − E∗

̂θ∗
n

)

,

where ̂θ∗
n = n−1∑n

t=1 1(X∗
t−1 = x, X∗

t = y) and E∗
̂θ∗
n = E

(

̂θ∗
n

∣

∣ X0, . . . , Xn). In
order to prove that the distribution of S∗

n converges in probability to the same limit
as that of Sn , we could use a central limit theorem for triangular arrays of φ-mixing
random variables. Alternatively, we can use our coupling results and obtain bootstrap
consistency almost for free. It follows from (iii) of Theorem 3.1 that

˜P
(

(˜Xt−1, ˜Xt ) �= (˜X∗
t−1,

˜X∗
t )
) = O

˜P

(

n−1/3 (log n)2
)

.

Using this and a covariance inequality for φ-mixing random variables [see e.g. Theo-
rem 1.2.2.3 in Doukhan (1994, p. 9)] we obtain

∣

∣ cov
(

1(˜Xs−1, ˜Xs) − 1(˜X∗
s−1,

˜X∗
s ),1(˜Xt−1, ˜Xt ) − 1(˜X∗

t−1,
˜X∗
t )
)∣

∣

≤ 2φ
(|s − t | − 1

) ∥

∥1(˜Xs−1, ˜Xs) − 1(˜X∗
s−1,

˜X∗
s )
∥

∥

1

∥

∥1(˜Xt−1, ˜Xt ) − 1(˜X∗
t−1,

˜X∗
t )
∥

∥∞
= O

˜P

(

φ
˜X ,˜X∗ (|s − t | − 1

)

n−1/3 (log n)2
)

,
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which implies that

˜E
∣

∣

∣

(

˜Sn − ˜S∗
n

)2
]

= 1

n

n
∑

s,t=1

cov
(

1(˜Xs−1, ˜Xs) − 1(˜X∗
s−1,

˜X∗
s ),1(˜Xt−1, ˜Xt ) − 1(˜X∗

t−1,
˜X∗
t )
)

= O
˜P

(

φ
˜X ,˜X∗(|s − t | − 1) n−1/3 (log n)2

)

.

This implies that

S∗
n

d−→ Y in probability.

If in addition σ 2∞ > 0, then we obtain by Lemma 2.11 of van der Vaart (1998) that

sup
x

∣

∣P
(

Sn ≤ x
) − P

(

S∗
n ≤ x

∣

∣ X0, . . . , Xn
)∣

∣

P−→ 0.

Hence, we can use bootstrap quantiles to construct confidence intervals for θ such that
their coverage probability converges to a prescribed level. Similar implications for
other types of statistics are discussed in Leucht and Neumann (2013) and Neumann
(2021).

Remark 1 In a similar context, Paparoditis and Politis (2002, Theorem 3.3) proved
almost sure convergence of the bootstrap stationary distribution to the stationary dis-
tribution of the original process. Their method of proof is completely different from
ours and employs classical tools from the theory of weak convergence such as Helly’s
theorem and the “uniqueness trick” which uses the fact that each subsequence con-
tains a further subsequence converging to the same probability measure. We use a
more direct approach based on a coupling of the original and the bootstrap process.
The additional benefit is that we obtain a rate of convergence rather than consistency
only.

The following pictures give an impression of the effect of our coupling. As done
for the pictures displayed in the previous section, we simulated a Poisson-INARCH
process of order 1, where Xt | Xt−1, Xt−2, . . . ∼ Poisson

(

f (Xt−1)
)

and f (x) =
min

{

α0 +α1x, β
}

. The parameters α0 and α1 are chosen as 2.0 and 0.5, respectively,
and the truncation constant β is set to 6.0. For respective sample sizes of n = 200 and
n = 1000, Figs. 1 and 2 show one realization of independent and coupled versions of
X1, . . . , X50 and X∗

1, . . . , X
∗
50. While the pictures on the left of Figs. 1 and 2 let us

at best hope for a similar behavior of the bootstrap and the original process, those on
the right provide some evidence that the bootstrap process successfully mimics the
behavior of the original process.
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Fig. 1 Independent and coupled processes, n = 200

Fig. 2 Independent and coupled processes, n = 1000

4 Proofs

4.1 Proofs of themain results

Proof of Theorem 2.1 Our strategy to prove this result is already sketched in Sect. 2, in
the special case where the distribution function FX associated to PX is continuous. In
the general case with a possibly discontinuous function FX , we have to take great care
since we cannot split the domain D into intervals Ik such that PX (Ik) = 1/kn , where
kn = �n1/3. It could be the case that PX has masses considerably larger than 1/kn at
single points which requires a modification of our previous approach.

To obtain an appropriate collection of intervals Ik , we define again suitable
grid points x0, xn, . . . , xKn . For technical reasons we choose them as a decreasing
sequence. We set x0 := ∞ and define recursively xk := inf{x : PX ((x, xk−1)) ≤
n−1/3} for k ≥ 1. This procedure will terminate when xKn = 0 and D = R or when
xKn = −∞, for some Kn . In both caseswe have that D = [x1, x0)∪· · ·∪[xKn , xKn−1).
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For k = 1, . . . , Kn − 1, i.e. with a possible exception of k = Kn , we have

PX
(

(xk, xk−1)
) ≤ n−1/3 ≤ lim

m→∞ PX
(

(xk − 1/m, xk−1)
) = PX

([xk, xk−1)
)

,

where the latter equality follows since the probability measure PX is continuous from
above. In the following we show that

E

[∫

D

(

̂Fx (z) − Fx (z)
)+

dPX (x)

]

= O
(

n−1/3). (4.1)

To this end, we consider the contributions by E
[ ∫

[xk ,xk−1)
(̂Fx (z) − Fx (z))+ dPX (x)

]

separately. We distinguish between three possible cases.

Case 1 If PX
([xk, xk−1)

) ≤ 2n−1/3 and k < Kn , then we use for all x ∈ [xk, xk−1)

in case of Nn,k := {

t ≤ n : Xt−1 ∈ [xk, xk−1)
} �= 0 the estimate

(

̂Fx (z) − Fx (z)
)+ ≤ (

̂Fxk (z) − Fxk−1(z)
)+

≤ max
v : v≥xk

{∣

∣

∑n
t=1[1(Xt ≤ z) − FXt−1(z)]1(Xt−1 ∈ [xk+1, v])∣∣

#{t ≤ n : Xt−1 ∈ [xk+1, v]} ∨ 1

}

+ [

Fxk+1(z) − Fxk−1(z)
]

,

which leads to

E

[∫

[xk ,xk−1)

(

̂Fx (z) − Fx (z)
)+

dPX (x)1{Nn,k �=0}
]

≤ PX
([xk, xk−1)

)

{

E

[

max
v : v≥xk

{∣

∣

∑n
t=1[1(Xt ≤ z) − FXt−1(z)]1(Xt−1 ∈ [xk+1, v])∣∣

#{t ≤ n : Xt−1 ∈ [xk+1, v]} ∨ 1

}]

+ [Fxk+1(z) − Fxk−1(z)
]

}

= O
(

PX
([xk, xk−1)

) {

n−1/3 + (Fxk+1(z) − Fxk−1(z))
}

)

. (4.2a)

Case 2 If PX
([xk, xk−1)

)

> 2n−1/3 then PX has at xk a point mass greater than
n−1/3 and we argue differently. In this case, we use for all x ∈ (xk, xk−1) in case of
Nn,k := {

t ≤ n : Xt−1 = xk
} �= 0 the estimate

(

̂Fx (z) − Fx (z)
)+ ≤ max

v : v≥xk

{∣

∣

∑n
t=1[1(Xt ≤ z) − FXt−1(z)]1(Xt−1 ∈ [xk, v])∣∣

#{t ≤ n : Xt−1 ∈ [xk, v]} ∨ 1

}

+ [

Fxk (z) − Fxk−1(z)
]

,
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which implies

E

[∫

(xk ,xk−1)

(

̂Fx (z) − Fx (z)
)+

dPX (x)1{Nn,k �=0}
]

≤ PX
(

(xk, xk−1)
)

{

E

[

max
v : v≥xk

{∣

∣

∑n
t=1[1(Xt ≤ z) − FXt−1(z)]1(Xt−1 ∈ [xk, v])∣∣

#{t ≤ n : Xt−1 ∈ [xk, v]} ∨ 1

}]

+ [Fxk (z) − Fxk−1(z)
]

}

= O
(

PX
(

(xk, xk−1)
) {

n−1/3 + (Fxk (z) − Fxk−1(z))
}

)

. (4.2b)

For x = xk , we use the simpler estimate

(

̂Fx (z) − Fx (z)
)+ ≤ max

v : v>xk

{∣

∣

∑n
t=1[1(Xt ≤ z) − FXt−1(z)]1(Xt−1 ∈ [xk, v])∣∣

#{t ≤ n : Xt−1 ∈ [xk, v]} ∨ 1

}

,

and we obtain

E

[∫

{xk }
(

̂Fx (z) − Fx (z)
)+

dPX (x)1{Nn,k �=0}
]

≤ PX
({xk}

)

E

[

max
v : v>xk

{∣

∣

∑n
t=1[1(Xt ≤ z) − FXt−1 (z)]1(Xt−1 ∈ [xk , v])∣∣

#{t ≤ n : Xt−1 ∈ [xk , v]} ∨ 1

}

1An

]

= O
(

PX
({xk}

)

n−1/3
)

. (4.2c)

Case 3 If PX ([xKn , xKn−1)) ≤ 2n−1/3, then we can simply use the estimate

E

[ ∫

[xKn ,xKn−1)

(

̂Fx (z) − Fx (z)
)+

dPX (x) ≤ 2 n−1/3. (4.2d)

Finally, it follows from Lemma 4.2 that P
(⋃

k{ω : Nn,k(ω) = 0}) = O(n−1/3),
which implies that

E

[∫

D

(

̂Fx (z) − Fx (z)
)+

dPX (x) 1⋃
k {Nn,k=0}

]

≤ P

(

⋃

k

{ω : Nn,k(ω) = 0}
)

= O
(

n−1/3). (4.2e)

From (4.2a) to (4.2e) we obtain (4.1).
The term

∫

D(̂Fx (z) − Fx (z))− dPX (x) can be analogously estimated which com-
pletes the proof of the theorem. ��
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Proof of Theorem 3.1 (i) We construct a coupling of the original process and its
bootstrap counterpart, where we use π̃

(

(x, x∗), (y, y∗)
)

defined by (3.5a) and
(3.5b) as transition probabilities and ˜P as transition kernel. The initial values
are chosen such that ˜X0 = ˜X∗

0 ∼ PX . Then, for each t ∈ N0, conditioned on
(˜Xt , ˜X∗

t ), the next pair (˜Xt+1, ˜X∗
t+1) is generated according to ˜P . It follows from

(3.4) and (3.6) in particular that

˜P
(

˜Xt+1 �= ˜X∗
t+1,

˜Xt = ˜X∗
t

)

=
∑

x∈N0

˜P
(

˜Xt+1 �= ˜X∗
t+1 | ˜Xt = ˜X∗

t = x
)

˜P
(

˜Xt = ˜X∗
t = x

)

=
∑

x∈N0

δx,x ˜P
(

˜Xt = ˜X∗
t = x

)

≤ 1

2

∑

x

∑

y

∣

∣π(x, y) − π∗(x, y)
∣

∣ PX ({x})

= O
˜P

(

n−1/3 log n
)

.

This implies first

˜P
(

˜X1 �= ˜X∗
1

) = O
˜P

(

n−1/3 log n
)

,

then

˜P
(

˜X2 �= ˜X∗
2

) ≤ ˜P
(

˜X2 �= ˜X∗
2,
˜X1 = ˜X∗

1

) + ˜P
(

˜X1 �= ˜X∗
1

)

= O
˜P

(

n−1/3 log n
)

,

and after Kn such steps

dTV
(

PX , ˜P
˜X∗
Kn
) ≤ ˜P

(

˜XKn �= ˜X∗
Kn

) = O
˜P

(

n−1/3 log n Kn
)

.

On the other hand, (X∗
t )t∈N0 , and therefore (˜X∗

t )t∈N0 as well, are geometrically
ergodic. Hence, for Kn = K log n and K sufficiently large,

dTV
(

˜P
˜X∗
Kn , P∗

X∗
)

= O
˜P

(

n−1/3),

which leads to

dTV
(

PX , P∗
X∗
) ≤ dTV

(

PX , ˜P
˜X∗
Kn

)

+ dTV
(

˜P
˜X∗
Kn , P∗

X∗
)

= O
˜P

(

n−1/3 (log n)2
)

.
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(ii) We couple the original and the bootstrap process according to (3.5a) and (3.5b)
and show first that

˜P
(

(˜Xt , ˜X
∗
t ) ∈ S × S

∣

∣ ˜Xt−1 = x, ˜X∗
t−1 = x∗)

≥ P
(

Xt ∈ S
∣

∣ Xt−1 = x
) · P∗(X∗

t ∈ S
∣

∣ X∗
t−1 = x∗) (4.3)

holds for all x, x∗ ∈ N0. Let x, x∗ ∈ N0 be arbitrary. To simplify notation we set,
for a generic set B ⊆ N0, π(B) = ∑

y∈B π(x, y), π∗(B) = ∑

y∈B π∗(x∗, y),
and π ∧ π∗(B) = ∑

y∈B π(x, y) ∧ π∗(x∗, y).
If π ∧ π∗(S) ≥ π(S) · π∗(S), then (4.3) follows immediately. Suppose now the
opposite, π ∧π∗(S) < π(S) ·π∗(S). Then δx,x∗ > 0, and it follows from (3.5a)
and (3.5b)

˜P
(

(˜Xt , ˜X
∗
t ) ∈ S × S

∣

∣ ˜Xt−1 = x, ˜X∗
t−1 = x∗)

=
∑

y∈S
π(x, y) ∧ π∗(x∗, y),

+
∑

y,y∗∈S

(

π(x, y) − π(x, y) ∧ π∗(x∗, y)
) (

π∗(x∗, y∗) − π(x, y∗) ∧ π∗(x∗, y∗)
)

δx,x∗

= π ∧ π∗(S) + 1

δx,x∗

(

π(S) − π ∧ π∗(S)
)(

π∗(S) − π ∧ π∗(S)
)

.

= π(S) · π∗(S) + 1

δx,x∗

{

δx,x∗
(

π ∧ π∗(S) − π(S)π∗(S)
)

+ (π(S) − π ∧ π∗(S)
)(

π∗(S) − π ∧ π∗(S)
)

}

.

Since δx,x∗ = 1−π ∧π∗(N0) = (

π(S)−π ∧π∗(S)
)+(π(Sc)−π ∧π∗(Sc)

)

the term in curly braces is equal to

(

π(S) − π ∧ π∗(S)
) (

π ∧ π∗(S) − π(S)π∗(S)
)

+ (π(Sc) − π ∧ π∗(Sc)
) (

π ∧ π∗(S) − π(S)π∗(S)
)

+ (

π(S) − π ∧ π∗(S)
) (

π∗(S) − π ∧ π∗(S)
)

= (

π(S) − π ∧ π∗(S)
)

π∗(S) π(Sc)

+ (

π(Sc) − π ∧ π∗(Sc)
) (

π ∧ π∗(S) − π(S)π∗(S)
)

= π(Sc)
(

π ∧ π∗(S) − π ∧ π∗(S) π∗(S)
)

+π ∧ π∗(Sc)
(

π(S)π∗(S) − π ∧ π∗(S)
)

,

and is therefore non-negative. This proves (4.3).
It follows from (3.4) that, for y, y∗ ∈ S such that PX ({y∗}) > 0,

˜P
(

˜Xt+1 = ˜X∗
t+1 = z

∣

∣ ˜Xt = y, ˜X∗
t = y∗) = π(y, z) ∧ π∗(y∗, z)

≥ κ Q
({z}) + OP

(

n−1/3 log n
)

. (4.4)
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We obtain from (4.3) and (4.4) there exist some κ∗ > 0 such that

˜P
(

(˜Xt+1, ˜X
∗
t+1) = (z, z)

∣

∣ ˜Xt−1 = x, ˜X∗
t−1 = x∗)

≥
∑

y,y∗∈S
˜P
(

(˜Xt+1, ˜X
∗
t+1) = (z, z)

∣

∣ ˜Xt = y, ˜X∗
t = y∗)

˜P
(

(˜Xt , ˜X
∗
t ) = (y, y∗)

∣

∣ ˜Xt−1 = x, ˜X∗
t−1 = x∗)

≥ κ∗ (4.5)

holds with a probability tending to 1. Hence, with a probability tending to 1, the
coupled process is φ-mixing with geometrically decaying coefficients.

(iii) According to (4.5), the coupled process
(

(˜Xt , ˜X∗
t )
)

t∈N0
satisfies Doeblin’s con-

dition which implies in particular that this process has a unique stationary
distribution. Let

(

(˜X0
t ,
˜X∗,0
t )

)

t∈N0
be a stationary version of the coupled pro-

cess. Since
(

(˜Xt , ˜X∗
t )
)

t∈N0
is geometrically ergodic we obtain

˜P
(

˜X0
t �= ˜X∗,0

t
) ≤ ˜P

(

˜XKn �= ˜X∗
Kn

) + dTV
(

˜P(˜X0
Kn

,˜X∗,0
Kn

)
, ˜P(˜XKn ,˜X∗

Kn
))

= O
˜P

(

n−1/3 (log n)2
)

.

��

4.2 Some auxiliary lemmas

Lemma 4.1 Suppose that (Xt )t∈N0 is a Markov chain with state space D ⊆ R such
that (A2) is fulfilled. For arbitrary I ⊆ D, let

ηt := [

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ I ),

where I ⊆ D. Then, for arbitrary γ < 1,

E

⎡

⎣

(

n
∑

t=1

ηt

)4
⎤

⎦ = O
(

(n pI )
2 + n pγ

I

)

,

where pI := P(X0 ∈ I ).

Proof In view of E
[(∑n

t=1 ηt
)4] = ∑n

s,t,u,v=1 E[ηsηtηuηv] we first consider the
terms E[ηsηtηuηv]. Let the indices be chronologically ordered, i.e. 1 ≤ s ≤ t ≤ u ≤ v

≤ n. Then it follows from the Markov property that

E
[

ηsηtηuηv

] = 0 if u < v.

Considering the remaining cases of s ≤ t ≤ u = v, we make use of the following
equalities.
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(a) s = t = u = v

Then E[ηsηtηuηv] = E
[

η4s
]

.
(b) s = t < u = v

Then E[ηsηtηuηv] = cov(η2s , η
2
u) + E

[

η2s
]

E
[

η2u
]

.
(c) s < t ≤ u = v

Then E[ηsηtηuηv] = cov(ηs, ηtη2u) = cov(ηsηt , η2u).

For s < u, there exist
(4
2

) = 6 quadrupels (t1, t2, t3, t4) such that ti = t j = s for
some i �= j , and tk = tl = u for some k �= l. For s < t < u, there exist 4 · 3 = 12
quadrupels (t1, t2, t3, t4) such that ti = s, t j = t and tk = tl = u for some i, j, k, l,
k �= l. Finally, for s < t = u, there exist 4 quadrupels (t1, t2, t3, t4) such that ti = s
for some i and t j = u for j �= i . Therefore we obtain

E

⎡

⎣

(

n
∑

t=1

ηt

)4
⎤

⎦ ≤
n
∑

t=1

E
[

η4t
]+ 6

∑

1≤s<u≤n

E
[

η2s
]

E
[

η2u
]

+ 12
n−1
∑

r=1

∑

(s,t,u)∈T (1)
n,r

∣

∣ cov(ηs, ηtη
2
u)
∣

∣

+ 12
n−1
∑

r=1

∑

(s,t,u)∈T (2)
n,r

∣

∣ cov(ηsηt , η
2
u)
∣

∣, (4.6)

where

T (1)
n,r = {

(s, t, u) : 1 ≤ s < t ≤ u ≤ n, r := t − s ≥ u − t
}

T (2)
n,r = {

(s, t, u) : 1 ≤ s ≤ t < u ≤ n, r := u − t > t − s
}

.

To estimate the last two terms on the right-hand side of (4.6) we use a well-known
covariance inequality for α-mixing random variables,

∣

∣ cov(X ,Y )
∣

∣ ≤ 4
[

α(σ(X), σ (Y ))
]1−1/α−1/β ‖X‖α ‖Y‖β,

where α, β ∈ (1,∞) are such that 1/α + 1/β < 1 and ‖X‖α < ∞, ‖Y‖β < ∞;
see e.g. Bradley (2007a, Corollary 10.16). Choosing α = β = 2/γ and taking into
account that |ηs | ≤ 1 and E |ηs | ≤ pI we obtain that

∣

∣ cov(ηs, ηtη
2
u)
∣

∣ ≤ [

αX (t − s − 1)
]1−γ /2−γ /2 ‖ηs‖2/γ ‖ηtη2u‖2/γ

≤ [

αX (t − s − 1)
]1−γ

pγ

I

as well as

∣

∣ cov(ηsηt , η
2
u)
∣

∣ ≤ [

αX (u − t − 1)
]1−γ

pγ

I .
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Using #T (1)
n,r ≤ n(r + 1) and #T (2)

n,r ≤ nr we obtain from (4.6)

E

⎡

⎣

(

n
∑

t=1

ηt

)4
⎤

⎦ ≤ n pI + 6 (n pI )
2

+ 12 n
n−1
∑

r=1

(2r + 1)
[

αX (r − 1)
]1−γ

pγ

I

= O
(

(n pI )
2 + n pγ

I

)

,

which completes the proof. ��
Lemma 4.2 Suppose that (Xt )t∈N0 is a Markov chain with state space D ⊆ R and
stationary distribution PX such that (A2) is fulfilled. For arbitrary I ⊆ D, let Nn(I ) :=
#{t ≤ n : Xt−1 ∈ I }. Then, for arbitrary δ > 0, κ < ∞, and PX (I ) ≥ nδ−1,

P
(|Nn(I ) − n PX (I )| > n PX (I )/2

) = O
(

n−κ
)

.

Proof Let q ∈ 2N and ε > 0. Since

∞
∑

r=1

rq−2 [αX (r)]ε/(q+ε) < ∞

it follows from an extension of Rosenthal’s inequality (see e.g. Theorem 2 in Sec-
tion 1.4.1 in Doukhan (1994)) that

E
[

∣

∣Nn(I ) − n PX (I )
∣

∣

q
]

= E

[

∣

∣

∣

n
∑

t=1

(

1(Xt−1 ∈ I ) − PX (I )
)

∣

∣

∣

q
]

≤ Cq
{

nq/2 PX (I )q/(2+ε) + n PX (I )q/(q+ε)
}

.

(4.7)

Choosing ε > 0 small enough we have that n PX (I )2−2/(2+ε) ≥ nδ′
for some δ′ > 0.

Therefore we obtain from Markov’s inequality that

P
(|Nn(I ) − n PX (I )| > n PX (I )/2

)

≤ Cq
nq/2 PX (I )q/(2+ε) + n PX (I )q/(q+ε)

(n ¶X (I )/2)q

= O
(

(

n PX (I )1−1/(2+ε)
)−q/2 + n (n PX (I ))−q

)

= O
(

n−κ
)

,

if q is chosen sufficiently large. ��
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Lemma 4.3 Suppose that (Xt )t∈N0 is a Markov chain with state space D ⊆ R and
stationary distribution PX such that (A2) is fulfilled. Then there exist some C < ∞
such that, for arbitrary x ≤ x with PX ([x, x]) ≥ n−1/3,

E

[

sup
v : v≥x

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ [x, v])∣∣
#{t ≤ n : Xt−1 ∈ [x, v]} ∨ 1

]

≤ C n−1/3

(4.8a)

and

E

[

sup
u : u≤x

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ [u, x])∣∣
#{t ≤ n : Xt−1 ∈ [u, x]} ∨ 1

]

≤ C n−1/3.

(4.8b)

Proof We prove only (4.8a) since the proof of (4.8b) is completely analogous. The
proof is carried out in two steps. First we consider the technically simpler case where
the distribution function FX is continuous. This allows us to define a suitable dyadic
family of intervals which leads to a readily comprehensible proof. Afterwards we
extend the result to the general case.

Step 1 Suppose that FX is continuous. First we prove that for arbitrary δ > 0 and each
v ≥ x there exists some C < ∞ such that

E

[

sup
x : x≤x≤v

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ [x, x])∣∣
]

≤ C
√

n PX ([x, v]) + nδ. (4.9)

To deal with the supremumwe define a suitable system of dyadic intervals. Let Jn ∈ N

be such that nδ−1/2 < 2−Jn PX ([x, v]) ≤ nδ−1. For j = 1, 2, . . . , Jn and k =
1, 2, . . . , 2 j , we set

x j,k = F−1
X

(

FX (x) + k2− j PX ([x, v])) (4.10a)

and, for j = 1, . . . , Jn ,

Bj,k =
{ [x, x j,1] if k = 1,

(x j,k−1, x j,k] if k = 2, . . . , 2 j .
(4.10b)

We have that

PX
(

Bj,k
) = 2− j PX ([x, v]). (4.11)
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We define partial sume as

S j,k =
n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ Bj,k).

Choosing γ such that (1 − 2δ)/(1 − δ) ≤ γ < 1 we have that n(2− j PX ([x, v]))γ =
O
(

(n2− j PX ([x, v]))2) for all j = 1, . . . , Jn . Hence, the first term in the bound given
in Lemma 4.1 dominates the second andwe obtain, for j = 1, . . . , Jn, k = 1, . . . , 2 j ,

E
[

S4j,k
] = O

(

(

n2− j PX ([x, v]))2
)

,

which implies that

E
[

∣

∣S j,k
∣

∣1
(|S j,k | >

√

nPX ([x, v]) 2− j/4)
]

≤ E
[

S4j,k
]

(√

nPX ([x, v]) 2− j/4
)3 = O

(
√

nPX ([x, v]) 2−5 j/4
)

.

Therefore, we obtain that

E
[

max
1≤k≤2 j

∣

∣S j,k
∣

∣

]

≤ √

nPX ([x, v]) 2− j/4 +
2 j
∑

k=1

E
[

∣

∣S j,k
∣

∣1
(|S j,k | >

√

nPX ([x, v]) 2− j/4)
]

= O
(
√

nPX ([x, v]) 2− j/4
)

. (4.12)

At the finest scale Jn , we define for k = 1, . . . , Jn ,

NJn ,k = #
{

t ≤ n : Xt−1 ∈ BJn ,k
}

.

Note that ENJn ,k = n2−Jn PX ([x, v]) ≤ nδ . We obtain from (4.7) that

E
[

NJn ,k 1(NJn ,k > 2nδ)
]

≤ E
[

∣

∣NJn ,k − ENJn ,k
∣

∣1
(|NJn ,k − ENJn ,k | > nδ

)

]

≤ Cq
{

nq/2 (2−Jn PX ([x, v]))q/(2+ε) + n (2−Jn PX ([x, v]))q/(q+ε)
}

nδ(q−1)

= O
(

n−κ
)
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holds for arbitraryκ < ∞ ifq is chosen large enough. Since2Jn < n1−δ/(2PX ([x, v]))
≤ n4/3−δ/2 we obtain

E

[

max
1≤k≤2Jn

{

NJn ,k
}

]

= 2 nδ +
2Jn
∑

k=1

E
[

NJn ,k 1(NJn ,k > 2nδ)
] = O

(

nδ
)

. (4.13)

After these preparatory steps we are in a position to estimate the expected value
of the supremum. For arbitrary x ∈ [x, v], there exist p and ( j1, k1), . . . , ( jp, kp), k,
1 ≤ j1 < · · · < jp ≤ Jn , such that Bj1,k1 , . . . , Bjp,kp , BJn ,k are adjacent intervals
and

Bj1,k1 ∪ · · · ∪ Bjp,kp ⊆ [x, x] ⊆ Bj1,k1 ∪ · · · ∪ Bjp,kp ∪ BJn ,k .

This implies that

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ [x, x])
∣

∣

∣ ≤
p
∑

l=1

∣

∣S jl ,kl

∣

∣ + NJn ,k

and, therefore,

E

[

sup
x : x≤x≤v

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ [x, x])
∣

∣

∣

]

=
Jn
∑

j=1

E

[

max
1≤k≤2 j

{|S j,k |
}

]

+ E
[

max
1≤k≤2Jn

{

NJn ,k
}

]

.

It follows from (4.12) and (4.13) that (4.9) is fulfilled.
Now we are in a position to prove (4.8a). We define a dyadic sequence of growing

intervals, I0 = [x, x] and, for j ≥ 1

I j = [

x, F−1
X

(

FX (x) + 2 j PX ([x, x]))].

(There exists some Kn ≥ 0 such that PX (I j ) = 2 j PX ([x, x]) for j = 0, . . . , Kn and
PX (IKn+1) < 2Kn+1PX (x, x]). Then IKn+1 = IKn+2 = . . ..) Define the event

An =
{

{

ω : #{t ≤ n : Xt−1(ω) ∈ I j } ≥ n PX (I j )/2 for all j = 0, . . . , Kn
}

}

.

For x ∈ I j+1 \ I j we use the estimate

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ [x, x])∣∣
#
{

t ≤ n : Xt−1 ∈ [x, x]} ∨ 1

≤ supx∈I j+1

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ [x, x])∣∣
#
{

t ≤ n : Xt−1 ∈ I j
} ∨ 1

.
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It follows from Lemma 4.3 that P
(

Ac
n

) = O
(

n−1/3
)

, which implies that

E

[

sup
x : x≤x≤v

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ [x, x])∣∣
#
{

t ≤ n : Xt−1 ∈ [x, x]} ∨ 1

]

≤ E

[

sup
x : x≤x≤v

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ [x, x])∣∣
#
{

t ≤ n : Xt−1 ∈ [x, x]} 1An

]

+ P
(

Ac
n

)

=
Kn
∑

j=0

E
[

∣

∣

∑n
t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1
(

Xt−1 ∈ I j+1
)∣

∣

]

n PX (I j−1)/2
+ O

(

n−1/3)

= O

⎛

⎝

Kn
∑

j=0

2− j/2/
√

nPX ([x, x])
⎞

⎠

+ O
(

n−1/3) = O
(

n−1/3), (4.14)

i.e. (4.8a) is fulfilled.

Step 2 In case of a general stationary distribution PX , the definition according to (4.10a)
and (4.10b) does no longer guarantee that the convenient property of PX (Bj,k) =
2− j PX ([x, v]) holds true. In order to draw on the calculations in Step 1 we act as
follows. Let (Vt )t∈N0 be a sequence of independent random variables following a
uniform distribution on [0, 1], which is independent of the process (Xt )t∈N0 . For the
latter process we define an accompanying sequence (Ut )t∈N0 of uniformly distributed
randomvariables,whereUt depends on the pair (Xt , Vt ) as follows. If FX is continuous
in the point Xt , then we simply set

Ut := FX (Xt ).

Otherwise, if FX is discontinuous in Xt , then PX ({Xt }) = FX (Xt )− FX (Xt −0) > 0
and we set

Ut := FX (Xt ) − Vt/PX ({Xt }).

In both cases we have that

Xt = F−1
X (Ut ),

where G−1(t) = inf{x : G(x) ≥ t} denotes the generalized inverse of a generic
distribution function G. Since FX has at most countably many discontinuity points,
it follows that the mapping (Xt , Vt ) �→ Ut is measurable. It also follows that Ut has
a uniform distribution on [0, 1]. Furthermore the process

(

(Xt , Vt )
)

t∈N0
has the same

mixing properties as
(

Xt
)

t∈N0
, i.e.

α(X ,V )(r) = αX (r) ∀r ≥ 1;
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see e.g. Lemma 8 in Bradley (1981). Now we obtain in complete analogy to the
calculations leading to (4.9) in Step 1 that, for arbitrary 0 ≤ u < u ≤ 1,

E

[

sup
u : u≤u≤u

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Ut−1 ∈ [u, u])
∣

∣

∣

]

≤ C
√

n (u − u) + nδ. (4.15)

It is easy to see that the following inclusions hold true for x ≤ x :

{

FX (x − 0) < Ut−1 ≤ FX (x)
} ⊆ {

x ≤ Xt−1 ≤ x
}

⊆ {

FX (x − 0) ≤ Ut−1 ≤ FX (x)
}

.

Indeed, the second inclusion follows immediately from the construction of Ut−1.
Regarding the first one, note that it follows again from the construction of Ut−1 that
FX (x − 0) < Ut−1 implies x ≤ Xt−1. Furthermore, Ut−1 ≤ FX (x) implies Xt−1 =
F−1
X (Ut−1) ≤ F−1

X (FX (x)) ≤ x . Since P(Ut−1 = FX (x)) = 0 we conclude that

sup
x : x≤x≤x

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ [x, x])
∣

∣

∣

≤ sup
u : FX (x−0)≤u≤FX (x)

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Ut−1 ∈ [FX (x − 0), FX (x)])
∣

∣

∣

holds with probability one. Hence, we obtain from (4.13)

E

[

sup
x : x≤x≤v

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Xt−1 ∈ [x, x])
∣

∣

∣

]

≤ E

[

sup
u : FX (x−0)≤u≤FX (v)

∣

∣

∣

n
∑

t=1

[

1(Xt ≤ z) − P(Xt ≤ z | Xt−1)
]

1(Ut−1 ∈ [FX (x − 0), FX (x)])
∣

∣

∣

]

≤ C
√

n
(

FX (v) − FX (x − 0)
) + nδ

= C
√

n PX
([x, v]) + nδ,

i.e. (4.9) holds true. ��
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