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Abstract
Much of classical optimal design theory relies on specifying a model with only a
small number of parameters. In many applications, such models will give reasonable
approximations. However, they will often be found not to be entirely correct when
enough data are at hand. A property of classical optimal design methodology is that
the amount of data does not influence the design when a fixed model is used. However,
it is reasonable that a low dimensional model is satisfactory only if limited data is
available.Withmore data available, more aspects of the underlying relationship can be
assessed.We consider a simple model that is not thought to be fully correct. Themodel
misspecification, that is, the difference between the true mean and the simple model, is
explicitly modeled with a stochastic process. This gives a unified approach to handle
situations with both limited and rich data. Our objective is to estimate the combined
model, which is the sumof the simplemodel and the assumedmisspecification process.
In our situation, the low-dimensional model can be viewed as a fixed effect and the
misspecification term as a random effect in a mixed-effects model. Our aim is to
predict within this model. We describe how we minimize the prediction error using an
optimal design. We compute optimal designs for the full model in different cases. The
results confirm that the optimal design depends strongly on the sample size. In low-
information situations, traditional optimal designs for models with a small number of
parameters are sufficient, while the inclusion of the misspecification term lead to very
different designs in data-rich cases.
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1 Introduction

The emergence of Data Science partly inspires the current work. There is a great
overlap between the fields of Statistics and Data Science and there is no consensus
view on how exactly to define them or the difference between them. However, one
important difference is that Data Science often applies a high-dimensional parameter
space to analyze very rich data. At the same time, (traditional) Statistics has often used
pre-defined low-parameter models, for situations where information is limited. It is
not the size of the sample per se that is important but rather the amount of information
in relation to the magnitude of the signal in the data. In many applications, one faces
both situations with limited and rich information. Therefore, unified approaches could
be beneficial.

Statistics has been used extensively both for designed experiments and observa-
tional studies, while Data Science typically refers to the latter type of study. In general,
while Optimal Design theory has a strong legacy in Statistics, the design of experi-
ments is not a large part of Data Science methodology. Still, there are many situations
where experiments can provide large data sets and strong signals. One example is
web advertisements, see e.g. Kohavi et al. (2009) and Example 1.6 of Montgomery
(2017). Such ads could be displayed to the customer for a different time duration,
repeated with different frequency patterns, use different appearances, price deals, etc.
The designer of an advertisement might be interested in the conversion rate, the per-
centage of visits to the website that includes a purchase (Kohavi et al. 2009), or in
another performance metric. While the amount of data on customer behavior may be
large, in terms of the number of customers and the number of ad showings, the results
may have enough uncertainty to call for the optimal design of the experiment. Even
small changes in a performance metric like conversion rate can have a huge impact
on revenues (Kohavi et al. 2013). Fernandez-Tapia and Guéant (2017) deal with bid-
ding models for ad-inventory auctions using a Poisson process and demonstrate that
the Hamilton-Jacobi-Bellman equation describes the optimal bids. Mardanlou et al.
(2017) propose an optimal cost design model that presents the connection between a
campaign-level control signal and the total cost to the advertiser for the influence they
had at each control signal value.

A sub-field of artificial intelligence, active machine learning, has been used over
years in data science and is related to optimal experimental design. If a learning algo-
rithm can choose the data it wants to learn from, it can perform better with less data
for training. The first applied statistical analyzes of active learning for regression in
robot arm kinematics was presented by Cohn (1996) and Cohn et al. (1996). Impor-
tant areas of application include speech recognition, image or video classification, or
information extraction from texts, see Settles (2010) for a review. Nie et al. (2018)
focus on active learning for regression models including a model misspecification
term. López-Fidalgo and Wiens (2022) recommend methods for binary data for esti-
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mation and classification in active learning which are robust in case of both model
misspecification and response mislabelling.

When analyzing data, we may either use a multi-purpose model or a scientifically
basedmodel. Commonly usedmulti-purposemodels include polynomial models, such
as linear and quadratic, and generalized linearmodels.When possible, it is often useful
to base a model on subject matter science. As an example, we may study the dose-
dependent effect of drugs. In this context, the Michaelis-Menten model can be derived
theoretically for certain simple concentration-response experiments. The Michaelis-
Menten is often generalized to an Emax model when studying dose-response based
on results from patients. While the Michaelis-Menten model has two parameters for
location and maximal response, the standard 4-parameter Emax model includes addi-
tional free parameters for the placebo efficacy and the degree of sigmoidicity of the
response curve. The Emax model has been very used and useful for clinical trials.
However, for several theoretical reasons, it can not be exact. Assume, for exam-
ple, that individual patient’s concentration-response curve follows an Emax model.
Late-stage clinical trials often aim at modeling dose-response, not measuring plasma
concentration. Variations in concentration will therefore distort the population model.
Patient heterogeneity in Emax parameters will also lead to distortion. In addition,
the Michaelis-Menten model may hold for receptor binding. However, the relation
between receptor binding and the clinical endpoint, e.g. blood pressure, glucose, or
FEV1, is likely a complex non-linear function. Some of these distortions are possible
to include in a more sophisticated scientific model. However, other kinds of distor-
tions, like the relation between receptor binding and response, are likely far too deep
to capture in a low-parameter model. Similarly, the relation between price or display
time and a customer response like conversion rate will likely not exactly follow a
simple model.

We will therefore combine a low-dimensional model with a term that models the
misspecification. A simple example can be a linear (straight-line) regression com-
bined with a Brownian bridge as a (modeled) misspecification term. Our objective is
to estimate the combined model, including the misspecification term, based on the
collected data. The experimental conditions used for data collection should be chosen
to optimize the precision of the estimated model.

Optimal designs for models with a stochastic process as error term have been
considered e.g. by Sacks and Ylvisaker (1966); Harman and Štulajter (2011); Dette
et al. (2016, 2017). However, in contrast to these situations, our stochastic process
(the misspecification term) contributes to the regression function of interest and is not
an error term.

In our situation, the low-dimensional regression model is a fixed effect, and the
misspecification term is a random effect in a mixed-effects model. Since we are here
interested in estimating the combination of fixed and random effects, our aim is to
predict within the mixed model. Optimal designs for prediction in mixed models
have been considered by Prus and Schwabe (2016), Liu et al. (2019), Prus (2020).
Fedorov and Jones (2005) describe howamixed-effectsmodel canbeused todetermine
designs for multicenter clinical trials. If we use in our model a Gaussian process as
stochastic process, the model considered here is related to non-parametric Gaussian
processes which is used in machine learning (Williams and Rasmussen 2006). A
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Bayesian description of these models dates back to the 1970’s (Blight and Ott 1975)
and also some design optimization has been considered from a Bayesian perspective
(O’Hagan 1978). This framework has been used in multiple applications, see e.g.
Siivola et al. (2021). The optimal design methodology which we consider is, however,
different from the one used by O’Hagan (1978).

The general model set-up and the methods used for prediction and design optimiza-
tion will be specified in Sect. 2. In Sect. 2.1, we derive how to estimate the response
over the whole design space, and the structure of the covariance estimate is presented
in Sect. 2.2. We will present the optimized specific model in Sect. 3. In Sect. 4, we will
present the optimality criterion used and the results extracted by applying Fedorov’s
algorithm. It is shown that even if the parameters of the low-dimensional model are
known (local optimal design), the optimal design will depend on the sample size,
which comes in contrast to standard optimal design theory. In practice, our optimal
design will typically be very similar to the traditional optimal design (without a mis-
specification term) when the sample size is small. However, with increasing sample
size, the new optimal design will zoom in on the most important area. Depending on
the optimal design criterion, this may e.g. be where the expected response has a certain
target value.

2 Inference

2.1 The general model

We assume that we observe N observations Yi in an experiment which follow

Yi = μ(xi ) + ei , i = 1, . . . , N ,

where ei are uncorrelated random variables with E(ei ) = 0 and Var(ei ) = σ 2 > 0
and xi are elements of a compact one- or multidimensional design space X .

We consider a simple, low-dimensional approximate model ν(x) for the mean
response. As this model is likely not fully correct, we consider the misspecification
function μ(x) − ν(x). We will explicitly model the misspecification function with a
zero-mean stochastic process C(X), i.e. we assume here that the true mean is μ(x) =
ν(x) + C(x). The discrepancy C(x) can be seen as a random effect. We can view
the model including C as a vehicle to construct robust designs and shed light on the
question about when and how much to rely on the approximate simple model ν.

We assume further that ν(x) = f(x)�β. Here, f(x)�β is a linear regression model
with a d-dimensional unknown parameter vector β ∈ R

d and a d-dimensional known
regression function f : X → R

d . So, μ is a mixture of a fixed and random part:

μ(x) = f(x)�β + C(x). (1)

In the random part, C(x) is assumed to be a stochastic process with zero mean,
E{C(x)} = 0, x ∈ X , and existing second moments (E |C(x)C(y)| < ∞, x, y ∈ X ).
It is assumed to be independent of e = (e1, . . . , eN )�.

123
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The interpretation of (1) is that our model is assumed to be a linear regressionmodel
f(x)�β plus an additional misspecification term C . We know the functional shape of
the model only up to this misspecification term. In this paper, we are interested in
predicting the whole μ(x) on X and not only the linear regression term, since the
misspecification correction part belongs to our model of interest.

Often, one will observe several times at some x . Letm+1 be the number of distinct
design points and we denote them by x̃0, x̃1, . . . , x̃m ∈ X . If the design space is one-
dimensional, we assume that the xi and x̃ j are sorted ascendingly and that the number
of observations made at x̃ j is n j , j = 0, . . . ,m, i.e.

∑m
j=0 n j = N . Our model can be

written as mixed-effects model. With C j = C(x̃ j ) and Y = (Y1, . . . ,YN )�, we write

Y = Xβ + Zγ + e, (2)

where X = (f(x1), . . . , f(xN ))� , Z = (zi j )i=1,...,N , j=0,...,m ∈ R
N×(m+1) with

zi j = 1 if observation i is made using design point x̃ j and zi j = 0 otherwise, and
γ = (C0,C1, . . . ,Cm)� is a vector of random effects of the mixed model. Let D be
the covariance matrix of γ and R be the covariance matrix of e, i.e. R = σ 2IN with
IN being the N -dimensional identity matrix. This implies E(Y) = Xβ,Cov(Y) =
ZDZ� + R.

We write

μ̃ = Xβ + Zγ

for the N -dimensional mean vector conditional on γ . The vector of conditional means
at the m + 1 points of observation is denoted by

μ = (μ(x̃0), μ(x̃1), . . . , μ(x̃m))�.

We have μ̃ = Zμ.
Let Ȳ be the (m + 1)-dimensional vector of mean observations at x̃ j , j = 0, . . .m,

i.e. Ȳ = (Z�Z)−1Z�Y. Writing W = (f(x̃0), . . . , f(x̃m))�, we have then X = ZW
and the model for the mean observations is μ = Wβ + γ . Further, we have

Ȳ = Wβ + γ + ē (3)

with ē = (Z�Z)−1Z�e. The components of the vector ē have expected value
0 and variance σ 2/n j , j = 0, . . . ,m. Therefore, the distribution of Ȳ depends
on σ 2 and n j only through σ 2/n j , j = 0, . . . ,m. We have DȲ := Cov(Ȳ) =
D + σ 2diag(n−1

0 , . . . , n−1
m ).

2.2 Inference results of BLUE and BLUP

In mixed-effects models, the interest is to estimate β and to predict γ . A Best Linear
Unbiased Estimate (BLUE) for β and a Best Linear Unbiased Predictor (BLUP) for γ

are well known, see Christensen (2002). In the following lemma, we show how they
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can be computed specifically for our model. We provide formulae both based on Y
and Ȳ.

Let M = (ZDZ� + R)−1 which is a symmetric N × N -matrix, and let Id be the
identity matrix of dimension d × d.

Lemma 2.1 1. The Best Linear Unbiased Estimator (BLUE) of β is

β̂ = (X�MX)−1X�MY = (W�D−1
Ȳ

W)−1W�D−1
Ȳ

Ȳ.

2. The Best Linear Unbiased Predictor (BLUP) is

γ̂ = DZ�M(Y − Xβ̂)

= DD−1
Ȳ

[Im+1 − W(W�D−1
Ȳ

W)−1W�D−1
Ȳ

]Ȳ.

3. The Best Linear Unbiased Predictor for μ is

μ̂ = [ZDZ�M + (Im+1 − ZDZ�M)X(X�MX)−1X�M]Y
=

[
DD−1

Ȳ
+ (Im+1 − DD−1

Ȳ
)W(W�D−1

Ȳ
W)−1W�D−1

Ȳ

]
Ȳ.

4. Let x∗ ∈ [0, 1] be an arbitrary point where one wants to predict μ. Define the
following functions of x: W∗(x) = f(x)� and the covariance vector D∗(x) =
(Cov{C(x̃0),C(x)}, . . . ,Cov{C(x̃m),C(x)})�. The Best Linear Unbiased Pre-
dictor for μ(x∗) is

μ̂(x∗) = D�∗ (x∗)D−1
Ȳ

Ȳ + (W∗(x∗) − WD−1
Ȳ

D∗(x∗))�β̂. (4)

The proof is available in the Appendix.
In the case of large variance σ 2 or alternatively in the case of small sample sizes

ni , the random effect part in the mixed model becomes unimportant. Therefore, β̂

converges to the ordinary least squares estimator (X�X)−1X�Y and γ̂ converges to
the zero vector 0m+1. This can formally be seen based onLemma 2.1 since σ 2M → IN
for σ 2 → ∞.

For design optimization, we need expressions for covariance matrices. In Lemma
A.1 in the appendix, we show them for the BLUE and the BLUP. Since we aim to
optimize the design byminimizing the uncertainty in prediction, the following theorem
is important for our elaborations in Sect. 4.

Theorem 2.2 The covariance of the prediction error μ̂ − μ is:

Cov(μ̂ − μ) = (
LX�MZ + DZ�MZ − Im+1

)
D

(
LX�MZ + DZ�MZ − Im+1

)�

+LX�MRMXL� + LX�MRMZD

+DZ�MRMXL� + DZ�MRMZD
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with L = (W−DZ�MX)(X�MX)−1. The variance of the prediction error μ̂(x∗) −
μ(x∗) at an arbitrary point x∗ ∈ [0, 1] is:

V ar(μ̂(x∗) − μ(x∗))
= Var(C(x∗)) − D∗(x∗)�D−1

Ȳ
D∗(x∗) + S(x∗)�(W�D−1

Ȳ
W)−1S(x∗)

with S(x) = W∗(x) − WD−1
Ȳ

D∗(x).

The proof can be found in the Appendix. Note that the diagonal entry belonging to xi
in the first expression, Cov(μ̂ − μ), is equal to the value of the second expression,
Var(μ̂(x∗) − μ(x∗)), at x∗ = x̃i .

3 A specific model as example

3.1 The specific model

To illustrate our model, we use the following specific model. We consider straight line
regression on X = [0, 1], centered at 1/2: f(x) = (1, x − 1/2)�, β = (β1, β2)

�. As
misspecification term, we use the Brownian bridge B(x) on X , scaled with factor τ ,
C(x) = τ B(x). See Ross et al. (1996) and Chow (2009) for definition and properties
of the Brownian bridge.

Then,

X =
(

1 · · · 1
x1 − 1

2 · · · xN − 1
2

)�

=
(

1 · · · 1 · · · · · · · · · 1 · · · 1
x̃0 − 1

2 · · · x̃0 − 1
2 · · · · · · · · · x̃m − 1

2 · · · x̃m − 1
2

)�
,

and D = τ 2(x̃i x̃ j − min{x̃i , x̃ j })i=0,...,m, j=0,...,m . We will use τ 2 = 1 for several
illustrations in the sequel.

The matrix W in the model (3) for the vector of means Ȳ is the (m + 1) × 2-
dimensional matrix

W =
(

1 · · · 1
x̃0 − 1

2 · · · x̃m − 1
2

)�
.

3.2 Numerical interpretation of the prediction

In order to better understand the impact of adding more information to the estimators
and predictors, we present in this subsection a numerical illustration of them for the
case of m = 2 and m = 4 for equidistantly spaced observations x̃i = i/m, i =
0, . . . ,m.

In Table 1 and 2, we apply the same sample size for m = 2 in all design points, so
n0 = n1 = n2, and we want to investigate the effect of increasing N. Based on the
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Table 1 For m = 2 the BLU-estimator β̂

N n0, n1, n2 β̂1 β̂2

0.03 0.01, 0.01, 0.01 0.3336Ȳ0 + 0.3328Ȳ1 + 0.3336Ȳ2 −Ȳ0 + Ȳ2

3 1, 1, 1 0.3572Ȳ0 + 0.2856Ȳ1 + 0.3572Ȳ2 −Ȳ0 + Ȳ2

30 10, 10, 10 0.4375Ȳ0 + 0.125Ȳ1 + 0.4375Ȳ2 −Ȳ0 + Ȳ2

300 100, 100, 100 0.4906Ȳ0 + 0.0188Ȳ1 + 0.4906Ȳ2 −Ȳ0 + Ȳ2

30000 10000, 10000, 10000 0.4999Ȳ0 + 0.0002Ȳ1 + 0.4999Ȳ2 −Ȳ0 + Ȳ2

Table 2 For m = 2 the BLU-predictor γ̂

N n0, n1, n2 B̂0 B̂1 B̂2

0.03 0.01, 0.01, 0.01 0 −0.0008Ȳ0 + 0.0016Ȳ1 − 0.0008Ȳ2 0

3 1, 1, 1 0 −0.0714Ȳ0 + 0.1428Ȳ1 − 0.0714Ȳ2 0

30 10, 10, 10 0 −0.3125Ȳ0 + 0.625Ȳ1 − 0.3125Ȳ2 0

300 100, 100, 100 0 −0.4717Ȳ0 + 0.9434Ȳ1 − 0.4717Ȳ2 0

30000 10000, 10000, 10000 0 −0.4997Ȳ0 + 0.9994Ȳ1 − 0.4997Ȳ2 0

results of β̂1, the intercept of the linear regression, we see that while the weight of all
Ȳi are equal when N is almost 0, the weight of Ȳ1 decreases while N increases until the
weight is close to 0 when N tends to infinity. Thus, the information is spread equally
between the three weights when N is small and we end up with all the information
shared by the extreme values when N is large. Regarding the weights for B̂1, we detect
that the weight of the middle design point Ȳ1 increases while N increases and we have
the corresponding weight to be close to 1 when N tends to infinity. Since the sum
of weights of B̂1 is equal to 0, the increase of the middle point weight decreases the
weight of the extreme points. Thus, by starting with all the weights to be close to 0
when N is almost zero, we get the weight of Ȳ1 to be 1 while the weights of Ȳ0 and Ȳ2
are -0.5 when N is large. Another way to explain the two tables is by seeing the impact
of the amount of data in the use of the misspecification term. When there is less data
(N is small), we obtain all the information almost exclusively from the simple linear
regression. On the other hand, when we have a lot of data (N tends to infinity), the
regression includes the Brownian bridge handling the big amount of information.

The results in Table 3 and 4 give us the estimators and the predictors when m = 4,
so our n-vector consists of 5 elements. We obtain symmetry between the four extreme
Ȳi in the case of the intercept β̂1. So the weight of Ȳ0 equals the weight of Ȳ4 and
the one of Ȳ1 is the same as the weight of Ȳ3. On the other hand, for the slope β̂2 we
have negative symmetry between Ȳ0 and Ȳ4 and between Ȳ1 and Ȳ3. The weights of
the intercept sum to 1, while the one of the slope sum to 0.

Since our misspecification term is a Brownian bridge, we get B̂0 and B̂4 equal to
zero. There is a symmetry between B̂1 and B̂3. The weight that corresponds to Ȳ0 in
the case of B̂1 is the same as the weight of Ȳ4 for B̂3. In the same way the weight of Ȳ1
for B̂1 match with the one of Ȳ3 for B̂3. And vice versa, so Ȳ0 and Ȳ1 for B̂3 equals to
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Table 3 For m = 4 the BLU-estimator β̂

N n0, n1, n2, n3, n4 β̂1
β̂2

10 3, 1, 2, 1, 3 0.3537Ȳ0 + 0.0813Ȳ1 + 0.13Ȳ2 + 0.0813Ȳ3 + 0.3537Ȳ4

−0.931Ȳ0 − 0.1379Ȳ1 + 0Ȳ2 + 0.1379Ȳ3 + 0.931Ȳ4

100 30, 10, 20, 10, 30 0.4538Ȳ0 + 0.0359Ȳ1 + 0.0206Ȳ2 + 0.0359Ȳ3 + 0.4538Ȳ4

−0.9642Ȳ0 − 0.0714Ȳ1 + 0Ȳ2 + 0.0714Ȳ3 + 0.9642Ȳ4

Table 4 For m = 4 the BLU-predictor γ̂

N n0, n1, n2, n3, n4 B̂0 B̂1 B̂4
B̂2
B̂3

10 3, 1, 2, 1, 3 0 −0.1355Ȳ0 + 0.1126Ȳ1 + 0.0975Ȳ2 + 0.0092Ȳ3 − 0.0838Ȳ4 0

−0.1585Ȳ0 + 0.03252Ȳ1 + 0.252Ȳ2 + 0.03252Ȳ3 − 0.1585Ȳ4

−0.0838Ȳ0 + 0.0092Ȳ1 + 0.0975Ȳ2 + 0.1126Ȳ3 − 0.1355Ȳ4

100 30, 10, 20, 10, 30 0 −0.48Ȳ0 + 0.537Ȳ1 + 0.1538Ȳ2 + 0.0013Ȳ3 − 0.2122Ȳ4 0

−0.423Ȳ0 + 0.0512Ȳ1 + 0.7435Ȳ2 + 0.0512Ȳ3 − 0.423Ȳ4

−0.2122Ȳ0 + 0.0013Ȳ1 + 0.1538Ȳ2 + 0.537Ȳ3 − 0.48Ȳ4

Ȳ4 and Ȳ3 respectively for B̂1. The weight of Ȳ2 remains the same for both predictors.
The middle predictor B̂2 follows the same weight symmetry. As a result, we get the
same weight for the pair Ȳ0 and Ȳ4, and Ȳ1, Ȳ3. As in the case of m = 2, the sum of
the weights of the predictions is equal to 0.

In Table 3 and 4, we see also the effect of a 10-fold increase of N on estimators
and predictors. The weight of the means Ȳ0 and Ȳ4 at the extreme points increases
when N increases and that has, as a result, the weight of the means Ȳ1, Ȳ2 and Ȳ3 at
the middle points to decrease. Therefore, for N = 100, we can focus on the boundary
points where we have no misspecification due to Brownian bridge. On the other hand,
for a smaller sample size, the observations in the edges do not give much information.
In contrast, the middle observations gather most of the information, even with the risk
of getting bias.

Assume that we made observations with Ȳ = (0.1, 1.5, 2, 0.6, 2.2)�, see the dots
in Figure 1. Assume further that the number of observations was (n0, . . . , nm) =
N · (0.3, 0.1, 0.2, 0.1, 0.3) and that σ 2 = 1. We will illustrate now the prediction of
μ(x), x ∈ [0, 1] in Figure 1.

In a low information casewith N close to 0, the prediction is following themaximum
likelihood estimate for a straight line model (without misspecification term). In a
high information case with N large, the prediction at x̃i becomes Ȳi . Between the
observational points x̃i , the prediction interpolates linearly; this can be seen from
formula (4) since W∗ is linear in x and D∗ is linear on each interval between the x̃i
for our specific example. When we have N = 10 or N = 100 (like in the previous
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Fig. 1 Prediction of μ(x), x ∈ [0, 1] (lines) with observations Ȳ (dots); example: m = 4, (x0, . . . , xm ) =
(0, 1/4, 1/2, 3/4, 1), (n0, . . . , nm ) = N · (0.3, 0.1, 0.2, 0.1, 0.3) and Ȳ = (0.1, 1.5, 2, 0.6, 2.2)�

example in Table 3 and 4), the prediction shrinks the high information curve towards
the straight line regression.

4 Optimal designs

Based on the results in Sect. 2, we can predictμ given dataY. We can base this predic-
tion on the BLUE and BLUP. When we have given data Y, the formulae discussed in
Sect. 2 depend on the design for the data collection which is specified by the number
of observations n j ≥ 0 on each design point x̃ j = j/m, j = 0, . . . ,m. Now we
consider the planning stage of an experiment where we have the possibility to choose
the design, i.e. the numbers n j . We want to choose a design for the experiment which
allows the best possible prediction of the mean vector μ.

4.1 Experimental designs

Following standard notation (Atkinson et al. 2007, for example), a design is written
as

ξ =
{
x̃0 x̃1 · · · x̃m
n0 n1 · · · nm

}

(5)

with n j ≥ 0, j = 0, . . . ,m, and
∑m

j=0 n j = N for a given total number of obser-
vations N . When ni are only allowed to attain integer values, designs of the form
(5) are called exact designs. Dropping this integer requirement and allowing non-
negative values for n j , designs are called approximate designs following the approach
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of Kiefer (1974). We will consider later mainly approximate designs but also some
exact designs in some examples. Since the quality of experimental designs for fixed
effect models usually do not depend on the total number of observations N , designs
are often described by weights w j = n j/N , only, and these weights form a probabil-
ity measure on the design space. We will however see that the quality of the design
depends on N for our model. Therefore, we need the n j and not only the weights to
describe the design even if we drop the integer requirement.

4.2 Optimal designs in fixed andmixedmodels

In optimal experimental design, we determine a design (5), which minimizes some
error of the estimates. In fixed-effects models with a parameter vector β, one is there-
fore often interested tominimize the covariancematrixCov(β̂).We are here interested
not only in the low-dimensional model with the parameter vector β, but consider μ

as the underlying model which we want to estimate. This means that our interest
is to reduce the error of μ̂. Since μ is our underlying model, we should minimize
Var(μ̂(x) − μ(x)) and not Cov(μ̂). Note that μ is a random parameter in contrast to
β. So while we haveCov(β̂ −β) = Cov(β̂) in fixed effect models, we cannot remove
μ from the covariance in mixed-effect models. Var(μ̂(x) − μ(x)) was specified in
Theorem 2.2.

4.3 Optimality criteria

While the Loewner ordering could be used to order covariance matrices, defining
A ≥ B ifA−B is positive semi-definite, this is only a partial order, and minimization
of covariancematrices is usually not well definedwith this ordering. Instead, following
a usual optimal design approach, we have to choose which “aspect” of the covariance
matrix to optimize using a criterion function, which maps the space of non-negative
definite matrices to real numbers.

When minimizing Cov(β) in fixed effects models, many optimality criteria have
been discussed in literature, see e.g. Atkinson et al. (2007). Popular possibilities are
to minimize the determinant of the covariance matrix, det(Cov(β̂)), to minimize the
average variance, trace(Cov(β̂)), or the variance of a linear combination Var(c�β̂) =
c�Cov(β̂)c. If prediction is desired in random effects models, these criteria can be
applied, too, by applying them on the covariance of the prediction error, Cov(μ̂−μ),
see Prus andSchwabe (2016); Prus (2020). See alsoHooks et al. (2009) for a discussion
of optimality criteria for mixed-effects models.

In our case, it is reasonable to focus on the predictedmean functionμ(x), x ∈ [0, 1].
One possibility is to require that the variance of μ̂(x) − μ(x), x ∈ [0, 1] is small and
we can consider the integrated variance

∫

X
Var[μ̂(x) − μ(x)]dx . (6)
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Wewill focus in this article on designs minimizing expression (6), where Var(μ̂(x)−
μ(x)) can be found in Theorem 2.2. Prus and Schwabe (2016) called this criterion
integrated mean-squared error (IMSE) criterion in the context of prediction and used
it as their favorite criterion.

Other alternatives than IMSE-optimality would be possible, of course. First, one
could weigh different regions of the design space differently and define a weighted
IMSE criterion. One could be concerned with the worst variance in the design space
and minimize maxx∈[0,1]{μ̂(x) − μ(x)}. This criterion called G-optimality in fixed-
effect models is actually the oldest optimality criterion dating back to the work of
Smith (1918). Another alternative is to minimize the prediction error Cov(μ̂ − μ).

In some contexts, it might be desirable to estimate the value of x which gives a
certain response, or the value of x which minimizes some cost-function or maximizes
a utility-function, e.g. when the optimal price is of interest. These desires lead to c-
optimality criteria. See e.g. Tsirpitzi and Miller (2021) for a maximization of a utility
in a fixed-effects model.

4.4 Fedorov algorithm for the IMSE-optimal design

Fedorov (1972) introduced an exchange method in which the sum of design weights
remains the same. The procedure starts by setting the initial design with the initial
weights n0, n1, · · · nm . The main idea of the Fedorov exchange algorithm is to look
for the optimal design by exchanging a unit α from ni to n j . Thus, an important stage
in this algorithm is to identify all possible exchange couples (ni , n j ). In the classical
Fedorov algorithm the α unit equals 1, so the algorithm exchanges one point from ni to
n j . If we consider not exact but continuous designs, α can be any value in the interval
(0, 1] and can differentiate in each iteration. So we can have larger changes in the
first iterations and smaller ones in the last when the algorithm approaches the optimal
design. In order to find the couple (ni , n j ) that will trade a unit α, Fedorov considered
the interaction between the variance functions of the two weights. He defined the
so-called 	-function, which describes what happens in the optimality criterion when
making a small change. Since we consider an IMSE-optimal design, we used the
following 	-function:

	(ni , n j ) =
∫

X
Var[μ̂(x) − μ(x)]dx − cri t

where cri t is the integral of the prediction error μ̂ − μ of the initial n-vector.
Thus, the Fedorov algorithm computes the 	-value for all the possible pairs and
chooses the one pair with the smallest 	-value. If there is more than one couple with
the same	-value, one will be picked randomly. Since we are looking for theminimum
	, we already have an improved design compared to the previous one as soon as we
have a negative value. This procedure is repeated until there is no other exchange
between a couple (ni , n j ) that will decrease the 	-value and will improve the optimal
design.
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Algorithm 1 Fedorov algorithm
Set the initial design with the initial values to n-vector
Compute the integral of the prediction error μ̂ − μ

while a negative delta for a couple of weights is found do
for i from 1 to m + 1 do

for j from 1 to m + 1 do
By exchanging α point from ni to n j ,
compute the delta function for this couple

end for
end for
Find the couple of weights that has the smallest delta
among all the combinations
if there is more than one couple with minimum delta then

randomly select one couple
end if
exchange α point from ni to n j
update n-vector
reset minimum delta

end while

For further information on the exchange algorithm, see e.g. Triefenbach (2008).

4.5 Constrained optimization for approximate designs

If we want to compute optimal approximate designs and not optimal exact designs, we
can also use one of many standard optimization algorithms. We can optimize both the
number of observationsni aswell as the location x̃i of the designpoints.Optimal design
problems are however constraint optimization problems.One equality constraint is that
we want to determine the optimal design for a given total sample size, N , i.e. the sum
of all ni needs to be N . We handle this here by setting nm = N − ∑m−1

i=0 ni and
dropping nm from the parameters to be optimized. We have further linear inequality
constraints which we handle by applying the barrier method (see e.g. Lange 2013,
Chapter 16). The constraints are here 0 ≤ x̃0, x̃i−1 ≤ x̃i , i = 1, . . . ,m, x̃m ≤ 1,
ni ≥ 0, i = 0, . . . ,m − 1,

∑m−1
i=0 ni ≤ N . After incorporating a barrier, we can apply

standard optimization algorithms. For the numerical calculations in Sect. 4.6.2, we
have used the Nelder-Mead algorithm (see e.g. Givens and Hoeting 2013, Chapter
2.2.4) as implemented in the R-function constrOptim.

4.6 Results of optimal design

This section considers our specific example where the fixed effect model is straight
line regression on [0, 1] and the misspecification term is the Brownian bridge.We start
in Sect. 4.6.1 with keeping the observational points fixed as x̃i = i/m, i = 0, . . . ,m,

and optimize the weights at these observational points, i.e. we use the discrete design
space Xm = {0, 1/m, . . . , 1}. In Sect. 4.6.2, we will optimize both the x̃i and the
weights and have design space X = [0, 1] again.
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Fig. 2 Optimal design for ni /N andm = 4 for different values of N/σ 2 = ∑
ni /σ

2 by using the Fedorov
algorithm with α = 0.01 exchange

4.6.1 Optimal weights for fixed observational points for IMSE optimality

In Figures 2, 3, 4, 5, the weights ni/N of the optimal design are shown in dependence
of N/σ 2 = ∑

ni/σ 2 for m = 4 and m = 12, where σ 2 is set equal to 1 and x-axis is
in log scale. Note again that n j/N = nm− j/N , since the structure of the regression
function is symmetric around 1/2, the Brownian bridge is tied down and symmetric
and the optimality criterion is symmetric, too.

Numerically for m = 4, the values of ni/N , i = 0, 1, 2 are shown in Figure 2
depending on the values of N/σ 2 = ∑

ni/σ 2. When we set σ 2 = 1, the values of
N runs from 5 to 10,000 and the exchange α unit in Fedorov’s algorithm is set to
0.01. Thus, when N is small the weight goes to the extreme values. While when N is
larger than 30, the middle ni/N are the one with higher weight than the weight of the
extreme ones. For any N higher than 145, we see that the weights get stable, and the
weight of the extreme points n0 = n4 is almost 0.17, while the weights of the middle
points n1 = n3 and n2 is almost 0.22.

In order to better understand how small the values of N should be to get all the
weight in the two extreme values n0, n4, we created Figure 3. While the log scaled
x-axis is in the interval 1 to 10 and α = 0.001, the weight of the extreme values
moves from 0.5 and they reach 0.25. Accordingly, the two extreme values share the
weight as long as N/σ 2 is below to 2. For values bigger or equal to 2, n0 and n4 lose
the monopoly and they start sharing the weight first with the two less extreme values
n1, n3 and later with n2.

In Figure 4 we illustrate two cases in order to show the impact of the exchange unit
α in the Fedorov algorithm. The left panel corresponds to the discrete case, where α

is 1, while the right is the continuous and α = 0.001. While both plots follow the
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Fig. 3 Optimal design for ni /N for m = 4 and for N/σ 2 = ∑
ni /σ

2 between 1 and 10 by using the
Fedorov algorithm with α = 0.01 exchange

same pattern, the interesting part in these two cases is the fluctuation of the ni lines
due to discreteness compared to the smoothness that occurs in the continuous. Due to
discreteness, the optimal design needs not to be symmetrical and we have therefore
not in all cases ni = nm−i ; these values can differ by 1. In the continuous case, the
computed optimal designs are always symmetrical with ni/N = nm−i/N .

In Figure 5 for m = 12, we present the values of ni/N , i = 0, 1, . . . , 6 on y-axis
and the values of N/σ 2 = ∑

ni/σ 2 in log scale on x-axis, while σ 2 is set equal to 1
and α is 0.01. In contrast with the small values of N/σ 2, where the weight is gathered
mainly in the extreme values, all middle ni/N tend to the same value which is almost
0.08 when N/σ 2 gets higher than 1,000.

So in both casesm = 4 andm = 12, we see the impact of the amount of data in the
use of the misspecification part, as we have already mentioned. When we have more
and more data (N/σ 2 large), the optimal design estimates the misspecification part,
since it is possible to obtain meaningful information on this part when a lot of data can
be collected. On the other hand, the misspecification part is ignored by the optimal
design if only a little data can be collected (N/σ 2 small) and the optimal design
coincides with the one for simple linear regression putting half of the observations in
the two endpoints of the design space.
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Fig. 4 Optimal design for ni /N for m = 4 and for N/σ 2 = ∑
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Fig. 6 Optimal design when both, observational points xi and weights ni /N are optimized: Left panel
shows optimal x̃i ; right panel shows optimal weight ni /N for m = 4

4.6.2 Optimal observational points and weights

For the case m = 4, we also allow now the observational points x̃i , i = 0, . . . , 4, to
be chosen to optimize the IMSE criterion. Figure 6 shows the optimal x̃i in the left
panel and the corresponding optimal weights ni/N in the right panel.

For N/σ 2 ≤ 1, the two-point design having 50% weight in 0 and 1 is optimal.
For N/σ 2 somewhat larger than 1, two further design points, x̃1, x̃3 close to 0 and 1,
respectively, are included with low weights and then a design point x̃2 is added in the
middle at 0.5 as well. With increasing N/σ 2, x̃1 and x̃3 tend then towards the middle
and increase their weights. For N/σ 2 < 10, x̃0 = 0, x̃4 = 1 is the optimal choice;
while it is better to choose x̃0 > 0 and x̃4 < 1, when N/σ 2 ≥ 10.

For large N/σ 2, the optimal design has equal weights on all five observational
points. The observational points are equidistantly spaced and x̃0 ≈ 0.0668. We will
consider the case N/σ 2 → ∞ now formally in Sect. 4.7, where we determine the
IMSE-optimal design in the limiting case analytically.

4.7 Asymptotic case for large information

When N → ∞, alternatively σ 2 → 0, we get DȲ → D. This limiting model can be
seen as being free from the error term e, i.e.

Yi = μ(xi ) = f(xi )�β + C(xi ), i = 1, . . . , N , or Ȳ = Wβ + γ .

It can be seen from our formulas that μ̂ = Ȳ. The model without error term e has
been considered for computer experiments, see e.g. Sacks et al. (1989); Williams and
Rasmussen (2006).
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For themodel without error term, it makes no sense for prediction ofμ to repeatedly
observe at the same x̃i and sincewe have only single observations at each observational
point, we can call them here xi . To optimize the design, we consider therefore no
weights. We optimize the choice of the xi ∈ [0, 1], i = 0, . . . ,m. We derive now the
optimal design for our specific example, Brownian bridgewith straight line regression.

Theorem 4.1 Consider the specific example where C(x) is the Brownian bridge and
f(x) = (1, x)� is the straight line regression. Let the number of design points
x0, . . . , xm be fixed, m + 1. For N → ∞ or for σ 2 → 0, the IMSE converges
to

1

6

(

x20 +
m∑

i=1

(xi − xi−1)
2 + (1 − xm)2

)

+ x20 xm + (1 − xm)2(1 − x0)

3(xm − x0)
. (7)

The IMSE-optimal design for this limiting case is an equidistant design with design
points

xi = x0 + i
1 − 2x0

m
, i = 1, . . . ,m, (8)

where

x0 = 1

8m + 8

(
m2

A
+ A + 3m + 4

)

∈ (0, 1/m)

with A = 3
√

−9m3 − 16m2 − 8m + 4m(m + 1)
√
5m2 + 8m + 4.

The proof of Theorem 4.1 can be found in the appendix.
Form = 4, x0 ≈ 0.0668. Thus, we have analytically confirmed the numeric results

for large N/σ 2 obtained in Sect. 4.6.2. For m = 12, x0 ≈ 0.0256.
We state now the limiting distribution for m → ∞ in the following corollary.

Corollary 4.2 Consider the IMSE-optimal design for the limiting case N → ∞ or
σ 2 → 0 from Theorem 4.1. For m → ∞, the IMSE-optimal design converges in
probability to the uniform distribution on [0, 1].
Proof Since x0 is guaranteed to be below 1/m and since the xi are equidistantly
spread, it is obvious that the maximal difference between the empirical distribution
function Fm(x) of the optimal design and F(x) = x, x ∈ [0, 1], converges to 0, i.e.
supx∈[0,1]|Fm(x) − F(x)| → 0, for m → ∞. �

We have therefore shown that it is best to spread the design points uniformly on the
design space when we expect that we can collect data with large information.

In some other cases, IMSE-optimal designs have been computed for the error-free
model. As one example model, Mukherjee (2003) considers the Brownian bridge as
C(x) without regression function, f(x)�β = 0; her solution for the IMSE-optimal
design is xi = i/(m+1), i = 1, . . . ,m. Abt (1992) has also considered the Brownian
bridge C(x) and a constant regression, f(x) = 1. An IMSE-optimal design in his case
has distance 1/(m + 1) between the design points and the first design point can be
chosen freely such that it is at most 1/(m + 1).
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The case of linear or quadratic regression with the Brownian motion as process has
been considered by Harman and Štulajter (2011). They show that equidistant designs
are optimal for a large class of optimality criteria (not including IMSE-type criteria).

In addition to the mentioned cases where equidistant designs were optimal, the
uniform design has also optimality properties for other models and situations. In the
different situation of optimizing a lack of fit test when the alternative hypothesis is a
rich class of functions, Wiens (1991) has shown the optimality of the uniform design,
see also Biedermann and Dette (2001), Bischoff and Miller (2006), Wiens (2019).

5 Discussion

Model selection is an old areawithin statistics and is, in specific forms, used inmachine
learning. The universe of potential models can in itself be viewed as a pre-defined
model. However, model selection will traditionally not respond to small or moder-
ate misspecifications of a low-parameter model. A third-order polynomial can be
attempted as an alternative to a quadratic. Data mining can cut the covariate space
into fragments and offer different models in different intervals. However, an almost
linear model with irregular deviations, e.g., may not be caught. However, the idea in
this paper of adding a misspecification term could potentially be expanded to such
settings, where competing models could be combined with a misspecification term.

The Brownian bridge distortion used in the main example should only be viewed
as one possible misspecification function. We do not think that the difference between
the true model and the low-parameter model, e.g. a linear model, would be exactly a
Brownian bridge. The idea is rather that the misspecification cannot be easily under-
stood or modeled. The Brownian bridge is then one reasonable choice that will result
in a more pragmatic design, humbly reflecting that the simple low-parameter model is
an approximation.While the Brownian bridgemay be a useful misspecificationmodel,
an important factor limiting the practical usefulness of the methodology presented in
this paper is that the volatility of the Brownian bridge is assumed to be pre-known. The
choice of volatility parameter will impact the choice of design. It is, in principle, pos-
sible to estimate the volatility from the experimental data. However, that would partly
contradict the idea of having amisspecification term to represent unknownmodel inac-
curacies. One solution, in some situations, is to use previous experiments for similar
situations to estimate the volatility. Another solution is to guesstimate the volatility
before the experiment, and then to check the robustness over a range of plausible sizes
for the misspecification. Alternative misspecification models exist that could be used
instead of a Brownian bridge but the issue of choosing a volatility parameter, or a
similar measure of the size of the misspecification, will remain. An interesting idea is
to use spline functions for the misspecification. A drawback, in settings where mono-
tonicity should theoretically be expected, is that the resulting combined model will not
be monotone with standard splines. Consequently, the function will not be invertible.
The same issue is partly relevant for the Brownian bridge. In a concrete situation, one
should consider whether this is a real problem or a useful approximation. One way of
distorting e.g. an Emax model while preserving the monotonicity would be to distort
(compress/expand) the dose scale (x-axis) rather than the response (y-axis).

123



800 R. E. Tsirpitzi et al.

The choice of optimality criterion is importantwhen applyingoptimal design theory.
In the example, we have chosen to focus on IMSE-optimality, integrating the variance
over the entire design space. Specific situations may call for quite different optimality
criteria. For example, optimizing the profit in a simple demandmodel could imply that
the objective is to find argmaxx ((x − k) · f (x)), where x is the price, k the variable
cost per unit, and f (x) is the demand function. Further research could explore optimal
designs for this and a multitude of other relevant optimality criteria.

The methodology is relatively computer-intensive. Our example, using only one
covariate and two parameters, does not require much computing time. However, it can
be expected that computation issues will arise in more complicated models. It would
be of interest to build similar models with multiple covariates and bring the method-
ology closer to machine learning, where many covariates are typically explored. It
is straightforward to decrease computing times by using more efficient optimization
algorithms. Still, how to optimize these algorithms may be an area for future research.
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Appendix A

Proof of Lemma 2.1 1. and 2.: See e.g. Christensen (2002); the first formula is based
on model (2), the second on the model for the means (3).

3.: We put β̂ and γ̂ on μ̂ and get:

μ̂ = Xβ̂ + Zγ̂

= X(X�MX)−1X�MY + ZDZ�MY − ZDZ�MX(X�MX)−1X�MY

= [ZDZ�M + (Im+1 − ZDZ�M)X(X�MX)−1X�M]Y,

μ̂ = Wβ̂ + γ̂

= W(W�D−1
Ȳ

W)−1W�D−1
Ȳ

Ȳ

+DD−1
Ȳ

[Im+1 − W(W�D−1
Ȳ

W)−1W�D−1
Ȳ

]Ȳ
= [DD−1

Ȳ
+ (Im+1 − DD−1

Ȳ
)W(W�D−1

Ȳ
W)−1W�D−1

Ȳ
]Ȳ.

4.: This formula can be deduced from Sect. 2.2 and 2.7 of Williams and Rasmussen
(2006) using the case of a vague prior for β, see also O’Hagan (1978). �
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Lemma A.1 1. The covariance matrix for the Best Linear Unbiased Estimator
(BLUE) of β is Cov(β̂) = (X�MX)−1.

2. The covariance matrix for the Best Linear Unbiased Predictor (BLUP) of γ is
Cov(γ̂ ) = DZ�{IN − MX(X�MX)−1X�}MZD�.

Proof of LemmaA.1

1. : Cov(β̂) = (X�MX)−1X�MX{X�MX}−1 = (X�MX)−1.

2. : Cov(γ̂ ) = DZ�MZD� − DZ�MX(X�MX)−1X�MZD�

= DZ�{IN − MX(X�MX)−1X�}MZD�.

Proof of Theorem 2.2

1. : Cov(μ̂ − μ)

= Cov(Wβ̂ + γ̂ − Wβ − γ )

= Cov
{
W(X�MX)−1X�M(Xβ + Zγ + e) − γ

+DZ�M[IN − X(X�MX)−1X�M](Xβ + Zγ + e)
}

= Cov
{
W(X�MX)−1X�MZγ + W(X�MX)−1X�Me − γ

+DZ�M[IN − X(X�MX)−1X�M]Zγ

+DZ�M[IN − X(X�MX)−1X�M]e}

= Cov
[{(W − DZ�MX)(X�MX)−1X�MZ + DZ�MZ − Im+1}γ

+{(W − DZ�MX)(X�MX)−1X�M + DZ�M}e].

Since γ and e are independent, we obtain:

Cov(μ̂ − μ) = [
(W − DZ�MX)(X�MX)−1X�MZ + DZ�MZ − Im+1

]
Cov(γ )

[
(W − DZ�MX)(X�MX)−1X�MZ + DZ�MZ − Im+1

]�

+ [
(W − DZ�MX)(X�MX)−1X�M + DZ�M

]
Cov(e)

[
(W − DZ�MX)(X�MX)−1X�M + DZ�M

]�

= [
(W − DZ�MX)(X�MX)−1X�MZ + DZ�MZ − Im+1

]
D

[
(W − DZ�MX)(X�MX)−1X�MZ + DZ�MZ − Im+1

]�

+ (W − DZ�MX)(X�MX)−1X�MRMX(X�MX)−1

(W − DZ�MX)�

+ (W − DZ�MX)(X�MX)−1X�MRMZD

+ DZ�MRMX(X�MX)−1(W − DZ�MX)� + DZ�MRMZD.

2.: This formula can be deduced from Williams and Rasmussen (2006), Sect. 2, for
the case of a vague prior for β. �
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Proof of Theorem 4.1 According to Theorem 2.2, the variance for the prediction at x∗
is v1(x∗) + v2(x∗) with

v1(x
∗) = x∗(1 − x∗) − D∗(x∗)�D−1

Ȳ
D∗(x∗),

v2(x
∗) = S(x∗)�(WD−1

Ȳ
W�)−1S(x∗).

For σ 2 = 0, the matrix DȲ = D is not invertible if x0 = 0 or xm = 1, but the limits of
the integrated v1 and v2 exist when σ 2 → 0. I.e. we can do following considerations
for the case x0 > 0, xm < 1, but the resulting formula are correct if x0 = 0 or xm = 1
as well. Using the well-known tri-diagonal form of D−1 (see e.g. Abt 1992; Bischoff
et al. 2003), it can be shown that

∫ 1

0
v1(x

∗) dx∗ → 1

6

{

x20 +
m∑

i=1

(xi − xi−1)
2 + (1 − xm)2

}

,

∫ 1

0
v2(x

∗) dx∗ → 1

3
{x20 xm + (1 − xm)2(1 − x0)}/(xm − x0).

To show the optimality of design (8), we compute the derivatives of the IMSE
(7) with respect to xi , i = 0, . . . , xm and set them to 0. From the derivatives for
xi , i = 1, . . . ,m − 1, we obtain the unique solution xi = (xi+1 + xi−1)/2 and
therefore, the optimal design is equidistant. Setting the derivatives with respect to x0
and xm to 0, we obtain that xm = 1 − x0 and that x0 solves the third degree equation
hm(x) = 0 with

hm(x) = (8m + 8)x3 − (9m + 12)x2 + (3m + 6)x − 1. (9)

Lemma A.2 shows that hm(x) = 0 has exactly one solution and that this solution is
in (0, 1/m). Solving the equation yields the value noted in the theorem. �

Lemma A.2 For each m ≥ 1 and for hm defined by (9), the third degree equation
hm(x) = 0 has exactly one solution x0. This solution is in the interval (0, 1/m).

Proof of LemmaA.2 It is straightforward to verify that hm(0) < 0, hm(1/m) > 0, and
hm(1/2) > 0 for allm ≥ 1. Further, hm has a localminimum in 1/2 since h′

m(1/2) = 0
and h′′

m(1/2) > 0. Therefore the claim in the lemma follows. �
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