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Abstract
We discuss the estimation of a change-point t0 at which the parameter of a (non-
stationary) AR(1)-process possibly changes in a gradual way. Making use of the
observations X1, . . . , Xn , we shall study the least squares estimator t̂0 for t0, which
is obtained by minimizing the sum of squares of residuals with respect to the given
parameters. As a first result it can be shown that, under certain regularity and moment
assumptions, t̂0/n is a consistent estimator for τ0, where t0 = �nτ0�, with 0 < τ0 < 1,

i.e., t̂0/n
P→ τ0 (n → ∞). Based on the rates obtained in the proof of the consistency

result, a first, but rough, convergence rate statement can immediately be given. Under
somewhat stronger assumptions, a precise rate can be derived via the asymptotic nor-
mality of our estimator. Some results from a small simulation study are included to
give an idea of the finite sample behaviour of the proposed estimator.
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1 Introduction and statistical framework

In this work we study the estimation of a change-point at which the parameter of a
(non-stationary) AR(1)-process possibly changes in a gradual way. More precisely,
we observe a time series X1, . . . , Xn possessing the structure

Xt = (β0 + β1g(t, t0))Xt−1 + et (t = 1, 2, . . .), with X0 = e0, (1.1)

where {et }t=0,1,... is a sequence of independent, identically distributed (i.i.d.) random
variables with Ee0 = 0, 0 < Ee20 = σ 2, Ee40 < ∞, β0, β1 are unknown parameters
satisfying

|β0| < 1, β1 = β1,n → 0, |β1|√n → ∞ (n → ∞), (1.2)

and g(·, t0) = gn(·, t0) is a (known) real function such that

gn(t, t0) = 0 (t ≤ t0) and gn(t, t0) > 0 (t > t0) (1.3)

(see more detailed assumptions below). That is, we assume that the parameter β0
of the (stationary) AR(1)-process changes gradually at an unknown time-point t0 =
t0,n = �nτ0�, with 0 < τ0 < 1, � · � denoting the integer part, and our aim is to
provide an estimator for t0 making use of the observations X1, . . . , Xn and under
certain assumptions on the function gn(·, t0) to be specified below.

Remark 1 (a) As in earlier works, we only study the case of a gradual change under
“local alternatives” here, i.e., under β1,n → 0, but β1,n

√
n → ∞ as n → ∞ (cf.,

e.g., Dümbgen (1991), Jarušková (1998a), Hušková (1998a), Hušková (2001), or
Hušková and Steinebach (2002)).

(b) In case of the gradual change function gn being unknown, it would be sufficient
to have an estimating function ĝn (say), which approximates gn at a certain rate.
For a more detailed discussion we refer to Remarks 5 and 7 below.

Note that, if g(·, t0) is a bounded function, then

b := sup
t≥1

|β0 + β1g(t, t0)| < 1 (1.4)

for sufficiently large n and, by a repeated application of (1.1),

Xt = et +
t

∑

j=1

et− j

j−1
∏

i=0

(β0 + β1g(t − i, t0)) (t = 1, 2, . . .). (1.5)

Before we turn to formulating our main results, we give a brief account of related
works, particularly concerning the detection of gradual changes in various dependent
data sets. Most of the earlier papers on the change analysis in autoregressive processes
deal with abrupt changes, either in the mean or in the autoregressive parameters,
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respectively in the variance of the error process. Picard (1985) proposed a procedure for
testing changes in the covariance structure of an AR(p)-process based on a likelihood
ratio approach and obtained the asymptotic distribution of the likelihood estimators of
the change parameters. Gaussian-type likelihood ratio procedures for testing abrupt
changes in autoregressive models were studied in Davis et al. (1995), where also the
limit distribution of the test statistic was established. Gombay (2008) used efficient
score vectors to develop statistics that are able to test changes in any of the parameters
of a Gaussian AR(p)-model separately, or in any collection of them, and she also
studied large sample properties of the change-point estimator.

Other results were based on partial sums of residual processes, see, e.g., Horváth
(1993) for testing or Bai (1994) for proving consistency of the change-point estimator.
Hušková et al. (2007) used an approach based on partial sums of weighted residuals
and obtained asymptotic distributions for various max-type test statistics together with
proving the consistency of the change-point estimator in an AR(p)-model. Moreover,
bootstrap versions of the proposed tests were studied in Hušková et al. (2008).

A quasi-maximum likelihood method was used in Bai (2000) to analyze vector
autoregressive models (VAR) possessing multiple structural changes. The approach
developed in Davis et al. (1995) has been extended to VARmodels by Dvořák (2015),
who dealt with asymptotic tests for an abrupt change in the autoregressive parameters
and the variance structure under various assumptions on the correlations of the errors.
Kirch et al. (2015) extended the class ofmax-type change-point statistics considered in
Hušková et al. (2007) to theVAR case and epidemic change alternatives and developed
a new approach taking possible misspecification of the model into account.

Slama and Saggou (2017) considered a Bayesian analysis of a possible change in
the parameters of an AR(p)-model and developed a test, which can detect a change in
any of the parameters separately. Moreover, the posterior density of the change-point
is given by using a Gibbs sampler. Many references on the change-point analysis in
time series can also be found in a survey paper by Aue and Horváth (2013).

Concerning gradual changes in autoregression, Salazar (1982) studied a model
similar to (1.1) from a Bayesian point of view. Under the assumption of normality
of the error process and with some joint prior distribution of the change-point t0 and
other parameters under consideration, he obtained a joint posterior distribution from
which the marginal distribution of the change-point could be obtained via numerical
integration. A similar, though not identical problem was solved by Venkatesan and
Arumugam (2007), who considered an AR(p)-model with a gradual switch in the
parameters over a finite interval. Here again, computation of the posterior distribution
of the change-point requires the use of numerical integration.

He et al. (2008) derived a parameter constancy test in a stationary vector autoregres-
sive model against the hypothesis that the parameters of the model change smoothly
over time. Though model (1.1) could be considered a special case of the model studied
in He et al. (2008), the authors treat other type of smooth functions and do not consider
any estimator of the breaking point.

Our approach below is motivated by the previous work by Hušková, see, e.g.,
Hušková (1998a, b, 1999, 2001), Jarušková (1998a, b, 1999, 2001, 2002, 2003), or
by Hušková and Steinebach (2000), Hušková and Steinebach (2002), respectively by
Albin and Jarušková (2003). In the above cited papers a gradual-type change in the
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mean of a location model is considered and asymptotic tests for detecting the change
together with limit properties of the estimator of the change-point are developed for
various types of smoothly changing parameters. More specifically, the mentioned
model can be written in the form

Yt = μ + δn g
(

(t − t0)/n
) + εt , t = 1, . . . , n, (1.6)

where μ, δn, t0 are unknown parameters, ε1, . . . , εn are i.i.d. errors, with zero mean
and finite moments of order 2+�,� > 0, and the function g satisfies the assumption

g(x) = 0, (x ≤ 0), g(x) > 0 (x > 0),

together with other assumptions specified for the formulated problems.
Döring and Jensen (2015), and also Döring (2015a, b), extended the methodology

proposed by Hušková (1999) to regression models with independently distributed
random regressors. Wang (2007) studied the same location model as Hušková (1999)
with errors that exhibit long memory dependence, and Slabý (2001) considered a test
based on ranks.Hlávka andHušková (2017),motivated by gender differences observed
in a real data set, proposed a two-sample gradual change test that leads to more precise
results than the application of a procedure based on the standard two-sample t-test.
Račkauskas and Tamulis (2013) studied epidemic changes in a location model, in
which the transition between regimes is gradual.

Several authors studied smooth changes in other contexts. For example, Aue and
Steinebach (2002) discuss an extension of Hušková’s (1999) approach to certain sta-
tistical models, which cover more general classes of stochastic processes satisfying
an invariance principle (see also Kirch and Steinebach (2006), Steinebach (2000),
Steinebach and Timmermann (2011) or Timmermann (2014), Timmermann (2015)).

Vogt and Dette (2015) developed a nonparametric method to estimate a smooth
change-point in a locally stationary framework and established the rate of convergence
of the change-point estimator. Their procedure allows to deal with a wide variety of
stochastic characteristics including the mean, covariances and higher moments.

Hoffmann et al. (2018) and Hoffmann and Dette (2019) discuss statistical inference
for the detection and the localization of gradual changes in the jump characteristic of
a discretely observed Itô semimartingale.

Quessy (2019) proposed a general class of consistent test statistics for the detection
of gradual changes in copulas and developed their large-sample properties.

Now, let us turn to our problem. We shall study the least squares estimator t̂0 for
t0, which is obtained by minimizing

S(b0, b1, t∗) =
n

∑

t=1

[Xt − (b0 + b1g(t, t∗))Xt−1]2
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with respect to (w.r.t.) b0, b1 ∈ R, t∗ = 0, 1, . . . , �n(1 − δ)�, δ > 0 arbitrarily small,
i.e.,

S(̂b0,̂b1, t̂0) = min
b0,b1,t∗

S(b0, b1, t∗) = min
t∗

min
b0,b1

S(b0, b1, t∗). (1.7)

Remark 2 The technical condition t∗ ≤ �n(1 − δ)�, with δ > 0 fixed, could be
weakened to allow for δ = δn → 0 (n → ∞) at a certain rate, which, however,
would depend on the parameter β1 = β1,n from (1.2) and the function g = gn from
(1.3) as well. Since β1,n is unknown, one should choose δ > 0 fixed, but small, for
practical use.

Via partial derivatives, it is not difficult to show that, for fixed t∗,

̂b0(t∗) =
∑n

t=1 Xt Xt−1
∑n

t=1 X
2
t−1

−̂b1(t∗)
∑n

t=1 g(t, t∗)X2
t−1

∑n
t=1 X

2
t−1

and (1.8)

̂b1(t∗) =
∑n

t=1 Xt Xt−1g(t, t∗) −
∑n

j=1 X j X j−1
∑n

j=1 X
2
j−1

∑n
t=1 X

2
t−1g(t, t∗)

∑n
t=1 X

2
t−1g

2(t, t∗) −
(

∑n
t=1 g(t,t∗)X2

t−1

)2

∑n
t=1 X

2
t−1

. (1.9)

On plugging this into (1.7), we obtain

S(̂b0,̂b1, t̂0) = min
t∗

[ n
∑

t=1

(

Xt −
∑n

j=1 X j X j−1
∑n

j=1 X
2
j−1

Xt−1

)2

−̂b21(t∗)
n

∑

t=1

X2
t−1

(

g(t, t∗) −
∑n

j=1 X
2
j−1g( j, t∗)

∑n
j=1 X

2
j−1

)2
]

.

(1.10)

Since the first term in (1.10) does not depend on t∗, a combination of (1.7)–(1.10)
eventually results in
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t̂0 = argmax
t∗

[

∑n
t=1 Xt Xt−1g(t, t∗) −

∑n
j=1 X j X j−1

∑n
j=1 X

2
j−1

∑n
t=1 X

2
t−1g(t, t∗)

]2

∑n
t=1 X

2
t−1g

2(t, t∗) −
(

∑n
t=1 g(t,t∗)X2

t−1

)2

∑n
t=1 X

2
t−1

.

(1.11)

Remark 3 Note that

max
t∗

∣

∣

∣

∑n
t=1 Xt Xt−1g(t, t∗) −

∑n
j=1 X j X j−1

∑n
j=1 X

2
j−1

∑n
t=1 X

2
t−1g(t, t∗)

∣

∣

∣

(

∑n
t=1 X

2
t−1g

2(t, t∗) −
(

∑n
t=1 g(t,t∗)X2

t−1

)2

∑n
t=1 X

2
t−1

)1/2
(1.12)

can be used as a test statistic for testing “no change” versus “there is a change”, even if
the true function g is unknown, just some integral has to be nonzero (see, e.g., Hušková
and Steinebach (2002)). In practice, before starting to estimate t0 = �nτ0�, one should
first carry out such a test for the existence of a change-point τ0, with 0 < τ0 < 1.

For our theoretical studies of t̂0 below, it will be convenient to make use of the
model equation (1.1) and rewrite (1.11), after a multiplication with 1/n, as

t̂0 = argmax
t∗

[

β1

(

1
n

∑n
t=1 g(t, t0)g(t, t∗)X2

t−1 −
1
n

∑n
j=1 g( j,t0)X

2
j−1

1
n

∑n
j=1 g( j,t∗)X2

j−1
1
n

∑n
j=1 X

2
j−1

)

1
n

∑n
t=1 g

2(t, t∗)X2
t−1 −

(

1
n

∑n
j=1 g( j,t∗)X2

j−1

)2

1
n

∑n
j=1 X

2
j−1

+ 1
n

∑n
t=1 et Xt−1g(t, t∗) −

1
n

∑n
j=1 e j X j−1

1
n

∑n
j=1 g( j,t∗)X2

j−1
1
n

∑n
j=1 X

2
j−1

]2

1
n

∑n
t=1 g

2(t, t∗)X2
t−1 −

(

1
n

∑n
j=1 g( j,t∗)X2

j−1

)2

1
n

∑n
j=1 X

2
j−1

. (1.13)

For later asymptotics it may also be convenient to express t̂0 as

t̂0 = argmax
t∗

[

β1
1
n

∑n
t=1 g̃n(t, t0)g̃n(t, t∗)X2

t−1 + 1
n

∑n
t=1 et Xt−1g̃n(t, t∗)

]2

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

,

(1.14)

where

g̃n(t, t∗) = g(t, t∗) −
∑n

j=1 g( j, t∗)X2
j−1

∑n
j=1 X

2
j−1

. (1.15)

The paper is organized as follows. Based on the required assumptions, which are
collected first, Sect. 2 presents the main results of our work. As a first statement it can
be shown in Theorem 1 that t̂0/n is a consistent estimator for τ0, where t0 = �nτ0�,
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with 0 < τ0 < 1, i.e., t̂0/n
P→ τ0 (n → ∞). Based on the rates obtained in the

proof of Theorem 1, a rough convergence rate estimate can immediately be given
(see Theorem 2). Under somewhat stronger assumptions, a precise rate can then be
derived in Theorem 3 by showing that our estimator has an asymptotically normal
limit distribution. In Sect. 3, some results from a small simulation study are included
to give an idea of the finite sample behaviour of the proposed estimator. Section 4
collects some auxiliary results which are used in the proofs of the main theorems. The
latter are finally given in Sect. 5.

2 Assumptions andmain results

For our asymptotic results we assume the gradual change function g(·, t∗) to satisfy
the following assumptions:

(A.1) For every t∗ = 0, 1, . . . , n − 1, the function g(·, t∗) is of the form

g(t, t∗) = g0
( t − t∗

n

)

, t = 0, 1, . . . , n,

where g0 : (−∞, 1] → R is a real function satisfying:
(A.2) It holds that

g0(x) = 0 (x ≤ 0) and g0(x) > 0 (0 < x ≤ 1).

(A.3) The function g0 : (−∞, 1] → R is bounded and Lipschitz continuous, i.e.

|g0(x)| ≤ D1 and |g0(x) − g0(y)| ≤ D2|x − y|, x, y ≤ 1,

with some positive constants D1 and D2.
(A.4) It holds that

|g0(x) − g0(y) − (x − y)g′
0(y)| ≤ D3|x − y|1+�, 0 < x, y < 1,

|g0(x) − xg′
0+(0)| ≤ D3|x |1+�, 0 ≤ x < 1,

(

∫ 1

0
g̃0(x − τ0) g̃

′
0(x − τ0)dx

)2
<

∫ 1

0
g̃20(x − τ0)dx

∫ 1

0
g̃′2
0 (x − τ0)dx,

with g̃0(x) = g0(x) −
∫ 1

0
g0(y − τ0)dy,

where g′
0+(0) denotes the right derivative at 0, g′

0(·) denotes the derivative,
assumed to be bounded and Riemann integrable, 1/2 < � ≤ 1, and D3 is a
positive constant.

Remark 4 (a) The case of a negative change, i.e., g0(x) < 0 for 0 < x ≤ 1, can be
reduced to the positive one by just reparametrizing β̄1 := −β1 and ḡ0(·) = −g0(·).
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(b) The function g0, for example, could be such that g0(x) = ± xκ+ (x ≤ 1), where
x+ denotes the positive part of x and κ ≥ 1 is a fixed exponent.

In our first result it will be shown that t̂0/n is a consistent estimator for τ0, where

t0 = �nτ0�, with 0 < τ0 < 1, i.e., t̂0/n
P→ τ0 (n → ∞).

Theorem 1 Let Assumptions (A.1)–(A.3) be satisfied. Then, under the model (1.1)
and the corresponding conditions formulated above, the estimator t̂0 from (1.11) is
consistent, i.e.,

t̂0
n

P→ τ0 (n → ∞). (2.1)

Remark 5 In case of an unknown change function g, it will be obvious from the proof
of Theorem 1 that (2.1) still holds, if g in (1.11) is replaced by an estimator ĝn at a
rate oP (β1), more precisely, if there is an estimating function ĝ0 = ĝ0,n such that, as
n → ∞,

max
x∈[0,1]

∣

∣ĝ0,n(x) − g0(x)
∣

∣ = oP (β1). (2.2)

In this case, ĝn(t, t∗) = ĝ0((t − t∗)/n) can be used in (1.11) resp. (1.13) instead of
g(t, t∗) = g0((t − t∗)/n) and, in view of the rate oP (β1), the convergence in (2.1) will
be retained.

If, for example, g0(x) = xκ+, with some κ ≥ 1, it would be sufficient to have an
estimator κ̂n such that |̂κn−κ| = oP (β1), e.g., |̂κn−κ| = OP (1/

√
n) as n → ∞. Such

estimates have been obtained in other settings (cf., e.g., Döring and Jensen (2015) for
a regression model). In our time series setting, it is an open question and has to be left
for future research.

Another possible model to deal with would be the case β1g0(x) = β1x+ + β2x2+,
with unknown parameters β1, β2. Here, least squares estimation means to minimize

˜S(b0, b1, b2, t∗) =
n

∑

t=1

[

Xt −
(

b0 + b1
( t − t∗

n

)

+ + b2
( t − t∗

n

)2

+

)

Xt−1

]2

w.r.t. b0, b1, b2 ∈ R, t∗ = 0, 1, . . . , �n(1 − δ)�, δ > 0, and then to modify the
corresponding steps in the proofs. For the sake of conciseness, this may also be left
for further investigations.

The proofs of Theorem 1 and Remark 5 are postponed to Sect. 5.

Remark 6 It would also be quite straightforward to get a consistent estimator of β1,
i.e., ̂b1(̂t0), together with some limiting properties. For the sake of conciseness, we
want to omit details here.

Also, if the function g(·) is only known up to a multiplicative constant, then the
resulting estimator is still consistent, but the limit distribution below, however, would
depend on this multiplicative constant, which is unknown.
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On checking the proof of Theorem 1 more carefully, a rough rate of consistency
for our estimator t̂0 can be obtained as follows.

Theorem 2 Under the conditions of Theorem 1, assume that the limit function f (τ∗)
in (5.4) is twice continuously differentiable in a small neighbourhood of τ0, with
f ′′(τ∗) > D for some D > 0. Then, with t̂0 = �nτ̂0�, for every sequence {εn} with
εn → 0,

|̂τ0 − τ0| = OP
(|β1|1/2

) + oP

(

1

|β1|1/2 εn n1/4

)

(n → ∞). (2.3)

Remark 7 If (2.2) in Remark 5 is replaced by

max
x∈[0,1]

∣

∣ĝ0,n(x) − g0(x)
∣

∣ = OP

( 1√
n

)

, (2.4)

the approximation rate OP
(|β1|1/2

) + oP
(

1/(|β1|1/2 εn n1/4)
)

in Theorem 2 can be
retained.

The proofs of Theorem 2 and Remark 7 are also postponed to Sect. 5.

Remark 8 If, for example, β1 = n−α , with 0 < α < 1/2, then εn could be chosen as
(log n)−p, with p > 0, so that one would have the polynomial consistency rate

|̂τ0 − τ0| =
{

OP
( 1
nα/2

)

, if 0 < α < 1/4,

oP
( logp n
n1/4−α/2

)

, if 1/4 ≤ α < 1/2,
(n → ∞). (2.5)

Next it will be shown that the estimator t̂0 of t0 (or equivalently τ̂0 of τ0) has an
asymptotically normal limit distribution.

Theorem 3 Let Assumptions (A.1)–(A.4) be satisfied. Then, as n → ∞,

β1
√
n ˜H

σ 2

1 − β2
0

t̂0 − t0
n

d→ N
(

0,
σ 4

1 − β2
0

˜H
)

, (2.6)

or, in a standardized form,

β1
√

1 − β2
0

√

˜H
√
n
t̂0 − t0

n
d→ N (0, 1), (2.7)

equivalently

β1
√

1 − β2
0

√

˜H
√
n (̂τ0 − τ0)

d→ N (0, 1), (2.8)
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780 M. Hušková et al.

where

˜H =
∫ 1

0
g̃′2
0 (x − τ0)dx −

( ∫ 1
0 g̃0(x − τ0)g̃′

0(x − τ0)dx
)2

∫ 1
0 g̃20(x − τ0)dx

. (2.9)

Remark 9 Note that the limit distribution in Theorem 3 does not depend on σ 2.

For the proof of Theorem 3 see also Sect. 5.

3 Some simulations

In this section, before we turn to the proofs of Theorems 1–3, we first present some
results from a small simulation study. We simulated observations of the time series
(1.1) with the function g0(x) = x+, x ≤ 1, for various combinations of β0 and β1 and
for various change-points t0. The errors et were considered to be i.i.d. with a standard
normal distribution. The first 50 simulated values were deleted to start computations
with stationary observations Xt for t = 1, . . . , t0. We simulated either n = 500, 1000
or 5000 observations of (1.1). For each realization of {Xt , t = 1, . . . , n}, we estimated
the change-point t̂0 according to (1.11) with the given function g0 and for t∗ running
from 0 to �n(1−δ)�, where δ > 0 denotes the proportion of observations, which were
excluded. For each combination we used 10000 simulation runs.

The change-point was chosen to be either t0 = n/4, n/2 or 3/4n, τ0 = t0/n, and
δ = 0.05. The parameters β0 and β1 should satisfy the asymptotic relation (1.2), i.e.,
|β0| < 1, β1 → 0, and |β1|√n → ∞ as n → ∞. For β1 we used small multiples
of 1/

√
log log n such that the asymptotic condition (1.2) and also the condition |β0 +

β1g0((t − t0)/n)| < 1 for t = 1, . . . , �n(1 − δ)� were satisfied. Though in fact β1
depends on n, we used the same value always for all considered sample sizes n, to
make the presentation of the results more transparent.

In Tables 1, 2, 3, 4, the estimator τ̂0 computed as τ̂0 = t̂0/n, the 90% confidence
interval for τ0 computed from theMonte Carlo percentiles of

√
n(̂τ0−τ0), and estima-

tors of β0, β1 computed from (1.8) and (1.9) with t∗ = t̂0 are presented. The empirical
standard deviations of the corresponding point estimators are given in parentheses.

It can be seen that the point estimators of τ0 (or t0, respectively) and of β0 are sys-
tematically slightly underestimated, but otherwise behave quite well for all considered
variants. The estimators of β1 are more volatile, but they converge to the true value
with growing number of observations. To study the behaviour of the estimator of the
change-point in finite samples, we also displayed histograms and Q-Q plots of the
standardized statistic in (2.8). Some results are presented in Figs. 1, 2, 3, 4, 5, 6. The
simulations show that the behaviour of the estimator t̂0 depends both on the size of the
sample and on the parameters β0 and β1. The assumption |β0 +β1g0((t − t0)/n)| < 1
guarantees the stability of the time series (1.1) even after the local change, expressed
by the time varying part of the autoregressive coefficient. Due to the local character
of the change the convergence to the normal distribution is slow and it can only be
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Table 1 Estimators of τ0, β0, β1; t0 = n/2

n β0 β1 τ0 τ̂0 CI-90 β̂0 β̂1

500 0 1.8 0.5 0.4834 (0.3454; 0.6954) −0.0101 1.8084

(0.1108) (0.0752) (0.4584)

1000 0.4924 (0.4004; 0.6129) −0.0044 1.7934

(0.0680) (0.0485) 0.2764

5000 0.4987 (0.4592; 0.5423) −0.0004 1.7956

(0.0253) (0.0205) (0.1116)

500 0.3 1.2 0.5 0.4699 (0.2729; 0.8539) 0.2821 1.2632

(0.1617) (0.0769) (0.6576)

1000 0.4849 (0.3529; 0.6934) 0.2916 1.2139

(0.1073) (0.0507) (0.2828)

5000 0.4974 (0.4426; 0.5626) 0.2988 1.1984

(0.0367) (0.0200) (0.1056)

500 0.5 0.8 0.5 0.4676 ( 0.1856; 0.9496) 0.4809 0.9647

(0.2085) ( 0.0701) (0.9136)

1000 0.4743 (0.2863; 0.8113) 0.4886 0.8559

(0.1533) (0.0490) (0.8657)

5000 0.4958 (0.4172; 0.5906) 0.4982 0.8035

(0.0538) (0.0187) (0.1031)

expected for sufficiently large samples. In Figs. 1, 2, 3, 4, 5, 6 convergence to normal-
ity is demonstrated for respective sample sizes n = 500 (left panels) and n = 5000
(right panels). The role of the parameter β1, which represents the rate of the change
of the autoregressive coefficient, can be seen on comparing Figs. 3 and 4. In Fig. 3,
the value of β0 + β1g0((t − t0)/n) changes from 0 to 0.9, while in Fig. 4 it varies
from 0.5 to 0.9 for the same values of t = t0 + 1, . . . , n. The gradual change in the
first case is much faster than in the second one, where the change is slow and the
increments to the autoregressive coefficient are very small. In this case, the graph of
the function on the right-hand side of (1.11) can be very flat and its global maximum
can be incorrectly detected or it is detected either very soon or very late. This explains
the large values of the side column in the histogram and the large skewness of the test
statistic, especially in the left part of Fig. 4. Also the position of t0, and thus the length
of the stationary part of the time series under consideration, plays a role. In general,
we observe better results, when the change occurs in the middle of the observed time
intervals. For smaller sample sizes the kurtosis of the standardized statistics is larger
and the finite sample distribution has heavier tails than the normal distribution, but it
improves with growing sample size.
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Table 2 Estimators of τ0, β0, β1; t0 = n/4

n β0 β1 τ0 τ̂0 CI-90 β̂0 β̂1

500 0 1.2 0.25 0.2398 (0.0438; 0.4398) −0.0157 1.2201

(0.1220) (0.0972) 0.2178

1000 0.2383 (0.0983; 0.4563) −0.0120 1.2037

(0.0993) (0.0770) (0.1457)

5000 0.2472 (0.1876; 0.3177) −0.0024 1.1993

(0.0402) (0.0312) (0.0612)

500 0.3 0.9 0.25 0.2329 (−0.0091; 0.4729) 0.2797 0.9215

(0.1522) (0.0949) (0.2184)

1000 0.2325 (0.0685; 0.4745) 0.2847 0.9032

(0.1175) (0.0734) (0.1222)

5000 0.2445 (0.1735; 0.3364) 0.2962 0.8980

(0.0522 ) (0.0318) (0.0500)

500 0.5 0.6 0.25 0.2472 (−0.1008; 0.4872) 0.4837 0.6680

(0.1894) (0.0801) (0.5534)

1000 0.2374 (0.0004; 0.4824) 0.4868 0.6218

(0.1494) (0.0624) (0.1413)

5000 0.2387 (0.1402; 0.3955) 0.4941 0.6002

(0.0765) (0.0312) (0.0492)

Table 3 Estimators of τ0, β0, β1; t0 = 3n/4

n β0 β1 τ0 τ̂0 CI-90 β̂0 β̂1

500 0 3.6 0.75 0.7346 (0.6466; 0.8806) −0.0050 3.6483

(0.0826) (0.0543) (1.5051)

1000 0.7443 (0.6843; 0.8273) −0.0018 3.5945

(0.0463) (0.0378) (0.8508)

5000 0.7486 (0.7234; 0.7786) −0.0004 3.5824

(0.0169) (0.0167) (0.3220)

500 0.3 2.2 0.75 0.7122 (0.5682; 1.0682) 0.2875 2.5911

(0.1579) (0.0582) (2.0569)

1000 0.7333 (0.6323; 0.9073) 0.2947 2.3065

(0.0989) (0.0385) (1.1574)

5000 0.7476 (0.7026; 0.8019) 0.2991 2.0645

(0.0309) (0.0161) (0.3533)

500 0.5 1.6 0.75 0.6958 (0.5258; 1.2448) 0.4853 1.9656

(0.1961) (0.0548) (1.9813)

1000 0.7229 (0.6019; 0.9759) 0.4928 1.7661

(0.1289) (0.0366) (1.0926)

5000 0.7473 (0.6963; 0.8101) 0.4990 1.6135

( 0.0360) (0.0146) (0.3064)
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Table 4 Estimators of τ0, β0, β1; t0 = n/2 (negative values of β0)

n β0 β1 τ0 τ̂0 CI-90 β̂0 β̂1

500 −0.8 3.4 0.5 0.4949 (0.4389; 0.5669) −0.7953 3.3398

(0.0388) (0.0400) (0.3545)

1000 0.4980 (0.4590; 0.5430) −0.7953 3.3398

(0.0255) (0.0277) (0.2407)

5000 0.4994 (0.4832; 0.5171) −0.7995 3.3908

(0.0104) (0.0121) (0.1010)

500 −0.5 2.5 0.5 0.4926 (0.3454; 0.6954) −0.5012 2.4940

(0.0687) (0.0576) (0.4363)

1000 0.4973 (0.4303; 0.5758) −0.4996 2.4964

(0.0442) (0.0402) (0.2967)

5000 0.4997 (0.4719; 0.5281) −0.4998 2.4994

(0.0172) (0.0175) (0.1226)

500 −0.3 2.4 0.5 0.4904 (0.3924; 0.6244) −0.3030 2.3728

(0.0743) (0.0652) (0.4055)

1000 0.4958 (0.4288; 0.5788) −0.3020 2.3869

(0.0461) (0.0438) (0.2679)

5000 0.4990 (0.4702; 0.5314) −0.3001 2.3938

(0.0185) (0.0195) (0.1118)

4 Some auxiliary results

In this section, we collect a series of auxiliary results, which are used in the proofs of
our Theorems 1–3. In the sequel, C denotes a generic positive constant, independent
of t, t∗ and n, which may vary from case to case.

Lemma 1 Under the assumptions of Theorem 1, as n → ∞,

max
t=1,...,n

E X2
t−1 = O(1) and max

t=1,...,n
E X4

t−1 = O(1), (4.1)

∣

∣

∣

1

n

n
∑

t=1

EX2
t−1 − σ 2

1 − β2
0

∣

∣

∣ = O
(|β1|

)

, (4.2)

∣

∣

∣

1

n

n
∑

t=1

g(t, t0)EX2
t−1 − σ 2

1 − β2
0

∫ 1

0
g0(x − τ0)dx

∣

∣

∣ = O
(|β1|

)

. (4.3)

Proof (a) In view of (1.5) and the independence and moment assumptions on {et },

EX2
t−1 = σ 2

t−1
∑

j=0

c2j with c0 = 1, c j =
j−1
∏

i=0

(

β0 + β1g(t − 1 − i, t0)
)

, j = 1, . . . , t − 1.
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Fig. 1 Histograms and Q-Q plots of
√
n(̂τ0 − τ0), left: n = 500, right: n = 5 000, t0 = n/2, β0 = 0,

β1 = 1.8

Now, according to (1.2), for sufficiently large n,

(

β0 + β1g(t − 1 − i, t0)
)2

= β2
0 + β1

(

2β0g(t − 1 − i, t0) + β1g
2(t − 1 − i, t0)

) ≤ β2
0 + |β1|C =: q1,

where 0 ≤ q1 < 1. So, c2j ≤ q j
1 and

EX2
t−1 ≤ σ 2 1 − qt1

1 − q1
≤ σ 2 1

1 − q1
= O(1).

Again due to the moment and independence assumptions on {et }, a similar esti-
mation yields

EX4
t−1 = Ee40

t−1
∑

j=0

c4j + 3σ 4
∑

j �=k

c2j c
2
k ≤ Ee40

t−1
∑

j=0

c4j + 3σ 4
(

t−1
∑

j=0

c2j

)2 = O(1),

which proves (4.1).
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Fig. 2 Histograms and Q-Q plots of
√
n(̂τ0 − τ0), left: n = 500, right: n = 5 000, t0 = n/2, β0 = 0.3,

β1 = 1.2

(b) Moreover, since β1 → 0 as n → ∞,

EX2
t−1 − σ 2

1 − β2
0

≤ σ 2
( 1

1 − β2
0 − |β1|C

− 1

1 − β2
0

)

= σ 2 |β1|C
(1 − β2

0 − |β1|C)(1 − β2
0 )

≤ C |β1|.

Analogously,

EX2
t−1 ≥ σ 2 1 − qt2

1 − q2
,

with 0 ≤ q2 := β2
0 − |β1|C < 1, and, as n → ∞,

EX2
t−1 − σ 2

1 − β2
0

≥ σ 2
( 1

1 − β2
0 + |β1|C

− 1

1 − β2
0

)

− σ 2 qt2
1 − q2

≥ −C
(|β1| + qt2

)

.
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Fig. 3 Histograms and Q-Q plots of
√
n(̂τ0 − τ0), left: n = 500, right: n = 5 000, t0 = 3n/4, β0 = 0,

β1 = 3.6

Hence,

∣

∣

∣EX2
t−1 − σ 2

1 − β2
0

∣

∣

∣ ≤ C
(|β1| + qt2

)

, (4.4)

which suffices to prove (4.2), since
∑n

t=1 q
t
2 ≤ C and β1  1/n as n → ∞.

(c) In view of (4.4) and the assumptions on β1 and g, as n → ∞,

∣

∣

∣

1

n

n
∑

t=1

g(t, t0)EX2
t−1 − σ 2

1 − β2
0

∫ 1

0
g0(x − τ0)dx

∣

∣

∣

≤ 1

n

n
∑

t=1

∣

∣

∣g(t, t0)
∣

∣

∣

∣

∣

∣EX2
t−1 − σ 2

1 − β2
0

∣

∣

∣ + σ 2

1 − β2
0

∣

∣

∣

1

n

n
∑

t=1

g(t, t0) −
∫ 1

0
g0(x − τ0)dx

∣

∣

∣

≤ C
(

|β1| + 1

n

n
∑

t=1

qt2 +
n

∑

t=1

∫ t
n

t−1
n

∣

∣

∣g0
( t − t0

n

)

− g0(x − τ0)

∣

∣

∣dx
)

≤ C
(

|β1| + 1

n
+

n
∑

t=1

∫ t
n

t−1
n

∣

∣

∣

t

n
− x − t0

n
+ τ0

∣

∣

∣dx
)

≤ C
(

|β1| + 1

n

)

= O
(|β1|

)

,

which completes the proof. ��
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Fig. 4 Histograms and Q-Q plots of
√
n(̂τ0 − τ0), left: n = 500, right: n = 5 000, t0 = 3n/4, β0 = 0.5,

β1 = 1.6

Lemma 2 Under the assumptions of Theorem 1, as n → ∞, with t∗ = �nτ∗�,

max
t∗

∣

∣

∣

1

n

n
∑

t=1

g(t, t0)g(t, t∗)EX2
t−1 − σ 2

1 − β2
0

∫ 1

0
g0(x − τ0)g0(x − τ∗)dx

∣

∣

∣ = O
(|β1|

)

,

(4.5)

max
t∗

∣

∣

∣

1

n

n
∑

t=1

g(t, t∗)EX2
t−1 − σ 2

1 − β2
0

∫ 1

0
g0(x − τ∗)dx

∣

∣

∣ = O
(|β1|

)

,

(4.6)

and

max
t∗

∣

∣

∣

1

n

n
∑

t=1

g2(t, t∗)EX2
t−1 − σ 2

1 − β2
0

∫ 1

0
g20(x − τ∗)dx

∣

∣

∣ = O
(|β1|

)

. (4.7)

Proof The proof of (4.5) – (4.7) is similar to that of (4.3), so that details can be omitted.
Note that the functions g0(·−τ0)g0(·−τ∗), g0(·−τ∗) and g20(·−τ∗) are also bounded
and Lipschitz continuous, uniformly in 0 ≤ τ∗ ≤ 1. ��
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Fig. 5 Histograms and Q-Q plots of
√
n(̂τ0 − τ0), left: n = 500, right: n = 5 000, t0 = n/2, β0 = −0.8,

β1 = 3.4

Remark 10 It is obvious from the proofs of Lemmas 1 and 2 that, if the function g0 is
just continuous (instead of Lipschitz continuous), assertions (4.3)–(4.7) still hold true
with t∗ = �nτ∗�, τ∗ ∈ [0, 1] fixed (instead of maxt∗ ), but with O

(|β1|
)

being replaced
by o(1).

Lemma 3 Under the assumptions of Theorem 1, as n → ∞, with t∗ = �nτ∗�,
∣

∣

∣

n
∑

j=1

e j X j−1

∣

∣

∣ = OP
(√

n
)

, (4.8)

∣

∣

∣

n
∑

t=1

et Xt−1g(t, t∗)
∣

∣

∣ = OP
(√

n
)

, for every fixed τ∗ ∈ [0, 1], (4.9)

and

εn√
n

max
t∗

∣

∣

∣

n
∑

t=1

et Xt−1g(t, t∗)
∣

∣

∣ = oP (1), for every sequence {εn}n=1,2,... with εn → 0.

(4.10)
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Fig. 6 Histograms and Q-Q plots of
√
n(̂τ0 − τ0), left: n = 500, right: n = 5 000, t0 = n/2, β0 = −0.5,

β1 = 2.5

Proof (a) Let F j−1 denote the σ -field generated by e0, . . . , e j−1. Then, in view of
our assumptions on {et } and (4.2), as n → ∞,

E

( n
∑

j=1

e j X j−1

)2

=
n

∑

j=1

E
(

e2j X
2
j−1

) + 2
∑

i< j

E
(

ei Xi−1e j X j−1
)

=
n

∑

j=1

E
(

E
[

e2j X
2
j−1

∣

∣F j−1
]) + 2

∑

i< j

E
(

E
[

ei Xi−1e j X j−1|F j−1
]) = σ 2

n
∑

j=1

EX2
j−1 = O(n),

which suffices to prove (4.8).
(b) Via similar arguments, along the lines of proof of (4.3), as n → ∞,

E
(

n
∑

t=1

et Xt−1g(t, t∗)
)2 = σ 2

n
∑

t=1

g2(t, t∗)EX2
t−1 = O(n),

which proves (4.9).
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(c) Consider, with t∗ = �nτ∗�, the sequence of stochastic processes {Xn(·)}n=1,2,... in
D[0, 1], where

Xn(τ∗) = εn√
n

n
∑

t=1

et Xt−1g(t, t∗), 0 ≤ τ∗ ≤ 1.

In view of (4.9), the finite-dimensional distributions of Xn tend to 0. Moreover,
for 0 ≤ τ1 ≤ τ∗ ≤ τ2 ≤ 1,

E |Xn(τ∗) − Xn(τ1)||Xn(τ2) − Xn(τ∗)| ≤ (

E |Xn(τ∗) − Xn(τ1)|2
)1/2(

E |Xn(τ2) − Xn(τ∗)|2
)1/2

,

and, according to our assumptions on g, with t1 = �nτ1�,

E |Xn(τ∗) − Xn(τ1)|2 = σ 2 ε2n

n

n
∑

t=1

|g(t, t∗) − g(t, t1)|2EX2
t−1

≤ C ε2n

∣

∣

∣

t∗ − t1
n

∣

∣

∣

2 ≤ C ε2n |τ2 − τ1|2.

Analogously, with t2 = �nτ2�,

E |Xn(τ2) − Xn(τ∗)|2 ≤ C ε2n

∣

∣

∣

t2 − t∗
n

∣

∣

∣

2 ≤ C ε2n |τ2 − τ1|2,

so that

E |Xn(τ∗) − Xn(τ1)||Xn(τ2) − Xn(τ∗)| ≤ C ε2n |τ2 − τ1|2.

In view of Billingsley (1968), Theorem 15.6, this proves that

Xn
D[0,1]−→ 0 as n → ∞,

which suffices for the proof of (4.10).
��

Lemma 4 Under the assumptions of Theorem 1, as n → ∞, with t∗ = �nτ∗�,
∣

∣

∣

n
∑

t=1

(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = OP
(√

n
)

, (4.11)

∣

∣

∣

n
∑

t=1

g(t, t0)g(t, t∗)
(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = OP
(√

n
)

, for every fixed τ∗ ∈ [0, 1],

(4.12)
∣

∣

∣

n
∑

t=1

g(t, t∗)
(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = OP
(√

n
)

, for every fixed τ∗ ∈ [0, 1], (4.13)
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∣

∣

∣

n
∑

t=1

g2(t, t∗)
(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = OP
(√

n
)

, for every fixed τ∗ ∈ [0, 1], (4.14)

and, for every sequence {εn}n=1,2,... with εn → 0,

εn√
n

max
t∗

∣

∣

∣

n
∑

t=1

g(t, t0)g(t, t∗)
(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = oP (1), (4.15)

εn√
n

max
t∗

∣

∣

∣

n
∑

t=1

g(t, t∗)
(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = oP (1), (4.16)

εn√
n

max
t∗

∣

∣

∣

n
∑

t=1

g2(t, t∗)
(

X2
t−1 − EX2

t−1

)

∣

∣

∣ = oP (1). (4.17)

Proof We only give a proof of (4.13) and (4.16) here. The other assertions can be
shown in a similar manner.

(a) In view of (1.5),

n
∑

t=1

g(t, t∗)X2
t−1 =

n
∑

t=1

g(t, t∗)
(

et−1 +
t−1
∑

j=1

et−1− j

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)

)2

=
n

∑

t=1

g(t, t∗)e2t−1 +
n

∑

t=1

g(t, t∗)
t−1
∑

j=1

e2t−1− j

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)2

+ 2
n

∑

t=1

g(t, t∗)et−1

t−1
∑

j=1

et−1− j

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)

+ 2
n

∑

t=1

g(t, t∗)
∑

j1< j2

et−1− j1et−1− j2

j1−1
∏

i1=1

(

β0 + β1g(t − 1 − i1, t0)
)

×
j2−1
∏

i2=1

(

β0 + β1g(t − 1 − i2, t0)
)

=: S1 + S2 + 2S3 + 2S4. (4.18)

Since g is bounded and {et } is an i.i.d. sequence,

E(S1 − ES1)
2 =

n
∑

t=1

g2(t, t∗)E
(

e2t − Ee2t
)2 ≤ C n. (4.19)
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Next, with v2 := Var(e20) and b as in (1.4), due to the independence of e2t1−1− j

and e2t2−1−k , if t1 − 1 − j �= t2 − 1 − k, i.e., if k �= j + t2 − t1, for sufficiently
large n,

E(S2 − ES2)
2 = E

(
n

∑

t=1

g(t, t∗)
t−1
∑

j=1

(

e2t−1− j − Ee2t−1− j

)

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)2

)2

= v2
n

∑

t=1

g2(t, t∗)
t−1
∑

j=1

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)4

+ 2v2
∑

t1<t2

g(t1, t∗)g(t2, t∗)
t1−1
∑

j=1

j−1
∏

i1=1

(

β0 + β1g(t1 − 1 − i1, t0)
)2

j−1+t2−t1
∏

i2=1

(

β0 + β1g(t2 − 1 − i2, t0)
)2

≤ C
(

n
∑

t=1

g2(t, t∗)
t−1
∑

j=1

b4( j−1) +
n

∑

t2=2

g(t2, t∗)
t2−1
∑

t1=1

g(t1, t∗)
t1−1
∑

j=1

b4( j−1)+2(t2−t1)
)

≤ C n. (4.20)

Similarly, since ES3 = 0,

E(S3 − ES3)
2 = E

(
n

∑

t=1

g(t, t∗)et−1

t−1
∑

j=1

et−1− j

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)2

)2

= σ 2
n

∑

t=1

g2(t, t∗)E
(

t−1
∑

j=1

et−1− j

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)2

)2

= σ 4
n

∑

t=1

g2(t, t∗)
t−1
∑

j=1

j−1
∏

i=1

(

β0 + β1g(t − 1 − i, t0)
)4 ≤ C

n
∑

t=1

g2(t, t∗)
t−1
∑

j=1

b4( j−1) ≤ C n. (4.21)

Finally, via a corresponding estimation,

E(S4 − ES4)
2

=
n

∑

t=1

g2(t, t∗)E
(

∑

j1< j2

et−1− j1 et−1− j2

j1−1
∏

i1=1

(

β0 + β1g(t − 1 − i1, t0)
)

j2−1
∏

i2=1

(

β0 + β1g(t − 1 − i2, t0)
)

)2

≤ C
n

∑

t=1

g2(t, t∗) ≤ C n. (4.22)

On combining (4.18)–(4.22), we see that

E

( n
∑

t=1

g(t, t∗)
(

X2
t−1 − EX2

t−1

)

)2

≤ C n,

which suffices to prove (4.13).
b) The proof of (4.16) can be given analogously to that of (4.10) in Lemma 3. Con-

sider, with t∗ = �nτ∗�, the sequence of stochastic processes {˜Xn(·)}n=1,2,... in
D[0, 1], where

˜Xn(τ∗) = εn√
n

n
∑

t=1

g(t, t∗)
(

X2
t−1 − EX2

t−1

)

, 0 ≤ τ∗ ≤ 1.
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In viewof (4.13), the finite-dimensional distributions of ˜Xn tend to 0.Moreover, for
0 ≤ τ1 ≤ τ∗ ≤ τ1 ≤ 1, by just replacing g(t, t∗) in the estimations (4.18)-(4.22)
by g(t, t∗) − g(t, t1) and taking the Lipschitz continuity of g0 into account,

E
(

˜Xn(τ∗) − ˜Xn(τ1)
)2 ≤ C

ε2n

n

n
∑

t=1

|g(t, t∗) − g(t, t1)|2 ≤ C ε2n |τ2 − τ1|2.

Analogously,

E
(

˜Xn(τ2) − ˜Xn(τ∗)
)2 ≤ C ε2n |τ2 − τ1|2,

and, via the Cauchy-Schwarz inequality,

E
∣

∣˜Xn(τ∗) − ˜Xn(τ1)
∣

∣

∣

∣˜Xn(τ2) − ˜Xn(τ∗)
∣

∣ ≤ C ε2n |τ2 − τ1|2.

In view of Billingsley (1968), Theorem 15.6, this proves that

˜Xn
D[0,1]−→ 0 as n → ∞,

which suffices for the proof of (4.16).

��
The following two lemmas from real analysis will also be used in the proof of

Theorem 1.

Lemma 5 Let {bn}n=1,2,... be a real sequence such that bn → ∞ as n → ∞. Then
there is a sequence {εn}n=1,2,... of positive reals, with εn → 0, such that still εnbn →
∞ as n → ∞.

Proof For n sufficiently large, there exists an integer kn such that 2kn ≤ bn < 2kn+1.
Obviously, kn → ∞ as n → ∞, so that a choice of εn = 1/kn completes the proof.

��
Lemma 6 Let f be a continuous real function on a compact set K and x0 be
a unique maximizer of f , i.e., x0 = argmaxx f (x). Furthermore assume that
limn→∞ maxx∈K | fn(x) − f (x)| = 0 and let x̂n = argmaxx fn(x) be a maximizer of
fn (not necessarily unique). Then,

x̂n → x0 as n → ∞.

Proof Suppose x̂n � x0 as n → ∞. Since K is compact, there exists a subsequence
{̂xkn } and an x1 �= x0 such that x̂kn → x1, hence

∣

∣ fkn (̂xkn ) − f (x1)
∣

∣ ≤ max
x

∣

∣ fkn (x) − f (x)
∣

∣ + ∣

∣ f (̂xkn ) − f (x1)
∣

∣ → 0 as n → ∞,
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because of the continuity of f . Since x0 is the uniquemaximizer of f , it holds f (x1) <

f (x0) implying that

lim sup
n→∞

(

fkn (̂xkn ) − f (x0)
)

< 0.

This, however, contradicts our assumptions, since

∣

∣ fn (̂xn) − f (x0)
∣

∣ = ∣

∣max
x

fn(x) − max
x

f (x)
∣

∣ ≤ max
x

∣

∣ fn(x) − f (x)
∣

∣ → 0 as n → ∞,

so that the proof is complete. ��
Next, we need some extensions of Lemmas 1–4. Particularly, we study properties

of the following quantities for |t0 − t∗| ≤ bn , with bn → ∞, bn/n → 0:

L0(t0, t∗) = 1√
n

n
∑

t=1

et Xt−1
g(t, t∗) − g(t, t0)

(t0 − t∗)/n

L1(t0, t∗) = 1√
n

n
∑

t=1

et Xt−1˜hn(t, t∗, t0), with ˜hn(t, t∗, t0) as in (4.33) below,

L2(t0, t∗) = 1√
n

n
∑

t=1

et Xt−1
g̃n(t, t∗) − g̃n(t, t0)

(t∗ − t0)/n
,

L3(t0, t∗) = 1

n

n
∑

t=1

X2
t−1 g̃n(t, t0)

g̃n(t, t0) − g̃n(t, t∗)
(t∗ − t0)/n

,

L4(t0, t∗) = 1

n

n
∑

t=1

X2
t−1

(g̃n(t, t0) − g̃n(t, t∗))2

((t∗ − t0)/n)2
.

We start with an extension of Lemma 3.

Lemma 7 Let the assumptions of Theorem 3 be satisfied and let t∗ be such that |t∗ −
t0| ≤ rn

√
n |β1|−1, with

rn → ∞,
|β1|√n

rn
→ ∞. (4.23)

Then, for j = 0, 1, 2, L j (t0, t∗) has an asymptotically normal limit distribution, with
zero mean and variance σ 2

j , where

σ 2
0 = σ 4

1 − β2
0

∫ 1

0
g′2
0 (x − τ0)dx,

σ 2
1 = σ 4

1 − β2
0

(

∫ 1

0
g̃′2
0 (x − τ0)dx −

( ∫ 1
0 g̃0(x − τ0)g̃′

0(x − τ0)dx
)2

∫ 1
0 g̃20(x − τ0)dx

)

,
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σ 2
2 = σ 2

1 − β2
0

∫ 1

0
g̃′2
0 (x − τ0)dx .

Moreover, as n → ∞,

max|t0−t∗∗|≤bn
|L j (t0, t∗) − L j (t0, t∗∗)| = oP (cn), j = 0, 1, 2, (4.24)

for some cn → 0 and any t∗ such that |t0 − t∗| ≤ bn, bn → ∞, bn/n → 0.

Proof We focus on L0(t0, t∗). The desired results for L1(t0, t∗) and L2(t0, t∗) can be
derived in the same way, the obtained expressions are just somewhat more complex,
but can be omitted.

Note that, for fixed t∗ and t0, L j (t0, t∗), j = 0, 1, 2, are sums of martingale dif-
ference arrays. Hence to obtain their limit properties, we can apply Theorem 24.3 in
Davidson (1994), p. 383, whichmeans for L0(t0, t∗) to verify validity of the conditions

1
n

∑n
t=1

[

et Xt−1
g(t,t∗)−g(t,t0)

(t0−t∗)/n
]2

1
n

∑n
j=1 E

[

e j X j−1
g( j,t∗)−g( j,t0)

(t0−t∗)/n
]2

P→ 1, (4.25)

max
t

[

et Xt−1
g(t,t∗)−g(t,t0)

(t0−t∗)/n
]2

∑n
j=1 E

[

e j X j−1
g( j,t∗)−g( j,t0)

(t0−t∗)/n
]2

P→ 0. (4.26)

We make repeated use of assumption (A.4), particularly

∣

∣

∣

g( j, t∗) − g( j, t0)

(t0 − t∗)/n
− g′

0(( j − t0)/n)

∣

∣

∣ ≤ D|((t∗ − t0)/n)|�.

Consider first the denominator in (4.25). Direct calculations give

1

n

n
∑

j=1

E
[

e j X j−1
g( j, t∗) − g( j, t0)

(t0 − t∗)/n

]2

= σ 4

1 − β2
0

1

n

n
∑

j=1

[ g( j, t∗) − g( j, t0)

(t0 − t∗)/n

]2 + σ 2

n

n
∑

j=1

[

EX2
j−1 − σ 2

1 − β2
0

][ g( j, t∗) − g( j, t0)

(t0 − t∗)/n

]2
.

By Assumption (A.4) and using the same arguments as in the proofs of Lemmas 2 and
4 , we get

1

n

n
∑

j=1

[ g( j, t∗) − g( j, t0)

(t0 − t∗)/n
− g′

0(( j − t0)/n))
]2 ≤ C |(t∗ − t0)/n|2� ≤ C

( rn
|β1|√n

)2�
,

∣

∣

∣

1

n

n
∑

j=1

[

EX2
t−1 − σ 2

1 − β2
0

][ g( j, t∗) − g( j, t0)

(t0 − t∗)/n
− g′

0(( j − t0)/n)
]2

∣

∣

∣ ≤ C |(t∗ − t0)/n|2�

≤ C
( rn

|β1|√n

)2�
,
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1

n

n
∑

t=1

g′2
0 ((t − t0)/n) =

∫ 1

0
g′2
0 (x − τ0)dx + o(1),

1

n

n
∑

t=1

(

EX2
t−1 − σ 2

1 − β2
0

)

g′2
0 ((t − t0)/n)

)2 = O(|β1|),

as n → ∞, and combining all these results we have

1

n

n
∑

t=1

E
[

et Xt−1
g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 = σ 4

1 − β2
0

∫ 1

0
g′2
0 (x − τ0)dx + o(1).

(4.27)

For the numerator in (4.25) we have

1

n

n
∑

t=1

[

et Xt−1
g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2

= 1

n

n
∑

t=1

[

e2t − σ 2]X2
t−1

[g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 + σ 2

n

n
∑

t=1

X2
t−1

[g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2
.

The first term on the r.h.s. is the sum of martingale difference arrays, with zero mean
and variance

E
[1

n

n
∑

t=1

(

(

e2t − σ 2)X2
t−1

g(t, t∗) − g(t, t0)

(t0 − t∗)/n

)2]2 = O
(

n−1),

which follows from the finiteness of Ee4t , Assumption (A.3) and the uniform bound-
edness of EX4

t−1 (cf. (4.1)). Thus,

1

n

n
∑

t=1

[

e2t − σ 2]X2
t−1

[g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 = OP
(

n−1/2). (4.28)

Next, proceeding in the same way as in the proofs of Lemmas 1 and 4, we get

σ 2

n

n
∑

t=1

X2
t−1

[g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 = σ 4

1 − β2
0

∫ 1

0
g′2
0 (x − τ0)dx + oP (1),

(4.29)

and combining (4.28), (4.29) and (4.27) we obtain (4.25).
To verify (4.26) note that, due to (4.27), it suffices to prove

max
t

1

n

[

et Xt−1
g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 P→ 0.
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For this we have, using similar arguments as above,

P
(

max
t

[

et Xt−1
g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 ≥ nε
)

≤
n

∑

t=1

P
([

et Xt−1
g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]2 ≥ nε
)

≤ 1

n2ε2

n
∑

t=1

Ee4t E X4
t−1

[ g(t, t∗) − g(t, t0)

(t0 − t∗)/n

]4 = O(n−1),

and we can conclude that the asymptotic normality of L0(t0, t∗) holds for fixed t∗.
Next we show (4.24) for j = 0. We proceed as in the proof of Lemma 3, part c).

Toward this we study for t0 < t∗ < t∗∗ and |t0 − t∗| + |t∗ − t∗∗| ≤ bn , satisfying
bn → ∞, bn/n → 0, the quantity

E
[

L0(t0, t∗) − L0(t0, t∗∗)
]2 = 1

n

n
∑

t=1

σ 2E(X2
t−1)

( g(t, t∗) − g(t, t0)

(t0 − t∗)/n
− g(t, t∗∗) − g(t, t0)

(t0 − t∗∗)/n

)2

≤ C
1

n

n
∑

t=1

( g(t, t∗) − g(t, t0)

(t0 − t∗)/n
− g(t, t∗∗) − g(t, t0)

(t0 − t∗∗)/n

)2
,

for some C > 0. By Assumption (A.4)

∣

∣g(t, t∗∗) − g(t, t∗) − g′
0((t − t∗)/n)((t∗ − t∗∗)/n)

∣

∣ ≤ C
∣

∣(t∗∗ − t∗)/n
∣

∣

1+�

which gives

1

n

n
∑

t=1

( g(t, t∗) − g(t, t0)

(t0 − t∗)/n
− g(t, t∗∗) − g(t, t0)

(t0 − t∗∗)/n

)2

= 1

n

n
∑

t=1

[ g(t, t∗) − g(t, t0)

(t0 − t∗)/n

(

1 − (t0 − t∗)/n
(t0 − t∗∗)/n

)

− g(t, t∗∗) − g(t, t∗)
(t0 − t∗∗)/n

]2

= 1

n

n
∑

t=1

[( g(t, t∗) − g(t, t0)

(t0 − t∗)/n
− g′

0((t − t∗)/n)
) (t∗ − t∗∗)/n

(t0 − t∗∗)/n
+ O

( |(t∗ − t∗∗)/n|1+�

|(t0 − t∗∗)/n|
)]2

≤ C
[

∣

∣(t0 − t∗)/n
∣

∣

� (t∗ − t∗∗)/n
(t0 − t∗∗)/n

+ |(t∗ − t∗∗)/n|1+�

|(t0 − t∗∗)/n|
]2

≤ C
[ |(t∗ − t∗∗)/n|
|(t0 − t∗∗)/n|1−�

+ |(t∗ − t∗∗)/n|1+�

|(t0 − t∗∗)/n|
]2 ≤ C

∣

∣(t∗ − t∗∗)/n
∣

∣

2�
,

since |t0 − t∗| ∨ |t∗ − t∗∗| ≤ |t0 − t∗∗| and � ≤ 1.
In view of 2� > 1 by Assumption (A.4), assertion (4.24) can now be finished by

again making use of Billingsley (1968), Theorem 15.6, as in the proof of Lemma 3,
part c). ��

The next lemma is an extension of Lemma 4.

Lemma 8 Under the assumptions of Theorem 3 we have

L4(t0, t∗) = σ 2

1 − β2
0

[ 1

n

n
∑

t=1

(

g′
0((t − t0)/n) − 1

n

n
∑

j=1

g′
0(( j − t0)/n)

)2] + OP

(

∣

∣(t0 − t∗)/n)
∣

∣

�
)

+ oP (1)
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= σ 2

1 − β2
0

∫ 1

0
g̃′2
0 (x − τ0)dx + OP

(

∣

∣(t0 − t∗)/n)
∣

∣

�
)

+ oP (1), |t∗ − t0| ≤ bn , (4.30)

L3(t0, t∗) = σ 2

1 − β2
0

∫ 1

0
g̃0(x − τ0) g̃

′
0(x − τ0)dx + oP (1), |t∗ − t0| ≤ bn . (4.31)

Moreover, as n → ∞,

max|t0−t∗∗|≤bn

∣

∣L j (t0, t∗) − L j (t0, t∗∗)
∣

∣ = oP (cn), j = 3, 4, (4.32)

for some cn → 0 and any |t∗ − t0| ≤ bn, with bn → ∞, bn/n → 0.

Proof Note that

L4(t0, t∗) = 1

n

n
∑

t=1

X2
t−1

(

g̃n(t, t0) − g̃n(t, t∗)
)2

((t∗ − t0)/n)2

= 1

n

n
∑

t=1

X2
t−1

(

g(t, t0) − g(t, t∗)
)2

((t∗ − t0)/n
)2 −

(

1
n

∑n
j=1 X

2
j−1

(

g( j, t0) − g( j, t∗)
)

)2

1
n

∑n
j=1 X

2
j−1

(

(t∗ − t0)/n
)2

=: L41(t0, t∗) − L42(t0, t∗).

We have

L41(t0, t∗) = 1

n

∑

j≥max(t0,t∗)
X2

j−1

(

g( j, t0) − g( j, t∗)
)2

(

(t∗ − t0)/n
)2

+ 1

n

∑

min(t0,t∗)≤ j≤max(t0,t∗)
X2

j−1

(

g( j, t0) − g( j, t∗)
)2

(

(t∗ − t0)/n
)2 .

The latter sum on the r.h.s has only |t0−t∗| ≤ 2bn summands, with bn → ∞, bn/n →
0, and the terms

(

g( j, t0)−g( j, t∗)
)/(

(t∗−t0)/n
)

are bounded in j , thus the respective
terms are not influential. By (A.4),

1

n

∑

j≥max(t0,t∗)
X2

j−1

(g( j, t∗) − g( j, t0)

(t0 − t∗)/n)
− g′

0(( j − t0)/n)
)2

≤ C
1

n

n
∑

j=1

X2
j−1

∣

∣

∣

t∗ − t0
n

∣

∣

∣

2� = OP

(∣

∣

∣

t∗ − t0
n

∣

∣

∣

2�)

,

where the last relation follows from (4.1) and (4.11). Proceeding as in the proofs of
Lemmas 1 and 2, we get

1

n

n
∑

j=1

X2
j−1g

′2
0 (( j − t0)/n) = σ 2

1 − β2
0

∫ 1

0
g′2
0 (x − τ0)dx + oP (1)
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and hence

L41(t∗, t0) = σ 2

1 − β2
0

∫ 1

0
g′2
0 (x − τ0)dx + oP (1).

The result for L42(t∗, t0) is obtained in the sameway and thus the assertion on L4(t∗, t0)
follows.

The proof for L3(t∗, t0) follows the same lines and can therefore be omitted.
Toprove (4.32)weproceed as in the proof of (4.24). To avoid toomany technicalities

we study only

(

L5(t∗, t0) − L5(t∗∗, t0)
)2

where

L5(t∗, t0) = 1

n

n
∑

t=1

X2
t−1

(g(t, t0) − g(t, t∗))2

((t∗ − t0)/n)2
.

Now

L5(t∗, t0) − L5(t∗∗, t0) = 1

n

n
∑

t=1

(X2
t−1 − EX2

t−1)

[

(g(t, t0) − g(t, t∗))2

((t∗ − t0)/n)2
− (g(t, t0) − g(t, t∗∗))2

((t∗∗ − t0)/n)2

]

+ 1

n

n
∑

t=1

EX2
t−1

[

(g(t, t0) − g(t, t∗))2

((t∗ − t0)/n)2
− (g(t, t0) − g(t, t∗∗))2

((t∗∗ − t0)/n)2

]

.

As in the proof of Lemma 4 and utilizing Assumption (A.4),

E

[

1

n

n
∑

t=1

(

X2
t−1 − EX2

t−1

)

(

(g(t, t0) − g(t, t∗))2

((t∗ − t0)/n)2
− (g(t, t0) − g(t, t∗∗))2

((t∗∗ − t0)/n)2

)]2

≤ C
1

n2

n
∑

t=1

[

(g(t, t0) − g(t, t∗))2

((t∗ − t0)/n)2
− (g(t, t0) − g(t, t∗∗))2

((t∗∗ − t0)/n)2

]2

≤ C
1

n2

n
∑

t=1

∣

∣

∣

g(t, t0) − g(t, t∗)
(t∗ − t0)/n

− g(t, t0) − g(t, t∗∗)
(t∗∗ − t0)/n

∣

∣

∣

2 ≤ C
1

n

∣

∣(t∗ − t∗∗)/n
∣

∣

2�
,

where we also used arguments from the proof of Lemma 7. Finally,

1

n

∣

∣

∣

∣

n
∑

t=1

EX2
t−1

[

(g(t, t0) − g(t, t∗))2

((t∗ − t0)/n)2
− (g(t, t0) − g(t, t∗∗))2

((t∗∗ − t0)/n)2

]∣

∣

∣

∣

≤ C
1

n

n
∑

t=1

∣

∣

∣

g(t, t0) − g(t, t∗)
(t∗ − t0)/n

− g(t, t0) − g(t, t∗∗)
(t∗∗ − t0)/n

∣

∣

∣ ≤ C
∣

∣(t∗ − t∗∗)/n
∣

∣

�
.

On combining all these estimates, we can conclude that (4.32) holds true. ��

123



800 M. Hušková et al.

By Theorem 1 and since Q(t0) (defined below) does not depend on t∗, the estimator
t̂0 has the same limit distribution as

t̂0(bn) = argmax
|t∗−t0)|≤bn

(

Q(t∗) − Q(t0)
)

,

for some bn → ∞, bn/n → 0, and

Q(t∗) = 1
1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

(

β1
1

n

n
∑

t=1

g̃n(t, t0)g̃n(t, t∗)X2
t−1 + 1

n

n
∑

t=1

et Xt−1 g̃n(t, t∗)
)2

,

= β2
1Q1(t∗) + 2β1Q2(t∗) + Q3(t∗),

Q1(t∗) =
(

1
n

∑n
t=1 g̃n(t, t0)g̃n(t, t∗)X2

t−1

)2

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

,

Q2(t∗) =
(

1
n

∑n
t=1 g̃n(t, t0)g̃n(t, t∗)X2

t−1

)(

1
n

∑n
t=1 e j Xt−1 g̃n(t, t∗)

)

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

,

Q3(t∗) =
(

1
n

∑n
t=1 e j Xt−1 g̃n(t, t∗)

)2

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

.

We need to study the properties of Q j (t∗) − Q j (t0), j = 1, 2, 3, separately. This
is formulated in the next three Propositions.

Proposition 1 Under the Assumptions (A.1)– (A.4) we get

max
1≤|t∗−t0|≤bn

∣

∣

∣

Q1(t∗) − Q1(t0)

( t∗−t0
n )2

+ σ 2

1 − β2
0

˜H
∣

∣

∣ = op(1).

Proof Direct but long calculations give

(

Q1(t∗) − Q1(t0)
)

(

1

n

n
∑

t=1

X2
t−1 g̃

2
n(t, t∗)

)

=
(

1

n

n
∑

t=1

X2
t−1 g̃n(t, t0)

(

g̃n(t, t0) − g̃n(t, t∗)
)

)2

−
(

1

n

n
∑

t=1

X2
t−1

(

g̃n(t, t0) − g̃n(t, t∗)
)2

)(

1

n

n
∑

t=1

X2
t−1 g̃

2
n(t, t0)

)

.

Using the assertions in Lemma 1, 2, 4 and the calculations in Lemma 8, we get
after some steps, uniformly in |t∗ − t0)| ≤ bn ,

Q1(t∗) − Q1(t0)

= (

(t∗ − t0)/n
)2

[
( 1
n

∑n
t=1 X

2
t−1 g̃0((t − t0)/n)g̃′

0((t − t0)/n)
)2

1
n

∑n
t=1 X

2
t−1 g̃

2
0((t − t0)/n)

− 1

n

n
∑

t=1

X2
t−1 g̃

′2
0 ((t − t0)/n)

]

× (

1 + OP (|β1| + (|t∗ − t0|/n)�
)

= σ 2

1 − β2
0

( t0 − t∗
n

)2
[

( ∫ 1
0 g̃0(x − τ0)g̃′

0(x − τ0)dx
)2

∫ 1
0 g̃20(x − τ0)dx

−
∫ 1

0
g̃′2
0 (x − τ0)dx

]
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× (

1 + OP (|β1| + (|t∗ − t0|/n)�
)

,

which suffices for the proof. ��
Proposition 2 Under Assumptions (A.1)–(A.4) we get

max
rnβ

−1
1

√
n<|t∗−t0|≤bn

∣

∣

∣

Q2(t∗) − Q2(t0)

β1(
t∗−t0
n )2

∣

∣

∣ = op
(

n−1/2 + r−1
n

)

and

max
1≤|t∗−t0|≤rnβ

−1
1

√
n

∣

∣

∣

Q2(t∗) − Q2(t0)
t∗−t0
n

− 1√
n

1√
n

n
∑

t=1

et Xt−1˜hn(t, t∗, t0)
∣

∣

∣

= OP

(

max
1≤|t∗−t0|≤rnβ

−1
1

√
n

1√
n

|t∗ − t0|
n

)

= OP

( 1√
n

rn
|β1|√n

)

,

where rn satisfies (4.23) and

˜hn(t, t∗, t0) = 1
( t∗−t0

n

)

(

(

g̃n(t, t∗) − g̃n(t, t0)
) − g̃n(t, t0)

1
n

∑n
t=1 g̃n(t, t∗)

(

g̃(t, t∗) − g̃n(t, t0)
)

X2
t−1

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

)

.

(4.33)

Moreover, the limit distributionof 1√
n

∑n
t=1 et Xt−1˜hn(t, t∗, t0) is normal N

(

0, σ 4

1−β2
0

˜H
)

for each |t∗ − t0| ≤ rn|β1|−1√n, which follows from Lemma 7.

Proof Direct calculations give

Q2(t∗) − Q2(t0) =
1
n

∑n
t=1 g̃n(t, t0)g̃n(t, t∗)X2

t−1
1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

1

n

n
∑

t=1

et Xt−1 g̃n(t, t∗) − 1

n

n
∑

t=1

e j Xt−1 g̃n(t, t0)

= 1

n

n
∑

t=1

et Xt−1

[

(

g̃n(t, t∗) − g̃n(t, t0)
) − g̃n(t, t0)

1
n

∑n
j=1 g̃n( j, t∗)

(

g̃n( j, t∗) − g̃n( j, t0)
)

X2
j−1

1
n

∑n
j=1 g̃

2
n( j, t∗)X2

j−1

]

+ 1

n

n
∑

t=1

et Xt−1
(

g̃n(t, t∗) − g̃n(t, t0)
)

1
n

∑n
j=1 g̃n( j, t∗)

( − g̃n( j, t∗) + g̃n( j, t0)
)

X2
j−1

1
n

∑n
j=1 g̃

2
n( j, t∗)X2

j−1

.

On applying Lemmas 1–3 and 7 to the above sums, we get that the first term on the
r.h.s. is influential, while the latter one is negligible. So, both assertions follow from
here. ��
Proposition 3 Under Assumptions (A.1)–(A.4) we get

max√
n|β1|−1rn<|t∗−t0|≤bn

|Q3(t∗) − Q3(t0)|
β2
1

( t∗−t0
n

)2 = OP

( 1√
n |β1|rn

)

and

max
1≤|t∗−t0|≤√

n|β1|−1rn

|Q3(t∗) − Q3(t0)|
|β1|| t∗−t0

n | = OP

( 1

n |β1|
)

,

where rn satisfies (4.23).
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Proof Direct calculations give

Q3(t∗) − Q3(t0) =
( 1
n

∑n
t=1 et Xt−1g̃n(t, t∗)

)2

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

−
( 1
n

∑n
t=1 et Xt−1g̃n(t, t0)

)2

1
n

∑n
t=1 X

2
t−1g̃

2
n(t, t0)

=
[ 1
n

∑n
t=1 et Xt−1(g̃n(t, t∗) − g̃n(t, t0))

][ 1
n

∑n
t=1 et Xt−1(g̃n(t, t∗) + g̃n(t, t0))

]

1
n

∑n
t=1 g̃

2
n(t, t∗)X2

t−1

+
(1

n

n
∑

t=1

et Xt−1g̃n(t, t0)
)2 1

n

∑n
t=1 X

2
t−1

(

g̃2n(t, t0) − g̃2n(t, t∗)
)

( 1
n

∑n
t=1 X

2
t−1g̃

2
n(t, t0)

)( 1
n

∑n
t=1 X

2
t−1g̃

2
n(t, t∗)

)

= OP

(1

n

|t∗ − t0|
n

)

,

uniformly for |t∗ − t0| ≤ bn , where the last relation is implied by a combination of
Lemmas 7 and 8. Then both assertions follow immediately. ��

5 Proofs of themain theorems

Nowwe are ready to turn to the proofs of Theorems 1–3.We first prove the consistency
of our least squares estimator t̂0.

Proof of Theorem 1 In view of (1.13), we consider, for t∗ = 0, 1, . . . , �n(1 − δ)�,

hn(t∗) =

[

β1

(

1
n

∑n
t=1 g(t, t0)g(t, t∗)X2

t−1 −
1
n

∑n
j=1 g( j,t0)X

2
j−1

1
n

∑n
j=1 g( j,t∗)X2

j−1
1
n

∑n
j=1 X

2
j−1

)

+ Rn(t∗)
]2

1
n

∑n
t=1 g

2(t, t∗)X2
t−1 −

(

1
n

∑n
j=1 g( j,t∗)X2

j−1

)2

1
n

∑n
j=1 X

2
j−1

,

(5.1)

where

Rn(t∗) = 1

n

n
∑

t=1

et Xt−1g(t, t∗) −
1
n

∑n
j=1 e j X j−1

1
n

∑n
j=1 g( j, t∗)X2

j−1
1
n

∑n
j=1 X

2
j−1

. (5.2)

In view of Lemma 5 and the assumptions on β1, there exists a sequence {εn} of
positive reals such that εn → 0, but |β1| εn√n → ∞ as n → ∞. Then, on combining
Lemmas 1–4, as n → ∞,

max
t∗

∣

∣Rn(t∗)
∣

∣ = oP
( 1

εn
√
n

)

+ OP

( 1√
n

)

= oP
(|β1|

)

, (5.3)

and, with t∗ = �nτ∗�, for every fixed τ∗ ∈ [0, 1 − δ],

fn(τ∗) := 1

β2
1

hn(t∗)
P→ σ 2

1 − β2
0

[ ∫ 1
0 g0(x − τ0)g0(x − τ∗)dx − ∫ 1

0 g0(x − τ0)dx
∫ 1
0 g0(x − τ∗)dx

]2

∫ 1
0 g20(x − τ∗)dx − ( ∫ 1

0 g0(x − τ∗)dx
)2

123



Estimating a gradual parameter change... 803

=: f (τ∗), (5.4)

as a consequence of (5.1)–(5.3) in combination with the approximations obtained in
Lemmas 1–4.

Note that the denominator in f is bounded away from0on [0, 1−δ],with 0 < δ < 1,
since, via Jensen’s inequality, first for τ∗ ∈ [δ̃, 1 − δ], with 0 < δ̃ < 1 − δ,

∫ 1

τ∗
g20(x − τ∗)dx − (1 − τ∗)2

(

∫ 1

τ∗
g0(x − τ∗)

dx

1 − τ∗

)2

≥
∫ 1

τ∗
g20(x − τ∗)dx − (1 − τ∗)2

∫ 1

τ∗
g20(x − τ∗)

dx

1 − τ∗
= τ∗

∫ 1

τ∗
g20(x − τ∗)dx

≥ δ̃

∫ 1

τ∗
g20(x − τ∗)dx = δ̃

∫ 1−τ∗

0
g20(x)dx ≥ δ̃

∫ δ

0
g20(x)dx > 0. (5.5)

Secondly, since
∫ 1
0 g20(x)dx − ( ∫ 1

0 g0(x)dx
)2

> 0 and the denominator in f is con-
tinuous in τ∗, also

∫ 1

0
g20(x − τ∗)dx −

(

∫ 1

0
g0(x − τ∗)dx

)2
> 0, (5.6)

for τ∗ ∈ [0, δ̃), with some δ̃ > 0.
So, (5.5) and (5.6) prove the positivity on [0, 1 − δ] and, in view of Lemmas 1–4,

the latter positivity also implies that the convergence in (5.4) is uniform on [0, 1− δ],
i.e.

max
τ∗∈[0,1−δ]

∣

∣ fn(τ∗) − f (τ∗)
∣

∣

P→ 0 (n → ∞). (5.7)

We finally show that the limit function f has a unique maximum at τ∗ = τ0. First,
via the Cauchy-Schwarz inequality,

[ ∫ 1

0
g0(x − τ0)g0(x − τ∗)dx −

∫ 1

0
g0(x − τ0)dx

∫ 1

0
g0(x − τ∗)dx

]2

≤
[ ∫ 1

0
g20(x − τ0)dx −

( ∫ 1

0
g0(x − τ0)dx

)2][ ∫ 1

0
g20(x − τ∗)dx −

(∫ 1

0
g0(x − τ∗)dx

)2]

.

(5.8)

Hence

f (τ∗) ≤ σ 2

1 − β2
0

[ ∫ 1

0
g20(x − τ0)dx −

( ∫ 1

0
g20(x − τ0)dx

)2]

,

and the bound is attained for τ∗ = τ0.
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It remains to prove that τ0 is the unique maximizer of f . To do so, we show that
strict inequality holds in (5.8), if τ∗ �= τ0. Assume equality. Then, there is a λ �= 0
such that, for almost every x ∈ [0, 1],

g̃0(x − τ∗) := g0(x − τ∗) −
∫ 1

0
g0(x − τ∗)dx = λ

(

g0(x − τ0) −
∫ 1

0
g0(x − τ0)dx

)

=: λg̃0(x − τ0).

This, however, is impossible, since, e.g., for τ∗ > τ0,

g̃0(· − τ∗) is constant on [τ0, τ∗], but λg̃0(· − τ0) is not.

Similarly, for τ∗ < τ0,

λg̃0(· − τ0) is constant on [τ∗, τ0], but g̃0(· − τ∗) is not,

which proves that τ0 is the unique maximizer of f .
Via the subsequence principle for convergence in probability, the proof of Theo-

rem 1 can now be completed from (5.7) by applying Lemma 6. ��
Proof of Remark 5 In case of an unknown change function g, it is obvious from the
proof of Theorem 1 that, under (2.2), g(t, t∗) = g0((t − t∗)/n) in (1.11) resp. (1.13)
can be replaced by ĝn(t, t∗) = ĝ0((t− t∗)/n). The reason is that, in view of (5.1)–(5.3)
and the rate oP (β1), the convergence in (5.4) still holds with estimated g(t, t∗)’s, so
that the proof can be completed as before.

If g0(x) = xκ+, with some κ ≥ 1, and |̂κn−κ| = oP (β1) as n → ∞ for an estimator
κ̂n , note that on {̂κn > κ1}, with 0 < κ1 < κ , by the mean-value theorem, for some κ̄n
between κ̂n and κ ,

max
x∈(0,1] |x

κ̂n − xκ | = max
x∈(0,1] | log x ||x

κ̄n ||̂κn − κ| ≤ max
x∈(0,1] | log x ||x

κ1 ||̂κn − κ|.

In view of | log x ||xκ1 | → 0 as x ↓ 0, | log x ||xκ1 | is bounded on (0, 1], which suffices
to prove that

max
x∈(0,1] |x

κ̂n − xκ |/β1 = max
x∈[0,1] |x

κ̂n − xκ |/β1
P→ 0,

since the max is attained for x > 0 and P (̂κn > κ1) → 1 as n → ∞. ��
Proof of Theorem 2 In view of the consistency obtained in Theorem 1, it suffices to
concentrate on a small neighbourhood [τ1, τ2] of τ0. With the notations in (5.4), we
have

fn (̂τ0) − f (τ0) = max
τ∗∈[τ1,τ2]

fn(τ∗) − max
τ∗∈[τ1,τ2]

f (τ∗) = (

fn (̂τ0) − f (̂τ0)
) + (

f (̂τ0) − f (τ0)
)

= (

fn (̂τ0) − f (̂τ0)
) +

(

f ′(τ0)(̂τ0 − τ0) + f ′′(τn)
(̂τ0 − τ0)

2

2

)

,
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where τn is between τ̂0 and τ0.
Since f ′(τ0) = 0 and | f ′′(τn)| ≥ C , for some C > 0, this results in the estimate

|̂τ0 − τ0|2 ≤ 2

C

(

∣

∣ max
τ∗∈[τ1,τ2]

fn(τ∗) − max
τ∗∈[τ1,τ2]

f (τ∗)
∣

∣ + max
τ∗∈[τ1,τ2]

∣

∣ fn(τ∗) − f (τ∗)
∣

∣

)

≤ 4

C
max

τ∗∈[τ1,τ2]
∣

∣ fn(τ∗) − f (τ∗)
∣

∣.

Now, on checking the steps in the proof of Theorem 1 more carefully, one can show
that

max
τ∗∈[τ1,τ2]

∣

∣ fn(τ∗) − f (τ∗)
∣

∣ = OP
(|β1|

) + oP
( 1

|β1| εn√n

)

. (5.9)

Note that, in view of Lemmas 2–4, the uniform rate of approximation for the denom-
inator of fn in (5.4) by that of f is OP (|β1|) + oP (1/(εn

√
n)), whereas the one for

the numerator is OP (|β1|) + oP (1/(|β1| εn√n)). This, together with the positivity of
the denominator of f on [τ1, τ2], results in (5.9) after some elementary calculation,
which completes the proof. ��

Proof of Remark 7 Under (2.4), the approximation rate OP
(|β1|

)+oP
(

1/(|β1| εn√n)
)

in (5.9) still holds, since only an additional rate OP
(

1/
√
n
)

would have to be added
in the denominator of fn and OP

(

1/(|β1|√n)
)

in the numerator, which are negligible
compared to the other terms. ��

Proof of Theorem 3 The proof follows the usual lines of proofs of the limit behavior of
estimators under a gradual change (see, e.g., Hušková (1998b) or Jarušková (1998a)).
Therefore we will focus on the main steps only. ��

Gathering the assertions in Propositions 1 –3 and Theorem 1, we can conclude that
t̂0 has the same asymptotic distribution as

t̂0(rn
√
n|β1|−1) = argmax

|t∗−t0|≤√
n|β1|−1rn

{

− β2
1

( |t0 − t∗|
n

)2 σ 2

1 − β2
0

˜H + β1

( t0 − t∗
n

) 2√
n

1√
n

n
∑

t=1

et Xt−1˜hn(t, t∗, t0)
}

.

By Lemma 7, particularly by (4.24), its limit behavior does not change if˜hn(t, t∗, t0)
is replaced by ˜hn(t, t∗∗, t0), with any fixed t∗∗ such that |t∗∗ − t0| ≤ rn

√
n |β1|−1.

Also, by Lemma 7,

Zn = 1√
n

n
∑

t=1

et Xt−1˜hn(t, t∗∗, t0)
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has an asymptotic normal distribution with zero mean and variance

E
( 1√

n

n
∑

t=1

et Xt−1˜hn(t, t∗∗, t0)
)2 = σ 4

1 − β2
0

˜H
(

1 + o(1)
)

.

Thus it suffices to study the estimator

t̃0
(

rn
√
n |β1|−1) = argmax

|t∗−t0|≤√
n|β1|−1rn

{

− β2
1

( |t0 − t∗|
n

)2 σ 2

1 − β2
0

˜H + β1

√

˜H
t0 − t∗

n

2√
n

Zn√
˜H

}

.

The boundary can only be a attained with probability tending to 0, since Zn = OP (1),
and, on plugging the upper bound into the above expression, one gets

−β2
1

(

√
n |β1|−1rn

n

)2 σ 2

1 − β2
0

˜H + β1

√
n |β1|−1rn

n

2√
n
Zn = − r2n

n

σ 2

1 − β2
0

˜H + rn
n

β1|β1|−1 2Zn .

Using the assumption on rn (see (4.23)) together with Zn = OP (1), it is now straight-
forward to check that this estimator satisfies

√
n β1

σ 2

1 − β2
0

˜H
t̃0

(

rn
√
n |β1|−1

) − t0
n

= Zn
(

1 + oP (1)
)

.

From here and the asymptotic normality of Zn it can be concluded that the assertion
of Theorem 3 holds true. ��
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