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Abstract
A spacings-based prediction method for future upper record values is proposed as an
alternative tomaximum likelihoodprediction. For anunderlying family of distributions
with continuous cumulative distribution functions, the general form of the predictor as
a function of the estimator of the distributional parameters is established. A connection
between this method and the maximum observed likelihood prediction procedure is
shown. The maximum product of spacings predictor turns out to be useful to predict
the next record value in contrast to likelihood-based procedures, which provide trivial
predictors in this particular case. Moreover, examples are given for the exponential
and the Pareto distributions, and a real data set is analyzed.

Keywords Point prediction · Cumulative hazard rate · Spacings · Maximum
observed likelihood predictor · Upper record values · Exponential distribution ·
Pareto distribution

Mathematics Subject Classification 62F99 · 62M20

1 Introduction

A general procedure for estimating parameters, termed maximum product of spacings
estimation, was proposed independently by Cheng and Amin (1983) and Ranneby
(1984) as an alternative to maximum likelihood estimation in particular situations of
continuous, univariate distributions. In the sequel, the estimation method was applied,
extended and further theoretically studied in, e.g., Ekström (1998, 2008), Shao and
Hahn (1999) and Anatolyev and Kosenok (2005). Here, we adopt the method of
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maximizing a product of spacings to introduce a related new prediction method based
on upper record values.

Suppose that X1, X2, . . . is an infinite sequence of independent and identically
distributed (i.i.d.) continuous random variables with cumulative distribution function
(cdf) F . An observation X j is called an (upper) record value provided it is greater
than all previously observed values. More specifically, defining the record times as

L(1) = 1, L(n + 1) = min{ j > L(n) | X j > XL(n)}, n ∈ N,

the sequence (Rn)n∈N = (XL(n))n∈N is referred to as the sequence of (upper) record
values based on (Xn)n∈N [see Arnold et al. (1998); Nevzorov (2001)]. The study of
record values dates back toChandler (1952) providing a naturalmodel for the sequence
of successive extremes in an i.i.d. sequence of random variables. The structure of
record values also appears in the context of minimal repair of a system, and there is a
close connection to occurrence times of a non-homogeneous Poisson process (NHPP);
namely, under mild conditions, the epoch times of an NHPP and upper record values
are equal in distribution [see Gupta and Kirmani (1988)].

We are concerned with the problem of predicting the occurrence of a future record
value Rs based on the first r , r < s, (observed) record values R = (R1, . . . , Rr ).
This prediction problem has been studied by several authors. Here, we focus on non-
Bayesian prediction. In the one-sample case, Raqab (2007) derived the best linear
unbiased predictor, the best linear equivariant predictor, the maximum likelihood pre-
dictor as well as the conditional median predictor of the s-th record value Rs from
a Type-II left censored sample with a two-parameter exponential distribution. His
findings supplement and generalize results of Ahsanullah (1980), Basak and Bal-
akrishnan (2003) and Nagaraja (1986, Sect. 4). Awad and Raqab (2000) provide a
comparative study of several predictors of the s-th record value Rs based on the first
r observed record values from a one-parameter exponential distribution. Linear unbi-
ased prediction of future Pareto record values is discussed in Paul and Thomas (2016),
and maximum likelihood prediction of future Pareto record values is studied in Raqab
(2007). Since themodel of record values is contained in the generalized order statistics
model [see Kamps (1995, 2016)], all results pertaining to prediction of future gen-
eralized order statistics can be specialized to solve the prediction problem for record
values [see, e.g., Burkschat (2009)]. Bayesian prediction methods for future record
values were first discussed by Dunsmore (1983) and have subsequently been applied
to various distribution families [cf. Madi and Raqab (2004); Ahmadi and Doostparast
(2006); Nadar and Kızılaslan (2015)]. It should be noted that, under exponential as
well as under Pareto distributions, maximum likelihood prediction of the subsequent
record value Rr+1 becomes trivial, since the respective predictor is given by Rr , i.e.,
the predictor coincides with the last observed record value in the model. However, by
construction, record values are strictly ordered; thus, the maximum likelihood predic-
tor of the (r + 1)th record value based on the first r record values yields a useless
prediction in practical situations, e.g., when aiming at predicting the next record claim
in an insurance company. In the following, a prediction principle, referred to as the
maximum product of spacings prediction, will be introduced and studied to overcome
this shortcoming [see also Volovskiy (2018) for further details]. A similar approach
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has been mentioned by Raqab et al. (2019) for records from a Weibull distribution,
recently. Volovskiy and Kamps (2020) [see also Volovskiy (2018)] have introduced a
new general likelihood-based prediction procedure, the so-called maximum observed
likelihood prediction method, and applied it to predict future record values; although
such a predictormay outperform the respectivemaximum likelihood predictor in terms
of both criteria, mean squared error and Pitman closeness, it may also share the same
drawback when predicting the very next record value.

For the proposed prediction procedure bymeans ofmaximizing the geometricmean
of spacings of suitably transformed and normalized record values data, a general repre-
sentation of the predictor as a function of an estimator of the underlying distributional
parameters is established. Furthermore, its relation to the maximum observed likeli-
hood predictor is demonstrated via a heuristic approximation argument. It is pointed
out that the spacings-based method retains the desirable properties of the likelihood-
based procedure while at the same time avoids its deficiency of not being able to
produce a useful prediction for the next record value. The prediction procedure is
illustrated by deriving predictors of future exponential and Pareto record values. A
real data example is shown under the assumption of an underlying Pareto distribution.

2 Maximum product of spacings prediction procedure

The prediction procedure we are about to present derives its motivation from the max-
imum product of spacings estimation method introduced independently by Cheng and
Amin (1983) and Ranneby (1984) as an alternative to maximum likelihood estimation.
The heuristics underlying the maximum product of spacings estimation method are
as follows. Let F = {Fθ | θ ∈ Θ}, Θ ⊆ R

d , be a parameterized family of continuous
cumulative distribution functions onRwith Lebesgue density functions { fθ | θ ∈ Θ}.
Furthermore, let X1, . . . , Xn be i.i.d. random variables with cdf Fθ0 ∈ F , where the
parameter vector θ0 ∈ Θ is unknown. Now, observe that the spacings

Fθ0(Xi :n) − Fθ0(X(i−1):n), i = 1, . . . , n, (1)

with Fθ0(X0:n) := 0, are distributed as spacings of an ordered sample U1:n, . . . ,Un:n
of size n from the standard uniform distribution [see David and Nagaraja (2003)].
Since, in expectation, the sample U1:n, . . . ,Un:n induces an equidistant partition of
the unit interval, obtaining an estimate for θ0 by tuning the parameter vector such
that the spacings (1) become as equal as possible seems a plausible way to go. The
maximum product of spacings estimation procedure achieves this by maximizing the
geometric mean of the spacings, i.e. the function

S(θ) =
(
n+1∏
i=1

(Fθ (Xi :n) − Fθ (X(i−1):n))
) 1

n+1

with respect to θ ∈ Θ , where Fθ0(Xn+1:n) := 1. For further details on this estimation
method, we refer the reader to the respective articles referred to in the introduction.
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In order to apply the above reasoning to the problem of predicting future record
values, several adjustments to the procedure in the estimation set-up will be necessary,
which primarily are due to the non-i.i.d. structure of the data at hand as well as
the structure of the inferential task. In what follows, Exp(1) denotes the standard
exponential distribution. Let (Rn)

∞
n=1 be the sequence of record values in a sequence

of i.i.d. random variables with continuous cdf Fθ0 ∈ F . In what follows, we are
primarily concerned with the problem of predicting Rs based on R = (R1, . . . , Rr ),
r , s ∈ N, r < s. Denoting by Hθ the cumulative hazard rate function of Fθ ∈ F ,
θ ∈ Θ , i.e. Hθ (x) = − ln(1 − Fθ (x)), we have that

Hθ0(Rn)
d= R̃n, n ∈ N, (2)

where (R̃n)
∞
n=1 is the sequence of record values in an i.i.d. sequence of standard

exponential random variables, and where, for n ∈ N, R̃n ∼ ∑n
i=1 Xi , with X1, X2, . . .

i.i.d. and Xi ∼ Exp(1), i ∈ N, [see Arnold et al. (1998, p. 9)]. Apart from this fact,
the following result, a proof of which can be found in Nevzorov (2001, pp. 12–13)
will prove crucial for the following discussion.

Lemma 1 For n ∈ N, let X1, . . . , Xn+1
i.i.d.∼ Exp(1), and

Y j =
∑ j

i=1 Xi∑n+1
i=1 Xi

, j = 1, . . . , n.

Then, (Y1, . . . ,Yn)
d= (U1:n, . . . ,Un:n).

Combining the distributional identity (2) and Lemma 1, we conclude that

Hθ0(Ri )

Hθ0(Rs)

d= Ui :(s−1), i = 1, . . . , s − 1,

and

Hθ0(Ri )

Hθ0(Rs)
− Hθ0(Ri−1)

Hθ0(Rs)

d= Ui :(s−1) −U(i−1):(s−1), i = 1, . . . , s, (3)

where Hθ0(R0) = U0:(s−1) := 0 and Us:(s−1) := 1. In light of the discussion of
the maximum product of spacings estimation method, the distributional identity (3)
motivates the following definition. For a distribution with cdf F , let α(F) and ω(F)

denote, respectively, the left and right endpoints of the support of the distribution. In
what follows, for n ∈ N, we define

Zn = {
(θ, x1, . . . , xn) ∈ Θ × R

n
<| (x1, . . . , xn) ∈ (α(Fθ ), ω(Fθ ))

n
<

}
and

Pn(θ, x1, . . . , xn) =
n∏

i=1

(
Hθ (xi )

Hθ (xn)
− Hθ (xi−1)

Hθ (xn)

)
, (θ, x1, . . . , xn) ∈ Zn, (4)
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with x0 = −∞, and where we use the notational convention that, for an interval
I ⊆ R and n ∈ N, I n< = {(x1, . . . , xn) ∈ I n | x1 < x2 < · · · < xn}. The set Zn is
a collection of all admissible combinations of the parameter vector θ and the record
values sample x1, . . . , xn of size n. In what follows, for a subset B ⊂ R

n , Bn
|B will

denote the restriction of the Borel σ -algebra Bn on B.

Definition 1 Let r , s ∈ N, r < s. Let R1, . . . , Rs be the first s record values in a
sequence of i.i.d. random variables with continuous parametric cdf Fθ with unknown
parameter vector θ ∈ Θ ⊆ R

d . Let R = (R1, . . . , Rr ). If functions

θ̂ : (Rr
<,Br

|Rr
<
) → (Θ,Bd|Θ)

and

ν = (ν1, . . . , νs−r ) : (Rr
<,Br

|Rr
<
) → (Rs−r

< ,Bs−r
|Rs−r

<
)

exist such that, for any fixed θ ∈ Θ , we have

(θ̂(x�), x�, ν(x�)) ∈ Zs, x� ∈ (α(Fθ ), ω(Fθ ))
r
<

and

Ps(θ̂(x�), x�, ν(x�)) = max
τ∈Θ, x�∈Rs−r

< :
(τ,x�,x�)∈Zs

Ps(τ, x�, x
�), x� ∈ (α(Fθ ), ω(Fθ ))

r
<, (5)

then νs−r (R) is called a maximum product of spacings predictor (MPSP) of Rs based
on R. Any such predictor will be denoted by π

(s)
MPSP .

Next, we establish the general form of the MPSP as a function of the underlying
estimator of the parameter vector. It turns out that the estimator is obtained by maxi-
mizing the function θ �→ Pr (θ, x�). In what follows, the quantile function of a cdf F
will be denoted by F−1.

Theorem 1 Let r , s ∈ N, r < s. Let R1, . . . , Rs be the first s record values in a
sequence of i.i.d. random variables with continuous parametric cdf Fθ with unknown
parameter vector θ ∈ Θ ⊆ R

d . Let R = (R1, . . . , Rr ). If a function θ̂ : (Rr
<,Br

|Rr
<
) →

(Θ,Bd|Θ) exists with the property that, for any fixed θ ∈ Θ , we have

(θ̂(x�), x�) ∈ Zr , x� ∈ (α(Fθ ), ω(Fθ ))
r
<

and

Pr (θ̂(x�), x�) = max
τ∈Θ:

(τ,x�)∈Zr

Pr (τ, x�), x� ∈ (α(Fθ ), ω(Fθ ))
r
<, (6)
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with Pr as defined in (4), then a maximum product of spacings predictor of Rs based
on R is given by

π
(s)
MPSP = F−1

θ̂ (R)

(
1 −

(
1 − F

θ̂ (R)
(Rr )

) s
r
)

. (7)

Proof We have that, for any fixed x� = (x1, . . . , xr ) ∈ R
r
<, and a suitable constant c

depending only on r and s, and S = {(θ, xs) ∈ Θ × (xr ,∞) |(θ, xr , xs) ∈ Z2},

max
θ∈Θ, x�∈Rs−r

< :
(θ,x�,x�)∈Zs

Ps(θ, x�, x
�)

= max
S

max
(xr+1,...,xs−1)∈(xr ,xs )

s−r−1
<

Ps(θ, x�, x
�)

= max
S

r∏
i=1

(
Hθ (xi )

Hθ (xs)
− Hθ (xi−1)

Hθ (xs)

)(
1 − Hθ (xr )/Hθ (xs)

s − r

)s−r

= cmax
S

r∏
i=1

(
Hθ (xi )

Hθ (xr )
− Hθ (xi−1)

Hθ (xr )

) (
Hθ (xr )

Hθ (xs)

)r (
1 − Hθ (xr )

Hθ (xs)

)s−r

= cmax
S

Pr (θ, x�)

(
Hθ (xr )

Hθ (xs)

)r (
1 − Hθ (xr )

Hθ (xs)

)s−r

, (8)

where in the second line we used that, for fixed θ , xr and xs ,

(ν1, . . . , νs−r−1) ∈ argmax
(xr+1,...,xs−1)∈(xr ,xs )

s−r−1
<

s∏
i=r+1

(
Hθ (xi )

Hθ (xs)
− Hθ (xi−1)

Hθ (xs)

)

if and only if

Hθ (νi )

Hθ (xs)
− Hθ (νi−1)

Hθ (xs)
= 1 − Hθ (xr )/Hθ (xs)

s − r
, i = 1, . . . , s − r − 1, (9)

with ν0 = −∞. Now, using the well-known expression for the mode of the probability
density function of a beta distribution with parameters s − r + 1 and r + 1, as well as
the continuity of Fθ for all θ ∈ Θ , we obtain that, for θ ∈ Θ , the function

lθ (xs) =
(
1 − Hθ (xr )

Hθ (xs)

)s−r (
Hθ (xr )

Hθ (xs)

)r

xs ∈ (xr , ω(Fθ )),

possesses at least one maximizing point, and any of these can be obtained as a solution
of the equation

Hθ (xr )

Hθ (xs)
= r

s
(10)
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with respect to xs ∈ (xr , ω(Fθ )). A particular solution, say xs(θ, x�), of this equation
is given by xs(θ, x�) = F−1

θ (1−(1−Fθ (xr ))
s
r ). Moreover, we have that lθ (xs(θ, x�))

is independent of θ . Thus, combining Eqs. (9) and (10) as well as using property (6)
of θ̂ and the equality (8), we conclude that θ̂ and the function ν defined by

ν(x�) =
(
F−1

θ̂ (x�)

(
1 − (1 − F

θ̂ (x�)
(xr ))

i
r

)
, i = r + 1, . . . , s

)
(11)

satisfy (5). Hence, by Definition 1, the (s − r)th coordinate function of ν composed
with R yields the MPSP. 	

Remark 1 (i) The maximum product of spacings prediction procedure produces pre-

dictions consistently in the following sense: In determining a prediction value
νs−r (x�) for Rs based on a sample x� of R1, . . . , Rr , by the definition of the pre-
diction procedure, one is also required to produce values ν1(x�), . . . , νs−r−1(x�)

such that (5) is satisfied for ν(x�) = (ν1(x�), . . . , νs−r (x�)). It is then tempting to
take ν1(x�), . . . , νs−r−1(x�) as prediction values for Rr+1, . . . , Rs−1 and ask how
these prediction values relate to those one would obtain by computing prediction
values according to Definition 1. Since the values ν1(x�), . . . , νs−r (x�) are avail-
able in closed form via formula (11), it is obvious that, for s̃ such that r < s̃ < s,
π

(s̃)
MPSP (x�) = νs̃−r (x�), i.e. taking νs̃−r (x�) as a prediction value for Rs̃ amounts

to predicting Rs̃ via Definition 1.
(ii) When predicting the very next record (s = r + 1), the MPSP does not become

trivial in general, i.e. π(r+1)
MPSP will exceed Rr .

(iii) Since k-th record values [see Dziubdziela and Kopociński (1976)] in a sequence
of i.i.d. random variables with cdf F are equal in distribution to record values in
a sequence of i.i.d. random variables with cdf F1:k = 1 − (1 − F)k [see Arnold
et al. (1998, p. 43)], we have that the statement of Theorem 1 continuous to hold
true for k-th record values.

3 Relation tomaximum observed likelihood prediction

Recently, Volovskiy and Kamps (2020) introduced the so-called maximum observed
likelihood prediction procedure (MOLP) and used it to derive predictors for future
record values. More specifically, the MOLP derives a predictor of a random vari-
able Y based on a possibly vector-valued random variable X with joint pdf f X ,Y

θ by
maximizing the observed predictive likelihood function Lobs defined by

Lobs(θ, y|x) = f X |Y
θ (x |y)

with respect to θ and y. In the case of predicting Rs based on R = (R1, . . . , Rr ), the
maximum observed likelihood predictor takes on the form [see Volovskiy and Kamps
(2020, Theorem 3.3), Volovskiy (2018, Theorem 5.3)]

π
(s)
MOLP = F−1

θ̂ (R)

(
1 − (1 − F

θ̂ (R)
(Rr ))

s−1
r

)
, (12)
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which is quite similar to the form of π
(s)
MPSP in (7), although the procedures to derive

these predictors seem to be totally different. Here, the case s = r + 1 does not
lead to a useful predictor, in general. In particular situations, the MOLP was shown
to outperform a respective maximum likelihood predictor in terms of mean squared
error and Pitman closeness. In (12), the function θ̂ is such that

Ψ (θ̂(x�), x�) = max
θ∈Θ:

(θ,x�)∈Zr

Ψ (θ, x�),

where the function Ψ is given by

Ψ (θ, x�) =
r∏

i=1

H ′
θ (xi )

Hθ (xr )
, (θ, x�) ∈ Zr . (13)

Assuming that the cdfs Fθ , θ ∈ Θ , have a common finite left endpoint of the support,
say x0 = α(Fθ ), and using the approximation H ′

θ (xi )(xi−xi−1) ≈ Hθ (xi )−Hθ (xi−1),
i = 1, . . . , r , we have that

Ψ (θ, x�) =
r∏

i=1

H ′
θ (xi )

Hθ (xr )

=
r∏

i=1

1

xi − xi−1

r∏
i=1

H ′
θ (xi )(xi − xi−1)

Hθ (xr )

≈
r∏

i=1

1

xi − xi−1

r∏
i=1

Hθ (xi ) − Hθ (xi−1)

Hθ (xr )

∝
r∏

i=1

(
Hθ (xi )

Hθ (xr )
− Hθ (xi−1)

Hθ (xr )

)

= Pr (θ, x�), (θ, x�) ∈ Zr .

Thus, under the assumption of the finiteness of a common left endpoint of the sup-
port of the underlying family of distributions, the objective functions used to estimate
the distributional parameters in the maximum observed likelihood and the maximum
product of spacings prediction method, respectively, are approximately proportional
to each other. This as well as the fact that, for large s, s−1

r ≈ s
r , implies that

π
(s)
MPSP ≈ π

(s)
MOLP .

Note that the above rather heuristic analysis does not imply any statement about the
quality of this approximation. A comparison of the functional forms of the predictors
reveals that while the MOLP yields the last observed value as prediction value for
the next observation and, hence, cannot be considered a sensible prediction method in
this particular setting, themaximum product of spacingsmethod produces a prediction
value different from the last observation. At the same time, both prediction procedures
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share the desirable properties of allowing to derive the general form of the predictor
[see Theorem 1 and (12)] aswell as the simplicity of deriving the predictors for specific
distribution families, as is illustrated by the examples in the following section.

4 Examples

The MPSP-approach is illustrated for exponential and Pareto distributions.

4.1 Exponential distribution

Assume that (Rn)n∈N is the sequence of record values in a sequence of i.i.d. two-
parameter exponential random variables. The density, cumulative distribution and
quantile functions of the exponential distribution Exp(μ, σ ) with location parameter
μ ∈ R and scale parameter σ ∈ R+ are given by

fθ (x) = 1

σ
exp

{
− x − μ

σ

}
, x ∈ [μ,∞),

Fθ (x) = 1 − exp

{
− x − μ

σ

}
, x ∈ [μ,∞),

F−1
θ (x) = μ − σ ln(1 − x), x ∈ [0, 1),

where θ = (μ, σ ) ∈ R × R+. As far as likelihood-based prediction of future record
values is concerned, the MLP of Rs based on R = (R1, . . . , Rr ), r < s, was derived
by Gupta and Kirmani (1989) [see also Basak and Balakrishnan (2003)] and takes on
the form

π
(s)
MLP = Rr + (Rr − R1)

s − r − 1

r + 1
,

while the MOLP of Rs based on R was computed by Volovskiy and Kamps (2020)
[see also Volovskiy (2018)] and equals

π
(s)
MOLP = Rr + (Rr − R1)

s − r − 1

r
.

Note that both theMLP and theMOLP yield the prediction Rr for Rs if s = r+1, and,
hence, cannot be considered reasonable prediction methods in this particular situation.

In view of Theorem 1, in order to determine an MPSP of Rs based on R, it suffices,
for any x� ∈ R

r
<, to solve the maximization problem

max
θ∈Θ:

(θ,x�)∈Zr

Pr (θ, x�).
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Since

Pr (θ, x�) = x1 − μ

(xr − μ)r

r∏
i=2

(xi − xi−1), (θ, x�) ∈ Zr ,

themaximization has to effectively be performedwith respect to the location parameter
μ only. Because the function f (x) = x/(x+c)r , x ∈ [0,∞), where c is some positive
constant, possesses a unique maximum point, which is given by x = c/(r−1), setting

μ̂(x�) = x1 − xr − x1
r − 1

, x� ∈ R
r
<,

and θ̂ = (μ̂, σ̂ ), where σ̂ : Rr
< → R+ is some arbitrary function, we conclude that θ̂

satisfies (6). Consequently, the unique MPSP of Rs based on R is given by

π
(s)
MPSP = F−1

θ̂ (R)

(
1 −

(
1 − F

θ̂ (R)
(Rr )

) s
r
)

= R1 − Rr − R1

r − 1
+ s

r

(
Rr − R1 + Rr − R1

r − 1

)

= Rr + (s − r)(Rr − R1)

r − 1
.

Thus, it turns out that in this particular setting theMPSP coincides with the BLUP [see
Ahsanullah (1980)]. If the location parameter is known, function Pr is independent
of the distributional parameters, which considerably simplifies the derivation of the
MPSP. In this set-up, the MPSP takes on the form

π
(s)
MPSP = μ + s(Rr − μ)

r
,

and, by the results of Basak and Balakrishnan (2003), again is seen to coincide with
the BLUP.

4.2 Pareto distribution

We assume that (Rn)n∈N is the sequence of record values in a sequence of i.i.d. Pareto
random variables. The density, cumulative distribution and quantile functions of the
Pareto distribution Pareto(α, β) with scale parameter α ∈ R+ and shape parameter
β ∈ R+ are given by

fθ (x) = βαβ

xβ+1 , x ∈ [α,∞),

Fθ (x) = 1 −
(α

x

)β

, x ∈ [α,∞),

F−1
θ (x) = α(1 − x)−

1
β , x ∈ [0, 1).
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where θ = (α, β) ∈ R
2+. Maximum likelihood and maximum observed likelihood

prediction of Rs based on R = (R1, . . . , Rr ), 2 ≤ r < s, were discussed in Volovskiy
(2018), where it was shown that the respective predictor takes on the form

π
(s)
MLP = Rr exp

{
s − r − 1

β̂ML + 1

}
,

where

β̂ML = 1

2

⎛
⎜⎝ r + 1

ln
(
Rr
R1

) − 1 +

√√√√√
⎛
⎝ r + 1

ln
(
Rr
R1

) − 1

⎞
⎠

2

+ 4s

ln
(
Rr
R1

)
⎞
⎟⎠ ,

and

π
(s)
MOLP = R1

(
Rr

R1

) s−1
r

.

Again, from the expressions of the MLP and the MOLP, it is evident that both
likelihood-based prediction methods produce Rr as predictor for Rs if s = r + 1.

Next, we determine the MPSP of Rs based on R. Function Pr takes on the form

Pr (θ, x�) = − ln(α/x1)

(− ln(α/xr ))r

r∏
i=2

ln(xi/xi−1), (θ, x�) ∈ Zr .

For a positive constant c, the function f (x) = − ln(x)/(− ln(cx))r , x ∈ (0, 1),
possesses the unique maximum point x = c1/(r−1). Hence, setting

α̂(x�) = x1

(
x1
xr

) 1
r−1

, x� ∈ (0,∞)r<

and choosing an arbitrary function β̂ : (0,∞)r< → R+, we obtain that θ̂ = (α̂, β̂)

satisfies (6). Thus, by Theorem 1, the unique MPSP of Rs based on R is given by

π
(s)
MPSP = F−1

θ̂ (R)

(
1 −

(
1 − F

θ̂ (R)
(Rr )

) s
r
)

= R1

(
R1

Rr

) 1
r−1

(
Rr

R1

(
R1

Rr

)− 1
r−1

) s
r

= R1

(
Rr

R1

) s−1
r−1

.

In view of the fact that the Pareto distribution often allows for adequate modeling
of quantities spanning many orders of magnitude, it seems natural to evaluate the
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performance of a predictor of Pareto record values in terms of how accurately it
predicts the order of magnitude of the future realization. Hence, it is appropriate to
consider the quantity

E(ln(Rs/π
(s)
MPSP ))

for an evaluation of the performance of the MPSP. Now, observe that the MPSP of
Pareto record values is related to the MPSP of exponential record values by way of
the same transformation, which relates the record values from the two distributions.
More specifically, we have that

π̃
(s)
MPSP = ln

(
π

(s)
MPSP

)
,

where π̃
(s)
MPSP is the MPSP of the s-th Exp(μ, σ ) record value based on the first r

observed record values with μ = ln(α) and σ = 1/β. Using this as well as the fact
that π̃ (s)

MPSP coincides with the BLUP, we conclude that

E(ln(Rs/π
(s)
MPSP )) = 0.

5 Real data example

In this section, we illustrate the practical applicability of the proposed prediction
procedure on a dataset of water level measurements. Extreme water levels may have
a major environmental impact and, due to potential flood situations, pose a serious
threat to the human population. For our analysis, we consider data collected by the
German Federal Office of Hydrology (FOH) in its role as a scientific advisor to the
Federal Waterways and Shipping Administration, publicly available at https://www.

Table 1 Maximum product of
spacings predictions of the next
record water levels exceeding
690 cm

Observed record water levels Predictions

713 –

781 –

880 855

885 978

901 951

914 955

915 961

993 954

1010 1041

– 1055

Bold-face: Prediction of the yet-to-be observed record water level
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(b) Weekly maximum water levels above 690 cm.

Fig. 1 Histogram plots for the water level data

pegelonline.wsv.de/gast/start. For measurements data older than 30 days, one has to
contact the FOH directly (www.bafg.de). The data set contains hourly measurements
(in cm) ofwater level for the time period from January 1918 to February 2019 collected
at the measurement site Cuxhaven-Steubenhöft located at the river Elbe.

In order to approximately meet the i.i.d.-assumption in our record model, we calcu-
lated the weekly maximumwater levels based on the hourly data, which then served as
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Fig. 2 Pareto Q–Q plot for the weekly maximum water levels above 690 cm

the basis for prediction. In addition, we retained only those measurements exceeding
690 cm. We show in Fig. 1 the histogram of the full dataset of weekly maximum
water levels as well as the histogram of the weekly maximum water levels above 690
cm. To assess the distributional properties of the dataset of water levels above 690
cm, we use a Pareto Q-Q plot (see Fig. 2). Apart from the last few points, the Pareto
Q-Q plot is more or less linear indicating a reasonable fit, at least for the purpose of
this illustrative example, of the Pareto distribution to the tail of the weekly maximum
water levels. The maximum likelihood estimate of the shape parameter is β̂ = 16.9.
In Fig. 1b, the Pareto density function with parameter β̂ is plotted. The sequence of
record values extracted from the dataset of weekly maximum water levels exceeding
690 cm is given by

713, 781, 880, 885, 901, 914, 915, 993, 1010.

Weapplied themaximumproduct of spacings predictionprocedure forPareto record
values (see Sect. 4.2) to predict the subsequent record water level Rr+1 based on the
preceding r observed record water levels by successively increasing the sample size
r from 2 up to 9. The results are reported in Table 1. From the results we observe that
the MPSP is able to capture the magnitude of the observed record water levels, and
this even more so, the larger the sample size.
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