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Abstract
We examine infinite horizon decision problems with arbitrary bounded payoff func-
tions in which the decision maker uses finitely additive behavioral strategies. Since 
we only assume that the payoff function is bounded, it is well-known that these 
behavioral strategies generally do not induce unambiguously defined expected pay-
offs. Consequently, it is not clear how to compare behavioral strategies and define 
optimality. We address this problem by finding conditions on the payoff function 
that guarantee an unambiguous expected payoff regardless of which behavioral strat-
egy the decision maker uses. To this end, we systematically consider various alter-
natives proposed in the literature on how to define the finitely additive probability 
measure on the set of infinite plays induced by a behavioral strategy.

Keywords Infinite duration decision problem · Behavioral strategy · Expected 
payoff · Finitely additive probability measure

JEL Classification C72

We would like to thank William Sudderth for a very helpful discussion. We also thank the editor and 
two anonymous reviewers for their very useful comments.

 * Dries Vermeulen 
 d.vermeulen@maastrichtuniversity.nl

 János Flesch 
 j.flesch@maastrichtuniversity.nl

 Anna Zseleva 
 anna.zseleva@maastrichtuniversity.nl

1 School of Business and Economics, Department of Quantitative Economics, Maastricht 
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-024-00892-5&domain=pdf
http://orcid.org/0000-0001-9599-4615


 J. Flesch et al.

1 3

1 Introduction

We examine infinite horizon decision problems in which the decision maker’s 
payoff is a bounded function of the infinite sequence of the actions chosen. Within 
our framework, probability measures are so-called charges: they are finitely addi-
tive, albeit not necessarily countably additive. We assume that the decision maker 
uses behavioral strategies. A behavioral strategy assigns a charge on the avail-
able actions depending on the actions chosen in the past. In order to assign an 
expected payoff to each behavioral strategy, it is necessary to define the charge 
induced by the behavioral strategy on the set of infinite sequences of actions.

Following established literature, we explore four distinct algebras on the set of 
infinite sequences of actions, and correspondingly, we define the charge induced 
by a behavioral strategy on each of these algebras.

Yet, because the payoff function is only assumed to be bounded, it may not be 
measurable with respect to these algebras. Consequently, to calculate expected 
payoffs through integrals, we need to extend the charge induced by a behavio-
ral strategy from these algebras to encompass the entire power set. However, the 
extension of these charges is generally not unique, and thus the expected payoff 
under a behavioral strategy might be ambiguous.

This naturally gives rise to the question: what conditions ensure that the 
expected payoff is unambiguous? We address this question by finding conditions 
on the payoff function that guarantee an unambiguous expected payoff regardless 
of which behavioral strategy the decision maker adopts. Most of these conditions 
have a topological nature. We illustrate the results by several examples.

Related literature. Charges were advocated by de Finetti (1975), Savage 
(1972), and Dubins and  Savage (2014). They facilitate constructions such as a 
uniform probability distribution over the natural numbers (cf. Schirokauer and 
Kadane (2007)), and avoid the problem of measure (cf. Aliprantis and Border 
(2005)). For a summary of the history of charges, we refer to Bingham (2010).

In decision theory, charges have been used in various models, notably in de 
Finetti (1975) and Savage (1972), and they are also regularly used to model 
beliefs (e.g. Gilboa and Marinacci (2016)). Models building on these ideas can 
be found in Al-Najjar (2009) and Pomatto et al. (2014). Sudderth (2016) writes 
about finitely additive dynamic programming, where the payoff is some type of 
aggregation of daily payoffs. Charges also gained recognition in game theoretic 
models, such as in Maitra and Sudderth (1993), Marinacci (1997), Maitra and 
Sudderth (1998), Harris et  al. (2005), Capraro and Scarsini (2013), Al-Najjar 
et  al. (2014), Flesch et  al. (2017), Milchtaich (2020) and Cerreia-Vioglio et  al. 
(2022).

The same type of decision problems as ours are studied in Dubins and Savage 
(2014), Dubins (1974), Purves and Sudderth (1976) and Flesch et al. (2019), and 
the algebras we consider on the infinite sequences of actions already appear in 
these papers. We will mention the specific connections throughout the paper.

Structure of the paper. In Sect. 2, we discuss some preliminaries on charges. 
In Sect. 3, we introduce the model and the main question. In Sect. 4, we discuss 
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induced charges by behavioral strategies and the corresponding expected payoffs. 
In Sect. 5, as a preparation, we define a few classes of payoff functions. In Sect. 6, 
we present our main results: conditions for an unambiguously defined expected 
payoff. In Sect. 7, we illustrate our results with examples. In Sect. 8, we provide 
some concluding remarks. For convenience, an overview of the most important 
notation can be found before the Appendices.

The remaining sections contain technical issues and the proofs: Sect. 9 contains 
further properties on the algebras and expected payoffs, Sect. 10 contains most of 
the proofs, and Sect. 11 contains an additional example.

2  Preliminaries on charges

In this section we provide a brief summary on charges. For further reading, we refer 
to Rao and Rao (1983) and Dunford and Schwartz (1964).

Let X be a nonempty set. A collection P of subsets of X is called an algebra if 
it has the following properties: (1) X ∈ P , (2) if E,F ∈ P , then E ∪ F ∈ P , (3) 
if E ∈ P , then X⧵E ∈ P . It follows that an algebra is closed under taking finite 
unions. An algebra is called a sigma-algebra, if it is even closed under taking count-
able unions.

Let P be an algebra on X. A finitely additive probability measure, also called a 
charge, on (X,P) is a function � ∶ P → [0, 1] such that �(X) = 1 and for all dis-
joint sets E,F ∈ P it holds that �(E ∪ F) = �(E) + �(F) . We denote the set of all 
charges on (X,P) by C(X,P) . For x ∈ X , we denote the Dirac charge on x by �x , 
i.e., for every set B ∈ P , we have �x(B) = 1 if x ∈ B and �x(B) = 0 if x ∉ B.

The following statement follows from Theorem 2 in Loś and Marczewski (1949) 
together with the Lemma of Zorn, and is also shown in Theorem C.3 in Flesch et al. 
(2017). If P is an algebra, and � is a charge on P , then � can be extended to a 
charge on 2X . That is, there exists a charge � on (X, 2X) such that �(E) = �(E) for all 
E ∈ P . The extension � is generally not unique.

Let P be an algebra on X. A function s ∶ X → ℝ is called a P-measurable 
simple–function if there are c1,… , cm ∈ ℝ and a partition {B1,… ,Bm} of X with 
B1,… ,Bm ∈ P such that s =

∑m

i=1
ci�Bi

 , where �Bi
 is the characteristic function of 

the set Bi . Let � be a charge on (X,P) . The integral of s with respect to the charge � 
is defined by ∫

x∈X
s(x)�(dx) =

∑m

i=1
ci ⋅ �(Bi).

Let � be a charge on (X, 2X) . For every bounded function f ∶ X → ℝ and every 
𝜀 > 0 , there exists1 a ( 2X-measurable) simple–function s such that s ≤ f ≤ s + � . 
Let f ∶ X → ℝ be a bounded function. The integral ∫

x∈X
f (x)�(dx) is defined as the 

supremum of all real numbers ∫
x∈X

s(x)�(dx) , where s is a simple–function with 
s ≤ f  . Since f is bounded, the integral is finite. The integral is linear over the set of 
bounded real-valued functions. We remark that the integral ∫

x∈X
f (x)�(dx) is equal 

1 See p.272 in the appendix by WD Sudderth, D Gilat and R Purves in Dubins  and Savage (2014). 
Indeed, consider the inverse images f −1[z�, (z + 1)�) , where z is an integer. Since f is bounded, only 
finitely many of them are non-empty. If f −1[z�, (z + 1)�) is non-empty, then let s take value z� on this set. 
It follows that s ≤ f ≤ s + �.
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to the infimum of all real numbers ∫
x∈X

s(x)�(dx) , where s is a simple–function and 
s ≥ f .

When X is countably infinite,2 we say that a charge � ∈ C(X, 2X) is diffuse (also 
called purely finitely additive) if �({x}) = 0 for every x ∈ X . Assuming the Axiom 
of Choice, diffuse charges exist. Note that diffuse charges are not countably additive.

3  The model and the main question

In the entire paper, we assume the Axiom of Choice.
The decision problem. Let A be an action set, having at least two elements. Let 

H denote the set of finite sequences in A, including the empty sequence ø. Elements 
of A are called actions, elements of H are called histories and elements of Aℕ are 
called plays. Let u ∶ Aℕ → ℝ be a bounded function, called the payoff function.

Consider the following decision problem. At each period t = 1, 2,… , the decision 
maker chooses3 an action at from A, knowing his previous choices (a1,… , at−1) ∈ H . 
This induces a play a⃗ = (a1, a2,…) . The payoff of the decision maker is u(a⃗).

Behavioral strategy. A behavioral strategy is a function b ∶ H → C(A, 2A) . The 
interpretation is that if history h arises during the decision problem, then the strategy 
b recommends the decision maker to choose an action according to the charge b(h).

Main question. To explain our main question informally: suppose that an algebra 
P is given on the set Aℕ of plays, and suppose also that for each behavioral strategy 
b the induced charge ℙP

b
 on P is known. We would like to investigate which payoff 

functions have an unambiguous expected payoff for every ℙP

b
.

More precisely, following the literature, we will consider specific algebras P on 
the set Aℕ of plays. Given any such algebra P , we will formally define a charge 
ℙ
P

b
 on (Aℕ,P) for each behavioral strategy b (cf. Section 4). Intuitively, ℙP

b
 is the 

charge that the behavioral strategy b induces on the algebra P ; that is, for each set 
Q ∈ P of plays, ℙP

b
(Q) is the probability under b that the realized play belongs to 

Q.
Since the payoff function u may not be measurable with regard to P , but u is 

bounded and therefore always measurable with regard to the power set of Aℕ , we 
extend the induced charges ℙP

b
 to the power set of Aℕ . More precisely, we denote by 

[ℙP

b
] the set of charges on the power set of Aℕ that extend ℙP

b
 from the algebra P . 

For each charge B ∈ [ℙP

b
] , we obtain an expected payoff

Hence, the set of possible expected payoffs for the behavioral strategy b, with 
respect to P , is

(1)u(B) = ∫a⃗∈Aℕ

u(a⃗) B(da⃗).

2 The definition of a diffuse charge can be generalized to sets that are uncountably infinite. However, in 
the general case the definition is more involved.
3 Note that the set of available actions does not depend on the history, and is always A.
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We say that a behavioral strategy b induces an unambiguous expected payoff with 
respect to P , if the set [uP(b)] is a singleton.

Our main question is to identify conditions on the payoff function u under which 
all behavioral strategies induce an unambiguous expected payoff, i.e., [uP(b)] is a 
singleton for each behavioral strategy b. This question depends heavily on the cho-
sen algebra P and the way how the induced charges ℙP

b
 for the behavioral strategies 

are specified.

4  Algebras on the set of plays, induced charges on the algebras, 
and expected payoff

In this section, we define four different algebras, and for each algebra and each 
behavioral strategy, we define the charge induced by this behavioral strategy on the 
algebra. By extending these induced charges to the entire power set of plays, we 
define expected payoffs under behavioral strategies.

The topology on the set of plays.4 We endow the action set A with the discrete 
topology and the set Aℕ of plays with the induced product topology, denoted by T  . 
The elements of T  are called the open sets, and their complements are called the 
closed subsets of Aℕ . Thus, a subset of Aℕ is open exactly when it is the union of 
cylinder sets, where the cylinder set corresponding to a history h is the set of plays 
that has h as its initial segment (see p.16 for a formal definition). A subset of Aℕ that 
is both open and closed is called clopen.

The topological space (Aℕ, T) is completely metrizable, for instance by the 
metric d ∶ Aℕ × Aℕ → ℝ defined as: if a⃗ = a⃗� then d(a⃗, a⃗�) = 0 , and otherwise 
d(a⃗, a⃗�) = 2−k(a⃗,a⃗

�) where k(a⃗, a⃗�) ∈ ℕ is the first period at which a⃗ and a⃗′ differ. Thus, 
a sequence of plays (a⃗n)n∈ℕ converges to a play a⃗ if for every k ∈ ℕ there exists 
Nk ∈ ℕ such that for every n ≥ Nk the first k coordinates of a⃗n coincide with those of 
a⃗ . The Borel algebra R on Aℕ is the smallest algebra of subsets of Aℕ that contains 
all open sets.

The charge induced by a behavioral strategy on the Borel algebra. For each 
behavioral strategy b, we define the induced charge ℙb on the Borel algebra R . Our 
definition is in accordance with the literature, in particular with Dubins and Savage 
(2014) and Dubins (1974). For the formal definition, see Theorem 4.1 below.

We first need a bit of terminology and notation. Consider a decision prob-
lem G, a period k ∈ ℕ and a history h ∈ Ak . We define the subproblem that starts 
at history h. This subproblem is played as follows: At periods n ≥ k + 1 , the 
decision maker chooses an action an ∈ A , which induces a play (ak+1, ak+2,…) 
and a corresponding payoff u|h(ak+1, ak+2,…) = u(h, ak+1, ak+2,…) . The sub-
problem that starts at h is denoted by G|h.5 A behavioral strategy b in decision 

(2)[uP(b)] = {u(B) ∶ B ∈ [ℙP

b
]}.

4 For more details on the chosen topology, we refer to Dubins and Savage (2014) and Kechris (1995).
5 In fact, G|h is identical to the decision problem G, except for the payoff function (and for the inessential 
change that the first period has label k + 1).
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problem G induces a behavioral strategy b|h in the subproblem G|h as follows: 
b|h(ak+1, ak+2,… , ak� ) = b(h, ak+1, ak+2,… , ak� ) , for every k′ ≥ k . The strategy b|h is 
called the continuation strategy of b at history h.6

A specification is a mapping � that to each behavioral strategy b assigns a charge 
�(b) on the Borel algebra R of Aℕ . As is shown7 in Theorem 2.8.1 of Dubins and 
Savage (2014) and Theorem 2 in Dubins (1974), there is a unique specification � 
that satisfies two natural conditions.

Theorem  4.1 (Dubins and Savage (2014), and Dubins (1974)) There is a unique 
specification � with the following two conditions: 

1. Consistency for clopen (closed and open) sets: for every behavioral strategy b, 
for every history h ∈ Ak−1 at any period k and for every clopen set Q ∈ T  it holds 
that 

where Q|h = {(ak, ak+1,…) ∶ (h, ak, ak+1,…) ∈ Q} is the continuation of Q after 
h, and similarly Q|ha is the continuation of Q after the history ha.

2. Regularity for open sets: for every behavioral strategy b and for every open set 
O ∈ T

Remark. Condition 1 (consistency) is first proposed by Dubins  and Savage 
(2014).8 The intuition behind this condition is the following. Consider a behav-
ioral strategy b, a history h and a clopen set Q ∈ T  . The specification � assigns 
to the continuation strategy b|h a charge �(b|h) , and for each action a ∈ A it also 
assigns to the continuation strategy b|ha a charge �(b|ha).9 The left-hand-side of 
(3) considers the subgame at history h, and the right-hand-side of (3) considers 
the subgame at each history ha. Thus, Condition 1 requires the following consist-
ency property between the charges �(b|h) and �(b|ha) , where a ∈ A : the prob-
ability of Q|h under the charge �(b|h) should be equal to the expectation of the 
probability of Q|ha at the next period under �(b|ha) , where a is the action chosen 
after history h.

(3)�(b|h)(Q|h) = ∫a∈A

�(b|ha)(Q|ha) b(h)(da),

(4)𝜓(b)(O) = sup {𝜓(b)(Q) ∶ clopen Q ∈ T and Q ⊆ O}.

6 Note that formally b|h is a mapping from H to C(A, 2A) , so b|h itself is also a behavioral strategy accord-
ing to our definition.
7 The language and notation of Dubins and Savage are different from ours.
8 See Theorem 2.8.1 in Dubins and Savage (2014), which is presented in a somewhat different form. We 
also refer to Lemma 4 in Flesch et al. (2019), and the strongly related Theorem 1 in Purves and Sudderth 
(1976).
9 Formally, as mentioned earlier, each continuation strategy is itself a strategy in the original decision 
problem G, and therefore � assigns a charge to it.
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Condition 2 (regularity) is proposed by Dubins (1974). It requires inner-regular-
ity for the probabilities of open sets: the probability of each open set is equal to the 
supremum of the probabilities of the contained clopen sets. ◊

Now, for each behavioral strategy b, the induced charge is ℙb = �(b) where � 
is the unique specification in Theorem 4.1. By [u(b)] we denote the set of possible 
expected payoffs, which is calculated according to (2) (with P being the Borel alge-
bra R).10

Smaller algebras. As mentioned earlier, from a conceptual point of view the lit-
erature has also considered three alternative algebras, instead of the Borel algebra 
R . All three algebras are included in R . 

 I The finiTe horizon algebra: This algebra, denoted by RI , consists of all subsets 
Q of Aℕ such that we already know at some period whether or not the induced 
play belongs to Q. Formally, Q ⊆ Aℕ belongs to RI exactly when Q satisfies the 
following property: there is a period n such that for all plays a⃗, a⃗′ that coincide 
up to period n, either both a⃗, a⃗′ belong to Q or both a⃗, a⃗′ belong to Aℕ⧵Q . This 
is a small but very natural algebra. This algebra is examined in Flesch et al. 
(2019), but Dubins and Savage (2014) in Sect. 2.6 also refer to events that only 
depend on finitely many coordinates.

 II The clopen algebra: This algebra, denoted by RII , consists of all clopen sub-
sets of Aℕ . This algebra is examined in detail in Dubins and Savage (2014).

 III The clopen+singleTon algebra: This algebra, denoted by RIII , is the smallest 
algebra that contains all clopen subsets of Aℕ plus the singleton sets {a⃗} , for 
all a⃗ ∈ Aℕ . This algebra is examined in detail in Flesch et al. (2019).

We obviously have

For each i = I, II, III and for each behavioral strategy b, we denote by ℙi
b
 the restric-

tion of the charge ℙb from the Borel algebra R to the algebra Ri . Due to the previous 
observation, we have [ℙI

b
] ⊇ [ℙII

b
] ⊇ [ℙIII

b
] ⊇ [ℙb].

With regard to Ri , we can define the set of possible expected payoffs for each 
behavioral strategy b according to (2), and we denote this set by [ui(b)] . We then 
have [uI(b)] ⊇ [uII(b)] ⊇ [uIII(b)] ⊇ [u(b)] . We say that a behavioral strategy b 
induces an unambiguous expected payoff with respect to Ri if [ui(b)] is a singleton.

Details and further discussions on these three smaller algebras are deferred to 
Sect. 9. In particular, Proposition  9.2 shows that dealing with the algebras RI , RII , 
R

III and R are all essentially different; that is, our main question of unambigous 
expected payoffs for all behavioral strategies is different in all these algebras.

(5)R
I ⊆ R

II ⊆ R
III ⊆ R.

10 For the Borel algebra R , we omit the superscript R in ℙb and in [u(b)] , unlike for the other algebras 
that we derive later from R.
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5  Classes of payoff functions

In order to be able to present our main results (cf. Sect. 6), we define several classes 
of payoff functions. We discuss the relation between these classes in the end of this 
section.

Uniformly approachable payoff functions. Let P be an algebra on Aℕ . A payoff 
function u ∶ Aℕ → ℝ is uniformly P-approachable, if for every 𝜀 > 0 there exists a 
P-measurable simple–function u� ∶ Aℕ → ℝ such that |u(a⃗) − u�(a⃗)| ≤ 𝜀 for every 
a⃗ ∈ Aℕ.

Semicontinuous, continuous and uniformly continuous payoff functions. A 
payoff function u ∶ Aℕ → ℝ is called upper semicontinuous if for every r ∈ ℝ the 
set u−1([r,∞)) is closed.11 Similarly, u is called lower semicontinuous if for every 
r ∈ ℝ the set u−1((−∞, r]) is closed.12 A function is continuous if and only if it is 
both upper and lower semicontinuous. The payoff function u is called uniformly con-
tinuous if for every 𝜀 > 0 there exists 𝛿 > 0 such that for all plays a⃗, a⃗� ∈ Aℕ with 
d(a⃗, a⃗�) < 𝛿 we have |u(a⃗) − u(a⃗�)| < 𝜀.

Tame payoff functions. The oscillation of u at the play a⃗ is defined as

where N𝜀(a⃗) = {a⃗� ∈ Aℕ ∶ d(a⃗, a⃗�) < 𝜀} is the �-neighbourhood of a⃗ . We call the 
payoff function u weakly tame if for every r > 0 the set {a⃗ ∈ Aℕ ∶ ou(a⃗) ≥ r} is 
finite.

We say that the payoff function u ∶ Aℕ → ℝ has a limit at a play a⃗ ∈ Aℕ if there 
is � ∈ ℝ with the following property: u(a⃗n) converges to � for each sequence a⃗n in 
Aℕ such that (1) a⃗n converges to a⃗ as n → ∞ , and (2) a⃗n ≠ a⃗ for all n ∈ ℕ . If u has a 
limit at a⃗ , we denote it by Lu(a⃗).

For the payoff function u, let Du denote the set of plays at which u is not continu-
ous. We say that a discontinuity a⃗ ∈ Du is removable if u has a limit at a⃗ . We call 
the payoff function u strongly tame if the following two conditions hold: u is weakly 
tame, and each discontinuity in Du is removable.13 For an illustration of these con-
cepts, we refer to Example 11.1 in Sect. 11.

Relation between classes of payoff functions. If u is continuous, then by defini-
tion, u is both upper and lower semicontinuous. If u is uniformly continuous, then 
u is also continuous, and if A is finite, then by compactness of Aℕ the converse also 
holds.

Note that u is continuous at a⃗ if and only if u has a limit at a⃗ and Lu(a⃗) = u(a⃗) . 
Also, u is continuous at a⃗ if and only if ou(a⃗) = 0 . A continuous function is clearly 
strongly tame.

ou(a⃗) = lim
𝜀↓0

sup
a⃗�,a⃗��∈N𝜀(a⃗)

|u(a⃗�) − u(a⃗��)|,

11 Equivalently, for every play a⃗ and sequence of plays a⃗n converging to a⃗ we have 
lim supn→∞ u(a⃗n) ≤ u(a⃗).
12 Equivalently, for every play a⃗ and sequence of plays a⃗n converging to a⃗ we have 
lim infn→∞ u(a⃗n) ≥ u(a⃗).
13 If each discontinuity in Du is removable, then the function Lu ∶ Aℕ → ℝ is continuous; cf. 
Lemma 10.1.
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6  Main results

In this section we present our main results. The proofs can be found in Sect. 10.
The first theorem identifies a condition that guarantees that the expected payoffs 

are unambiguous under behavioral strategies with respect to any of the algebras.

Theorem 6.1 Let P be any of the algebras RI ,RII ,RIII ,R . Suppose that the payoff 
function u is uniformly P-approachable. Then, with respect to P , each behavioral 
strategy b induces an unambiguous expected payoff.

We remark that Marinacci (1997) and Harris et al. (2005) also consider uniformly 
approachable functions, but in a very different setting. They consider one-shot 
multi-player simultaneous-move games in which the players’ strategies are charges. 
In their setting each strategy profile induces an unambigious expected payoff if the 
payoff function is uniformly approachable with respect to a specific algebra on the 
set of action profiles. Our Theorem 6.1 is set in infinite horizon decision problems, 
and hence it does not follow from their results.

The reverse implication of Theorem 6.1 also holds for the algebras RI and RII , as 
is shown respectively in Theorems  6.2 and 6.3 below. However, Example  11.2 will 
demonstrate that the reverse implication is no longer valid for the algebras RIII and 
R.

The next theorems provide, for each algebra separately, connections between 
unambiguous expected payoffs under behavioral strategies and properties of the pay-
off function.

For the finite horizon algebra RI , uniform continuity plays the crucial role.

Theorem 6.2 (for the finite horizon algebra RI ) The following are equivalent: 

1. With respect to RI , each behavioral strategy b induces an unambiguous expected 
payoff.

2. The payoff function u is uniformly continuous.
3. The payoff function u is uniformly RI–approachable.

The following theorem, which follows14 from Theorem  2.8.5 in Dubins  and 
Savage (2014), gives sufficient and necessary conditions for unambiguous 
expected payoffs for the clopen algebra RII . One of these conditions is continuity 
of the payoff function.

Theorem 6.3 (for the clopen algebra RII ) The following are equivalent: 

14 The language and notation of Dubins and Savage are different from ours, and therefore we will pro-
vide a proof in Sect. 10.
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1. With respect to RII , each behavioral strategy b induces an unambiguous expected 
payoff.

2. The payoff function u is continuous.
3. The payoff function u is uniformly RII–approachable.

For the algebras RIII and R we obtain sufficient conditions for unambiguous 
expected payoffs.

Theorem  6.4 (for the clopen+singleton algebra RIII ) Suppose that the payoff 
function u is strongly tame. Then u is uniformly RIII–approachable, and hence 
with respect to RIII each behavioral strategy b induces an unambiguous expected 
payoff.

Regarding a converse of Theorem 6.4, we present in Example 11.2 a decision 
problem in which with respect to RIII each behavioral strategy induces an unam-
biguous expected payoff, yet the payoff function is not uniformly RIII-approach-
able, and hence not strongly tame either.

Theorem  6.5 (for the Borel algebra R ) The payoff function u is uniformly R–
approachable if any of the following conditions hold: 

1. the function u is weakly tame,
2. the function u is upper semicontinuous,
3. the function u is lower semicontinuous.

Hence, under any of these conditions, with respect to R each behavioral strategy 
b induces an unambiguous expected payoff.

7  Examples

In this section we discuss a number of illustrative and thought-provoking exam-
ples, with a focus on intuition and main ideas. In each example, the payoff func-
tion has an easy structure, and we look at the possible expected payoffs for focal 
behavioral strategies that highlight specific features of the payoff function at 
hand.

Example 7.1 (Play the largest number). Consider the decision problem with action 
space A = ℕ and the following payoff function: for a play a⃗ = (a1, a2,…) ∈ Aℕ , the 
payoff is u(a⃗) = n

n+1
 where n = a1 . So, the payoff is determined after the first period. 

Intuitively, the decision maker would like to choose an action as large as possible at 
period 1.

The interesting question is what the expected payoff is under the following strat-
egy b: at period 1 the decision maker uses a diffuse charge to choose an action (for 
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the definition of a diffuse charge, cf. Section 2). The strategy b has an unambiguous 
expected payoff with respect to all four algebras RI , RII , RIII , R . Indeed, this fol-
lows by Theorem  6.2 as the payoff function u is uniformly continuous.

In fact, the behavioral strategy b induces the expected payoff of 1, and therefore it 
is optimal,15 with respect to these algebras. To see this, note that, for each n ∈ ℕ , the 
set ∪∞

k=n
Qk has probability 1, where Qk is the set of plays that start with action k (cf. 

Lemma 10.2). This implies that, for each n ∈ ℕ , the expected payoff is at least n

n+1
 , 

which proves that the expected payoff under the strategy b is 1. ⊲

Example 7.2 (Repeat n  times). Consider the decision problem with action space 
A = ℕ and the following payoff function: for a play a⃗ = (a1, a2,…) ∈ Aℕ , if 
a1 = … = an+1 = n where n ∈ ℕ then the payoff is u(a⃗) = n

n+1
 and otherwise 

u(a⃗) = 0 . If action n is played at period 1, then the payoff is determined in period 
n + 1 . Consequently, the payoff is determined in finite but unbounded time. Intui-
tively, the decision maker would like to choose an action n, as large as possible, at 
period 1 and repeat it at periods 2,… , n + 1.

The behavioral strategy b we consider is similar to the one in Example 7.1. In 
order to choose a large action at period 1, the decision maker chooses the first action 
according to a diffuse charge. If action n is chosen at period 1, then he places prob-
ability 1 on action n at periods 2,… , n + 1.

The strategy b has an unambiguous expected payoff with respect to the algebras 
R

II , RIII and R , but b has an ambiguous expected payoff with respect to the algebra 
R

I . Indeed, this follows by Theorems 6.2 and 6.3 as the payoff function u is continu-
ous but not uniformly continuous.16

In fact, with respect to the algebras RII , RIII and R , the strategy b has an expected 
payoff of 1, and therefore it is optimal.17 Indeed, for each k ∈ ℕ , let Qk be the set of 
plays that start with (k,… , k) till period k + 1 . Then, for each n ∈ ℕ , the set ∪∞

k=n
Qk 

is clopen, and it follows from Condition 1 of Theorem 4.1 that ℙb(∪
∞
k=n

Qk) = 1 for 
every n ∈ ℕ . Hence, ℙII

b
(∪∞

k=n
Qk) = 1 for every n ∈ ℕ . This implies that, for each 

n ∈ ℕ , the expected payoff is at least n

n+1
 , and therefore, the expected payoff under 

the strategy b is 1. ⊲

The next two examples are stopping problems. In these decision problems the 
decision maker has two actions, one of which could be interpreted as “continue” and 
the other as “stop”. The payoff is determined by the first period when the decision 
maker plays the latter action.

15 In contrast, no countably additive strategy is optimal.
16 Theorem  6.2 only implies that there exists some behavioral strategy that induces an ambiguous 
expected payoff with respect to RI . It is however clear from the example and from the proof of Theo-
rem 6.2 that ambiguity of the expected payoff occurs at the behavioral strategy b in the example.
17 Similarly to Example 7.1, no countably additive strategy is optimal.
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Example 7.3 (Continue indefinitely). Consider the decision problem with action 
space A = {c, s} and the following payoff function: for the play c⃗ = (c, c,…) let 
u(c⃗) = 1 , and for all a⃗ ∈ Aℕ ⧵ {c⃗} let u(a⃗) = 0.

Consider the strategy b that chooses action c with probability 1 at every period. 
The strategy b has an unambiguous expected payoff with respect to the algebras 
R

III and R , but b has an ambiguous expected payoff with respect to the algebras 
R

I and RII . Indeed, this follows by Theorems 6.3 and 6.4 as the payoff function u 
is strongly tame but not continuous.18 In fact, b has an expected payoff of 1, and is 
therefore optimal, with respect to the algebras RIII and R.19 ⊲

Example 7.4 (Repeat indefinitely). Consider the decision problem with action space 
A = ℕ and the following payoff function: for any n ∈ ℕ , the play (n, n,…) has a pay-
off of u(n, n,…) =

n

n+1
 , and otherwise the payoff is 0. Thus, the decision maker 

would like to choose an action, as large as possible, in period 1 and then to repeat it 
in each following period.

The interesting question is what the expected payoff is under the following strat-
egy b: at period 1 the decision maker uses a diffuse charge to choose an action, and 
at every other period he places probability 1 on the action chosen in period 1.

The strategy b has an unambiguous expected payoff of 1 with respect to the 
Borel algebra R , which follows by Theorem  6.5 as the payoff function u is upper 
semicontinuous.

On the other hand, b has an ambiguous expected payoff with respect to the alge-
bras RI , RII and RIII . Indeed, u is not continuous, so this claim follows for RI , RII 
by Theorem  6.3.20 The proof for RIII follows from Part 3 of Proposition 9.2. ⊲

The algebra R is the largest algebra that we consider. As one might suspect, even 
using the algebra R , not all behavioral strategies have an unambiguous expected 
payoff. The following example is very similar to the example presented in Sections 4 
and 5 in Purves and Sudderth (1976).

Example 7.5 (Do not play a  infinitely many times). Consider a decision problem 
with action space A = {a, a�} . Let Q be the set of plays a⃗ such that action a appears 
only finitely many times in a⃗ . Note that Q is in the Borel sigma-algebra of Aℕ , but 
not in the algebra R . Consider the following payoff function: u(a⃗) = 1 for every play 
a⃗ ∈ Q , and u(a⃗) = 0 otherwise.

Consider the behavioral strategy b which chooses the action uniformly random in 
every period: b(h)(a) = 1

2
 and b(h)(a�) = 1

2
 for every history h ∈ H . We briefly argue 

that b does not induce an unambiguous expected payoff with respect to R , that is, 
[u(b)] is not a singleton.

18 Similarly to footnote 16, ambiguity of the expected payoff with respect to RII occurs exactly at the 
behavioral strategy b in the example.
19 Indeed, it follows from Lemma 10.4 that ℙIII

b
(c⃗) = �(b)(c⃗) = 1.

20 Similarly to footnote 16, ambiguity of the expected payoff with respect to RIII occurs exactly at the 
behavioral strategy b in the example.
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Note that the only open set that is contained in Q is the empty set, and the only 
open set that contains Q is the entire set Aℕ . That is, inner approximations of Q 
by open sets give probability 0, and outer approximations of Q by open sets give 
probability 1. Similarly, inner approximations of Aℕ ⧵ Q by open sets give probabil-
ity 0, and outer approximations of Aℕ ⧵ Q by open sets give probability 1. As one 
can show (by induction on the complexity of the sets in R ), this implies that inner 
approximations of Q by sets in R all give probability 0, and the same for Aℕ ⧵ Q . 
By Theorem C.3 in Flesch et  al. (2017), there exists an extension B ∈ [ℙb] such 
that B(Q) = 0 and also there exists an extension B� ∈ [ℙb] such that B�(Q) = 1 . This 
completes the proof. ⊲

8  Concluding remarks

We examined infinite horizon decision problems with arbitrary bounded payoff 
functions, in which the decision maker uses finitely additive behavioral strategies. 
Because we only assume that the payoff function is bounded, a behavioral strat-
egy does not necessarily induce an unambiguous expected payoff. To address this 
ambiguity, we derived conditions on the payoff function that guarantee an unam-
biguous expected payoff regardless of the behavioral strategy adopted. Our approach 
involved a systematic exploration of various alternatives proposed in the literature 
on how to define the finitely additive probability measures on the set of infinite plays 
induced by behavioral strategies.

In the subsequent part of this section, we discuss extensions of our results.
Multiple players playing sequentially. If there are multiple players, each hav-

ing her own payoff function, and these players play sequentially (that is, there are 
no simultaneous moves), then our analytic framework remains applicable. Indeed, a 
strategy profile, which consists of one strategy for each player, defines a charge on 
the set of actions at each history, just like a strategy in the case of a single decision 
maker. Consequently, each strategy profile induces an unambiguous expected payoff 
to some player exactly under the same conditions on her payoff function as in the 
case of a single decision maker.

Multiple players playing simultaneously. When considering multiple play-
ers playing simultaneously, with finite action sets, our analytic framework remains 
applicable. The reason is that, in this case, under each strategy profile, there is a 
unique probability measure on the set of action profiles at each history. This situa-
tion contrasts starkly with instances when the action sets are infinite, because then a 
strategy profile can induce a set of possible charges on the set of action profiles. We 
refer to Flesch et al. (2017) for more details.

Extending the charge ℙb, for a behavioral strategy b, from the Borel algebra 
R to a larger algebra. Given a specific behavioral strategy b, Purves and Sudderth 
(1976) extended the charge ℙb from the algebra R to an algebra A(b) . The algebra 
A(b) depends on the behavioral strategy b, but always includes the Borel sigma-
algebra on Aℕ . Even by considering these larger algebras, ambiguous expected pay-
offs still play a role though: Purves and Sudderth present an example with a specific 
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payoff function and a behavioral strategy b under which the expected payoff is 
ambiguous.

9  Glossary

Let ℕ = {1, 2,…} . We provide a table below containing the most frequently used 
symbols and notations with reference to the Section where they are defined (in the 
table, i ∈ {I, II, III} ). 

Notation Meaning Section

A action set 3
H set of histories 3
A
ℕ set of plays 3

u Payoff function 3
b Behavioral strategy 3
d Metric on Aℕ 4
R Borel algebra on Aℕ 4

R
I The finite horizon algebra on Aℕ 4

R
II The clopen (closed and open) algebra on Aℕ 4

R
III The clopen+singleton algebra on Aℕ 4

ℙ
b
 and ℙi

b
Charge induced on R resp. Ri by the behavioral strategy b 4

[u(b)] and [ui(b)] Set of possible expected payoffs when ℙ
b
 resp. ℙi

b

is extended from R resp. Ri to the power set of Aℕ 4
o
u

the oscillation of u 5
h(t) and a⃗(t) Action in history h and respectively in play a⃗ at period t 10
⪯ and ≺ Notations for one sequence extending another 10
[h] and [Q] Set of plays extending the history h or a set Q of histories 10

Appendix: Additional properties of the algebras and the expected 
payoffs

In this section, we provide further properties of the algebras, the induced charges 
and expected payoffs. All the proofs can be found in Sect. 10.

The following proposition compares the algebras RI , RII , RIII , R and the Borel 
sigma-algebra, and therefore extends (5).

Proposition 9.1 The algebras have the following relationships:

R
I ⊆ R

II ⊂ R
III ⊂ R ⊂ 𝜎(Aℕ),
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where �(Aℕ) is the Borel sigma-algebra on Aℕ . Moreover, RI = RII if and only if the 
action set A is finite.

Given a behavioral strategy b, we defined the induced charges ℙI
b
 on the algebra 

R
I and ℙII

b
 on the algebra RII . By definition, ℙII

b
 restricted to the smaller algebra 

R
I equals to the charge ℙI

b
 . The first part of the following proposition discusses 

the opposite direction: ℙII
b

 is not the unique extension of ℙI
b
 from the algebra RI to 

the algebra RII , for certain behavioral strategies. This shows that dealing with RI 
or RII is essentially different. The second part and the third part of the proposi-
tion discuss similar results for the other algebras.

Proposition 9.2 

1. Assume that the action space A is infinite. Then there is a behavioral strategy b 
and a charge � on RII such that �(Z) = ℙ

II
b
(Z) for every Z ∈ R

I , but � ≠ ℙ
II
b

.

2. There is a behavioral strategy b and a charge � on RIII such that �(Z) = ℙ
III
b
(Z) 

for every Z ∈ R
II , but � ≠ ℙ

III
b

.
3. Assume that the action space A is infinite. Then there is a behavioral strategy b 

and a charge � on R such that �(Z) = ℙb(Z) for every Z ∈ R
III , but � ≠ ℙb.

In Part 1 of the above proposition, it is necessary to assume that A is infinite, in 
view of Proposition 9.1. We emphasize that Part 2 of the above proposition holds 
for any action space A, even when A is finite (under our assumption that |A| ≥ 2).

Given a behavioral strategy, we defined the sets of expected payoffs [uI(b)] , 
[uII(b)] , [uIII(b)] and [u(b)] for the algebras RI , RII , RIII and R , respectively. We 
compare these sets in more detail.

Proposition 9.3 The induced expected payoffs on the algebras have the following 
property: 

1. For each decision problem and each behavioral strategy b

2. Assume that the action set A is finite. Then, for each payoff function u and each 
behavioral strategy b we have [uI(b)] = [uII(b)] , and there is a payoff function u 
and a behavioral strategy b for which [uII(b)] ⊃ [uIII(b)].

3. Assume that the action set A is infinite. Then, for each inclusion in (6) there is a 
payoff function u and a behavioral strategy b under which this inclusion is strict.

(6)[uI(b)] ⊇ [uII(b)] ⊇ [uIII(b)] ⊇ [u(b)].
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Appendix: The proofs

In this section, we prove the results stated in the previous sections, but also make a few 
additional statements that we use for the proofs. We will often use the following notations:

• For a history h ∈ An and a period t ≤ n , we denote by h(t) the action in h taken 
at period t. Similarly, for a play a⃗ ∈ Aℕ we denote by a⃗(t) the action in a⃗ taken at 
period t.

• For a history h ∈ An and a play a⃗ ∈ Aℕ , we use the notation h ≺ a⃗ if a⃗ extends 
h, i.e., a⃗(t) = h(t) for all t ≤ n . Similarly, for m ≥ n and a history h� ∈ Am , we 
use the notation h ⪯ h� if h(t) = h�(t) for all t ≤ n , and use the notation h ≺ h′ if 
h ⪯ h� and h ≠ h′.

• For a history h ∈ H , we denote the set of plays extending h by 
[h] = {a⃗ ∈ Aℕ ∶ h ≺ a⃗} , also called the cylinder set corresponding to h. Also, if 
Q ⊆ H , then we use the notation [Q] = ∪h∈H[h].

The following lemma about the function Lg will be used in the proofs. For the defini-
tion of the function Lg , we refer to Sect. 5.

Lemma 10.1 Consider a function g ∶ Aℕ → ℝ . Assume that each discontinuity in Dg 
is removable. Then the function Lg ∶ Aℕ → ℝ is continuous.

Proof Take an arbitrary play a⃗ ∈ Aℕ . Consider a sequence of plays (a⃗k)k∈ℕ that con-
verges to a⃗ . We show that (Lg(a⃗k))k∈ℕ converges to Lg(a⃗).

By the definition of Lg , for every k ∈ ℕ there exists a play a⃗⋄
k
∈ Aℕ such that 

d(a⃗k, a⃗
⋄
k
) <

1

k
 and |Lg(a⃗k) − g(a⃗⋄

k
)| < 1

k
 . Because d(a⃗⋄

k
, a⃗) ≤ d(a⃗⋄

k
, a⃗k) + d(a⃗k, a⃗) , we 

find that d(a⃗⋄
k
, a⃗) converges to 0, i.e., the sequence (a⃗⋄

k
)k∈ℕ converges to a⃗ as well. 

Hence by the definition of Lg , the sequence (g(a⃗⋄
k
))k∈ℕ converges to Lg(a⃗) . By using

we obtain that |Lg(a⃗k) − Lg(a⃗)| converges to 0. □

For the algebra RI , which is the smallest algebra we consider, the charge ℙI
b
 takes 

a natural form. Indeed, based on the definition of RI in Sect. 4, for each set Q ∈ R
I 

there is a period n such that at period n we already know if the induced play belongs 
to Q or not. Let n(Q) be the smallest such period. The following proposition follows 
from Theorem  4.1.

Lemma 10.2 Let Q ∈ RI , and let n ≥ n(Q) . Then, under each behavioral strategy b, 
the probability of the set Q can be calculated through iterated integrals over the 
actions of the first n periods as follows:

|Lg(a⃗k) − Lg(a⃗)| ≤ |Lg(a⃗k) − g(a⃗⋄
k
)| + |g(a⃗⋄

k
) − Lg(a⃗)|,
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The following characterization for the algebra RIII will be used in the proof later.

Lemma 10.3 A subset Z ⊆ Aℕ belongs to RIII if and only if it differs in at most finitely 
many plays from a clopen set: there is a unique clopen set Q ⊆ Aℕ and unique finite 
sets F1 ⊆ Aℕ⧵Q and F2 ⊆ Q such that

Proof Part 1:  We show that RIII = P , where P is the set of all subsets Z ⊆ Aℕ of 
the form

where Q ⊆ Aℕ is clopen and F1,F2 ⊆ Aℕ are finite. Note that (9) is weaker than the 
representation in (8). By the definition of RIII , we have P ⊆ R

III . So we only need 
to verify that RIII ⊆ P.

It is clear that (1) RII ⊆ P and (2) {a⃗} ∈ P for every a⃗ ∈ Aℕ . We show that P is 
an algebra. Then, by the definition of RIII , it will follow that RIII ⊆ P.

Obviously, Aℕ ∈ P , by choosing Q = Aℕ and F1 = F2 = �.
Now we show that P is closed under taking complements. Take an element 

Z = (Q ∪ F1) ⧵ F2 of P as in (9). The complement of Z is

Because Q ∈ R
II , we have (Aℕ ⧵ Q) ∈ R

II as well. Hence, (Aℕ ⧵ Z) ∈ P.
Finally, we show that P is closed under taking unions. Let Z, Z� ∈ P . Then Z and 

Z′ are of the form Z = W ⧵ V  and Z� = W �⧵V � where W = Q ∪ F1 and W � = Q� ∪ F�
1
 , 

with Q,Q� ∈ R
II and F1 , F′

1
 , V and V ′ being finite subsets of Aℕ . For the union of Z 

and Z′ we have

where W = Aℕ⧵W and W
�
= Aℕ⧵W � . Note that W ∪W � = (Q ∪ Q�) ∪ (F1 ∪ F�

1
) . As 

(Q ∪ Q�) ∈ R
II , and F1 ∪ F�

1
 is finite, and (W ∩ V �) ∪ (W

�
∩ V) ∪ (V ∩ V �) is also 

finite, we have (Z ∪ Z�) ∈ P.
Part 2:  We prove that for every Z ∈ R

III there is a unique representation of the 
form (8).

By Part 1, such a representation exists. Now assume that for some Z ∈ R
III there 

are two representations

of the form (8). That is, Q,Q� ∈ R
II , and the following sets are finite: F1 ⊆ Aℕ ⧵ Q , 

and F′
1
⊆ Aℕ⧵Q′ , and F2 ⊆ Q , and F′

2
⊆ Q′.

(7)ℙ
I
b
(Q) = ∫a1∈A

⋯∫an∈A

𝕀Q(a1,… , an) b(a1,… , an−1)(dan)⋯ b(ø)(da1).

(8)Z = (Q ∪ F1) ⧵ F2.

(9)Z = (Q ∪ F1) ⧵ F2,

Aℕ ⧵ Z = ((Aℕ ⧵ Q) ∪ F2) ⧵ (F1 ⧵ F2).

Z ∪ Z� =
(
W ∪W �

)
⧵

[
(W ∩ V �) ∪ (W

�
∩ V) ∪ (V ∩ V �)

]
,

(10)Z = (Q ∪ F1) ⧵ F2 and Z = (Q� ∪ F�
1
) ⧵ F�

2
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We first show that Q = Q� . Let h be a history such that [h] ⊆ Q . We argue that 
[h] ⊆ Q� . Assume the opposite. Then, there is a play a⃗ ∈ Aℕ such that h ≺ a⃗ and 
a⃗ ∉ Q� . Since Q′ is clopen and so Aℕ⧵Q′ is open, there exists a history h′ with 
h ⪯ h� ≺ a⃗ and [h�] ∩ Q� = � . Thus, the set [h�] has the following properties: (1) 
[h�] is infinite because of our assumption that |A| ≥ 2 , (2) [h�] ⊆ [h] ⊆ Q and (3) 
[h�] ∩ Q� = � . Then by using that F1,F

′
1
,F2 and F′

2
 are finite sets, (Q ∪ F1)⧵F2 and 

(Q� ∪ F�
1
)⧵F�

2
 cannot be equal, contradicting (10). Hence, [h] ⊆ Q� . Because this 

holds for all h such that [h] ⊆ Q , we conclude that Q ⊆ Q′ . For a similar reason, 
Q ⊇ Q′ . So, Q = Q�.

Based on Q = Q� , it follows by finiteness of F1 , F2 , F′
1
 and F′

2
 that F1 = F�

1
 and 

F2 = F�
2
 .  □

Using Lemma  10.3, the induced charges on the algebra RIII can be described 
directly.

Lemma 10.4 Let Z ∈ R
III be of the form Z = (Q ∪ F1) ⧵ F2 , as given in (8). Then, 

for each behavioral strategy b we have

where �(b)(a1, a2,…) =
∏∞

n=1
b(a1,… , an−1)(an).

In the lemma above, �(b)(a⃗) is just the usual probability of a play, which is cal-
culated by multiplying the probabilities at each period. Naturally, �(b)(a⃗) = ℙb(a⃗) ; 
this follows by using that the complement of {a⃗} is open and Theorem 4.1.

Proof of Proposition  9.1: The weak set-inclusions in the proposition are 
immediate by (5).

Proof of RI = R
II if and only if the action set A is finite:

⟹ Assume first that the action set A is infinite. We show that there exists a set 
U ∈ R

II ⧵RI . (The construction is related to Example 7.2.) Since A is infinite, by 
renaming the actions we can assume that ℕ ⊆ A . For every n ∈ ℕ , let hn denote the 
history (n,… , n) of length n. Define

Thus, U is the set of plays that start with action n at the first n periods, for some 
n ∈ ℕ.

We show U ∈ R
II ⧵RI . It is clear that U ∉ R

I . So it remains to verify that 
U ∈ R

II . Since [hn] is open for every n ∈ ℕ , the set U is open. For every n ∈ ℕ , let 
Hn be the set of histories of length n that start with action n. Since [Hn ⧵ {hn}] is 
open for every n ∈ ℕ and [A�ℕ] is also open, the complement of U

ℙ
III
b
(Z) = ℙb(Q) +

∑

a⃗∈F1

�(b)(a⃗) −
∑

a⃗∈F2

�(b)(a⃗),

U =
⋃

n∈ℕ

[hn].

Aℕ ⧵ U = ∪n∈ℕ [Hn ⧵ {hn}] ∪ [A�ℕ]
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is open too. Hence, U is closed, and therefore U ∈ R
II indeed.

⟸ Now assume first that the action set A is finite. For proving RI = R
II , we 

only need to prove RI ⊇ R
II . Let Z ∈ R

II . To show Z ∈ R
I , it is sufficient to 

prove that there is n ∈ ℕ such that for every history h ∈ An we have either [h] ⊆ Z 
or [h] ⊆ Aℕ�Z.

Suppose the opposite. Then there exists a sequence of histories hn such that for 
every n ∈ ℕ we have hn ∈ An and there exists a play a⃗n ≻ hn and a play a⃗⋄

n
≻ hn with 

a⃗n ∈ Z and a⃗⋄
n
∈ Aℕ�Z . Because A is finite, Aℕ is compact. Hence, there exists a 

subsequence nk , with index k ∈ ℕ , converging to infinity, such that a⃗nk converges to 
some play a⃗ . Then there also exists a sub-subsequence nkm such that a⃗⋄

nkm
 also con-

verges. Since a⃗nkm ≻ hnkm
 and a⃗⋄

nkm
≻ hnkm

 for every m ∈ ℕ , and the sequence a⃗nkm con-
verges to a⃗ , we can conclude that a⃗⋄

nkm
 also converges to a⃗ . However, because Z is 

clopen, a⃗ ∈ Z as it is the limit of a⃗nkm and a⃗ ∈ Aℕ�Z as it is the limit of a⃗⋄
nkm

 . This is a 
contradiction.

Proof of RII ⊂ R
III . Take a play a⃗ ∈ Aℕ , and consider the singleton {a⃗} . By 

definition, {a⃗} ∈ R
III . As the action space A is assumed to contain at least two 

actions, {a⃗} is not open, and hence {a⃗} ∉ R
II.

Proof of RIII ⊂ R . We construct a set Z ⊂ Aℕ such that Z ∈ R but Z ∉ R
III . 

Take two distinct actions a and a′ ; recall that we assumed |A| ≥ 2 . For every 
n ∈ ℕ , let a⃗n denote the play where action a is played at the first n periods, and 
action a′ is played at all periods after that. Let Z = {a⃗n ∶ n ∈ ℕ}.

First we argue that Z ∉ R
III . Assume by way of contradiction that Z ∈ R

III . 
Then by Part 2 of Lemma  10.3, there are Q ∈ R

II and finite subsets F1 and F2 of 
Aℕ such that Z = (Q ∪ F1)⧵F2, and Q ∩ F1 = � , Q ⊇ F2 and F1 ∩ F2 = � . There-
fore, Q = (Z⧵F1) ∪ F2 . Since Z is countably infinite and both F1 and F2 are finite, 
Q must be countably infinite too. This is however in contradiction with the fact 
that Q is open. Thus, Z ∉ R

III as claimed.
Now we argue that Z ∈ R . Let a⃗∞ = (a, a,…) . Note that the closure of Z is 

Z ∪ {a⃗∞} . Since Z ∪ {a⃗∞} and {a⃗∞} are closed, they are elements of the algebra 
R . Thus Z ∈ R as well.

Proof of R ⊂ 𝜎(Aℕ) : Suppose first that there are only two actions: A = {a, a�} . 
Consider the set Q of plays a⃗ such that action a′ only appears finitely many times 
in a⃗ . As Q is countable, Q belongs to the Borel sigma-algebra of Aℕ . It is well-
known that Q ∉ R . (See also Example  7.5.) If the action set A is larger and 
A ⊃ {a, a�} , the same set Q still satisfies the desired properties.  □

Proof of Proposition 9.2:
Part 1: Since A is infinite, by renaming the actions we can assume that ℕ ⊆ A . 

The proof is making use of the idea of Example 7.2.
Consider the following behavioral strategy b. The charge b(ø) is such that 

b(ø)({n}) = 0 for every n ∈ ℕ and b(ø)(ℕ) = 1 (essentially, b(ø) is a diffuse charge 
on ℕ ), and for any other history h = (a1,… , at) ∈ H the charge b(h) is simply 
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the Dirac charge on action a1 . Consider also the set Z∗ = ∪n∈ℕ[(n,… , n)] , where 
[(n,… , n)] denotes the set of plays that start with action n at the first n periods.

Now we prove that there is a charge � on RII such that �(Z) = ℙ
II
b
(Z) for every 

Z ∈ R
I , but �(Z∗) ≠ ℙ

II
b
(Z∗).

Let Z ∈ R
I such that Z ⊆ Z∗ . Then, in period 1 of the plays in Z, only finitely 

many different actions can appear. As a consequence, ℙI
b
(Z) = 0 . So, inner 

approximation of Z∗ by sets in RI yields

Based on Theorem C.3 in Flesch et al. (2017) there exists an extension � of ℙI
b
 to the 

power set of Aℕ , i.e., � ∈ [ℙI
b
] , such that �(Z∗) = 0 . Since ℙIII

b
(Z∗) = 1 ≠ 0 = �(Z∗) , 

the proof of Part 1 is complete.
Part 2: The proof is making use of the idea of Example 7.3. Take an action a ∈ A , 

and let a⃗ = (a, a,…) ∈ Aℕ . Consider the behavioral strategy b where b(h)(a) = 1 for 
every h ∈ H . Let ht denote the history at period t in which only action a is played. 
Then by Lemma 10.4

Now we prove that there is a charge � on RIII such that �(Z) = ℙ
III
b
(Z) for every 

Z ∈ R
II , but 𝜇({a⃗}) ≠ ℙ

III
b
({a⃗}).

Note that the only set Z ∈ R
II such that Z ⊆ {a⃗} is the empty set. So the inner 

approximation of {a⃗} by sets in RII yields

Based on Theorem  C.3 in Flesch et  al. (2017) there exists an extension � 
of ℙII

b
 to the power set of Aℕ , i.e., � ∈ [ℙII

b
] , such that 𝜇({a⃗}) = 0 . Since 

ℙ
III
b
({a⃗}) = 1 ≠ 0 = 𝜇({a⃗}) , the proof of Part 2 is complete.

Part 3: Since A is infinite, by renaming the actions we can assume that ℕ ⊆ A . 
The proof is making use of the idea of Example 7.4.

Consider the following behavioral strategy b. The charge b(ø) is such that 
b(ø)({n}) = 0 for every n ∈ ℕ and b(ø)(ℕ) = 1 (essentially, b(ø) is a diffuse charge 
on ℕ ), and for any other h ∈ H the charge b(h) is simply the Dirac charge on action 
1. For every n ∈ ℕ , let a⃗n be a play which starts with n at period 1, and at all other 
periods uses action 1. Let Z∗ = {a⃗n ∶ n ∈ ℕ}.

Now we prove that there is a charge � on R such that �(Z) = ℙb(Z) for every 
Z ∈ R

III , but �(Z∗) ≠ ℙb(Z
∗).

One can verify that ℙb(Z
∗) = 1 ; this follows as Aℕ⧵Z∗ is open and then by Theo-

rem 4.1 we have ℙb(A
ℕ ⧵ Z∗) = 0.

Let W = {Z ∈ R
III ∶ Z ⊆ Z∗} . Since Z∗ is countable, by (8) the elements of W 

are finite sets. Take a Z ∈ W . Using �III(b)(a⃗) = 0 for every play a⃗ ∈ Z , we arrive 

sup
Z∈RI , Z⊆Z∗

ℙ
I
b
(Z) = 0.

ℙ
III
b

(
{a⃗}

)
= �III(b)(a⃗) =

∞∏

t=1

b(ht)(a) = 1.

sup
Z∈RII , Z⊆{a⃗}

ℙ
II
b
(Z) = ℙ

II
b
(�) = 0.
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at ℙIII
b
(Z) =

∑
a⃗∈Z �

III(b)(a⃗) = 0 . So the inner approximation of Z∗ by sets in RIII 
yields

Based on Theorem C.3 in Flesch et al. (2017) there exists an extension � of ℙIII
b

 to the 
power set of Aℕ , i.e., � ∈ [ℙIII

b
] , such that �(Z∗) = 0 . Since ℙb(Z

∗) = 1 ≠ 0 = �(Z∗) , 
the proof of Part 3 is complete.  □

Proof of Proposition  9.3: Claim 1 and the first part of Claim 2 follow directly 
from Proposition  9.1. The second part of Claim 2 and Claim 3 follow from Prop-
osition 9.2, by taking a behavioral strategy b and a set Z as in Proposition 9.2, and 
defining the payoff function u to be the indicator of the set Z.  □

Proof of Theorem 6.1:Let P and u be as in the theorem. Consider a behavio-
ral strategy b, and let ℙP

b
 denote the charge induced by b on P (i.e., for example, 

ℙ
P

b
= ℙ

I
b
 if P = R

I).
Let 𝜀 > 0 . Since u is uniformly P-approachable, there exist ci ∈ ℝ and Qi ∈ P 

for each i = 1,… , n , and where {Qi ∶ i = 1,… , n} is a partition of Aℕ , such that for 
all a⃗ ∈ Aℕ

Let B ∈ [ℙP

b
] . We will now integrate each part of (11) with respect to B. As Qi ∈ P 

we have B(Qi) = ℙ
P

b
(Qi) , for every i = 1,… , n . Thus, by the definition of integra-

tion of a P-measurable simple–function and by (1)

This inequality also holds for u(B�) for any B� ∈ [ℙP

b
] , and hence 

−2� ≤ u(B) − u(B�) ≤ 2� . As 𝜀 > 0 was arbitrarily chosen, it follows that 
u(B) = u(B�) . In conclusion, b induces an unambiguous expected payoff with respect 
to P. □

The following lemma follows directly from the definitions of continuity and 
uniform continuity and from the topology on the set of plays.

Lemma 10.5 Consider a function g ∶ Aℕ → ℝ . 

1. g is continuous at a play a⃗ ∈ Aℕ if and only if for every 𝜀 > 0 , there is T ∈ ℕ such 
that if for a play a⃗⋄ it holds that a⃗⋄(t) = a⃗(t) for all t ≤ T  , then |g(a⃗) − g(a⃗⋄)| < 𝜀.

2. g is uniformly continuous if and only if for every 𝜀 > 0 , there is T ∈ ℕ such that if for 
two plays a⃗ and a⃗⋄ it holds that a⃗(t) = a⃗⋄(t) for all t ≤ T , then |g(a⃗) − g(a⃗⋄)| < 𝜀.

sup
Z∈RIII , Z⊆Z∗

ℙ
III(b)(Z) = 0.

(11)
n∑

i=1

ci ⋅ �Qi
(a⃗) − 𝜀 ≤ u(a⃗) ≤

n∑

i=1

ci ⋅ �Qi
(a⃗) + 𝜀.

n∑

i=1

ci ⋅ ℙ
P

b
(Qi) − � ≤ u(B) ≤

n∑

i=1

ci ⋅ ℙ
P

b
(Qi) + �.
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The following lemma is a kind of a combinatorial result on sequences of plays.

Lemma 10.6 Let (a⃗k)k∈ℕ and (a⃗⋄
k
)k∈ℕ be two sequences of plays such that, for every 

k ∈ ℕ , it holds that a⃗k ≠ a⃗⋄
k
 . For every k ∈ ℕ , let hk denote the longest history on 

which a⃗k and a⃗⋄
k
 coincide, and assume that the length of hk converges to infinity as 

k → ∞ . Then, there exists an increasing sequence (k�)�∈ℕ such that for the subse-
quences (a⃗k� )�∈ℕ and (a⃗⋄

k𝓁
)𝓁∈ℕ at least one of the following holds: 

1. The subsequences (a⃗k� )�∈ℕ and (a⃗⋄
k𝓁
)𝓁∈ℕ converge to the same play as � → ∞.

2. There exists a history h and a sequence of actions (a�)�∈ℕ , with a� ≠ a�′ for all 
�,�� ∈ ℕ with � ≠ �′ , such that a⃗k� ≻ (h, a�) and a⃗⋄

k𝓁
≻ (h, a𝓁) for every � ∈ ℕ . 

Here, (h, a�) is the history that arises when at history h the action a� is played.

Proof For every n ∈ ℕ , let Ān denote the set of actions that is used at period n by 
at least one of the plays in either one of the sequences (a⃗k)k∈ℕ and (a⃗⋄

k
)k∈ℕ , i.e., 

Ān = ∪k∈ℕ{a⃗k(n), a⃗
⋄
k
(n)} . Thus, a⃗k, a⃗⋄k ∈ ×∞

n=1
Ān for every k ∈ ℕ . We distinguish two 

cases.
First assume that Ān is finite for every n ∈ ℕ . Then, the set ×∞

n=1
Ān is a compact 

subset of Aℕ . This implies that there is an increasing sequence (k�)�∈ℕ in ℕ such that 
the subsequence (a⃗k� )�∈ℕ converges. Since the length of hk� tends to infinity as 
� → ∞ , we conclude that both subsequences (a⃗k� )�∈ℕ and (a⃗⋄

k𝓁
)𝓁∈ℕ converge to the 

same play. Thus, property 1 holds.
Now assume that, for some n ∈ ℕ , the sets Ā1,… , Ān−1 are finite, but Ān is infi-

nite. Since by assumption the length of hk converges to infinity as k → ∞ , there 
exists m ∈ ℕ such that the length of hk is at least n + 1 for all k ≥ m . In particular, 
a⃗k(n) = a⃗⋄

k
(n) for all k ≥ m . Then, by finiteness of the set Ā1 ×⋯ × Ān−1 and because 

Ān is infinite, there exists a history h ∈ Ā1 ×⋯ × Ān−1 such that the set of actions

is infinite. It follows that there exists an increasing sequence (k�)�∈ℕ in ℕ such that 
k1 ≥ m , a⃗k� ≻ h and thus a⃗⋄

k𝓁
≻ h for all � ∈ ℕ , and moreover the action 

pk� (n) = qk� (n) is different for each value of � . Thus, property 2 is satisfied.   ◻

The following lemma will be used to define specific elements of [ℙII
b
] and [ℙI

b
].

Lemma 10.7 Let (a⃗k)k∈ℕ be a sequence of plays that converges to a play 
a⃗ = (a1, a2,…) . Let b be a behavioral strategy such that b(a1,… , an−1) is the Dirac 
charge on an for each n ∈ ℕ . Let � be a diffuse charge on ℕ . Now, define a charge B 
on Aℕ by for every Z ⊆ Aℕ letting

where 𝛿a⃗k denotes the Dirac charge on a⃗k . Then, B ∈ [ℙII
b
] , and hence B ∈ [ℙI

b
].

{a⃗k(n) ∶ k ≥ m and a⃗⋄
k
≻ h} = {a⃗⋄

n
(n) ∶ k ≥ m and a⃗⋄

k
≻ h}

B(Z) = ∫k∈ℕ

𝛿a⃗k (Z) 𝜏(dk),
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Proof We need to show that B coincides with the charge ℙII
b

 on the algebra RII , i.e., 
B(Q) = ℙ

II
b
(Q) for every Q ∈ R

II . Let Q ∈ R
II , i.e., Q ⊆ Aℕ is clopen. We distin-

guish two cases.
Assume first that a⃗ ∈ Q . Then ℙ

II
b
(Q) = 1 . Moreover, as Q is open, 

a⃗k ∈ Q for all sufficiently large k ∈ ℕ . As � is a diffuse charge, we have 
∫
k∈ℕ

𝛿a⃗k (Q) 𝜏(dk) = 1 = ℙ
II
b
(Q).

Assume now that a⃗ ∉ Q . Then ℙII
b
(Q) = 0 . Moreover, as Aℕ ⧵ Q is open, 

a⃗k ∈ Aℕ ⧵ Q for all sufficiently large k ∈ ℕ . As � is a diffuse charge, we have 
∫
k∈ℕ

𝛿a⃗k (Q) 𝜏(dk) = 0 = ℙ
II
b
(Q) .   ◻

Proof of Theorem  6.2: We prove that (1) implies (2) and that (2) implies (3). It 
follows from Theorem  6.1 that (3) implies (1) as well.

(2) implies (3): Assume that u is uniformly continuous. Let 𝜀 > 0 . As we assume 
that u is bounded, there is a finite set K ⊂ ℝ such that for every play a⃗ ∈ Aℕ there 
exists k ∈ K with |u(a⃗) − k| ≤ 𝜀∕2 . Because u is uniformly continuous, by Lemma  
10.5, there is T ∈ ℕ such that if for two plays a⃗ and a⃗⋄ it holds that a⃗(t) = a⃗⋄(t) 
for all t ≤ T  , then |u(a⃗) − u(a⃗⋄)| ≤ 𝜀∕2 . This means that for every history h ∈ AT 
there is a number zh ∈ K such that for every play a⃗ ≻ h we have |u(a⃗) − zh| ≤ 𝜀 . 
Now we define a payoff function ū by setting ū(a⃗) = zh if a⃗ ≻ h for h ∈ AT . Thus 
|u(a⃗) − ū(a⃗)| ≤ 𝜀 for every a⃗ ∈ Aℕ . By construction, ū is an RI–measurable sim-
ple–function. Indeed, ū =

∑
k∈K k ⋅ �[Qk]

, where Qk = {h ∈ AT ∶ zh = k} for every 
k ∈ K , and thus u is uniformly RI-approachable.

(1) implies (2): We prove the contraposition of this implication. So assume that u 
is not uniformly continuous. Then, by Lemma 10.5, there exists 𝜀 > 0 for which for 
every k ∈ ℕ , there exists a history hk ∈ Ak and plays a⃗k ≻ hk and a⃗⋄

k
≻ hk such that 

u(a⃗k) + 𝜀 < u(a⃗⋄
k
) . Consider the sequences of plays (a⃗k)k∈ℕ and (a⃗⋄

k
)k∈ℕ . In view of 

Lemma 10.6, by taking subsequences if necessary, we can assume that at least one 
of the following holds: 

1. The sequences (a⃗k)k∈ℕ and (a⃗⋄
k
)k∈ℕ converge to the same play as k → ∞.

2. There exists a history h and a sequence of actions (ak)k∈ℕ , with ak ≠ ak′ for all 

k, k� ∈ ℕ with k ≠ k′ , such that a⃗k ≻ (h, ak) and a⃗⋄
k
≻ (h, ak) for every k ∈ ℕ.

When properTy 1 holds: Assume that property 1 holds. Then the sequences 
(a⃗k)k∈ℕ and (a⃗⋄

k
)k∈ℕ converge to the same play, say to (a∗

1
, a∗

2
,…) . Consider a 

behavioral strategy b such that b(a∗
1
,… , a∗

n−1
) is the Dirac charge on action a∗

n
 , for 

every n ∈ ℕ . We show that b does not induce an unambigouos expected payoff 
with respect to RI , i.e., [uI(b)] is not a singleton.

Let � be a diffuse charge on ℕ . Define two charges B,B⋄ on Aℕ by for every 
Z ⊆ Aℕ letting

B(Z) = ∫k∈ℕ

𝛿a⃗k (Z) 𝜏(dk) and B⋄(Z) = ∫k∈ℕ

𝛿a⃗⋄
k
(Z) 𝜏(dk),
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where 𝛿a⃗k and 𝛿a⃗⋄
k
 denote the Dirac charges on a⃗k and a⃗⋄

k
 respectively. It follows from 

Lemma 10.7 that B,B⋄ ∈ [ℙI
b
] . Additionally, since u(a⃗k) + 𝜀 < u(a⃗⋄

k
) holds for every 

k ∈ ℕ , we have u(B) + � ≤ u(B⋄) . Hence, [uI(b)] is not a singleton.
When properTy 2 holds: Assume that property 2 holds, and let h and (ak)k∈ℕ be 

as in property 2. Let � be a diffuse charge on ℕ . Consider a behavioral strategy b that 
prescribes to play as follows: First, from the root, follow h with Dirac charges. Then 
at h choose an action from {a1, a2,…} according to � . Finally, if action ak is chosen, 
then follow the play a⃗k with Dirac charges on the corresponding actions.

Define two charges B,B⋄ on Aℕ by for every Z ⊆ Aℕ letting

We show that B,B⋄ ∈ [ℙI
b
] , i.e., B(Q) = B�(Q) = ℙ

I
b
(Q) for every Q ∈ R

I . Let 
Q ∈ R

I . Then, there is n ∈ ℕ such that at period n we already know if the induced 
play belongs to Q or not, and we can assume without loss of generality that n is 
larger than the length of h. Since hk ∈ Ak , and since a⃗k ≻ hk and a⃗⋄

k
≻ hk , we have 

the following for all k ≥ n : either both a⃗k and a⃗⋄
k
 belong to Q, or both a⃗k and a⃗⋄

k
 

belong to Aℕ⧵Q . Since � is a diffuse charge, and since n is larger than the length of 
h, we have B(Q) = B�(Q) = 𝜏({k ≥ n ∶ a⃗k ∈ Q}) = 𝜏({k ≥ n ∶ a⃗⋄

k
∈ Q}).

As we have shown, B,B⋄ ∈ [ℙI
b
] . Additionally, since u(a⃗k) + 𝜀 < u(a⃗⋄

k
) holds for 

every k ∈ ℕ , we have u(B) + � ≤ u(B⋄) . Hence, [uI(b)] is not a singleton.  □

Proof of Theorem  6.3: We prove that (1) implies (2) and that (2) implies (3). It 
follows from Theorem 6.1 that (3) implies (1) as well.

(2) implies (3): Assume that u is continuous. Let 𝜀 > 0 . Because u is continu-
ous, for every play a⃗ ∈ Aℕ , by Lemma 10.5 there is a history ha⃗ such that ha⃗ ≺ a⃗ and 
for every two plays a⃗′ and a⃗′′ that extend ha⃗ we have |u(a⃗�) − u(a⃗��)| < 𝜀∕2 . We may 
assume that ha⃗ is the shortest such history. Note that for every play a⃗⋄ ≻ ha⃗ we have 
ha⃗ = ha⃗⋄ . Let S = {ha⃗ ∶ a⃗ ∈ Aℕ} . Note that [S] = Aℕ.

As we assume that u is bounded, there is a finite set K ⊂ ℝ such that for every play 
a⃗ ∈ Aℕ there exists k ∈ K with |u(a⃗) − k| < 𝜀∕2 . By construction, for every history 
h ∈ S there is a number zh ∈ K such that for every a⃗ ≻ h we have |u(a⃗) − zh| < 𝜀 . Let 
Sk = {h ∈ S ∶ zh = k} for each k ∈ K . Note that {Sk ∶ k ∈ K} is a finite partition of 
S.

Define a payoff function ū by setting ū(a⃗) = k if a⃗ ∈ [Sk] , for any k ∈ K , i.e., 
ū =

∑
k∈K k ⋅ �[Sk] . As each [Sk] is open, ū is an RII–measurable simple–function, and 

|u(a⃗) − ū(a⃗)| < 𝜀 for every a⃗ ∈ Aℕ . Hence, u is uniformly RII-approachable.
(1) implies (2): We prove the contraposition of this implication. So assume that u 

is not continuous, say at some play a⃗ = (a1, a2 …) ∈ Aℕ . Hence, there are 𝜀 > 0 and 
two sequences (a⃗k)k∈ℕ and (a⃗⋄

k
)k∈ℕ of plays such that (1) both sequences (a⃗k)k∈ℕ and 

(a⃗⋄
k
)k∈ℕ converge to a⃗ , (2) u(a⃗k) + 𝜀 < u(a⃗⋄

k
) for every k ∈ ℕ . The proof from here is 

the same as in the proof for Theorem 6.2, part “(1) implies (2)”, where property 1 
holds - note that Lemma 10.7 applies to RII as well.  □

B(Z) = ∫k∈ℕ

𝛿a⃗k (Z) 𝜏(dk) and B⋄(Z) = ∫k∈ℕ

𝛿a⃗⋄
k
(Z) 𝜏(dk).
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Proof of Theorem 6.4: Assume that u is strongly tame. We show that u is 
uniformly RIII-approachable, and then the last claim of Theorem   6.4 follows by 
Theorem 6.1.

Let Du denote the set of plays where u is not continuous. Since u is strongly tame, 
by Lemma 10.1 the function Lu ∶ Aℕ → ℝ is continuous. Moreover, Lu(a⃗) = u(a⃗) for 
all a⃗ ∈ Aℕ⧵Du . Note that ou(a⃗) = |u(a⃗) − Lu(a⃗)| for each a⃗ ∈ Du.

Let 𝜀 > 0 . Let D𝜀
u
= {a⃗ ∈ Du ∶ ou(a⃗) >

𝜀

2
} . Since u is strongly tame, D�

u
 is a finite set.

In view of Theorem 6.3, applied to the continuous function Lu , there is an RII

–measurable simple–function g ∶ Aℕ → ℝ such that |Lu(a⃗) − g(a⃗)| ≤ 𝜀

2
 for every 

a⃗ ∈ Aℕ . By Lu(a⃗) = u(a⃗) for all a⃗ ∈ Aℕ⧵Du and by |Lu(a⃗) − u(a⃗)| ≤ 𝜀

2
 for all 

a⃗ ∈ Du⧵D
𝜀
u
 , we obtain that |u(a⃗) − g(a⃗)| ≤ 𝜀 for all a⃗ ∈ Aℕ⧵D𝜀

u
.

We define a function ū ∶ Aℕ → ℝ by setting ū(a⃗) = g(a⃗) for all a⃗ ∈ Aℕ⧵D𝜀
u
 and 

ū(a⃗) = u(a⃗) for all a⃗ ∈ D𝜀
u
 . Thus |ū(a⃗) − u(a⃗)| ≤ 𝜀 for every a⃗ ∈ Aℕ . Since g is an RII

–measurable simple–function and D�
u
 is a finite set, ū is an RIII–measurable simple–

function. As 𝜀 > 0 was arbitrary, this proves that u is uniformly RIII-approachable. 
 □

Proof of Theorem 6.5: We only need to show that any of the conditions 1, 2, and 
3, implies that u is uniformly R-approachable. Then, the last conclusion of Theorem  
6.5 follows from Theorem 6.1.

Proof for condition 1: Assume that u is weakly tame. We prove that u is uni-
formly R-approachable. Let 𝜀 > 0 . Let Q denote the set of plays where the oscillation 
of u is at most �∕2 , i.e., Q = {a⃗ ∈ Aℕ ∶ ou(a⃗) ≤ 𝜀∕2} . Thus, Aℕ ⧵ Q is a finite set. 
By definition of Q, for every play a⃗ ∈ Q , there is a history ha⃗ ∈ H such that ha⃗ ≺ a⃗ 
and for every two plays a⃗�, a⃗�� ∈ Q that extend ha⃗ we have |u(a⃗�) − u(a⃗��)| ≤ 𝜀∕2 . We 
may assume that ha⃗ is the shortest such history. Note that for every play a⃗⋄ ≻ ha⃗ we 
have ha⃗ = ha⃗⋄ . Let S = {ha⃗ ∶ a⃗ ∈ Aℕ} . Note that [S] = Q.

As we assume that u is bounded, there is a finite set K ⊂ ℝ such that for every play 
a⃗ ∈ Aℕ there exists k ∈ K with |u(a⃗) − k| < 𝜀∕2 . By construction, for every history 
h ∈ S there is a number zh ∈ K such that for every p ≻ h we have |u(a⃗) − zh| < 𝜀 . Let 
Sk = {h ∈ S ∶ zh = k} for each k ∈ K . Note that {Sk ∶ k ∈ K} is a finite partition of S.

Now we define a payoff function ū by setting ū(a⃗) = k if a⃗ ∈ [Sk] and setting 
ū(a⃗) = u(a⃗) if a⃗ ∈ Aℕ ⧵ Q . Thus |u(a⃗) − ū(a⃗)| < 𝜀 for every a⃗ ∈ Aℕ . As each [Sk] is 
open and Aℕ ⧵ Q is finite, ū is an R–measurable simple–function. Thus, u is uni-
formly R-approachable.

Proof for conditions 2 and 3: Assume that u is upper semicontinuous; the 
proof is similar when u is lower semicontinuous. We prove that u is uniformly R
-approachable. Let 𝜀 > 0 . Choose m ∈ ℕ such that 1

m
< 𝜀 . Since u is bounded, there 

exists K ∈ ℕ such that u−1([−Km,Km)) = P.
Take an arbitrary k ∈ {−K,−K + 1,… ,K − 1,K} . Let Qk = u−1

(
[
k

m
,
k+1

m
)
)
 . For 

any a⃗, a⃗⋄ ∈ Qk , we have |u(a⃗) − u(a⃗⋄)| < 1

m
< 𝜀 . Since u is upper semicontinuous, 

the sets u−1
(
[
k

m
,Km)

)
 and u−1

(
[
k+1

m
,Km)

)
 are closed, and hence Qk ∈ R.
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Now we define a payoff function ū by setting ū(a⃗) = k

m
 if a⃗ ∈ Qk . Thus 

|ū(a⃗) − u(a⃗)| < 1

m
< 𝜀 for every a⃗ ∈ Aℕ . By construction, ū is an R–measurable sim-

ple–function. Thus, u is uniformly R-approachable.   ◻

Appendix: Additional examples

In this section we provide two additional examples. The first example illustrates 
the notions of weakly and strongly tame functions.

Example 11.1 Consider the action space A = ℕ = {1, 2,…} . For every action n ∈ A 
let a⃗n be the play where action n is played at all periods and let Qn be the set of plays 
that start with action n.

Let the payoff function u be as follows: for a play a⃗ ∈ Qn we set u(a⃗) = 1 if a⃗ = a⃗n 
and u(a⃗) = n

n+1
 if a⃗ ∈ Qn�{a⃗n} . The function u is continuous everywhere except at 

the plays a⃗n , where n ∈ ℕ . The function u is strongly tame: u is weakly tame as for 
any r > 0 , the set 

{
a⃗ ∈ Aℕ ∶ ou(a⃗) ≥ r

}
=

{
a⃗n ∶ n ≤ 1−r

r

}
 is finite, and each dis-

continuity a⃗n is removable (the limit of u at a⃗n is equal to n

n+1
).

Now let the payoff function u′ be as follows: for a play a⃗ ∈ Qn we set u�(a⃗) = 1 if 
a⃗ = a⃗n and u�(a⃗) = 0 if a⃗ ∈ Qn�{a⃗n} . This function is not weakly tame, as for every 
r ∈ (0, 1) the set 

{
a⃗ ∈ Aℕ ∶ ou� (a⃗) ≥ r

}
=

{
a⃗n ∶ n ∈ ℕ

}
 is infinite. Note that every 

discontinuity of u′ is removable (the limit of u′ at each a⃗n is equal to 0). ⊲

In the next example, each behavioral strategy induces an unambiguous expected 
payoff with respect to the algebra RIII , but the payoff function is not uniformly RIII

–approachable. In particular, this example demonstrates that (1) in Theorem  6.1, the 
reverse implications do not hold for the algebras RIII and R , and (2) in Theorem 6.4, 
the reverse of the last implication does not hold.

Example 11.2 Consider the decision problem with action space A = {x, y, z} . Let y⃗ 
be the play (y, y,…) ∈ Aℕ . Let Wx be the set of plays a⃗ ∈ Aℕ such that, for some 
t ∈ ℕ , the play a⃗ contains action y at all periods 1,… , t − 1 and contains action x at 
period t. Similarly, let Wz be the set of plays a⃗ ∈ Aℕ such that, for some t ∈ ℕ , the 
play a⃗ contains action y at all periods 1,… , t − 1 and contains action z at period t. 
Thus Wx,Wz , and the singleton {y⃗} form a partition of Aℕ.

Define the following payoff function: let u(a⃗) = 1 for all a⃗ ∈ Wx , let u(a⃗) = −1 for 
all a⃗ ∈ Wz , and let u(y⃗) = 0.

Step 1: Wx ∈ R ⧵RIII (and similarly Wz ∈ R ⧵RIII).21

21 The example is quite delicate. Consider the following related example: The action set is {x, y} , and we 
define Wx as in the example, i.e., Wx = Aℕ ⧵ {y⃗} . Now, in contrast with the example, Wx ∈ R

III would 
hold.
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Proof of Step 1: As Wx is an open set, we have Wx ∈ R . Now we argue that 
Wx ∉ R

III . Assume by way of contradiction that Wx ∈ R
III . Then, by Lemma 10.3, 

we can write

where Q ∈ R
II , and F1 , F2 are finite subsets of Aℕ , and Q ∩ F1 = � , and and Q ⊇ F2.

We distinguish between two cases: either y⃗ ∈ Q or y⃗ ∉ Q . First assume that 
y⃗ ∈ Q . Since Q is an open set, there is a history h = (y,… , y) such that [h] ⊆ Q . 
As [h] ∩Wz is infinite, the intersection Q ∩Wz is also infinite. The set F2 is finite 
and Wx ∩Wz = � , so we reach a contradiction with (12). Now assume that y⃗ ∉ Q . 
As Q ∈ R

II , the complement Aℕ⧵Q is open. Hence, there is a history h = (y,… , y) 
such that [h] ⊆ Aℕ⧵Q . As [h] ∩Wx is infinite, the intersection (Aℕ ⧵ Q) ∩Wx is also 
infinite. The set F1 is finite and Wx ∩Wz = � , so we reach a contradiction with (12).

Step 2: u is not uniformly RIII-approachable.
Proof of Step 2: Let � =

1

3
 . It is sufficient to prove that for any RIII-measurable 

simple–function u′ there is a play a⃗ ∈ Aℕ such that |u(a⃗) − u�(a⃗)| > 𝜀.
Take an R

III-measurable simple–function u� =
∑m

i=1
ri�Qi

 where m ∈ ℕ , 
r1,… , rm ∈ ℝ , Q1,… ,Qm ∈ R

III , and {Q1,… ,Qm} is a partition of Aℕ . By Step 1, 
Wx is not in RIII , and thus Wx is also not a finite union of sets in RIII . Hence, there 
is Qj , for some j ∈ {1,… ,m} , such that Qj ∩Wx ≠ � and Qj ∩ (Aℕ⧵Wx) ≠ � . There-
fore, whichever value rj takes, there is a play a⃗ ∈ Qj with |u(a⃗) − u�(a⃗)| > 𝜀.

Step 3: Each behavioral strategy b has an unambiguous expected payoff with 
respect to RIII.

Proof of Step 3: Take a behavioral strategy b. It is enough to show that 
B(Wx) = B�(Wx) for all B,B� ∈ [ℙIII

b
] , because {y⃗} ∈ R

III and Wx ∪ {y⃗} ∪Wz = Aℕ.
For all k ∈ ℕ , let hx

k
∈ Ak be the history that contains action y at all periods 

1,… , k − 1 and contains action x at period k, and let hz
k
∈ Ak be the history that con-

tains action y at all periods 1,… , k − 1 and contains action z at period k, and let 

h
y

k
∈ Ak be the history that contains action y at all periods 1,… , k . For all t ∈ ℕ , let 

Sx
t
= {hx

k
∶ k = 1,… , t} and Sz

t
= {hz

k
∶ k = 1,… , t} . Note that, for each t ∈ ℕ , we 

have [Sx
t
] ∈ R

III and [Sz
t
] ∈ R

III.
Take an arbitrary B ∈ [ℙIII

b
] . Note that (1) for every t ∈ ℕ , we have 

ℙ
III
b
([Sx

t
]) ≤ B(Wx) by [Sx

t
] ⊂ Wx , and (2) ℙIII

b
([Sx

t
]) is increasing in t as Sx

t
 is 

increasing in t. Hence, �x ∶= limt→∞ ℙ
III
b
([Sx

t
]) exists and �x ≤ B(Wx) . Similarly, 

�z ∶= limt→∞ ℙ
III
b
([Sz

t
]) exists and �z ≤ B(Wz).

For any t ∈ ℕ , since [Sx
t
], [Sz

t
] , and [hyt ] form a finite partition of P, we have 

ℙ
III
b
([Sx

t
]) + ℙ

III
b
([Sz

t
]) = 1 − ℙ

III
b
([h

y

t ]) . By taking limits,

Since B is a charge on the power set Aℕ , we have B(Wx) + B(Wz) = 1 − B({y⃗}) . As 
�x ≤ B(Wx) and �z ≤ B(Wz) , by (13), we obtain �x = B(Wx) and �z = B(Wz).

(12)Wx = (Q ∪ F1) ⧵ F2,

(13)�x + �z = 1 − ℙ
III
b
(y⃗).
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Now let B� ∈ [ℙIII
b
] . Then, similarly, �x = B�(Wx) , and hence B(Wx) = B�(Wx) . 

The proof is complete. ⊲
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