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Abstract
This paper introduces the new class of one-bound core games, where the core can 
be described by either a lower bound or an upper bound on the payoffs of the play-
ers, named lower bound core games and upper bound core games, respectively. We 
study the relation of the class of one-bound core games with several other classes 
of games and characterize the new class by the structure of the core and in terms 
of Davis-Maschler reduced games. We also provide explicit expressions and axi-
omatic characterizations of the nucleolus for one-bound core games, and show that 
the nucleolus coincides with the Shapley value and the �-value when these games 
are convex.

Keywords One-bound core games · Lower bound core games · Upper bound core 
games · Core · Nucleolus

JEL Classification C71

1 Introduction

In a cooperative game with transferable utility, coalitions of cooperating players are 
able to attain joint revenues. A characteristic function models this feature by assign-
ing to each possible coalition a real number, called worth, reflecting these joint rev-
enues. Depending on the structure of the characteristic function, different classes of 
games arise. For a class of games, a main issue in each game is how to allocate the 
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worth of the grand coalition, consisting of all players in the game. Solution concepts 
assign to each game in a certain class such an allocation. A central benchmark for 
evaluating solutions is the core, which equals the set of allocations that for each coa-
lition assign in total at least the worth to its members. The nucleolus (cf. Schmeidler 
1969) is a particular solution that assigns to each game with a nonempty core the 
unique core allocation that lexicographically minimizes the maximal excesses over 
all coalitions.

In this paper, we introduce a new class of cooperative games, called one-bound 
core games, where the core can be described by either a lower bound or an upper 
bound on the payoffs of the players. A game is a lower bound core game if the core 
can be described by a lower bound on the payoffs of the players, and an upper bound 
core game if the core can be described by an upper bound on the payoffs of the 
players. A game is both a lower bound core game and an upper bound core game 
if and only if it has at most two players or a single-valued core. Both lower bound 
core games and upper bound core games are specific two-bound core games (cf. 
Gong et al. 2022b), where the core can be described by a lower bound and an upper 
bound on the payoffs of the players. Moreover, upper bound core games generalize 
1-convex games (cf. Driessen 1985), where the worth of the grand coalition is large 
enough for each nonempty coalition to cover its worth while allocating to all non-
members their marginal contributions to the grand coalition. We provide a necessary 
and sufficient condition for one-bound core games to be convex (cf. Shapley 1971).

We characterize one-bound core games by the structure of the core. A game with 
nonempty core is a lower bound core game if and only if each player obtains its 
maximal payoff within the core exactly when the other players obtain their mini-
mal payoffs within the core, or equivalently, in each extreme point of the core one 
player obtains its maximal payoff within the core and all other players obtain their 
minimal payoffs within the core. Similarly, a game with nonempty core is an upper 
bound core game if and only if each player obtains its minimal payoff within the 
core exactly when the other players obtain their maximal payoffs within the core, or 
equivalently, in each extreme point of the core one player obtains its minimal payoff 
within the core and all other players obtain their maximal payoffs within the core. 
We show that a game with nonempty core is a lower bound core game if and only 
if all Davis-Maschler reduced games with respect to core allocations have the same 
lower exact core bound. Similarly, a game with nonempty core is an upper bound 
core game if and only if all Davis-Maschler reduced games with respect to core allo-
cations have the same upper exact core bound.

We also study the nucleolus for one-bound core games. We show that it is the 
unique pre-imputation that is a convex combination of the two exact core bounds. 
We provide axiomatic characterizations based on new properties that require that the 
difference between the allocation and the minimal payoff or maximal payoff within 
the core is equal for all players. For convex one-bound core games, the nucleolus 
is the unique solution satisfying symmetry and translation covariance. This implies 
that it coincides with the Shapley value (cf. Shapley 1953), another well-known 
solution for cooperative games, and the �-value (cf. Tijs 1981).

The remainder of this paper is organized as follows. Section 2 provides pre-
liminary definitions and notation for cooperative games. Section 3 introduces and 



1 3

One-bound core games  

studies one-bound core games. Section  4 analyzes the nucleolus for one-bound 
core games. Section 5 concludes.

2  Preliminaries

Let N be a nonempty and finite set of players and let 2N = {S ∣ S ⊆ N} be the set 
of all coalitions. For all x ∈ ℝ

N , we denote xS = (xi)i∈S for all S ∈ 2N⧵{�} . For all 
x, y ∈ ℝ

N , we denote x ≤ y if xi ≤ yi for all i ∈ N , x ≥ y if xi ≥ yi for all i ∈ N , and 
x + y = (xi + yi)i∈N.

A (transferable utility) game is a pair (N, v), where v ∶ 2N → ℝ assigns to each 
coalition S ∈ 2N its worth v(S) ∈ ℝ such that v(�) = 0 . The class of all games 
with player set N is denoted by ΓN . For simplicity, we write v ∈ ΓN rather than 
(N, v) ∈ ΓN.

For each game v ∈ ΓN , the set of pre-imputations X(v) ⊆ ℝ
N is given by

and the core C(v) ⊆ ℝ
N is given by

A game v ∈ ΓN is balanced (cf. Bondareva 1963 and Shapley 1967) if and only if 
C(v) ≠ � . The class of all balanced games with player set N is denoted by ΓN

b
.

For each game v ∈ ΓN
b

 , the lower exact core bound l∗(v) ∈ ℝ
N (cf. Bondareva 

and Driessen 1994) is given by

and the upper exact core bound u∗(v) ∈ ℝ
N (cf. Bondareva and Driessen 1994) is 

given by

A game v ∈ ΓN
b

 is a two-bound core game (cf. Gong et  al. 2022b) if there exist 
l, u ∈ ℝ

N such that C(v) = {x ∈ X(v) | l ≤ x ≤ u} . Gong et al. (2022b) showed that a 
game v ∈ ΓN

b
 is a two-bound core game if and only if

The class of all two-bound core games with player set N is denoted by ΓN
t

 . Gong 
et al. (2022b) showed that ΓN

t
= ΓN

b
 if and only if |N| ≤ 3.

A game v ∈ ΓN
b

 is a 1-convex game (cf. Driessen 1985) if

X(v) =

{
x ∈ ℝ

N
|||||
∑
i∈N

xi = v(N)

}
,

C(v) =

{
x ∈ X(v)

|||||
∀S ∈ 2N ∶

∑
i∈S

xi ≥ v(S)

}
.

l∗
i
(v) = min

x∈C(v)
xi for all i ∈ N,

u∗
i
(v) = max

x∈C(v)
xi for all i ∈ N.

C(v) = {x ∈ X(v) | l∗(v) ≤ x ≤ u∗(v)}.
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The class of all 1-convex games with player set N is denoted by ΓN
1c

.
A game v ∈ ΓN is convex (cf. Shapley 1971) if and only if

The class of all convex games with player set N is denoted by ΓN
c

 . Shapley (1971) 
showed that ΓN

c
⊆ ΓN

b
 , and ΓN

c
= ΓN

b
 if and only if |N| ≤ 2 . Moreover, for each 

v ∈ ΓN
c

 , l∗
i
(v) = v({i}) and u∗

i
(v) = v(N) − v(N⧵{i}) for all i ∈ N.

A solution � on a domain of games assigns to each game v in this domain an allo-
cation �(v) ∈ X(v) . The nucleolus � (cf. Schmeidler 1969) is the solution that assigns 
to each game v ∈ ΓN

b
 the allocation x ∈ X(v) that lexicographically minimizes the 

excesses v(S) −
∑

i∈S xi for all S ∈ 2N⧵{�} arranged in non-increasing order. Clearly, 
�(v) ∈ C(v) for all v ∈ ΓN

b
 . Gong et al. (2022b) showed that the nucleolus of a two-

bound core game v ∈ ΓN
t

 is for each i ∈ N given by

where � ∈ ℝ is such that 
∑

i∈N �i(v) = v(N) . This implies that for each v ∈ ΓN
t

 , 
�i(v) − l∗

i
(v) = �j(v) − l∗

j
(v) for all i, j ∈ N with u∗

i
(v) − l∗

i
(v) = u∗

j
(v) − l∗

j
(v) . The 

Shapley value � (cf. Shapley 1953) is the solution that assigns to each game v ∈ ΓN 
the allocation given by

Shapley (1971) showed that �(v) ∈ C(v) for all v ∈ ΓN
c

 . The �-value � (cf. Tijs 1981) 
is the solution that assigns to each game v ∈ ΓN

b
 the allocation given by

where

and � ∈ [0, 1] is such that 
∑

i∈N �i(v) = v(N) . Tijs (1981) showed that a(v) = l∗(v) 
and b(v) = u∗(v) for all v ∈ ΓN

c
 . Driessen and Tijs (1983) showed that �(v) = �(v) 

for all v ∈ ΓN
1c

 . Driessen and Tijs (1985) showed that �(v) = �(v) = �(v) for all 
v ∈ ΓN

1c
∩ ΓN

c
.

v(S) +
∑
i∈N⧵S

(v(N) − v(N⧵{i})) ≤ v(N) for all S ∈ 2N⧵{�}.

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T) for all i ∈ N and all S ⊆ T ⊆ N⧵{i}.

�i(v) =

⎧⎪⎨⎪⎩

l∗
i
(v) +min

�
1

2
(u∗

i
(v) − l∗

i
(v)), �

�
if

1

2

∑
i∈N(u

∗
i
(v) + l∗

i
(v)) ≥ v(N);

l∗
i
(v) +max

�
1

2
(u∗

i
(v) − l∗

i
(v)), u∗

i
(v) − l∗

i
(v) − �

�
if

1

2

∑
i∈N(u

∗
i
(v) + l∗

i
(v)) ≤ v(N),

�i(v) =
∑

S∈2N∶i∉S

|S|!(|N| − |S| − 1)!

|N|! (v(S ∪ {i}) − v(S)) for all i ∈ N.

�i(v) = �ai(v) + (1 − �)bi(v) for all i ∈ N,

ai(v) = max
S∈2N∶i∈S

{
v(S) −

∑
j∈S⧵{i}

(v(N) − v(N⧵{j}))

}
,

bi(v) = v(N) − v(N⧵{i}),
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A solution � on a domain of games satisfies symmetry if for each game v in this 
domain, it holds that �i(v) = �j(v) for all i, j ∈ N with v(S ∪ {i}) = v(S ∪ {j}) for all 
S ⊆ N⧵{i, j} . A solution � on a domain of games satisfies translation covariance if 
for each game v in this domain and each � ∈ ℝ

N such that v + � is in this domain, it 
holds that �(v + �) = �(v) + � , where v + � is defined by (v + �)(S) = v(S) +

∑
i∈S �i 

for all S ∈ 2N . It is known that the nucleolus, the Shapley value, and the �-value each 
satisfy symmetry and translation covariance on each subdomain of balanced games.

3  One‑bound core games

In this section, we introduce the new class of one-bound core games, where the core 
can be described by either a lower bound or an upper bound on the payoffs of the 
players. A game is a lower bound core game if the core can be described by a lower 
bound on the payoffs of the players, and an upper bound core game if the core can 
be described by an upper bound on the payoffs of the players.

Definition 1 A game v ∈ ΓN
b

 is a lower bound core game if there exists l ∈ ℝ
N such 

that

A game v ∈ ΓN
b

 is an upper bound core game if there exists u ∈ ℝ
N such that

A game is a one-bound core game if it is a lower bound core game or an upper 
bound core game.

The class of all lower bound core games with player set N is denoted by ΓN
l

 . The 
class of all upper bound core games with player set N is denoted by ΓN

u
 . It turns out 

that each lower bound core game with at least two players can only be described by 
the lower exact core bound, and each upper bound core game with at least two play-
ers can only be described by the upper exact core bound.1

Lemma 1 Let v ∈ ΓN
b

 and let l, u ∈ ℝ
N . Then the following statements hold: 

 (i) If C(v) = {x ∈ X(v) ∣ l ≤ x} , then |N| = 1 or l = l∗(v).
 (ii) If C(v) = {x ∈ X(v) ∣ x ≤ u} , then |N| = 1 or u = u∗(v).

Proof (i) Assume that C(v) = {x ∈ X(v) ∣ l ≤ x} . Then l ≤ l∗(v) . Assume that 
|N| ≥ 2 and suppose for the sake of contradiction that there exists i ∈ N such that 

C(v) = {x ∈ X(v) | l ≤ x}.

C(v) = {x ∈ X(v) | x ≤ u}.

1 In contrast, two-bound core games could be described by infinitely many bounds.



 D. Gong et al.

1 3

li < l∗
i
(v) . Define x ∈ ℝ

N by xi = li and xj = lj +
1

�N�−1 (v(N) −
∑

k∈N lk) for all 
j ∈ N⧵{i} . Then x ∈ C(v) , which contradicts the definition of l∗

i
(v).

(ii) The proof is analogous to the proof of (i).   ◻

The following result follows directly from Lemma 1.

Corollary 1 

 (i) A game v ∈ ΓN
b

 is a lower bound core game if and only if 
C(v) = {x ∈ X(v) ∣ l∗(v) ≤ x}.

 (ii) A game v ∈ ΓN
b

 is an upper bound core game if and only if 
C(v) = {x ∈ X(v) ∣ x ≤ u∗(v)}.

Moreover, the lower exact core bound of each lower bound core game with 
infinitely many core elements is given by the individual worths of the players, and 
the upper exact core bound of each upper bound core game with infinitely many 
core elements is given by the marginal contributions to the grand coalition.

Lemma 2 

 (i) Let v ∈ ΓN
l

 . Then |C(v)| = 1 or l∗
i
(v) = v({i}) for all i ∈ N.

 (ii) Let v ∈ ΓN
u

 . Then |C(v)| = 1 or u∗
i
(v) = v(N) − v(N⧵{i}) for all i ∈ N.

Proof (i) Assume that |C(v)| ≠ 1 . Then v(N) >
∑

i∈N l∗
i
(v) . Suppose for the sake of 

contradiction that there exists i ∈ N such that l∗
i
(v) > v({i}) . Let 𝜀 > 0 be small. 

Define x ∈ ℝ
N by xi = l∗

i
(v) − � and xj = l∗

j
(v) +

1

�N�−1 (v(N) −
∑

k∈N l∗
k
(v) + �) for all 

j ∈ N⧵{i} . Then x ∈ C(v) , which contradicts the definition of l∗
i
(v).

(ii) The proof is analogous to the proof of (i).   ◻

All lower bound core games with at most two players are upper bound core 
games, and all upper bound core games with at most two players are lower bound 
core games, but this does not hold for more players.

Theorem 1 

 (i) If |N| ≤ 2 , then ΓN
l
= ΓN

u
.

 (ii) If |N| ≥ 3 , then ΓN
l
⊈ ΓN

u
 and ΓN

l
⊉ ΓN

u
.

Proof (i) Assume that |N| ≤ 2 . Let v ∈ ΓN
b

 . Then v ∈ ΓN
c

 , so 
l∗
i
(v) = v({i}) and u∗

i
(v) = v(N) − v(N⧵{i}) for all i ∈ N . This implies that 
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C(v) = {x ∈ X(v) ∣ l∗(v) ≤ x} = {x ∈ X(v) ∣ x ≤ u∗(v)} , so v ∈ ΓN
l
∩ ΓN

u
 . Hence, 

ΓN
l
= ΓN

u
= ΓN

b
.

(ii) Let v ∈ ΓN
b

 with |N| ≥ 3 be defined by

Then l∗
i
(v) = 0 and u∗

i
(v) = 1 for all i ∈ N . This implies that 

C(v) = {x ∈ X(v) ∣ l∗(v) ≤ x} and C(v) ≠ {x ∈ X(v) ∣ x ≤ u∗(v)} . Hence, v ∈ ΓN
l
⧵ΓN

u
.

Let v ∈ ΓN
b

 with |N| ≥ 3 be defined by

Then l∗
i
(v) = 0 and u∗

i
(v) = 1 for all i ∈ N . This implies that 

C(v) ≠ {x ∈ X(v) ∣ l∗(v) ≤ x} and C(v) = {x ∈ X(v) ∣ x ≤ u∗(v)} . Hence, v ∈ ΓN
u
⧵ΓN

l
 .  

 ◻

The following result follows from Lemmas 1 and 2 and Theorem 1.

Theorem 2 A game v ∈ ΓN
b

 is both a lower bound core game and an upper bound 
core game if and only if |N| ≤ 2 or |C(v)| = 1.

Proof For the if-part, assume that |N| ≤ 2 or |C(v)| = 1 . If |N| ≤ 2 , then Theorem 1 
implies that v ∈ ΓN

l
∩ ΓN

u
 . If |C(v)| = 1 , then Lemma 2 implies that v ∈ ΓN

l
∩ ΓN

u
.

For the only-if part, assume that v ∈ ΓN
l
∩ ΓN

u
 . Let x ∈ C(v) . Then 

v({i}) ≤ xi ≤ v(N) − v(N⧵{i}) for all i ∈ N . Assume that |N| > 2 . Then Lemmas 1 
and 2 imply that

This implies that v({i}) = xi = v(N) − v(N⧵{i}) for all i ∈ N . Hence, |C(v)| = 1 .   ◻

As the following example shows, one-bound core games are not necessarily 
convex, and convex games are not necessarily one-bound core games.

Example 1 Let v ∈ ΓN
l
∩ ΓN

u
 with |N| ≥ 3 be defined by

Then v({i}) − v(�) = 1 > −1 = v({i, j}) − v({j}) for all distinct i, j ∈ N , so v ∉ ΓN
c

.
Now, let v ∈ ΓN

c
 with |N| ≥ 3 be defined by

v(S) =

{
1 if S = N;

0 otherwise.

v(S) =

⎧
⎪⎨⎪⎩

�N� − 1 if S = N;

�N� − 2 if �S� = �N� − 1;

0 otherwise.

C(v) =
{
x ∈ X(v) || ∀i ∈ N ∶ v({i}) ≤ xi

}

=
{
x ∈ X(v) || ∀i ∈ N ∶ xi ≤ v(N) − v(N⧵{i})

}
.

v(S) =

{ |S| if |S| ∈ {1, |N|};
0 otherwise.
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Then l∗
i
(v) = 0 and u∗

i
(v) = 2 for all i ∈ N , which implies that 

C(v) ≠ {x ∈ X(v) ∣ l∗(v) ≤ x} and C(v) ≠ {x ∈ X(v) ∣ x ≤ u∗(v)} , so v ∉ ΓN
l
∪ ΓN

u
 . △

As the following theorem shows, all 1-convex games are upper bound core 
games, and all one-bound core games are two-bound core games. Strict inclusion 
depends on the number of players in the game.

Theorem 3 

 (i) If |N| = 1 , then ΓN
1c
= ΓN

l
= ΓN

u
= ΓN

t
= ΓN

b
= ΓN.

 (ii) If |N| = 2 , then ΓN
1c
= ΓN

l
= ΓN

u
= ΓN

t
= ΓN

b
⊊ ΓN.

 (iii) If |N| = 3 , then ΓN
l
⊊ ΓN

t
= ΓN

b
⊊ ΓN and ΓN

1c
⊊ ΓN

u
⊊ ΓN

t
= ΓN

b
⊊ ΓN.

 (iv) If |N| ≥ 4 , then ΓN
l
⊊ ΓN

t
⊊ ΓN

b
⊊ ΓN and ΓN

1c
⊊ ΓN

u
⊊ ΓN

t
⊊ ΓN

b
⊊ ΓN.

Proof First, we show that ΓN
l
⊆ ΓN

t
⊆ ΓN

b
⊆ ΓN and ΓN

1c
⊆ ΓN

u
⊆ ΓN

t
⊆ ΓN

b
⊆ ΓN . 

Clearly, ΓN
t
⊆ ΓN

b
⊆ ΓN.

Let v ∈ ΓN
l

 . Then 
C(v) ⊆ {x ∈ X(v) ∣ l∗(v) ≤ x ≤ u∗(v)} ⊆ {x ∈ X(v) ∣ l∗(v) ≤ x} = C(v) , so 
C(v) = {x ∈ X(v) ∣ l∗(v) ≤ x ≤ u∗(v)} and v ∈ ΓN

t
 . Hence, ΓN

l
⊆ ΓN

t
.

Let v ∈ ΓN
1c

 . If x ∈ X(v) and x ≤ u∗(v) , then for each S ∈ 2N⧵{�},

so x ∈ C(v) . This implies that C(v) = {x ∈ X(v) ∣ x ≤ u∗(v)} , so v ∈ ΓN
u

 . Hence, 
ΓN
1c
⊆ ΓN

u
.

Let v ∈ ΓN
u

 . Then 
C(v) ⊆ {x ∈ X(v) ∣ l∗(v) ≤ x ≤ u∗(v)} ⊆ {x ∈ X(v) ∣ x ≤ u∗(v)} = C(v) , so 
C(v) = {x ∈ X(v) ∣ l∗(v) ≤ x ≤ u∗(v)} and v ∈ ΓN

t
 . Hence, ΓN

u
⊆ ΓN

t
.

(i) & (ii) Assume that |N| ∈ {1, 2} . Clearly, ΓN
b
= ΓN if and only if |N| = 1 . Let 

v ∈ ΓN
b

 . Then for each S ∈ 2N⧵{�},

This implies that v ∈ ΓN
1c

 . Hence, ΓN
1c
= ΓN

l
= ΓN

u
= ΓN

t
= ΓN

b
.

v(S) =

⎧
⎪⎨⎪⎩

3 if S = N;

1 if �S� = �N� − 1;

0 otherwise.

∑
i∈S

xi =
∑
i∈N

xi −
∑
i∈N⧵S

xi ≥ v(N) −
∑
i∈N⧵S

u∗
i
(v)

≥ v(N) −
∑
i∈N⧵S

(v(N) − v(N⧵{i})) ≥ v(S),

v(S) +
∑
i∈N⧵S

(v(N) − v(N⧵{i})) = v(N).
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(iii) & (iv) Assume that |N| ≥ 3 . By Gong et  al. (2022b), ΓN
t
= ΓN

b
 if and only 

if |N| ≤ 3 . Let v ∈ ΓN
l
∩ ΓN

u
 be the one-bound core game from Example  1. Then 

v(N) − v(N⧵{i}) = |N| for all i ∈ N . This implies that for each S ∈ 2N with |S| = 1,

so v ∉ ΓN
1c

 . Hence, ΓN
1c
⊊ ΓN

u
.

Let v ∈ ΓN
t

 be the convex game from Example  1. Then v ∉ ΓN
l
∪ ΓN

u
 . Hence, 

ΓN
l
⊊ ΓN

t
 and ΓN

u
⊊ ΓN

t
 .   ◻

We provide a necessary and sufficient condition for one-bound core games to be 
convex.

Theorem 4 

 (i) A lower bound core game v ∈ ΓN
l

 is convex if and only if 

 (ii) An upper bound core game v ∈ ΓN
u

 is convex if and only if 

Proof (i) Let v ∈ ΓN
l

 . Assume that 
∑

i∈S l
∗
i
(v) = v(S) for all S ∈ 2N⧵{N} . Let i ∈ N 

and let S ⊆ N⧵{i} . If S = N⧵{i} , then

If S ≠ N⧵{i} , then v(S ∪ {i}) − v(S) =
∑

j∈S∪{i} l
∗
j
(v) −

∑
j∈S l

∗
j
(v) = l∗

i
(v) . This 

implies that v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T) for all S ⊆ T ⊆ N⧵{i} . Hence, 
v ∈ ΓN

c
.

Let v ∈ ΓN
l

 . Then (v(N) −
∑

j∈N⧵{i} l
∗
j
(v), l∗

N⧵{i}
(v)) ∈ C(v) for all i ∈ N , which 

implies that 
∑

i∈S l
∗
i
(v) ≥ v(S) for all S ∈ 2N⧵{N} . Assume that v ∈ ΓN

c
 . Let 

S ∈ 2N⧵{�,N} . Denote S = {i1,… , i|S|} . Then

v(S) +
∑
i∈N⧵S

(v(N) − v(N⧵{i})) = 1 + (|N| − 1)|N| > |N| = v(N),

∑
i∈S

l∗
i
(v) = v(S) for all S ∈ 2N⧵{N}.

∑
i∈N⧵S

u∗
i
(v) = v(N) − v(S) for all S ∈ 2N⧵{�}.

v(S ∪ {i}) − v(S) = v(N) − v(N⧵{i}) = v(N) −
∑

j∈N⧵{i}

l∗
j
(v)

≥
∑
j∈N

l∗
j
(v) −

∑
j∈N⧵{i}

l∗
j
(v) = l∗

i
(v).
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where the first equality and the inequality follow from convexity. Hence, ∑
i∈S l

∗
i
(v) = v(S) for all S ∈ 2N⧵{N}.

(ii) Let v ∈ ΓN
u

 . Assume that 
∑

i∈N⧵S u
∗
i
(v) = v(N) − v(S) for all S ∈ 2N⧵{�} . Let 

i ∈ N and let S ⊆ N⧵{i} . If S = � , then

If S ≠ ∅ , then

This implies that v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T) for all S ⊆ T ⊆ N⧵{i} . 
Hence, v ∈ ΓN

c
.

Let v ∈ ΓN
u

 . Then (v(N) −
∑

j∈N⧵{i} u
∗
j
(v), u∗

N⧵{i}
(v)) ∈ C(v) for all i ∈ N , which 

implies that 
∑

i∈N⧵S u
∗
i
(v) ≤ v(N) − v(S) for all S ∈ 2N⧵{�} . Assume that v ∈ ΓN

c
 . Let 

S ∈ 2N⧵{�,N} . Denote N⧵S = {i1,… , i|N⧵S|} . Then

 where the first equality and the inequality follow from convexity. Hence, ∑
i∈N⧵S u

∗
i
(v) = v(N) − v(S) for all S ∈ 2N⧵{�} .   ◻

∑
i∈S

l∗
i
(v) =

∑
i∈S

v({i}) =

|S|∑
k=1

(
v({ik}) − v(�)

)

≤

|S|∑
k=1

(
v({i1,… , ik}) − v({i1,… , ik−1})

)
= v(S),

v(S ∪ {i}) − v(S) =v({i}) = v(N) −
∑

j∈N⧵{i}

u∗
j
(v)

≤
∑
j∈N

u∗
j
(v) −

∑
j∈N⧵{i}

u∗
j
(v) = u∗

i
(v).

v(S ∪ {i}) − v(S) =

(
v(N) −

∑
j∈N⧵(S∪{i})

u∗
j
(v)

)
−

(
v(N) −

∑
j∈N⧵S

u∗
j
(v)

)
= u∗

i
(v).

∑
i∈N⧵S

u∗
i
(v) =

∑
i∈N⧵S

(v(N) − v(N⧵{i}))

=

|N⧵S|∑
k=1

(
v(N) − v(N⧵{ik})

)

=

|N⧵S|∑
k=1

(
v((N⧵{ik}) ∪ {ik}) − v(N⧵{ik})

)

≥

|N⧵S|∑
k=1

(
v((N⧵{i1,… , ik}) ∪ {ik}) − v(N⧵{i1,… , ik})

)

= v(N) − v(N⧵(N⧵S))

= v(N) − v(S),
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One-bound core games are characterized by the structure of the core. A balanced 
game is a lower bound core game if and only if each player obtains its maximal 
payoff within the core exactly when the other players obtain their minimal payoffs 
within the core, or equivalently, in each extreme point of the core one player obtains 
its maximal payoff within the core and all other players obtain their minimal payoffs 
within the core. Similarly, a balanced game is an upper bound core game if and only 
if each player obtains its minimal payoff within the core exactly when the other play-
ers obtain their maximal payoffs within the core, or equivalently, in each extreme 
point of the core one player obtains its minimal payoff within the core and all other 
players obtain their maximal payoffs within the core. These observations are cap-
tured by the following theorem.

Theorem 5 

 (i) A game v ∈ ΓN
b

 is a lower bound core game if and only if 
u∗
i
(v) +

∑
j∈N⧵{i} l

∗
j
(v) = v(N)  f o r  a l l  i ∈ N  ,  o r  e q u i v a l e n t l y , 

C(v) = conv{(u∗
i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N}.2

 (ii) A game v ∈ ΓN
b

 is an upper bound core game if and only if 
l∗
i
(v) +

∑
j∈N⧵{i} u

∗
j
(v) = v(N)  f o r  a l l  i ∈ N  ,  o r  e q u i v a l e n t l y , 

C(v) = conv{(l∗
i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N}.

Proof (i) The only-if part follows directly from Lemma 2. For the if-part, let v ∈ ΓN
b

 
and assume that u∗

i
(v) +

∑
j∈N⧵{i} l

∗
j
(v) = v(N) for all i ∈ N . For each i ∈ N and each 

x ∈ C(v) such that xi = u∗
i
(v) , we have xj = l∗

j
(v) for all j ∈ N⧵{i} , which implies 

that (u∗
i
(v), l∗

N⧵{i}
(v)) ∈ C(v) . Convexity of the core implies that 

conv{(u∗
i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N} ⊆ C(v) . Let x ∈ C(v) . Define � ∈ [0, 1]N by

Then 
∑

i∈N �i = 1 and x =
∑

i∈N �i(u
∗
i
(v), l∗

N⧵{i}
(v)) , so 

x ∈ conv{(u∗
i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N} . Hence, C(v) = conv{(u∗

i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N} . 

Then 
∑

i∈S l
∗
i
(v) ≥ v(S) for all S ∈ 2N⧵{N} . Now, let x ∈ X(v) be such that l∗(v) ≤ x . 

For each S ∈ 2N⧵{N},

which implies that x ∈ C(v) , so C(v) = {x ∈ X(v) ∣ l∗(v) ≤ x} . Hence, v ∈ ΓN
l

.
(ii) The only-if part follows directly from Lemma 2. For the if-part, let v ∈ ΓN

b
 

and assume that l∗
i
(v) +

∑
j∈N⧵{i} u

∗
j
(v) = v(N) for all i ∈ N . For each i ∈ N and each 

�i =
xi − l∗

i
(v)

v(N) −
∑

j∈N l∗
j
(v)

for all i ∈ N.

∑
i∈S

xi ≥
∑
i∈S

l∗
i
(v) ≥ v(S),

2 The convex hull conv(Y) of a set Y ⊆ ℝ
N is the smallest convex set containing Y.
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x ∈ C(v) such that xi = l∗
i
(v) , we have xj = u∗

j
(v) for all j ∈ N⧵{i} , which implies 

that (l∗
i
(v), u∗

N⧵{i}
(v)) ∈ C(v) . Convexity of the core implies that 

conv{(l∗
i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N} ⊆ C(v) . Let x ∈ C(v) . Define � ∈ [0, 1]N by

Then 
∑

i∈N �i = 1 and x =
∑

i∈N �i(l
∗
i
(v), u∗

N⧵{i}
(v)) , so 

x ∈ conv{(l∗
i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N} . Hence, C(v) = conv{(l∗

i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N} . 

Then v(N) −
∑

i∈N⧵S u
∗
i
(v) ≥ v(S) for all S ∈ 2N⧵{�} . Now, let x ∈ X(v) be such that 

x ≤ u∗(v) . For each S ∈ 2N⧵{�},

which implies that x ∈ C(v) , so C(v) = {x ∈ X(v) ∣ x ≤ u∗(v)} . Hence, v ∈ ΓN
u

 .   ◻

The reduced game (cf. Davis and Maschler 1965) of v ∈ ΓN
b

 on T ∈ 2N⧵{�} with 
respect to x ∈ ℝ

N , denoted by vx
T
∈ ΓT , is defined by

In other words, the worth of a coalition in a reduced game is defined as the maximal 
remainder in cooperation with any subgroup of players in the original game that are 
not present in the reduced game. We show that a balanced game is a lower bound 
core game if and only if all reduced games with respect to core allocations have the 
same lower exact core bound. Similarly, a balanced game is an upper bound core 
game if and only if all reduced games with respect to core allocations have the same 
upper exact core bound. We use the following lemma, which follows from Peleg 
(1986) and Hwang and Sudhölter (2001).

Lemma 3 Let v ∈ ΓN
b

 , let T ∈ 2N⧵{�} , and let x ∈ C(v) . Then 
C(vx

T
) = {y ∈ X(vx

T
) ∣ (y, xN⧵T ) ∈ C(v)}.

Theorem 6 

 (i) A game v ∈ ΓN
b

 is a lower bound core game if and only if l∗(vx
T
) = l∗

T
(v) for all 

T ∈ 2N with |T| ≥ 2 and all x ∈ C(v).
 (ii) A game v ∈ ΓN

b
 is an upper bound core game if and only if u∗(vx

T
) = u∗

T
(v) for 

all T ∈ 2N with |T| ≥ 2 and all x ∈ C(v).

�i =
u∗
i
(v) − xi∑

j∈N u∗
j
(v) − v(N)

for all i ∈ N.

∑
i∈S

xi =
∑
i∈N

xi −
∑
i∈N⧵S

xi = v(N) −
∑
i∈N⧵S

xi ≥ v(N) −
∑
i∈N⧵S

u∗
i
(v) ≥ v(S),

vx
T
(S) =

⎧⎪⎨⎪⎩

v(N) −
∑

i∈N⧵T xi if S = T;

maxQ⊆N⧵T

�
v(S ∪ Q) −

∑
i∈Q xi

�
if S ∈ 2T⧵{�,T};

0 if S = �.
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Proof (i) Let v ∈ ΓN
b

 . For the only-if part, assume that v ∈ ΓN
l

 . Let T ∈ 2N with 
|T| ≥ 2 and let x ∈ C(v) . By Lemma  3, l∗(vx

T
) ≥ l∗

T
(v) . For each i ∈ T  , define 

yi ∈ X(vx
T
) by yi

i
=
∑

j∈T xj −
∑

j∈T⧵{i} l
∗
j
(v) and yi

j
= l∗

j
(v) for all j ∈ T⧵{i} . For each 

i ∈ T ,

which implies that l∗(v) ≤ (yi, xN⧵T ) , so (yi, xN⧵T ) ∈ C(v) . By Lemma 3, yi ∈ C(vx
T
) 

for all i ∈ T  , so l∗(vx
T
) ≤ l∗

T
(v) . Hence, l∗(vx

T
) = l∗

T
(v).

For the if-part, assume that l∗(vx
T
) = l∗

T
(v) for all T ∈ 2N with |T| ≥ 2 and all 

x ∈ C(v) . If |N| ≤ 2 , then v ∈ ΓN
l

 by Theorem  3. Suppose that |N| ≥ 3 . Denote 
N = {1,… , |N|} . Let x1 ∈ C(v) be such that x1

1
= l∗

1
(v) . Then l∗(vx1

N⧵{1}
) = l∗

N⧵{1}
(v) . 

Let x2 ∈ C(vx
1

N⧵{1}
) be such that x2

2
= l∗

2
(vx

1

N⧵{1}
) = l∗

2
(v) . By Lemma 3, (x2, x1

1
) ∈ C(v) . 

Moreover, l∗(v(x
2,x1

1
)

N⧵{1,2}
) = l∗

N⧵{1,2}
(v) if |N| > 3 . If |N| > 3 , let x3 ∈ C(v

(x2,x1
1
)

N⧵{1,2}
) be such 

that x3
3
= l∗

3
(v

(x2,x1
1
)

N⧵{1,2}
) = l∗

3
(v) . By Lemma 3, (x3, x2

2
, x1

1
) ∈ C(v) . Continuing this rea-

soning, (v(N) −
∑�N�−1

i=1
l∗
i
(v), l∗

{1,…,�N�−1}(v)) ∈ C(v) . This holds for all permutations, 
so (u∗

i
(v), l∗

N⧵{i}
(v)) ∈ C(v) for all i ∈ N . Convexity of the core implies that 

conv{(u∗
i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N} ⊆ C(v) . Now, let x ∈ C(v) . Define � ∈ [0, 1]N by

Then 
∑

i∈N �i = 1 and x =
∑

i∈N �i(u
∗
i
(v), l∗

N⧵{i}
(v)) , so 

x ∈ conv{(u∗
i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N} . This implies that 

C(v) = conv{(u∗
i
(v), l∗

N⧵{i}
(v)) ∣ i ∈ N} . Hence, by Theorem 5, v ∈ ΓN

l
.

(ii) Let v ∈ ΓN
b

 . For the only-if part, assume that v ∈ ΓN
u

 . Let T ∈ 2N with |T| ≥ 2 
and let x ∈ C(v) . Then u∗(vx

T
) ≤ u∗

T
(v) . For each i ∈ T  , define yi ∈ X(vx

T
) by 

yi
i
=
∑

j∈T xj −
∑

j∈T⧵{i} u
∗
j
(v) and yi

j
= u∗

j
(v) for all j ∈ T⧵{i} . For each i ∈ T ,

which implies that (yi, xN⧵T ) ≤ u∗(v) , so (yi, xN⧵T ) ∈ C(v) . By Lemma 3, yi ∈ C(vx
T
) 

for all i ∈ T  , so u∗(vx
T
) ≥ u∗

T
(v) . Hence, u∗(vx

T
) = u∗

T
(v).

For the if-part, assume that u∗(vx
T
) = u∗

T
(v) for all T ∈ 2N with |T| ≥ 2 and all 

x ∈ C(v) . If |N| ≤ 2 , then v ∈ ΓN
u

 by Theorem  3. Suppose that |N| ≥ 3 . Denote 
N = {1,… , |N|} . Let x1 ∈ C(v) be such that x1

1
= u∗

1
(v) . Then u∗(vx1

N⧵{1}
) = u∗

N⧵{1}
(v) . 

Let x2 ∈ C(vx
1

N⧵{1}
) be such that x2

2
= u∗

2
(vx

1

N⧵{1}
) = u∗

2
(v) . By Lemma  3, 

(x2, x1
1
) ∈ C(v) . Moreover, u∗(v

(x2,x1
1
)

N⧵{1,2}
) = u∗

N⧵{1,2}
(v) if |N| > 3 . If |N| > 3 , let 

x3 ∈ C(v
(x2,x1

1
)

N⧵{1,2}
) be such that x3

3
= u∗

3
(v

(x2,x1
1
)

N⧵{1,2}
) = u∗

3
(v) . By Lemma  3, 

(x3, x2
2
, x1

1
) ∈ C(v) . Continuing this reasoning, 

yi
i
=
∑
j∈T

xj −
∑

j∈T⧵{i}

l∗
j
(v) = xi +

∑
j∈T⧵{i}

xj −
∑

j∈T⧵{i}

l∗
j
(v) ≥ xi ≥ l∗

i
(v),

�i =
xi − l∗

i
(v)

v(N) −
∑

j∈N l∗
j
(v)

for all i ∈ N.

yi
i
=
∑
j∈T

xj −
∑

j∈T⧵{i}

u∗
j
(v) = xi +

∑
j∈T⧵{i}

xj −
∑

j∈T⧵{i}

u∗
j
(v) ≤ xi ≤ u∗

i
(v),
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(v(N) −
∑�N�−1

i=1
u∗
i
(v), u∗

{1,…,�N�−1}(v)) ∈ C(v) . This holds for all permutations, so 
(l∗
i
(v), u∗

N⧵{i}
(v)) ∈ C(v) for all i ∈ N . Convexity of the core implies that 

conv{(l∗
i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N} ⊆ C(v) . Now, let x ∈ C(v) . Define � ∈ [0, 1]N by

Then 
∑

i∈N �i = 1 and x =
∑

i∈N �i(l
∗
i
(v), u∗

N⧵{i}
(v)) , so 

x ∈ conv{(l∗
i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N} . This implies that 

C(v) = conv{(l∗
i
(v), u∗

N⧵{i}
(v)) ∣ i ∈ N} . Hence, by Theorem 5, v ∈ ΓN

u
 .   ◻

By Lemma  3 and Theorem  6, reduced games of one-bound core games with 
respect to core allocations are again one-bound core games with the same exact core 
bound. Typically, the exact core bounds of reduced balanced games are different 
from the exact core bounds of the original game. Theorem 6 actually states that if all 
reduced games have the same exact core bound, then the original game has to be a 
one-bound core game.

4  Nucleolus

In this section, we analyze the nucleolus for one-bound core games. The nucleolus 
for one-bound core games is the unique pre-imputation that is a convex combination 
of the lower exact core bound and the upper exact core bound.

Theorem 7 

 (i) Let v ∈ ΓN
l

 be a lower bound core game. Then 

 (ii) Let v ∈ ΓN
u

 be an upper bound core game. Then 

Proof (i) By Theorem 3, v ∈ ΓN
t

 . By Theorem 5, u∗
i
(v) − l∗

i
(v) = v(N) −

∑
j∈N l∗

j
(v) 

for all i ∈ N . This implies that �i(v) − l∗
i
(v) = �j(v) − l∗

j
(v) for all i, j ∈ N , so for each 

i ∈ N , we have

�i =
u∗
i
(v) − xi∑

j∈N u∗
j
(v) − v(N)

for all i ∈ N.

�(v) =
1

|N|u
∗(v) +

(
1 −

1

|N|
)
l∗(v).

�(v) =
1

|N| l
∗(v) +

(
1 −

1

|N|
)
u∗(v).



1 3

One-bound core games  

(ii) By Theorem 3, v ∈ ΓN
t

 . By Theorem 5, u∗
i
(v) − l∗

i
(v) =

∑
j∈N u∗

j
(v) − v(N) for all 

i ∈ N . This implies that �i(v) − l∗
i
(v) = �j(v) − l∗

j
(v) for all i, j ∈ N , so for each i ∈ N , 

we have

  ◻

Corollary 2 Let v ∈ ΓN
l
∪ ΓN

u
 be a one-bound core game. Then

where � ∈ [0, 1] is such that 
∑

i∈N �i(v) = v(N).

The nucleolus for one-bound core games is characterized by the properties that 
require that the difference between the allocation and the minimal payoff or maxi-
mal payoff within the core is equal for all players. We refer to these properties as 
balanced lower gaps and balanced upper gaps, respectively.

Definition 2 A solution � on a subdomain of balanced games satisfies balanced 
lower gaps if for each game v in this domain, it holds that �i(v) − l∗

i
(v) = �j(v) − l∗

j
(v) 

for all i, j ∈ N.
A solution � on a subdomain of balanced games satisfies balanced upper gaps if 

for each game v in this domain, it holds that u∗
i
(v) − �i(v) = u∗

j
(v) − �j(v) for all 

i, j ∈ N.

�i(v) = l∗
i
(v) +

1

|N|

(
v(N) −

∑
j∈N

l∗
j
(v)

)

= l∗
i
(v) +

1

|N|
(
u∗
i
(v) − l∗

i
(v)

)

=
1

|N|u
∗
i
(v) +

(
1 −

1

|N|
)
l∗
i
(v).

�i(v) = l∗
i
(v) +

1

|N|

(
v(N) −

∑
j∈N

l∗
j
(v)

)

= l∗
i
(v) +

1

|N|

(
l∗
i
(v) +

∑
j∈N⧵{i}

u∗
j
(v) −

∑
j∈N

l∗
j
(v)

)

= l∗
i
(v) +

1

|N|
∑

j∈N⧵{i}

(
u∗
j
(v) − l∗

j
(v)

)

= l∗
i
(v) +

1

|N| (|N| − 1)
(
u∗
i
(v) − l∗

i
(v)

)

=
1

|N| l
∗
i
(v) +

(
1 −

1

|N|
)
u∗
i
(v).

�(v) = �l∗(v) + (1 − �)u∗(v),
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Theorem 8 

 (i) The nucleolus is the unique solution for one-bound core games satisfying bal-
anced lower gaps.

 (ii) The nucleolus is the unique solution for one-bound core games satisfying bal-
anced upper gaps.3

Proof (i) Let v ∈ ΓN
l
∪ ΓN

u
 . Let i, j ∈ N . If v ∈ ΓN

l
 , then Theorem 5 implies that

If v ∈ ΓN
u

 , then Theorem 5 implies that

By Theorem 7,

Hence, the nucleolus satisfies balanced lower gaps.
Let � be a solution on ΓN

l
∪ ΓN

u
 satisfying balanced lower gaps. Let i ∈ N . If 

v ∈ ΓN
l

 , then Theorem 5 implies that v(N) − u∗
i
(v) =

∑
j∈N⧵{i} l

∗
j
(v) , so

where the fourth equality follows from balanced lower gaps, and rewriting yields

u∗
i
(v) − l∗

i
(v) = v(N) −

∑
k∈N

l∗
k
(v) = u∗

j
(v) − l∗

j
(v).

u∗
i
(v) − l∗

i
(v) =

∑
k∈N

u∗
k
(v) − v(N) = u∗

j
(v) − l∗

j
(v).

�i(v) − l∗
i
(v) =

1

|N|
(
u∗
i
(v) − l∗

i
(v)

)
=

1

|N|
(
u∗
j
(v) − l∗

j
(v)

)
= �j(v) − l∗

j
(v).

�i(v) = u∗
i
(v) +

(
v(N) − u∗

i
(v)

)
+
(
�i(v) − v(N)

)

= u∗
i
(v) +

∑
j∈N⧵{i}

l∗
j
(v) −

∑
j∈N⧵{i}

�j(v)

= u∗
i
(v) −

∑
j∈N⧵{i}

(
�j(v) − l∗

j
(v)

)

= u∗
i
(v) −

∑
j∈N⧵{i}

(
�i(v) − l∗

i
(v)

)

= u∗
i
(v) − (|N| − 1)

(
�i(v) − l∗

i
(v)

)

= u∗
i
(v) + (|N| − 1)l∗

i
(v) − (|N| − 1)�i(v),

�i(v) =
1

|N|u
∗
i
(v) +

(
1 −

1

|N|
)
l∗
i
(v).

3 In fact, on each subdomain of balanced games, the unique solution satisfying bal-
anced lower [upper] gaps is the solution � given by �i(v) = l∗

i
(v) +

1

�N� (v(N) −
∑

j∈N l∗
j
(v)) 

[ �i(v) = u∗
i
(v) +

1

�N� (v(N) −
∑

j∈N u∗
j
(v)) ] for each i ∈ N and each game v in this domain.
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If v ∈ ΓN
u

 , then Theorem 5 implies that l∗
j
(v) = v(N) −

∑
k∈N⧵{j} u

∗
k
(v) for all j ∈ N , 

so

 where the second equality follows from balanced lower gaps. Hence, by Theorem 7, 
�i(v) = �i(v).

(ii) The proof is analogous to the proof of (i).   ◻

As the following example shows, in contrast to the nucleolus, the Shapley value 
and the �-value do not assign to each one-bound core game a core allocation.

Example 2 Let N = {1, 2, 3, 4} and let v ∈ ΓN
l
∩ ΓN

u
 be defined by

Then l∗(v) = u∗(v) = (12, 12, 12, 0) , so �(v) = (12, 12, 12, 0) and �(v) ∈ C(v) . 
However, �(v) = (11, 11, 11, 3) and �(v) = (9, 9, 9, 9) , so �(v) ∉ C(v) and 
�(v) ∉ C(v) . △

�i(v) = l∗
i
(v) +

1

|N| |N|
(
�i(v) − l∗

i
(v)

)

= l∗
i
(v) +

1

|N|
∑
j∈N

(
�j(v) − l∗

j
(v)

)

= l∗
i
(v) +

1

|N|

(∑
j∈N

�j(v) −
∑
j∈N

l∗
j
(v)

)

= l∗
i
(v) +

1

|N|

(
v(N) −

∑
j∈N

(
v(N) −

∑
k∈N⧵{j}

u∗
k
(v)

))

= l∗
i
(v) +

1

|N|

(
v(N) − |N|v(N) +∑

j∈N

∑
k∈N⧵{j}

u∗
k
(v)

)

= l∗
i
(v) +

1

|N|

(
(1 − |N|)v(N) + (|N| − 1)

∑
j∈N

u∗
j
(v)

)

= l∗
i
(v) +

1

|N| (|N| − 1)

(∑
j∈N

u∗
j
(v) − v(N)

)

= l∗
i
(v) +

1

|N| (|N| − 1)
(
u∗
i
(v) − l∗

i
(v)

)

=
1

|N| l
∗
i
(v) +

(
1 −

1

|N|
)
u∗
i
(v),

v(S) =

⎧⎪⎨⎪⎩

36 if S = N;

24 if S ∈ {{1, 2}, {1, 3}, {2, 3}};

0 otherwise.
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However, the Shapley value and the �-value assign to each convex one-bound 
core game a specific core allocation. In fact, the nucleolus, the Shapley value, and 
the �-value coincide for convex one-bound core games. This follows directly from 
the following theorem.

Theorem 9 The nucleolus is the unique solution for convex one-bound core games 
satisfying symmetry and translation covariance.

Proof It is known that the nucleolus satisfies symmetry and translation covariance 
on each subdomain of balanced games. Let � be a solution for convex one-bound 
core games satisfying symmetry and translation covariance. Let v ∈ ΓN

l
∩ ΓN

c
 . By 

Theorem 4, v(S) =
∑

i∈S l
∗
i
(v) for all S ∈ 2N⧵{N} . This implies that (v − l∗(v))(S) = 0 

for all S ∈ 2N⧵{N} . Let i ∈ N . By symmetry,

By translation covariance and Theorem 5,

Hence, by Theorem 7, �i(v) = �i(v) . The case v ∈ ΓN
u
∩ ΓN

c
 follows analogously.   ◻

Theorem 9 implies that the nucleolus for convex one-bound core games coincides 
with each other solution satisfying symmetry and translation covariance. This obser-
vation is in line with Yokote et  al. (2017). In particular, the nucleolus for convex 
one-bound core games coincides with the Shapley value and the �-value.

Corollary 3 The nucleolus, the Shapley value, and the �-value coincide for convex 
one-bound core games.

Example 3 Let N = {1, 2, 3} and let v ∈ ΓN
l
∩ ΓN

c
 be defined by

Then �(v) = �(v) = �(v) = (1, 1, 1) . △

�i(v − l∗(v)) =
1

|N|

(
v(N) −

∑
j∈N

l∗
j
(v)

)
.

�i(v) = l∗
i
(v) + �i(v − l∗(v))

= l∗
i
(v) +

1

|N|

(
v(N) −

∑
j∈N

l∗
j
(v)

)

= l∗
i
(v) +

1

|N|
(
u∗
i
(v) − l∗

i
(v)

)

=
1

|N|u
∗
i
(v) +

(
1 −

1

|N|
)
l∗
i
(v).

v(S) =

{
3 if S = N;

0 otherwise.
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The game from Example 3 is not a 1-convex game, so Corollary 3 does not fol-
low from Driessen and Tijs (1985). Kar et al. (2009) and Trudeau and Vidal-Puga 
(2020) showed that the nucleolus and the Shapley value coincide for so-called PS-
games and clique games, respectively. It can be shown that the game from Exam-
ple 3 is not a PS-game or a clique game. This implies that it is neither a 2-additive 
game (cf. Deng and Papadimitriou 1994), so Corollary 3 does neither follow from 
their results, nor from Van den Nouweland et al. (1996), Chun and Hokari (2007), or 
Chun et al. (2016).

5  Concluding remarks

In this paper, the new class of one-bound core games is introduced. By Theorem 3, 
all one-bound core games are two-bound core games. By Lemma 3 and Theorem 6, 
all reduced games of one-bound core games with respect to core allocations are one-
bound core games. This implies that the axiomatic characterizations of the core, 
the nucleolus, and the egalitarian core (cf. Arin and Iñarra 2001) provided by Gong 
et al. (2022a) on the class of two-bound core games can be reformulated on the class 
of one-bound core games. However, the exact core bounds of reduced two-bound 
core games are not necessarily the same. By Theorem 6, if all reduced games of a 
balanced game have the same exact core bound, then it is necessarily a one-bound 
core game.
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