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Abstract
This paper considers an infinitely repeated three-player zero-sum game with two-
sided incomplete information, in which an informed player plays two zero-sum 
games simultaneously at each stage against two uninformed players. This is a gen-
eralization of the model in Aumann et al. (Repeated games with incomplete infor-
mation. MIT Press, New York, 1995) of two-player zero-sum one-sided incomplete 
information games. Under a correlated prior, the informed player faces the problem 
of how to optimally disclose information among two uninformed players in order to 
maximize his long-term average payoffs (i.e., undiscounted payoffs). Our objective 
is to understand the adverse effects of “information spillover” from one game to the 
other in the equilibrium payoff set of the informed player. We provide conditions 
under which the informed player can fully overcome such adverse effects and char-
acterize equilibrium payoffs. In a second result, we show how the effects of informa-
tion spillover on the equilibrium payoff set of the informed player might be severe. 
Finally, we compare our findings on the equilibrium-payoff set of the informed 
player with those of Bayesian Persuasion models with multiple receivers.
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1 Introduction

In their seminal work, Aumann et  al. (1995) analyzed an undiscounted infinitely 
repeated game with one-sided incomplete information: one player (the informed) 
knows the stage game being played whereas the other (the uninformed) does not 
know and cannot observe payoffs, only actions. They showed that this game has a 
value and constructed optimal strategies for the players. Matters are more compli-
cated if the informed player were to play against more than one uninformed player, 
as it would be the case of a military power (e.g., USA) negotiating with two differ-
ent countries (e.g., Russia and Iran).1 By observing what the informed player plays 
against some other uninformed player, an uninformed player can make inferences 
about the game he plays against the informed player. As a consequence, it may not 
be optimal for the informed player to play his unilaterally optimal strategy against 
some of the uninformed players. Put differently, the information spillover among the 
games played between the informed player and the uninformed players adds layers 
of complexity to the analysis.

We consider a three-player undiscounted infinitely repeated game in which one of 
the players is informed of the two zero-sum stage games that he plays against each 
of the other two (uninformed) players. Each uninformed player only knows the prior 
probability distribution over the finite set of pairs of zero-sum finite-action stage 
games, and during the play of the game observes the profiles of actions (but not the 
payoffs). The informed player collects the sum of payoffs from the two component 
games.

In the absence of information spillover, for instance when each uninformed player 
cannnot observe the actions played in the other zero-sum game, our three-player 
game has a single expected payoff, namely, the sum of values of each of the two-
player component games. However, when all players are able to observe the actions 
played across each zero-sum game, the information spillover kicks in and it is in 
principle unclear whether the informed player can attain the sum of values in equi-
librium. This sum of values can actually be shown to be an upper bound on the equi-
librium payoffs of the informed player in our three-player game.

Our first main result has two parts which together provide a condition under 
which the informed player can attain this upper bound in equilibrium, even in the 
presence of information spillover. More precisely, under such condition, we show 
the informed player can attain anything as an equilibrium payoff from his individu-
ally rational payoff to the above mentioned upper bound, thus characterizing the set 
of equilibrium payoffs in the three-player game. In particular, this result implies that 
the three-player model we analyse might have a continuum of equilibrium payoffs, 
even though it is a zero-sum model.

1 The USA may want to conceal from Russia the exact size of its arsenal, and at the same time may want 
to reveal it to Iran to leverage its bargaining position. More examples in this line can be found in Aumann 
et al. (1995).
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The method used to obtain this first result is also of interest to the model of two-
player games studied by Aumann et al. (1995). Under a sufficient condition on the 
stage payoffs, we show that different optimal strategies from those constructed by 
Aumann et  al. exist.2 The strategy of the informed player, in particular, does not 
involve any signalling on path of play, even when the standard optimal strategy con-
structed by Aumann et al. necessarily does.

In a second result we provide a necessary condition for the existence of equilibria 
yielding the upper bound to the informed player. We explore two consequences of 
this result. First, we show that a natural class of equilibria which involve signalling 
on equilibrium path never pays the upper bound to the informed player. Second, we 
present an example showing that the effects of information spillover might be very 
severe, in the sense that the informed player is not able to attain the upper bound in 
equilibrium.

Given the recent heightened interest in Bayesian Persuasion (BP) (since Gentz-
kow and Kamenica 2011’s seminal contribution) and its overtones with Aumann 
et al., it is interesting to compare the effects of information spillover in a multiple-
receiver setting in BP with the results of this paper. We consider a model with one 
Sender and two receivers under two alternative specifications: (i) the Sender can 
send private messages to each Receiver and (ii) the Sender can only send public 
messages. We show that the difference in the sender’s payoff from (i) to (ii) can be 
interpreted as a loss due to information spillover, but a similar intuition cannot be 
extended to our repeated-game model.

1.1  Related literature

To the best of our knowledge, the model analyzed here is new. Although the model 
we analyse is zero-sum, the results and the techniques presented remain closer to the 
non-zero-sum literature, especially to Hart (1985) and Sorin (1983). We highlight 
here a few additional papers on discounted and undiscounted repeated games with 
incomplete information that have technical and thematic similarities to this project. 
A significant part of the literature on undiscounted repeated games with incomplete 
information analyses models under the assumption of “known own payoffs” (see 
Forges 1992). This is a reasonable assumption in several applications and allows 
for equilibrium-payoff characterizations which are especially tractable (see Shalev 
1988). Under this assumption, Forges and Solomon (2015) provide a simple charac-
terization of Nash equilibrium payoffs in undiscounted repeated games of two play-
ers and incomplete information.3 This characterization is used to show that in a class 
of public good games, uniform equilibria might not exist. More closely related to 
our paper in terms of the information environment is Forges et  al. (2016). In this 

2 We refer here to the so-called “splitting strategies” where the informed player first signals information 
about the underlying stage game, so as to “concavify” the nonrevealing value function.
3 An additional assumption needed for the characterization is the existence of “uniform punishment 
strategies” for the players in the stage game, that is, strategies that allow a player to be punished by hold-
ing his payoffs at his ex-post individually rational level.
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paper, among other results, cooperative solutions of one-shot games with two play-
ers and exactly one informed player are related to noncooperative solutions of two-
player repeated games with exactly one informed player. More specifically, under 
the assumption of existence of uniform punishment strategies for the uninformed 
player, the joint plan equilibrium payoffs of the repeated game equal the set of coop-
erative solutions of the one-shot game. This folk theorem is not however an equi-
librium payoff characterization, since it is known from Hart (1985) that joint plans 
cannot account for the whole of equilibrium payoffs in general.

Our work was inspired by Huangfu and Liu (2021) who considered the issue 
of information spillovers between markets. In their model, a seller holds pri-
vate information about the quality of goods he sells in two different markets and 
buyers learn about the seller’s private information from observing past trading 
outcomes not only in the market in which they directly participate, but also from 
observing the outcomes of the other market. The authors show that, under cer-
tain assumptions on the correlation of qualities between goods in different mar-
kets, information spillover mitigates the negative effects of adverse selection.

The literature on Bayesian Persuasion with multiple receivers is extensive. 
We highlight here a few papers that connect to our discussion in the last section. 
Wang (2013) presents a Bayesian Persuasion model with multiple Receivers 
whose payoffs depend not only on the unobserved state drawn by Nature but also 
on the action choices of the other Receivers. Concretely, the Receivers vote on 
the outcome after receiving a signal about the underlying state. The paper com-
pares two environments: one in which all Receivers observe a public message 
drawn from the experiment chosen by the Sender, and another in which each 
Receiver observes a private message independently drawn from the same experi-
ment set out by the Sender. The main difference with the models we analyse in 
our last section is the payoff-interdependencies of the receivers: in our models 
Receivers do not care about each other’s action choices, but only about their 
own. This implies that there is in effect no game among Receivers in our model, 
only a decision problem. The payoff interdependencies among Receivers cou-
pled with the assumption of the independence of the messages drawn from the 
Sender’s experiment drive the result of that paper in which the best equilibrium 
payoffs for the Sender are higher in the public compared to the private message 
environment, a result that is the opposite of what we find.

Arieli and Babichenko (2019) are interested in what happens with optimal 
experiments under different assumptions for the utility of the Sender as well as 
payoff interdependencies of the Receivers. One result is particularly reminis-
cent of the one we obtain in our analysis: a specification of the public Bayes-
ian Persuasion model we define in our paper (say, with two perfectly correlated 
states for each Receiver and a well-chosen utility function for the Sender) yields 
(Arieli and Babichenko 2019)’s model, where the utility of the Sender is addi-
tive over the Receivers, and therefore supermodular in particular. Theorem 3 in 
that paper then applies and a public signaling experiment is optimal if and only 
if all Receivers have the same “persuasion level”, i.e., are essentially identical 
from the point of view of the optimal persuasion policy. Therefore, if Receivers 
meaningfully differ, the optimal experiment must send private messages. In our 
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words, this result could be read as saying that unless information spillover is 
not meaningful (i.e., Receivers have identical persuasion levels), public Bayes-
ian Persuasion yields a lower equilibrium payoff  to the Sender compared to pri-
vate Bayesian Persuasion. Finally, Koessler et al. (2022) generalize the standard 
Bayesian Persuasion model in a number of directions, most importantly by con-
sidering multiple Senders and multiple Receivers.

1.2  Organization

The remainder of the paper is organized as follows. Section 2 presents the model. 
Our first main result is divided in 2 parts: main result 1 and main result 2. Section 3 
presents our main result 1. Section 4 presents our main result 2. Section 5 compares 
the equilibrium payoff set in our model with that of a Bayesian Persuasion model 
with multiple receivers and Sect. 6 concludes. The proofs of technical results are left 
to the Appendix. Additional results can be found in a Supplemental Appendix.4

2  Model and equilibrium concept

2.1  Notation

Given a finite set K, Δ(K) is the set of probability distributions over K; given a topo-
logical space X the interior of X will be denoted by int(X) . If X is a subspace, its 
boundary will be denoted by �(X) . For a set Y ⊆ ℝ

m , its convex closure is denoted 
by co(Y) . For p ∈ Δ(KA × KB) , pA (resp. pB ) denotes its marginal on KA (resp. KB ), 
and supp(p) its support. We denote a product distribution on KA × KB by pA

⨂
pB , 

and use Δ(KA)
⨂

Δ(KB) to denote the set of all such distributions.

2.2  Model

A three-player infinitely repeated zero-sum game with two-sided incomplete infor-
mation, denoted G(p0) , is given by the following data:

• Three players, namely player 1 (the informed player), player 2 and player 3 (the 
uninformed players).

• Finite sets: Ii , Ji , Ki , i = A,B with IA × IB (resp. JA and JB ) being the set of actions 
of player 1 (resp. players 2 and 3), and KA × KB being the set of states.

• p0 ∈ Δ(KA × KB) is the prior.
• For each kA ∈ KA and kB ∈ KB , AkA and BkB matrices of dimensions |IA| × |JA| and 

|IB| × |JB| respectively. AkA and BkB are the stage-game payoff matrices.

The play of the infinitely repeated game is as follows:

4 The Supplemental Appendix can be found in the extended version of this paper (Pahl 2021).
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• At stage 0, state (kA, kB) ∈ KA × KB is drawn according to distribution p0 and 
only player 1 knows the draw.

• At each stage t = 1, 2, ... , the players independently choose an action in their own 
set of actions: player 1 chooses (it

A
, it
B
) ∈ IA × IB and players 2 and 3 choose 

jt
A
∈ JA and jt

B
∈ JB , respectively. The stage payoff to player 1 is then 

A
kA

it
A
,jt
A

+ B
kB

it
B
,jt
B

 ; to player 2, −AkA

it
A
,jt
A

 and to player 3, −BkB

it
B
,jt
B

 . Monitoring is perfect, 
i.e., the chosen actions are observed by all players before starting stage t + 1 . 
Realized payoffs are not observed by the players (though player 1 knows them, 
since he is fully informed).

Players are assumed to have perfect recall and the whole description of the game is 
common knowledge.

A behavior strategy for player 1 is a tuple � = (�(kA,kB))(kA,kB)∈KA×KB
 , where for 

each (kA, kB) ∈ KA × KB , �(kA,kB) = (�
(kA,kB)
t )t≥1 and �(kA,kB)

t  is a mapping from the 
Cartesian product Ht ∶= (IA × JA × IB × JB)

t−1 (with H0 ∶= {�} ) to Δ(IA × IB) , giv-
ing the lottery on actions played by player 1 at a stage t, when the state is (kA, kB) . 
Because players 2 and 3 do not know the state, a behavior strategy for player 2 (resp. 
player 3) is an element �A = (�A,t)t≥1 (resp. �B = (�B,t)t≥1 ), where �A,t (resp. �B,t ) is a 
mapping from Ht to Δ(JA) (resp. Δ(JB)) , giving the lottery on actions to be played 
by player 2 (resp. player 3) on stage t. The set of behavior strategies of player 1 is 
denoted by Σ ; for player 2, it is denoted by TA and for player 3, it is denoted by TB.

A behavior strategy profile (�, �A, �B) induces, for every state (kA, kB) and stage 
T > 0 , a probability distribution on HT+1 . Also, (�, �A, �B) and p0 induce a probabil-
ity distribution over KA × KB × HT+1 . We can thus define the expected average pay-
offs (with � being a random variable taking values on KA × KB distributed according 
to p0 , �A the random variable obtained from projecting � on KA and �B the random 
variable obtained from projecting � on KB):

The number �kA,kB
T

(�, �A, �B) is the expected average payoff (up to time T) of 
player 1; �A

T
(�, �A, �B) is the expected average payoff (up to time T) of player 2 and 

�B
T
(�, �A, �B) is the expected average payoff (up to time T) of player 3.
The model defined is therefore a “combination” of two zero-sum games: at each 

stage, player 1 plays simultaneously a zero-sum game against player 2 and another 
zero-sum game against player 3, collecting the sum of the payoffs of each of these 
games; players 2 and 3 are the minimizers in each of the zero-sum games they play 

�
kA,kB
T

= �
kA,kB
T

(�, �A, �B) ∶= ��(kA ,kB),�A,�B

[
1

T

T∑
t=1

(A
kA

it
A
,jt
A

+ B
kB

it
B
,jt
B

)
]
,

�A
T
(�, �A, �B) ∶= ��,�A,�B,p

0

[
1

T

T∑
t=1

(−A
�A

it
A
,jt
A

)
]
,

�B
T
(�, �A, �B) ∶= ��,�A,�B,p

0

[
1

T

T∑
t=1

(−B
�B

it
B
,jt
B

)
]
.
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against player 1. One distinctive and important aspect of this model is the fact that 
each uninformed player can observe not only the actions played in his own zero-sum 
game, but also the actions played in the other zero-sum game.

2.3  Equilibrium concept

A profile (�, �A, �B) is a uniform equilibrium of G(p0) when: 

(1) For each (kA, kB) ∈ supp(p0),5 (�kA,kB
T

(�, �A, �B))T≥1 converges as T goes to infinity 
to some �kA,kB (�, �A, �B) , (�AT (�, �A, �B))T≥1 converges to some �A(�, �A, �B) and 
(�B

T
(�, �A, �B))T≥1 converges to some �B(�, �A, �B).

(2) For each 𝜖 > 0 , there exists a positive integer T0 such that for all T ≥ T0 , (�, �A, �B) 
is an �-Nash equilibrium in the finitely repeated game with T stages, i.e., 

(a) For each (kA, kB) ∈ supp(p0) and �� ∈ Σ , �k
A
,k
B

T
(��

, �
A
, �

B
) ≤ �

k
A
,k
B

T
(�, �

A
, �

B
) + �

�
kA,kB
T

(��, �A, �B) ≤ �
kA,kB
T

(�, �A, �B) + �;
(b) For each ��

A
∈ TA , �AT (�, �

�
A
, �B) ≤ �A

T
(�, �A, �B) + �;

(c) For each ��
B
∈ TB , �B

T
(�, �A, �

�
B
) ≤ �B

T
(�, �A, �B) + �.

Uniform equilibrium is a standard equilibrium concept for the analysis of undis-
counted repeated games. It contains a strong requirement, namely (2), which posits 
that the profile (�, �A, �B) must generate an �-Nash equilibrium on the finite but suf-
ficiently long-horizon ( T ≥ T0 , where T < ∞ ) version of our model.6

Unless explicitly stated otherwise, from now on whenever we refer to uniform 
equilibrium or equilibria we will use simply equilibrium or equilibria.

If (�, �A, �B) is an equilibrium in G(p0) , the associated vector

where �(�, �A, �B) ∶= (�kA,kB (�, �A, �B))(kA,kB)∈supp(p0) , is the vector of payoffs of 
(�, �A, �B) . Also �(�, �A, �B) ⋅ p0 (where ⋅ is the standard scalar product in Euclidean 
space) is the ex-ante equilibrium payoff of the informed player.

2.4  Preliminaries on the Aumann et al. model

Our analysis of the equilibrium payoff set of the game G(p0) in the next sec-
tion will rely on certain properties of each of the two-player, infinitely repeated 

(�(�, �A, �B), �
A(�, �A, �B), �

B(�, �A, �B)),

5 Remark 3.3 in Sect. 3 shows that assuming the prior p0 ∈ int(Δ(KA × KB)) (as customary in the litera-
ture) is not without loss of generality for the results in this paper. This is why we present the definition 
requiring convergence of (�kA ,kB

T
)T≥1 , (kA, kB) ∈ supp(p0) . The same reasoning applies to condition (2).

6 One notable aspect of this equilibrium notion is that uniform equilibria in our model are approxi-
mate Nash equilibria in the discounted version of our model: if (�, �A, �B) is a uniform equilibrium, then 
(�, �A, �B) is a �-Nash equilibrium of the discounted versions of our model for a sufficiently high discount 
factor. See Theorem 13.32 in Maschler et al. (2013).
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zero-sum games that the informed player plays against each uninformed player. 
For this reason we now recall some of the main results in Aumann et  al. (1995), 
which is the original reference for this two-player model. Let K be the finite 
set of states and M = (Mk)k∈K a collection of zero-sum payoff matrices where 
Mk ∈ ℝ

I×J for each k ∈ K . Denote by GM(p) the infinitely repeated, two-player, 
zero-sum game with one-sided incomplete information with prior p ∈ Δ(K) 
and undiscounted payoffs (see Sorin 2002,  Chapter  3, for a detailed descrip-
tion of this model or Aumann et  al. 1995). Let M(p) =

∑
k∈K pkMk and define 

vM(p) = mint∈Δ(J)maxs∈Δ(I)sM(p)t = maxs∈Δ(I)mint∈Δ(J)sM(p)t , where s is a row 
vector and t a column vector. The function q ∈ Δ(K) ↦ vM(q) ∈ ℝ is called the non-
revealing value function. Let Cav(vM) be the (pointwise) smallest concave function 
g from Δ(K) to ℝ such that g(q) ≥ vM(q) for all q ∈ Δ(K) . Alternatively, one can 
define Cav(vM)(q): = sup{

∑k
i=1 �ivM(qi)|∃k ∈ ℕ,∀i ∈ {1, ..., k}, �i ≥ 0,

∑k
i=1 �iqi = q,

∑k
i=1 �i = 1} . 

Aumann et  al. (1995) proved that a (uniform) value of GM(p) exists and equals 
Cav(vM)(p) . They also showed how to construct (uniformily) optimal strategies for 
both players.

Given the model G(p0) , the infinitely repeated, two-player, zero-sum game with 
one-sided incomplete information with prior p0

A
 defined by states KA and payoff 

matrices (AkA)kA∈KA
 with undiscounted payoffs will be denoted GA(p

0
A
)—this game is 

played by players 1 (informed) and 2 (uninformed). Analogously, we define GB(p
0
B
) 

as the two-player, infinitely repeated, zero-sum game with one-sided incomplete 
information played by players 1 and 3. The two-player, infinitely repeated zero-sum 
game with one-sided incomplete information and prior p0 ∈ Δ(KA × KB) with undis-
counted payoffs, where stage payoff matrices are (CkA,kB )kA∈KA,kB∈KB

 given by 
C
kA,kB
iA,iB,jA,jB

∶= A
kA
iA,jA

+ B
kB
iB,jB

 will be denoted GA+B(p
0) . This two-player game will be 

used as an auxiliary game to construct strategies in the three-player game G(p0).

2.5  Example

We would like to illustrate the new strategic difficulties that arise in the model G(p0) in 
comparison to the two-player zero-sum model of Aumann et al. (1995). Specifically, 
we would like to show that in this example that if the informed player plays the opti-
mal strategies constructed by Aumann et al. in each game GA(p

0
A
) and GB(p

0
B
) , he can-

not guarantee the ex-ante expected payoff equal to the sum of values Cav(vA)(p0A) + 
Cav(vB)(p0B).

Two sets A = {A1,A2} and B = {B1,B2} of payoff matrices are defined below 
together with p0 ∈ Δ(KA × KB) , where KA = {1, 2} and KB = {1, 2}.

p0 =

[
1∕2 0

0 1∕2

]

A1 =

[
1 0

0 0

]
A2 =

[
0 0

0 1

]

B1 =

[
4 0 2

4 0 − 2

]
B2 =

[
0 4 − 2

0 4 2

]
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In the matrix p0 , an entry p0
ij
 corresponds to the probability with which Nature 

chooses Ai and Bj . So, the stage-payoffs in the two zero-sum games are given by A1 
and B1 with probability 1/2, and they are given by A2 and B2 with probability 1/2. 
Since the prior assigns perfect correlation between states, there are only two states 
to consider effectively: states (1, 1) and (2, 2).

In Figs. 1 and 2, q denotes the probability of state (1, 1) and 1 − q the probability 
of state (2, 2). Each row of Ai and Bj, i, j ∈ {1, 2} corresponds to a stage-game action 
of the informed player: call the first row “U” and the second row “D”. By computa-
tion, we get that the non-revealing values are:

These imply that the concavification of these values are:

We present the optimal strategy of the informed player in the game GB(1∕2) . The 
optimal strategy of the informed player in the two-player repeated zero-sum game 
GB(1∕2) is defined as follows: in case the state drawn by Nature is 1, the informed 
player plays “U” with probability 1/4 and after that plays at each stage, independently, 
the optimal action of the one-shot zero-sum game whose matrix is B(1/4); in case the 
state drawn by Nature is 2, the informed player plays “U” with probability 3/4 and, after 
that, plays the optimal action of the one-shot zero-sum game whose matrix is B(3/4).

After observing the realized action of the informed player in the first stage, the unin-
formed player updates his beliefs about the states to posteriors about states 1 and 2: in 
our example, the uninformed player, after observing “U”, assigns probability 1/4 to the 
state being 1. After observing “D”, the uninformed player assigns probability 3/4 to 
the state being 1. The strategy just described for the informed player is an example of a 
signalling strategy: the informed player uses his actions to signal information about the 
underlying state.

After the first stage, according to the construction described, no more information is sig-
naled and the uninformed player plays the optimal action of the one-shot zero-sum game 
with matrix B(1/4) or B(3/4) forever, depending on whether U or D was realized, respec-
tively. Playing the signalling strategy guarantees to the informed player an ex-ante payoff 
of (1∕2)v

B
(1∕4) + (1∕2)v

B
(3∕4) = (1∕2)Cav(v

B
)(1∕4) + (1∕2)Cav(v

B
)(3∕4) = Cav(v

B
)(1∕2) = 1.

Now, in game GA(1∕2) the non-revealing value function of the informed 
player is strictly concave, which implies that his optimal strategy in this game is 

vA(q) = q(1 − q) for all q ∈ [0, 1]

vB(q) =

⎧
⎪⎨⎪⎩

4q if q ∈ [0, 1∕4)

−4q + 2 if q ∈ [1∕4, 1∕2)

4q − 2 if q ∈ [1∕2, 3∕4)

−4q + 4 if q ∈ [3∕4, 1]

Cav(vA)(q) = vA(q) = q(1 − q) for all q ∈ [0, 1]

Cav(vB)(q) =

⎧⎪⎨⎪⎩

4q if q ∈ [0, 1∕4)

1 if q ∈ [1∕4, 3∕4)

−4q + 4 if q ∈ [3∕4, 1]
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non-revealing (at any prior): one optimal strategy for the informed player is to play 
at each stage the optimal action of the one-shot zero-sum game with matrix A(1/2) 
independently forever, which generates no uptading of the beliefs on the part of the 
uninformed players.

If the informed player uses the signalling strategy described in GB(1∕2) , 
because of perfect correlation between �A and �B , this strategy also induces the 
same updating on the part of the (uninformed) player 2, inducing, similarly, pos-
teriors 1/4 and 3/4 in the two-player zero-sum repeated game GA(1∕2) . By using 
that strategy in game GB(1∕2) , the informed player in game GA(1∕2) can now only 
guarantee (1∕2)Cav(vA)(1∕4) + (1∕2)Cav(vA)(3∕4) = 3∕16 < 1∕4 = Cav(vA)(1∕2).

Therefore, if the informed player plays the strategies described above in games 
GA(1∕2) and GB(1∕2) , he cannnot guarantee in G(p0) the sum of the uniform val-
ues of each zero-sum game i.e., Cav(vA)(p0A) + Cav(vB)(p0B).

3  Main result 1: equilibrium payoff‑set characterization

Our first main result (main result 1) has two parts: The first part of main result 1 is 
Theorem 3.2 which provides a sufficient condition under which the ex-ante equi-
librium payoffs of the informed player in G(p0) permits a simple characterization. 
The second part of our main result 1 is Theorem 3.6, which provides a general 

Fig. 1  Graphs of Cav(v
A
) and v

A

Fig. 2  Graphs of Cav(v
B
) and v

B
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class of games under which that sufficient condition holds. The two results pro-
vide a condition under which G(p0) has a continuum of equilibrium payoffs.

This section is subdivided in three subsections. The first of these, Sect. 3.1, is ded-
icated to Theorem  3.2 and the main ideas of its proof. Section  3.2 is dedicated to 
Theorem 3.6. Finally, Sect. 3.3 highlights a by-product for the theory of two-player 
zero-sum games of the equilibrium constructions used in Theorems 3.2 and 3.6.

3.1  First part of main result 1

We now introduce the necessary concepts and state our main result 1 in full gener-
ality. Paralleling the definitions of the previous section, we denote the set of histo-
ries at stage t ≥ 1 for a two-player, zero-sum, infinitely repeated, undiscounted game 
with one-sided incomplete information GA(p

0
A
) by HA

t
 with generic element hA

t
 . The 

notation for a behavior strategy of the informed player in GA(p
0
A
) is exactly analo-

gous to the one defined for player 1 in the three-player game G(p0) : �A = (�
kA
A
)kA∈KA

 
and �kA

A
= (�

kA
At
)t≥1 , with �kA

At
∶ HA

t
→ Δ(IA).

Definition 3.1 An equilibrium (�A, �A) of GA(p
0
A
) is non-revealing if for each t ≥ 1 , 

kA, k
�
A
∈ supp(p0

A
) and hA

t
∈ HA

t
 played with positive probability by (�A, �A) , we have 

�
kA
At
(hA

t
) = �

k�
A

At
(hA

t
) . Analogously, an equilibrium (�B, �B) of GB(p

0
B
) is non-revealing 

if for each t ≥ 1 , kB, k�B ∈ supp(p0
B
) and hB

t
∈ HB

t
 played with positive probability by 

(�B, �B) , we have �kB
Bt
(hB

t
) = �

k�
B

Bt
(hB

t
).

In non-revealing equilibria the informed player makes no use of his private 
information on-path of the equilibrium play. Therefore, the uninformed player can 
infer nothing from the actions played at each stage, which leaves the “posterior” 
unchanged and equal to the prior.

In G(p0) , the number Cav(vA)(p0A) + Cav(vB)(p
0
B
) is an upper bound on the ex-

ante equilibrium payoffs of player 1, because each uninformed player can always 
play the optimal strategy of his repeated zero-sum game, holding the payoffs of the 
informed player at most at Cav(vA)(pA) + Cav(vB)(pB) . On the other hand, letting 
�(p) ∶= vA(pA) + vB(pB) , a lower bound on the ex-ante equilibrium payoffs of the 
informed player is given by the concavification of � evaluated at p0.7

For p0 ∈ Δ(KA × KB) , let

We call Cav(�)(p0) the lower end of I(p0) and Cav(vA)(p0A) + Cav(vB)(p
0
B
) the 

upper end of I(p0) . The interval I(p0) might be degenerate as well as non-degen-
erate. Whenever I(p0) is non-degenerate, for any sufficiently small perturba-
tion of the stage-game payoff matrices, the resulting model G(p0) also has an 

I(p0) = [Cav(�)(p0), Cav(vA)(p
0
A
) + Cav(vB)(p

0
B
)].

7 Consider the two-player infinitely repeated zero-sum game GA+B(p
0) . It is straightforward to check 

that the non-revealing value of GA+B(p
0) is �(p0) . From Aumann et al. (1995), the value of GA+B(p

0) is 
Cav(�)(p0) , so the informed player can guarantee Cav(�)(p0).
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associated interval I(p0) which is non-degenerate. A proof of this robustness prop-
erty can be found in the Supplemental Appendix (Proposition 9.4). As an exam-
ple, the interval I(p0) of the game G(p0) of Example 2.4 is non-degenerate: we have 
Cav(vA)(p

0
A
) + Cav(vB)(p

0
B
) = 1∕4 + 1 > 1 + 3∕16 = Cav(�)(p0) . There are cases 

where I(p0) is degenerate (for example, when p0 ∈ Δ(KA)
⨂

Δ(KB) ). In these cases 
only one ex-ante equilibrium payoff exists (without any assumptions on the games 
GA(p

0
A
) and GB(p

0
B
)) . The first part of our main result can now be stated:

Theorem  3.2 Let p0 ∈ Δ(KA × KB) . Suppose there exist non-revealing equilibria 
in GA(p

0
A
) and GB(p

0
B
) . Then the set of ex-ante equilibrium payoffs of the informed 

player is I(p0).

3.2  On the proof of theorem 3.2

First, the lower end of I(p0) is always an ex-ante equilibrium payoff for the informed 
player in G(p0)—i.e., no additional assumption is required. A proof of this result can 
be found in the Supplemental Appendix (Proposition 9.11).8 When the upper end of 
I(p0) is also an ex-ante equilibrium payoff for the informed player, then we can use a 
straightforward application of jointly controlled lotteries developed in Aumann et al. 
Aumann et al. (1995) in order to obtain that the whole interval I(p0) can be attained 
as an ex-ante equilibrium payoff to the informed player.9 Therefore, the only remain-
ing task to obtain a proof of Theorem 3.2 is to show that the upper end of I(p0) is an 
ex-ante equilibrium payoff for the informed player.

We define the set of non-revealing equilibrium payoffs (of the informed 
player), denoted NR(p0) , of game G(p0) . Let NR(p0) be the set of vectors 
(�A,�B) ∈ ℝ

|KA| ×ℝ
|KB| that satisfy: 

(1) (Feasibility) 

 where FA ∶= co{(A
kA
iA ,jA

)kA∈KA
|iA ∈ IA, jA ∈ JA} and FB ∶= co{(B

kB
iB ,jB

)kB∈KB
|iB ∈ IB, jB ∈ JB}.

(2) (Individual rationality for player 1) 

(�A,�B) ∈ FA × FB,

8 We do not include this proof here because it derives essentially from a long application of the work of 
Simon et al. (1995) to our three-player environment.
9 A jointly controlled lottery is a public randomization device that is endogenously generated by the 
players so that the players can coordinate. We can define a jointly controlled lottery that randomizes 
between equilibria paying the upper and lower ends of I(p0) with any given probability, in order to obtain 
any given number in I(p0) as an ex-ante equilibrium payoff of the informed player. See Aumann et al. 
1995, p. 272 for details. For completeness, the explicit construction of the equilibrium involving jointly 
controlled lotteries is included in the Supplemental Appendix (Proposition 9.19).
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 where 

(3) (Individual rationality for players 2 and 3) 

The three conditions above defining the set of non-revealing equilibrium payoffs paral-
lel the conditions defined for two-player repeated games with a single informed player 
(see Hart 1985). We briefly recall the reason why (�A,�B) ∈ NR(p0) implies we can 
construct equilibria in G(p0) that reveal no information on path of play and have �A 
(resp. �B ) as the vectors of payoffs of the informed player in GA(p

0
A
) (resp. GB(p

0
B
) ). Let 

(�A,�B) ∈ NR(p0) . Since �A ∈ FA,

where

Consider then a sequence of (pure) actions ((it
A
, jt
A
))t≥1 and define a func-

tion � (iA,jA) ∶ IA × JA → {0, 1} where � (iA,jA)(i�
A
, j�
A
) = 1 , if (i�

A
, j�
A
) = (iA, jA) , and 

� (iA,jA)(i�
A
, j�
A
) = 0 , if (i�

A
, j�
A
) ≠ (iA, jA) . Assume that the sequence hA

∞
= ((it

A
, jt
A
))t≥1 

satisfies for each (iA, jA) ∈ IA × JA , limT→+∞
1

T

∑T

t=1
� (iA,jA)(it

A
, jt
A
) = �iA,jA.

10 When 
players 1 and 2 play the sequence of actions hA

∞
 in GA(p

0
A
) , the payoff achieved is �kA

A
 , 

for each state kA ∈ KA . Obviously, a similar reasoning applies to �B ∈ FB , and �kB
B

 is 
the payoff achieved by a deterministic sequence of actions played at each stage. Con-
ditions (2) and (3) now imply that this deterministic path of play can be supported as 
an equilibrium path of play: condition (2) guarantees that, in case player 1 deviates 
from the deterministic sequence, players 2 and 3 can punish him. So it guarantees 
that under no possible state (kA, kB) player 1 could obtain more that �(kAkB)11; condi-
tion (3) guarantees, in turn, that any deviation of player 2 (resp. player 3) can be 
punished by player 1 with an optimal strategy of game GA(p

0
A
)(resp. GB(p

0
B
)).

We now define the set NRA(p
0
A
) of non-revealing equilibrium payoffs of the two-

player repeated game GA(p
0
A
) . The set NRA(p

0
A
) is the set of vectors �A ∈ ℝ

|KA| that 

� ⋅ q ≥ �(q), ∀q ∈ Δ(supp(p0)),

� = (�
kA
A
+ �

kB
B
)(kA,kB)∈supp(p0), �(q) = vA(qA) + vB(qB).

�A ⋅ p
0
A
≤ Cav(vA)(p

0
A
), �B ⋅ p

0
B
≤ Cav(vB)(p

0
B
).

�A =
∑

(iA,jA)∈IA×JA

�iA,jA (A
kA
iA,jA

)kA∈KA
,

∑
(iA,jA)∈IA×JA

�iA,jA = 1, �iA,jA ≥ 0.

10 Lemma 2 in Sorin (1983) shows such a sequence exists for any such �i,j.
11 Condition (2) implies that there is an optimal strategy of the uninformed player in the game GA+B(p

0) 
which guarantees the informed player will not obtain more than �(kA ,kB) for each state (kA, kB) . In the Sup-
plemental Appendix, Proposition 9.18, we show this strategy can indeed be played by players 2 and 3 in 
G(p0).
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satisfies (i) �A ⋅ q ≥ vA(q) , for all q ∈ Δ(KA) ; (ii) �A ⋅ p0A = Cav(vA)(p
0
A
) and (iii) 

�A ∈ FA . This is the set of equilibrium payoffs for which no signalling occurs on 
path. This set is essentially the specification for a two-player, zero-sum infinitely 
repeated game with one-sided incomplete information of the set of non-revealing 
equilibrium payoffs (called “G”) defined for nonzero-sum two-player repeated games 
with lack on information on one side in Hart (1985)(see p. 124). Note that each kA-th 
entry of a vector �A in NRA(p

0
A
) is the payoff for the informed player in GA(p

0
A
) when 

the state is kA . All vectors �A in NRA(p
0
A
) generate the same ex-ante payoff, i.e., the 

(uniform) value Cav(vA)(p0A) = �A ⋅ p
0
A
 , but there might be several vectors generat-

ing this payoff. It is now easy to see that NRA(p
0
A
) × NRB(p

0
B
) ⊆ NR(p0) . Since we 

assumed that NRA(p
0
A
) × NRB(p

0
B
) ≠ � , Theorem 3.2 now follows immediately.

Remark 3.3 We remark that property (2) of NR(p0) differs from the usual 
assumption present in the literature, namely, that supp(p0) = KA × KB . The 
reason why we do not adopt this assumption is as follows: as shown above, 
NRA(p

0
A
) × NRB(p

0
B
) ⊆ NR(p0) for any p0 ∈ Δ(KA × KB) ; if p0 ∈ int(Δ(KA × KB)) , 

then we have in addition that NRA(p
0
A
) × NRB(p

0
B
) = NR(p0) : to see this, take 

(�A,�B) ∈ NR(p0) . To show (�A,�B) is in NRA(pA) × NRB(pB) , we just have to 
check that property (i) defining the sets NRA(pA) and NRB(pB) is satisfied; the other 
conditions are immediate. Suppose by contradiction there exists q̄A ∈ Δ(KA) such 
that 𝜙A ⋅ q̄A < vA(q̄A) . Fix now q̄B ∈ Δ(KB) such that 𝜙B ⋅ q̄B ≤ vB(q̄B) . It follows that 
for q̄ = q̄A

⨂
q̄B ∈ Δ(KA × KB) , 𝜙A ⋅ q̄A + 𝜙B ⋅ q̄B < vA(q̄A) + vB(q̄B) = �(q̄) , which 

is a contradiction, since (�A,�B) satisfies Condition (2) of NR(p0) . Hence, when 
p0 ∈ int(Δ(KA × KB)) , (�A,�B) ∈ NR(p0) implies that �A (respec. �B ) is a vector of 
equilibrium payoffs in GA(p

0
A
) (respec. GB(p

0
B
) ) of the informed player.

One can see immediately that the argument above relies on the product struc-
ture of the set of states supp(p0) = KA × KB ; if one assumes a prior p0 for which 
supp(p0) is not a cartesian product, then the argument above cannot be repeated 
and, in fact, the claim is not true.12 The example below shows that for a certain 
p0 ∉ int(Δ(KA × KB)) , NRA(p

0
A
) × NRB(p

0
B
) ⊊ NR(p0).

Example 3.4 We follow the notation of Example 2.4. For 𝜀 > 0 and q0 ∈ (0, 1) , con-
sider the game G(p0) given by the following data:

12 This reasoning also justifies why the assumption that is adopted throghout is p0
A
∈ int(Δ(KA)) and 

p0
B
∈ int(Δ(KB)) and not p0 ∈ int(Δ(KA × KB)) : if, for instance, p0

A
 does not have full support, then one 

can eliminate from the set of states in KA the ones that have 0 probability under p0
A
 and the resulting 

space of states is also a product subset of KA × KB.
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The first thing to observe is that NRB(p
0
B
) = � : notice that �B ∈ NRB(p

0
B
) iff 

�B = (�, �) ; but FB = co{(�,−�), (−�, �)} , which clearly does not contain (�, �) . In 
particular, we therefore have that NRA(p

0
A
) × NRB(p

0
B
) = � . One can now show that 

NR(p0) ≠ � . We sketch the proof for completeness: fix q0 = 1

5
 . The game GA(p

0
A
) 

trivially satisfies the condition NR at p0
A
 (see Definition 3.5), because vA is strictly 

concave and smooth in the interval (0, 1). Therefore, by Theorem 3.6, there exists 
�A ∈ FA such that �A ⋅ p

0
A
= vA(p

0
A
) and �A ⋅ q ≥ vA(q),∀q ∈ Δ(KA) . For example, 

one might take �A = (
16

25
,

1

25
) . In GB(p

0
B
) consider now the vector �B = (−�, �) , which 

is in FB . Taking 𝜀 > 0 sufficiently small, the vector � ∈ ℝ
KA×KB whose entries are 

given by �kA,kB ∶= �
kA
A
+ �

kB
B
,∀kA ∈ KA, kB ∈ KB is in NR(p0).

3.3  Second part of main result 1

The second part of our main result provides a general sufficient condition for the 
non-emptyness of NRA(p

0
A
) and NRB(p

0
B
) . We introduce a few preliminary definitions 

in order to state the condition.
Recall that the non-revealing value function vA(q) is defined by min�max��A(q)�

� , 
where � is a row vector and �′ a column vector of the one-shot, two-player, zero-sum 
game with payoff matrix A(q). For q in the affine hull HA of the simplex Δ(KA) , 
one can consider the immediate extension of vA(q) to HA given by the same min-
max formula. Denote this extension by ve

A
 . As we will need to make considerations 

about the derivative of ve
A
 at points in Δ(KA) , we will define once and for all a par-

ametrization for the affine space HA . Let T ∶ ℝ
|KA|−1 → HA be defined as follows: 

Let e|KA|−1
i

= (0, .., 1, ..., 0) ∈ ℝ
|KA|−1 with 1 in the i-th position. Analogously, let 

e
|KA|
i

= (0, .., 1, ..., 0) ∈ ℝ
|KA| . Define T ∶ ℝ

|KA|−1 → HA ⊆ ℝ
|KA| as the affine trans-

formation that maps eKA−1

i
↦ e

KA

i+1
 and 0 ↦ e

|KA|
1

 , for i ∈ {1, 2, ..., |KA| − 1} . Since 
T is affine, Tx = Sx + e

|KA|
1

 , where S is an injective linear transformation; we will 
also denote by S the matrix representation of S according to the canonical basis. 
The function (ve

A
◦T) ∶ ℝ

|KA|−1 → ℝ is a Lipschitz function and therefore is almost 
everywhere differentiable in ℝ|KA|−1 . The generalized gradient13 of (ve

A
◦T) at x0 is 

defined as �(ve
A
◦T)(x0) = co{lim(∇(ve

A
◦T))(x0 + hk)|hk → 0 as k → +∞} , where 

p0 =

[
q0 0

0 (1 − q0)

]

A1 =

[
1 0

0 0

]
A2 =

[
0 0

0 1

]

B1 =

[
−� − �

� �

]
B2 =

[
� �

−� − �

]

13 See (Clark 1975).
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x0 + hk ∈ ℝ
|KA|−1 is a point of differentiability of (ve

A
◦T) , for all k ∈ ℕ.14 For nota-

tional convenience, we write �vA(p0A) ≡ �(ve
A
◦T)(x0) , where T(x0) = p0

A
 . Let now 

P ⊂ ℝ
|KA|−1 be such that T(P) = Δ(KA) . Define the restricted superdifferential of 

Cav(vA◦T|P) at p - denoted �∗Cav(vA)(p) - as the set of vectors v ∈ ℝ
|KA|−1 that sat-

isfy Cav(vA)(p) + v ⋅ h ≥ Cav(vA◦T|P)(x + h) for all h with x + h ∈ P and T(x) = p . 
Below, �AS denotes the pre-multiplication of the row vector �A by the matrix S.

Definition 3.5 The two-player infinitely repeated zero-sum game with one-sided 
incomplete information GA(p

0
A
) satisfies the property NR  at  p0

A
 if there exists 

pA ∈ Δ(KA) and �A ∈ ℝ
|KA| such that: 

(1) Cav(vA)(pA) = vA(pA) = �A ⋅ pA and Cav(vA)(p0A) = �A ⋅ p
0
A
;

(2) �AS ∈ �vA(pA);
(3) �AS ∈ �∗Cav(vA)(pA).

The properties (1)–(3) in the Definition of NR at p0
A
 (Definition 3.5) are proper-

ties of vA : (1) states that pA is a point of identity between vA , Cav(vA) and the affine 
function q ∈ Δ(KA) ↦ �A ⋅ q ; (1) also states that p0

A
 is a point of identity between 

the same affine function and Cav(vA) ; (2) states that �AS is a (generalized) gradient 
at pA of vA ; (3) states that �A is a “supergradient” of Cav(vA) at pA . We are now ready 
to state the sufficient condition.

Theorem 3.6 Let p0
A
∈ Δ(KA) such that supp(p0

A
) = KA . Suppose GA(p

0
A
) satisfies NR 

at p0
A
 . Then the set of non-revealing equilibrium payoffs NRA(p

0
A
) is nonempty. Evi-

dently, the analogous statement holds for GB(p
0
B
).

A proof of this Theorem can be found in Appendix A. Evidently, for 
p0 ∈ Δ(KA × KB) with supp(p0

A
) = KA and supp(p0

B
) = KB , if GA(p

0
A
) satisfies NR at 

p0
A
 and GB(p

0
B
) satisfies NR at p0

B
 , then it follows from Theorem 3.2 that I(p0) is the 

ex-ante equilibrium payoff set of the informed player.

Remark 3.7 As both definitions of the property NR at p0
A
 and the set NRA(p

0
A
) con-

cern the game GA(p
0
A
) , we compare their content in detail. If a vector �A satisfies (3) 

and the first two equalities of (1) of Definition 3.5, then this implies that �A satisfies 
(i) in the definition of NRA(p

0
A
) . If �A satisfies the last equality of (1) of Definition 

3.5, then it is immediate that it satisfies (ii) of NRA(p
0
A
) . Property (iii) in the defini-

tion of NRA(p
0
A
) bears no immediate relation with the non-revealing value function 

vA . But, as the proof of Theorem 3.6 shows, it is implied by a geometric property of 
vA , namely, property (2). Therefore, information about NRA(p

0
A
) can be infered from 

properties of vA only. The precise way to do this inference is presented in the proof 
of Theorem 3.6.

14 Notice that to define the generalized gradient, one needs to take limits from all possible directions in 
ℝ

|KA|−1 . That is why one needs to extend the non-revealing value function “outside” of the simplex.
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Our aim at introducing the condition NR at p0
A
 is to highlight that the attaina-

bility of the upper end of I(p0) as an ex-ante equilibrium payoff of the informed 
player is not purely an “information problem”, i.e., it does not depend exclusively on 
the existence of correlation between states in KA and KB . The property shows how 
the attainability of the upper end of I(p0) also fundamentally relies on the payoff 
structure of the component games, which determines the geometry of the nonreveal-
ing value function. Though the sufficient condition presented might not be easier 
to check computationally than the direct non-emptyness of NRA(p

0
A
) , it isolates 

the aspects of this geometry which determine the existence of equilibria with such 
payoffs.

3.4  An interpretation for NR

Even though the property NR at p0
A
 is not straightforward to interpret, as it mainly 

describes certain geometric properties of the non-revealing value function, there is 
a class of infinitely repeated two-player zero-sum games with one-sided incomplete 
information in which this property can be interpreted straightforwardly and in which 
this property is always satisfied.

In this section, whenever a two-player, zero-sum infinitely repeated game GA(p
0
A
) 

is considered, it is assumed, without loss of generality, that p0
A
∈ int(Δ(KA)).

Definition 3.8 A two-player, infinitely repeated zero-sum game with lack of infor-
mation on one-side and undiscounted payoffs GA(p) is locally non-revealing at p15 
whenever there exist k ∈ ℕ, (�i)

k
i=1

∈ ℝ
k and (pi)ki=1 ∈

∏k

i=1
Δ(KA) such that: 

(1) For each i = 1, ..., k , 𝜆i > 0 and 
∑k

i=1
�i = 1;

(2) 
∑k

i=1
�ipi = p;

(3) Cav(vA)(p) =
∑k

i=1
�ivA(pi);

(4) For some i0 ∈ {1, ..., k} , pi0 ∈ int(Δ(KA)).

The definition above implicitly describes an optimal strategy for the informed 
player in the game GA(p) for which there is signalling on path of play: the 
informed player “splits” the prior p into finitely many posteriors (pi)ki=1 such that 
Cav(vA)(p) =

∑k

i=1
�ivA(pi) . This is the typical optimal strategy constructed by 

Aumann et al.. The local non-revelation property tells us that whenever the informed 
player in GA(p

0
A
) has an Aumman et al.’s strategy under which he does not exclude 

some state (i.e., when there is at least one induced posterior in the interior of the 
simplex of states), then there exists an equilibrium of the game GA(p

0
A
) where the 

informed player does not signal on path of play.

15 We provide a robustness result regarding payoff perturbations for property “locally non-revealing” in 
the Supplemental Appendix (subsection 9.2). The result shows that the property is not non-generic.
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Figure 3 illustrates how the conditions of Definition 3.8 are related to the prop-
erty of NR at p0

B
 . Let GB(p

0
B
) be the game originating the non-revealing value func-

tion vB (whose graph is depicted in black). The data defining this game is the exact 
same as in Example 2.4. In this figure, let p0

B
= 1∕2 denote the prior probability of 

state 1. One can obviously write p0
B
 as a convex combination with equal weights of 

1/4 and 3/4 (the “optimal splitting” which determines the Cav(vB) ). Note that at the 
interior posterior q = 1∕4 in the figure, the vectors N2 and N1 generate the normal 
cone to the graph of vB at q = 1∕4 . Each vector of this normal cone is uniquely asso-
ciated with a supergradient of vB at q = 1∕4 , i.e., Nm ⋅ q = (q,�m ⋅ q),m ∈ {1, 2} , so 
Nm = (1,�m)  and �m is a super-gradient of vA at 1/4. Letting N = (1,�) , note that 
Cav(vB)(q) = � ⋅ q, q ∈ [1∕4, 3∕4] and N belongs to that normal cone at q = 1∕4 , 
and therefore � can be given by a convex combination of �1 and �2.

Proposition 3.9 Suppose GA(p
0
A
) is locally non-revealing at p0

A
 . Then GA(p

0
A
) satisfies 

NR at p0
A
 . Evidently, the analogous statement holds for GB(p

0
B
).

Proposition 3.9 shows that the local non-revelation property implies the NR 
property. For a proof of this proposition, see Appendix A. Example 3.10 below 
shows that the NR property is strictly more general than the local non-revelation 
property. As an example, the games GA(p

0
A
) and GB(p

0
B
) defined in Example 2.4 are 

both locally non-revealing at their respective priors. Note that in that example, the 
game GB(p

0
B
) is such that the optimal strategy of the informed player constructed by 

Aumann et al. involves signalling on path (this is the signalling strategy we briefly 
described in the example).

Example 3.10 Let KA = {1, 2} be the set of states. Let q denote the probability of 
state 1 and p0

A
= 1∕2 (prior of state 1). Consider the following game GA(p

0
A
):

For a row vector v ∈ ℝ
m , denote by v′ the transposed column vector. Figure 4 depicts 

the graphs of vA(q) = −q(1 − q) and Cav(vA)(q) = 0,∀q ∈ [0, 1] . Consider the 
actions �A = (1, 0) and �A = (0, 1)� . Then �A = (�AA

1�A, �AA
2�A) = (0, 0) , so 

�A ⋅ q = Cav(vA)(q) = 0,∀q ∈ [0, 1] . Therefore �A ∈ NRA(p
0
A
) . First note that the 

local non-revelation property at p0
A
 is not satisfied in GA(p

0
A
) . We show that the prop-

erty NR at p0
A
 is satisfied in the example. The linear transformation S in this example 

is defined by Sx = (x,−x) . Notice that the only candidates for p and �A satisfying 
the conditions of property NR at p0

A
 are p = 0 or p = 1 and �A . Notice that at p = 0 , 

just by looking at the graph depicted above, one can see that conditions (1) and (3) 
of property NR are satisfied for the vector �A . Now, limq→0− ∇(v

e
A
◦T)(q) = 0 , since 

ve
A
◦T  is constant and equal to 0 in (−∞, 0) . Using the notation defined above, we 

have that �AS = 0, so that �AS ∈ �vA(p) . Observe that because of the strict convexity 
of the non-revealing value function vA , the optimal strategy of the informed player 
as constructed in Aumann et  al. necessarily involves signalling on path, namely, 

A1 =

[
0 0

0 − 1

]
;A2 =

[
−1 0

0 0

]
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inducing posteriors at the boundary of the 1-simplex of states. However, property 
NR at p0

A
 guarantees that an equilibrium exists for which no signalling occurs on 

path.

The next example shows a game GA(p
0
A
) on which NR at p0

A
 is not satisfied.

Example 3.11 Let GA(p
0
A
) be defined from the payoff matrices below and q denote 

the probability of state 1 with prior p0
A
= 1∕2.

Figure  5 depicts the non-revealing value function and its concavification. The 
only two candidates for pA and �A are pA = 0 and pA = 1 and (1,  1). Notice that 
ve
A
◦T  has a derivative at pA = 0 , which is equal to −2 , so �vA(pA) = {−2} , whereas 

�AS = (1, 1)S = 0 . Therefore, �AS ∉ �vA(pA) . The same reasoning applies to show 
that �AS ∉ �vA(pA) , when pA = 1 . Therefore, property (2) of Definition 3.5 is not 
satisfied.

Remark 3.12 It is possible to prove directly that if GA(p
0
A
) is locally non-revealing at 

p0
A
 then NRA(p

0
A
) ≠ � . The proof is illustrative of how the geometry of vA determines 

the existence of equilibria in GA(p
0
A
) that involve no signalling on path of play and 

therefore we include it here.
The proof is divided in two cases: (a) Cav(vA)(p

0
A
) > vA(p

0
A
) and (b) 

Cav(vA)(p
0
A
) = vA(p

0
A
) . We first construct the candidate vector of payoffs �A ∈ ℝ

|KA| 
for the informed player. Then we show that �A ∈ NRA(p

0
A
).

Let Cav(vA)(p
0
A
) =

∑
s∈S �svA(ps) , �s ≥ 0 , 

∑
s∈S �s = 1 and let 

ps0 be the posterior which is interior to the simplex of states. Let 
H = {(q, �) ∈ Δ(KA) ×ℝ|Cav(vA)(q) ≥ �} . Note that H is a convex subset of 
ℝ

|KA| ×ℝ . Now, note that (p0
A
, Cav(vA)(p

0
A
)) =

∑
s∈S �s(ps, vA(ps)) . Since, by (a), 

∀s ∈ S, ps ≠ p0 , it follows that (p0
A
, Cav(vA)(p

0
A
)) is not an extremum point of H (cf. 

A
1 =

[
1 1

−1 − 1

]
; A

2 =

[
−1 − 1

1 1

]

Fig. 3  Local non-revelation and 
NR at p0

B
= 1∕2
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Rockafellar (1970), Section 18). Therefore, there exists a face F of H , with dimension 
d ≥ 1 , such that F contains (p0

A
, Cav(vA)(p

0
A
)) and each point (ps, vA(ps)) . Take now a 

supporting hyperplane H to H which contains F. The hyperplane H intersected with 
Δ(KA) ×ℝ is the graph of an affine function q ∈ Δ(KA) ↦ �A ⋅ q ∈ ℝ , where �A is a 
vector in ℝ|KA| . We now claim the following:

Claim 3.13 The vector �A belongs to NRA(p
0
A
).

Proof As the graph of the affine function q ∈ Δ(KA) ↦ �A ⋅ q is H ∩ (Δ(KA) ×ℝ) , it 
follows that �A ⋅ q = Cav(vA)(q),∀q ∈ [ps0 , p

0
A
] , where [ps0 , p

0
A
] denotes the segment 

between ps0 and p0
A
 . In particular, Cav(vA)(p0A) = �A ⋅ p

0
A
 is satisfied, and so �A satis-

fies (ii). From the fact that H supports H at F, it follows that 
�A ⋅ q ≥ vA(q),∀q ∈ Δ(KA) . This proves �A satisfies (i). Thus it only remains to 
show �A ∈ FA . Let �A be the Aumann et al. optimal strategy of the informed player 
in GA(ps0) , which is state-independent since Cav(vA)(ps0) = vA(ps0 ) . For the unin-
formed player, there exists a Blackwell strategy16 �A and a constant L > 0 such that 
�
kA
�A,�A,ps0

[
1

T

∑T

t=1
(A

kA

it
A
,jt
A

)] ≤ �
kA
A
+

L√
T
,∀kA ∈ KA (see proof of Corollary 3.34 in Sorin 

Fig. 4  Graphs of Cav(v
A
) and v

A

Fig. 5  Graphs of Cav(v
A
)(dot-

ted) and v
A
(continuous)

16 Cf. the next subsection for a discussion and definition of Blackwell strategies.
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2002), where �kA
�A,�A,ps0

 is the conditional expectation given �A = kA . The profile 
(�A, �A) is therefore a uniform equilibrium of GA(ps0) , so it follows that the limit 
limT→+∞ �

kA
�A,�A,ps0

[
1

T

∑T

t=1
(A

kA

it
A
,jt
A

)] exists for each kA ∈ KA.

For each kA ∈ KA , let vkA be this limit. It follows from the inequality of the Black-
well strategy given above that ∀kA ∈ KA, v

kA ≤ �
kA
A

 . Since for each T ≥ 1,

it follows that 
∑

kA∈KA
p
kA
s0
vkA = Cav(vA)(ps0) , as any uniform equilibrium pays 

Cav(vA)(ps0) . Since ps0 ∈ int(Δ(KA)) , it must be that vkA = �
kA
A

 , for all kA ∈ KA . 
Since FA is compact and convex and neither �A nor �A condition on realized 
states, it follows that (vkA )kA∈KA

= v ∈ FA . This shows �A ∈ FA and concludes that 
�A ∈ NRA(p

0
A
) , as claimed.

The proof of case (b) is immediate, since the Aumann et al. optimal strategy of 
the informed player in GA(p

0
A
) is already state-independent. This concludes the proof 

of the claim.   ◻

We would like to highlight two things about the above remark. Notice that the 
first part of the proof does not rely on any assumption on GA(p

0
A
) being locally non-

revealing at p0
A
 , i.e., it does not rely on the assumption that an optimal strategy of the 

informed player exists inducing an interior posterior. The first paragraph just serves 
the purpose of pinning down the correct vector �A . Notice that the assumption of 
ps0 ∈ int(Δ(KA)) is used in the proof above only when we show that �A = v . Second, 
we did not show in the proof that the profile (�A, �A) is an equilibrium of GA(p

0
A
) ; we 

used the fact that (�A, �A) is a uniform equilibrium of GA(ps0) , inducing the vector of 
payoffs for the informed player equal to �A , and obtained that �A ∈ NRA(p

0
A
).

3.5  Consequences for two‑player zero‑sum repeated games with incomplete 
information

Theorem 3.6 tells us that given a two-player zero-sum game with one-sided incom-
plete information that satisfies the property NR at the prior, there exists an equilib-
rium of the 2-player game for which no signalling occurs on path of play (i.e., the 
set of non-revealing equilibrium payoffs of this game is non-empty). Even for games 
for which Aumann et al. constructed strategies that necessarily involved signalling 
on path (see Example 3.10 or GB(p

0
B
) in Example 2.4), the NR property implies the 

existence of an equilibrium for which no signalling occurs on path. We would like to 
illustrate this message with an example.

Consider the two-player, zero-sum infinitely repeated game with one-
sided incomplete information GB(1∕2) between players 1 and 3, defined by 
the data in Example 2.4. Following Aumann et  al.’s technique for construct-
ing optimal strategies, the strategy of the informed player would be the strat-
egy highlighted in Example 2.4, that is, a signalling strategy: the informed 

��A,�A,ps0

[
1

T

T∑
t=1

(A
�A

it
A
,jt
A

)
]
=

∑
kA∈KA

pkA
s0

(
�
kA
�A,�A,ps0

[
1

T

T∑
t=1

(A
kA

it
A
,jt
A

)
])
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player uses his actions to signal information about the underlying state for 
finitely many stages and after that plays the (mixed) optimal action of the one-
shot, zero-sum game given by the posterior at each state independently. Play-
ing this strategy in GB(p

0
B
) guarantees to the informed player an ex-ante payoff  

of (1∕2)vB(1∕4) + (1∕2)vB(3∕4) = (1∕2)Cav(vB)(1∕4) + (1∕2)Cav(vB)(3∕4) = Cav(vB)(1∕2) = 1 . 
Now, the optimal strategy for the uninformed player in GB(1∕2) is a so-
called approachability strategy or Blackwell strategy. For a general game 
GB(p

0
B
) , a Blackwell strategy can be defined as follows: given �B ∈ ℝ

|KB| s.t. 
�B ⋅ q ≥ vB(q), q ∈ Δ(KB), Cav(vB)(p

0
B
) = �B ⋅ p

0
B
 , �B is a Blackwell strategy (for �B 

and p0
B
 ), if for each 𝜀 > 0 , there exists T0 ∈ ℕ such that ∀T ≥ T0 , �B a strategy of the 

informed player and kB ∈ KB,

where �kB

�B,�B,p
0
 is the conditional expectation given �B = kB . So �B precludes the 

informed player from achieving more than �kB
B
+ � in a sufficiently long (but finitely 

repeated) game, for any state kB ∈ KB . This implies that the ex-ante expected payoff 
to the informed player in a sufficiently long game is not larger than Cav(vB)(p0B) + � . 
For our example, take �B = (1, 1) and consider �B the Blackwell strategy for �B and 
p0
B
 as defined in the example. It follows the pair (�B, �B) is a (uniform) equilibrium 

with associated payoff Cav(vB)(p0B) = 1.
We call the strategies just defined standard optimal strategies. In contrast to 

these standard optimal strategies, for which there is revelation of information on 
path of play, we now construct equilibrium strategies for both players for which 
no information is revealed on path. The idea for the construction of these strate-
gies is simple. Both players play a deterministic sequence of actions as long as the 
other plays it. This deterministic sequence is supported by punishment strategies, in 
the sense that if any player deviates from his sequence of actions, the other player 
starts to play the punishment strategy forever. Let us first define the deterministic 
path of play for this example: the deterministic sequence of actions is defined by 
((it

B
, jt
B
))∞
t=1

= ((U,R), (U,M), (U,R), (U,M), ...) ; so the uninformed player alternates 
between R (right column) and M (middle column), whereas the informed player 
plays U at every stage. For each state kB ∈ {1, 2} , the payoff (to the informed player) 
obtained from this path of play is:

This implies the ex-ante payoff to the informed player is also 1 = Cav(vB)(1∕2) . In 
case any player deviates from his prescribed sequence of actions, the other player 
can observe the deviation and play from the next stage onwards his standard optimal 
strategy in GB(1∕2) , which guarantees that a deviation is not profitable. As men-
tioned, the strategies just defined are also a (uniform) equilibrium in GB(1∕2) , but 
reveal no information on path of play.

�
kB

�B,�B,p
0

[
1

T

T∑
t=1

(B
�B

it
B
,jt
B

)
]
≤ �

kB
B
+ �,

lim
T→+∞

1

T

T∑
t=1

B
kB

it
B
,jt
B

= 1.
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4  Main result 2: necessary condition for the upper end of I(p0) to be 
attained in equilibrium

Theorem 4.1 is the main result of this section. Intuitively, it shows that equilibria 
which pay the upper end of I(p0) to the informed player imply a particular type of 
signalling procedure. Theorem 4.1 can therefore be viewed as a constraint to the sig-
nalling strategies an informed player might play in an equilibrium paying the upper 
end of I(p0) . Presenting the formal statement of the Theorem requires some prelimi-
nary definitions.

Endow IA, IB, JA, JB,KA and KB with the discrete topology. For each 
t ∈ ℕ , let Ht be the discrete field over Ht ∶= (IA × IB × JA × JB)

t−1 . Endow 
H∞ ∶= (IA × IB × JA × JB)

∞ and Ω ∶= H∞ × KA × KB with the induced product 
topology and let H∞ and F(Ω) be the Borel sigma-fields over H∞ and Ω , respec-
tively. For notational convenience, we will also denote by Ht the field generated by 
Ht on Ω.

Let (�, �A, �B) be a profile of strategies in G(p0) . Let ℙ�,�A,�B,p
0 be the 

probability induced by (�, �A, �B, p
0) on (Ω,F(Ω)) . We define the mar-

tingale of posteriors obtained through Bayesian updating. For t ∈ ℕ , let 
p
kA,kB
t ∶= ℙ�,�A,�B,p

(� = (kA, kB)|Ht) and pt ∶= (p
kA,kB
t )(kA,kB)∈KA×KB

 . The sequence 
(pt)t∈ℕ is a Δ(KA × KB)-valued martingale with respect to (Ht)t∈ℕ , satisfying: (i) 
p1 = p0 ; (ii) there exists p∞ such that pt → p∞ a.s. as t → +∞ . The a.s. limit p∞ of 
the process (pt)t∈ℕ is called the asymptotic posterior.

Theorem  4.1 Let (�, �A, �B) be an equilibrium of G(p0) and let (pt)t∈ℕ be the mar-
tingale of posteriors induced by the equilibrium. Assume (�, �A, �B) pays ex-ante 
Cav(vA)(p

0
A
) + Cav(vB)(p

0
B
) to the informed player. Then (Cav(v�)(pt�))t∈ℕ is a mar-

tingale, for each � ∈ {A,B}.

For an intuition on Theorem 4.1, note that from Jensen’s inequality, it is immedi-
ate to see that Cav(vA)(pt�) is a supermartingale w.r.t. (Ht)t∈ℕ . If Cav(vA)(pt�0

) is not 
a martingale for some �0 ∈ {A,B} , then this would imply that the expected payoffs 
induced by the equilibrium in game G�0

(p0
�0
) are less than Cav(vA)(p0A) , contradicting 

the assumption of the Theorem.
The next corollary of Theorem 4.1 is motivated by the following intuition. Take 

a game G(p0) for which p0 ∈ int(Δ(KA × KB)) and assume that NR(p0) = � . This 
last assumption implies that if the upper end of I(p0) can be attained in equilibrium 
in G(p0) , then the informed player must use a state-dependent strategy on path, i.e., 
he must use signalling. An idea of how such signalling procedure could occur is as 
follows: the informed player could signal so as to induce posteriors that are product 
distributions; this would imply that, once the posterior realizes, from then onwards 
no correlation exists between the zero-sum games at the posteriors and therefore 
the informed player could play each of the zero-sum games without concern for 
information spillover; is it possible that there are equilibria of G(p0) for which the 
described signalling procedure exists and the upper end of I(p0) can be attained in 
equilibrium? Corollary 4.2 provides an answer to this question.
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Corollary 4.2 Let (�, �A, �B) be an equilibrium of G(p0) . Suppose this equilibrium 
pays the upper end of I(p0) and its associated asymptotic posterior p∞ is a product17 
a.s.. Then I(p0) is degenerate.

Proof We will denote by � the expectation operator ��,�A,�B,p
0 . Since p∞ is a product a.s., then 

Cav(�)(p∞) = Cav(vA)(p
∞
A
) + Cav(vB)(p

∞
B
) a.s.. Taking expectations on both sides and 

using Jensen’s inequality, it follows that Cav(�)(p0) ≥ �[Cav(v
A
)(p∞

A
)] + �[Cav(v

B
)(p∞

B
)] . 

By Theorem 4.1, �[Cav(vA)(p∞A )] = Cav(vA)(p
0
A
) and �[Cav(vB)(p∞B )] = Cav(vB)(p

0
B
) . 

Therefore, Cav(�)(p0) ≥ Cav(vA)(p
0
A
) + Cav(vB)(p

0
B
) . Since, Cav(�)(p0) ≤ Cav

(v
A
)(p0

A
) + Cav(v

B
)(p0

B
) , we have that I(p0) is degenerate.   ◻

Therefore, if I(p0) is non-degenerate, no equilibrium paying the upper end of I(p0) 
to the informed player induces a product asymptotic posterior. In other words, such 
an equilibrium must maintain the correlation (even at infinity) between the zero-sum 
games with positive probability.

4.1  On the proof of theorem 4.1

The proof of Theorem 4.1 requires some preliminary work. In particular, it requires an 
auxiliary Lemma (Lemma 4.3) which provides a necessary condition for equilibria of 
G(p0).

Lemma 4.3 Let (�, �A, �B) be an equilibrium in G(p0) . Then there exists a sequence 
of random variables (pt, �A,t, �B,t)t∈ℕ on the probability space (Ω,F(Ω),ℙ�,�

A
,�
B
,p0
) 

taking values in Δ(KA × KB) ×ℝ ×ℝ such that: 

(1) (pt, �A,t, �B,t)t∈ℕ is a martingale adapted to (Ht)t∈ℕ.
(2) �A,1 + �B,1 is the expected payoff of the equilibrium to player 1.
(3) �A,t ≤ Cav(vA)(ptA) a.s., ∀t ∈ ℕ.
(4) �B,t ≤ Cav(vB)(ptB) a.s., ∀t ∈ ℕ.

Proof of theorem 4.1 First, notice that for each � ∈ {A,B} and k, s ∈ ℕ with k ≤ s we 
have that Cav(v�)(pk�) = Cav(v�)(�[ps�|Hk]) ≥ �[Cav(v�)(ps�)|Hk] a.s. – where the equality 
follows from the fact that (ps)s∈ℕ is a martingale, and the inequality follows from 
Jensen’s inequality. Assume by contradiction that there exist k, s ∈ ℕ with k < s , 
�0 ∈ {A,B} and an atom hk ∈ Hk such that Cav(v�

0
)(pk�

0
)(hk) > �[Cav(v�

0
)(ps�

0
)|Hk](hk) . 

It follows that Cav(v�0 )(p0�0 ) ≥ �[Cav(v�0 )(pk�0 )] > �[Cav(v�0 )(ps�0 )] ≥ �[𝛽�0,s] = 𝛽�0,1
 , where 

the first inequality is given by Jensen’s inequality, the second by assumption, the 
third by (3) and (4) of Lemma 4.3 and the last equality by the martingale property. 

17 By p∞ being a product a.s. we mean that there exists X ∶ Ω → Δ(K
A
) and Y ∶ Ω → Δ(K

B
) , both F(Ω)

-measurable, such that p∞ = X ⊗ Y  a.s..
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This then implies that Cav(vA)(p0A) + Cav(vB)(p
0
B
) > 𝛽A,1 + 𝛽B,1 . Contradiction, since 

by (2) of Lemma 4.3 we have that �A,1 + �B,1 = Cav(vA)(p
0
A
) + Cav(vB)(p

0
B
) .   ◻

Example 4.4 In the next example, I(p0) is non-degenerate and the upper end of I(p0) 
is not an ex-ante equilibrium payoff. More precisely, only the lower end of I(p0) is 
an ex-ante equilibrium payoff for the informed player. We will provide a proof of 
this claim through an application of Theorem 4.1. Later in a remark, we provide a 
more elementary proof of this claim, which will not make any reference to the sto-
chastic process of payoffs and posteriors of Lemma 4.3. Consider G(p0) defined by 
the following data:

Claim 4.5 For the game G(p0) defined by the data above, only the lower end of I(p0) 
is an ex-ante equilibrium payoff for the informed player.

Proof Assume by way of contradiction that (�, �A, �B) is an equilibrium that 
pays ex-ante Cav(vA)(p0A) + Cav(vB)(p

0
B
) for the informed player in G(p0) . Let 

VA ∶ △(KA) → ℝ be given by VA(p) ∶= max�,�{�A(p)�|�A(p)� ≤ Cav(vA)(p)} , 
i.e., the maximum payoff player 1 attains in the one-shot zero-sum game with 
payoff matrix A(p) which is less than Cav(vA)(p) . For this example we have 
that VA(p) = vA(p),∀p ∈ △(KA) , which can be checked by computation. Let 
(�A,s)s∈ℕ, (�B,s)s∈ℕ be the martingales from Lemma 4.3. We need the following auxil-
iary claim, whose proof is left to Appendix B.

Claim 4.6 For each t ∈ ℕ , �A,t ≤ VA(ptA) + Zt a.s., where (Zt)t∈ℕ is a (a.s.) nonnega-
tive, bounded sequence that converges (a.s.) to 0.

By the claim, we have �A,t ≤ vA(ptA) + Zt a.s.. The Martingale Convergence Theo-
rem now implies that �A,∞ → �A,∞, ptA → p∞

A
 , as t → +∞ . By the claim Zt → 0 a.s.. 

Therefore, we obtain �[�A,∞] ≤ �[vA(p
∞
A
)] . From (2) and (3) in Lemma 4.3, we have 

that �[�A,∞] = Cav(vA)(p
0
A
) ≥ �[vA(p

∞
A
)] . So it follows that �[�A,∞] = �[vA(p

∞
A
)] , 

which implies that the distribution of p∞
A

 is concentrated at the boundary of Δ(KA) . 
Since vB is strictly concave18 and (vB(ptB))t∈ℕ is a martingale (by Theorem 4.1), it 
follows that ptB = p0

B
 a.s., ∀t ∈ ℕ . Hence, we have that for any history h∞ outside a 

set of ℙ�,�A,�B,p
-measure zero, the matrix representation of p∞(h∞) has either the first 

p
0 =

[
1∕2 0

0 1∕2

]

A
1 =

[
1 1

−1 − 1

]
; A

2 =

[
−1 − 1

1 1

]

B
1 =

[
1 0

0 0

]
; B

2 =

[
0 0

0 1

]

18 See Example 1 for the formula of vB and depiction of its graph.



96 L. Pahl 

1 3

or the second row filled with zeros (recall that an entry p0
ij
 represents the probability 

of states i and j in game GA(p
0
A
) and GB(p

0
B
) , respectively), i.e., p∞(h∞) is either:

Now the process of posteriors is a martingale, which implies that the expectation of 
p∞ is p0 . This implies that the following equation has a solution in � ∈ [0, 1]:

But this equation has no solution for � ∈ [0, 1] , which finally implies a contra-
diction. Hence, there is no equilibrium paying ex-ante to the informed player 
Cav(vA)(p

0
A
) + Cav(vB)(p

0
B
) . The arguments above give us more: recall that 

we had �A,∞ ≤ VA(p
∞
A
) = vA(p

∞
A
) a.s. and since �B,∞ ≤ Cav(vB)(p

∞
B
) = vB(p

∞
B
) 

a.s., these imply that �A,∞ + �B,∞ ≤ vA(p
∞
A
) + vB(p

∞
B
) a.s. and therefore 

�[�A,∞ + �B,∞] ≤ �[vA(p
∞
A
) + vB(p

∞
B
)] ≤ �[Cav(�)(p∞)] ≤ Cav(�)(p0) , where the 

second inequality follows by definition of Cav(�) and the last inequality is given by 
Jensen’s inequality. The number Cav(�)(p0) is the lowest possible ex-ante equilib-
rium payoff to the informed player. This implies that every uniform equilibrium of 
the example pays Cav(�)(p0) to the informed player.   ◻

Remark 4.7 We would like to provide an alternative proof of the claim that in the 
game of Example 4.4 only the lower end of I(p0) is an equilibrium payoff.19 It is 
obvious that the matrix A1 (respec. A2 ) can be substituted by the following equiva-
lent matrix A1

r
 (respec. A2

r
 ), by simply eliminating the redundant column action of 

player 2. So,

The model G(p0) defined by the data above is evidently equivalent to the model G(p0) 
defined by the data of the previous example, as only redundant actions have been 
eliminated, which leaves the best-reply correspondences of all players unaltered. 
Player 2 now, evidently, is a dummy player. We can define therefore a two-player 
non-zero-sum game between players 1 and 3, whose equilibria immediately induce 
the equilibria of the three-player game G(p0) . To be precise, we define a two-player, 
non-zero-sum infinitely repeated game with one-sided incomplete information and 

[
1∕2 1∕2

0 0

]
or

[
0 0

1∕2 1∕2

]

[
1∕2 0

0 1∕2

]
= �

[
0 0

1∕2 1∕2

]
+ (1 − �)

[
1∕2 1∕2

0 0

]
.

p
0 =

[
1∕2 0

0 1∕2

]

A
1

r
=

[
1

−1

]
; A

2

r
=

[
−1

1

]

B
1 =

[
1 0

0 0

]
; B

2 =

[
0 0

0 1

]

19 We thank an anonymous referee for the suggestion of this alternative proof.



97

1 3

Information spillover in multiple zero-sum games  

undiscounted payoffs �(q0) , where the set of states will be K = {1, 2} with prior 
q0 = 1∕2 for state 1: the payoffs are given by the following bimatrix Ck ( k ∈ K ), 
where the informed player plays row and the uninformed player 3 plays column:

The rows and column labels in matrix Ck should be read as follows: L and R stand 
for the stage-game actions of the uninformed player (i.e., player 3). For the row 
player (i.e., player 1), (U, D) corresponds to choosing the top row in game in Ak and 
the bottom row in game Bk . A generic entry is therefore Ck

(iA ,iB),jB
≡ ((Ak

r
)iA + Bk

iB ,jB
,−Bk

iA ,jB
) . 

The other entries are analogously constructed.
We can now modify the stage-game payoffs Ck, k = 1, 2 , so that the best-reply 

correspondence of both players remains unaltered and, after the modification, we 
obtain a zero-sum game between players 1 and 3. Define new stage-game payoff 
matrices Dk, k = 1, 2 by: Dk

(iA ,iB ),jB
≡ Ck

(iA ,iB),jB
− (0, (Ak

r
)iA ) = ((Ak

r
)iA + Bk

iB ,jB
,−(Ak

r
)iA − Bk

iA ,jB
) . Con-

sider now the two-player, zero-sum infinitely repeated game with one-sided incom-
plete information and undiscounted payoffs where the stage-game payoff matrices 
are given by (D1,D2) and the prior of state 1 is q0 = 1∕2 . This modification leaves 
the payoffs of player 1 unaltered, and therefore does not change his best-reply corre-
spondence when compared to �(q0) . Though the payoffs of player 3 are modified, 
his best-reply correspondence is not, which finally implies that the equilibria under 
this modification are the same as in �(q0) . Since the modified game is now zero-
sum, it follows from Aumann et al. that it has a (uniform) value, which is the unique 
ex-ante uniform equilibrium payoff to player 1, and is then evidently the lower end 
of I(p0) (cf. footnote 7).

5  Information spillover in Bayesian persuasion: a comparison 
with our results

The problem of information spillover can also be studied in the Bayesian Persua-
sion (BP) setting. This possibility is briefly discussed in the paper by Gentzkow and 
Kamenica (2011) in the section “Multiple Receivers”. We would like to draw a com-
parison between the effects of information spillover over equilibrium payoffs in our 
model and over equilibrium payoffs in BP. We first describe the game form of the 
BP model we have in mind in detail. We refer to this model as public BP.

Let KA × KB be the set of states, with KA and KB finite sets. The set MA ×MB is the 
set of messages, with MA and MB being finite sets and |Mi| ≥ |Ki|, i ∈ {A,B} . The 
actions of player 2 (respec. player 3) are denoted jA ∈ JA , ( jB ∈ JB ), with both JA and 
JB being finite sets. At an ex-ante stage, player 1 chooses a state-dependent lottery or 

C1 :

L R
(U,U) (2,−1) (1, 0)
(U,D) (1, 0) (1, 0)
(D,U) (0,−1) (−1, 0)
(D,D) (−1, 0) (−1, 0)

C2 :

L R
(U,U) (−1, 0) (−1, 0)
(U,D) (−1, 0) (0,−1)
(D,U) (1, 0) (1, 0)
(D,D) (1, 0) (2,−1)
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experiment x ∈ Δ(MA ×MB)
KA×KB (the set of pure actions of Player 1). Then Nature 

draws a state (kA, kB) according to some prior probability p0 ∈ Δ(KA × KB) and a 
message (mA,mB) according to x(kA,kB) ∈ Δ(MA ×MB) . Players 2 and 3 observe the 
message (mA,mB) but not the states; player 2 takes an action jA and player 3 takes 
an action jB and the game ends. We now define payoffs for the players. Given state 
(kA, kB) ∈ KA × KB and actions jA and jB of players 2 and 3, player 1 obtains payoff 
uA(kA, jA) + uB(kB, jB) ; player 2 obtains �A(kA, jA) and player 3 obtains �B(kB, jB).

In the model just described, players 2 and 3 observe messages publicly (which 
motivates the terminology public BP). We will also be interested in the model where 
messages are observed privately by each player (i.e., player 2 observes only mA and 
player 3 observes only mB ), and will call this model private BP.

Using the equilibrium concept in Gentzkow and Kamenica (2011), 
it is not hard to show that any equilibrium will pay to player 1 the same 
payoff. We compute this equilibrium payoff: for any qA ∈ Δ(KA) , let 
�A(qA) = argmax�A∈Δ(JA)

∑
kA

∑
jA
q
kA
A
�A(jA)�A(kA, jA) ; for qB ∈ Δ(KB) we define 

�B(qB) ∈ Δ(JB) analogously for player 3. Each x ∈ Δ(MA ×MB)
KA×KB uniquely cor-

responds to a distribution over Δ(KA × KB) with finite support and with mean p0 , so 
we can without loss assume that player 1 chooses a distribution over Δ(KA × KB) 
with finite support and mean p0 . Concretely, this amounts to choosing a vec-
tor � = (�m)m∈MA×MB

, �m ≥ 0 and 
∑

m �m = 1 and (pm)m∈MA×MB
 , pm ∈ Δ(KA × KB) 

such that 
∑

m∈MA×MB
�mpm = p0 . For each realized message m ∈ MA ×MB , the 

induced posterior is denoted pm ∈ Δ(KA × KB) and �m corresponds to the prob-
ability with which pm realizes. In equilibrium, player 1 chooses a distribution 
over posteriors so as to maximize 

∑
m∈MA×MB

�m(UA(pmA) + U(pmB)) , where 
UA(qA) =

∑
kA∈KA

∑
jA∈JA

q
kA
A
�A(qA)(jA)uA(kA, jA) and UB(qB) =

∑
kB∈KB

∑
jB∈JB

q
kB
B
�B(qB)(jB)uB(kB, jB) . It is now clear that the maximum value of this program cor-

responds precisely to the definition of Cav(UA + UB)(p
0) , which is the equilibrium 

payoff of player 1.
It is easy to construct examples where Cav(U

A
)(p0

A
) + Cav(U

B
)(p0

B
)

> Cav(U
B
+ U

A
)(p0).20 If in addition we assume we are in the public BP model, 

we have shown in the previous paragraph Cav(UA)(p
0
A
) + Cav(UB)(p

0
B
) cannot be an 

equilibrium payoff, because of the information spillover phenomenon.
When messages are privately sent to players, however, this is simply the stand-

ard BP model of a sender simultaneously playing two receivers, which implies 
that Cav(UA)(p

0
A
) + Cav(UB)(p

0
B
) is an equilibrium payoff. The difference between 

Cav(UA)(p
0
A
) + Cav(UB)(p

0
B
) − Cav(UB + UA)(p

0) can be interepreted, therefore, as 
the loss to the Sender generated by information spillover in the public BP model.

20 Take for instance the following non-zero sum public BP example: KA = KB = {1, 2} with 
p0 ∈ Δ(KA × KB) defined by (p0)(1,1) = 1∕2 and (p0)(2,2) = 1∕2 . Let JA = {jA, j

�
A
} and JB = {jB, j

�
B
} ; 

let M1 = M2 = {m,m�} . Define uA(1, jA) = 0, uA(1, j
�
A
) = 2, uA(2, jA) = 2, uA(2, j

�
A
) = 0 . 

For player 2, �A(1, jA) = −1, �A(1, j
�
A
) = 1, �A(2, jA) = 1, �A(2, j

�
A
) = −1 . For player 3, 

�B(1, jB) = uB(1, jB) = −1;�B(2, jB) = uB(2, jB) = 1;uB(1, j
�
B
) = �B(1, j

�
B
) = 1;uB(2, j

�
B
) = �B(2, j

�
B
) = −1 . In 

this example, we have that Cav(UA)(p
0
A
) + Cav(UB)(p

0
B
) > Cav(UA + UB)(p

0).
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If we specify payoffs to be zero sum, i.e., �A = −uA and �B = −uB , the pub-
lic BP model yields that UA and UB are concave functions, therefore implying that 
Cav(UA)(p

0
A
) + Cav(UB)(p

0
B
) = Cav(UA + UB)(p

0) = UB(p
0
A
) + UA(p

0
A
) . The next 

claims settles this result.

Claim 5.1 In the public BP zero-sum model, UA as well as UB are concave. There-
fore, for p0 ∈ Δ(KA × KB), Cav(UA)(p0A) + Cav(UB)(p0B) = Cav(UA + UB)(p0) = UB(p0B) + UA(p0A).

Proof We prove that UA is concave. The proof of concavity of UB is similar. For each 
pA ∈ Δ(KA) and jA ∈ JA , let fjA(pA) =

∑
kA∈KA

p
kA
A
uA(kA, jA) . Note that fjA is an affine 

function of pA . Since player 2 is a minimizer, UA(pA) = minjA∈JA{fjA (pA)}jA∈JA . The 
map UA is therefore piecewise affine and concave in pA . The remainder of the claim 
is immediate from the definition of Cav.   ◻

Hence, the effect of information spillover in the zero-sum public BP model is 
inexistent from the perspective of equilibrium payoffs, but is relevant in the non-
zero sum public BP model, since there might be loss to player 1 generated by 
information spillover. As we showed with our main result 1 in this paper, for the 
model G(p0) the difference between Cav(vA)(p0A) + Cav(vB)(p

0
B
) − Cav(�)(p0) can-

not be interpreted similarly as the loss generated by information spillover, because 
Cav(vA)(p

0
A
) + Cav(vB)(p

0
B
) might be attained in equilibrium.

6  Conclusion

We studied a three-player generalization of the Aumann et al. model and analysed 
the effects of information spillover on the equilibrium payoff set of the informed 
player. Our first two results provided a sufficient condition under which a contin-
uum of equilibrium payoffs exist in the model and which implies, in particular, the 
existence of equilibria where the informed player circumvents the adverse effects 
of information spillover. These equilibria involve no signalling on equilibrium path. 
This sufficient condition is implied by the more interpretable local non-revelation 
condition. Our second main result presented a necessary condition for equilibria to 
attain the upper end of I(p0) , which provides a restriction on the signalling processes 
that can be generated by such an equilibrium. A corollary of this result is that equi-
libria which “uncorrelate” the two two-player zero-sum games GA(p

0
A
) and GB(p

0
B
)

(whenever I(p0) is, of course, non-degenerate) do not achieve the upper end of I(p0).
Several questions remain unanswered with regards to the model G(p0) . What are the 

ex-ante equilibrium payoffs of the informed player that can be achieved through signal-
ling on path of play? Is it possible, when NR(p0) = � and I(p0) is non-degenerate, that 
the upper end of I(p0) is achieved as an equilibrium payoff of the informed player? As 
our last example (Example 4.4) showed, it might be the case that only the lower end of 
I(p0) is achievable as an equilibrium payoff. Is it possible that an example of G(p0) exists 
for which the upper end of I(p0) is not achievable, but something in the interior of I(p0) 
is an equilibrium payoff? These questions remain to be answered in future work.
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Proof of Theorem 3.6

Proof For the proof we maintain the notation for the parametrization T, which 
is established before the statement of Theorem  3.6. Let �A and pA be the vec-
tor and probability distribution over Δ(KA) respectively, given by the property 
NR at p0

A
 . We will show that �A ∈ NRA(p

0
A
) . We first show that �A satisfies (i) 

and (ii) of NRA(p
0
A
) . The vector �A satisfies (1) of Definition 3.5, which implies 

it satisfies (ii) of NRA(p
0
A
) immediately. For (i), let x ∈ ℝ

|KA|−1, T(x) = pA and 
h ∈ ℝ

|KA|−1 such that x + h ∈ P . Because �AS satisfies (3) of Definition 3.5, we 
have that Cav(vA◦T|P)(x) + �AS ⋅ h ≥ Cav(vA◦T|P)(x + h) . From (1) in Defini-
tion 3.5 and the definition of Cav(vA) , (vA◦T|P)(x) + �AS ⋅ h ≥ (vA◦T|P)(x + h) . 
Again, from (1), the left hand side of the last inequality can be written as 
�A ⋅ T(x) + �AS ⋅ h = �A ⋅ S(x + h) + �A ⋅ e

KA

1
= �A ⋅ T(x + h) . Therefore, we have 

that �A ⋅ T(x + h) ≥ (vA◦T|P)(x + h) , for any h ∈ ℝ
|KA|−1 such that x + h ∈ P . 

Hence, �A ⋅ q ≥ vA(q),∀q ∈ Δ(KA) . This proves �A satisfies (i).
It now remains to prove �A ∈ FA . We will show that 𝜕vA(pA) ⊆ FA.21 Let 

f = vA◦T  , x ∈ P and h ∈ ℝ
|KA|−1 . Let Σ(x) denote the set of optimal strategies of 

the maximizer in the one-shot zero-sum game with matrix A(T(x)) and analogously 
denote T(T(x)) for the optimal strategies of the minimizer in the same game. Apply-
ing Proposition 3.4.2 in Laraki et al. (2019):

Let B be the closed unit ball in ℝ|KA|−1 . If f is differentiable at x, the above result 
implies that

Applying the minmax theorem gives now that ∇f (x) ∈ FA . Let T(x̄) = pA . By defini-
tion of the generalized gradient of f at x̄ , we have that 𝜕vA(pA) ⊆ FA , as we wanted to 
show.   ◻

Proof of Proposition 3.9

Proof The proof is divided in two-cases: (a) Cav(vA)(p
0
A
) > vA(p

0
A
) and (b) 

Cav(vA)(p
0
A
) = vA(p

0
A
) . We start with (a). We first construct the candidate vector of 

payoffs �A ∈ ℝ
|KA| and a probability distribution pA and show the pair (�A, pA) satis-

fies the definition of NR at p0
A
.

lim
�→0+

1

�
(f (x + �h) − f (x)) = max

�∈Σ(T(x))
min

�∈T(T(x))
�A(Sh)�� = max

�∈Σ(T(x))
min

�∈T(T(x))
(�AkA��)kA∈KA

⋅ Sh.

max
h∈B

min
�A∈FA

(∇f (x) − �AS) ⋅ h ≤ 0.

21 We thank an anonymous referee for suggesting a simpler proof of this claim.
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Let Cav(vA)(p
0
A
) =

∑
s∈S �svA(ps) , �s ≥ 0 , 

∑
s∈S �s = 1 and let 

ps0 be the posterior which is interior to the simplex of states. Let 
H = {(q, �) ∈ Δ(KA) ×ℝ|Cav(vA)(q) ≥ �} . Note that H is a convex subset of 
ℝ

|KA| ×ℝ . Now, note that (p0
A
, Cav(vA)(p

0
A
)) =

∑
s∈S �s(ps, vA(ps)) . Since, by (a), 

∀s ∈ S, ps ≠ p0 , it follows that (p0
A
, Cav(vA)(p

0
A
)) is not an extremum point of H (cf. 

Rockafellar (1970), Section 18). Therefore, there exists a face F of H , with dimension 
d ≥ 1 , such that F contains (p0

A
, Cav(vA)(p

0
A
)) and each point (ps, vA(ps)) . Take now a 

supporting hyperplane H to H which contains F. The hyperplane H intersected with 
Δ(KA) ×ℝ is the graph of an affine function q ∈ Δ(KA) ↦ �A ⋅ q ∈ ℝ , where �A is 
a vector in ℝ|KA| . The candidate pair satisfying NR at p0

A
 is (�A, ps0 ) . We now check 

that it satisfies the conditions of Definition 3.5. It is clear from the construction that 
�A ⋅ q ≥ Cav(vA)(q),∀q ∈ Δ(KA) . Using the definition of T, we can rewrite this ine-
quality as Cav(vA◦T|P)(x) + �AS ⋅ h ≥ Cav(vA◦T|P)(x + h), T(x) = ps0 ,∀h ∈ ℝ

|KA|−1 
such that x + h ∈ P . We obtain �AS ∈ �∗Cav(vA)(ps0) . Since

(1) in Definition 3.5 is satisfied. It remains to prove that �AS ∈ �vA(ps0 ) . In order to 
show this, we are going to apply a result in Clark (1975).22 Let vA◦T = f  . Note that 
f has directional derivatives in all directions (see Proposition 3.4.2 in Laraki et al. 
(2019)). We denote the directional derivative of f at point x in the direction h by 
f �(x;h).

Notice now that from (*) and (**) we have that for each h ∈ ℝ
|KA|−1 , 

(−�A)S ⋅ h ≤ (−f )�(x;h) . Corollary 1.10 in Clark (1975) now implies that 
−�AS ∈ �(−f ) . Since we have that �(f )(x) = −�(−f )(x) , it follows immediately that 
�AS ∈ �vA(ps0 ) . This concludes the proof of case (a).

Now we prove case (b). Assume Cav(vA)(p0A) = vA(p
0
A
) . From Aumann et  al. 

(1995), an optimal strategy �A of the informed player in GA(p
0
A
) is to play the mixed 

action which is optimal in the (one-shot) zero-sum game with matrix A(p0
A
) , inde-

pendently at each stage, whereas the strategy of the uninformed player 2 is an 
approachability strategy �A at p0

A
 . By definition of the approachability strategy, there 

exists a vector �A ∈ ℝ
|KA| satisfying �A ⋅ q ≥ vA(q),∀q ∈ Δ(KA) such that player 2 

approaches �A −ℝ
|KA|
+  and the profile (�A, �A) is a uniform equilibrium, with asso-

ciated vector of payoffs equal to �A . We now observe that the pair (�A, p
0
A
) satis-

fies the conditions of NR at p0
A
 . First, �A ⋅ p

0
A
= Cav(vA)(p

0
A
) = vA(p

0
A
) (which is con-

dition (1)) is clear. By the same reasoning as in the first paragraph of this proof 
�A ⋅ q ≥ vA(q),∀q ∈ Δ(KA) is then equivalent to �AS ∈ �∗Cav(vA)(p

0
A
) , which is con-

dition (3). The same reasoning as in the paragraph above (changing now x = T(ps0) 
to x0 = T(p0

A
) ) gives that �A ∈ �vA(p

0
A
) , which is condition (2). This concludes the 

proof.   ◻

�A ⋅ ps0 = Cav(vA)(ps0 ) = vA(ps0) (∗)

Cav(vA)(p
0
A
) = �A ⋅ p

0
A
, (∗∗)

22 We thank an anonymous referee for pointing out a simplification of the proof of this step.
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Proof of Lemma 4.3

Let (�, �A, �B) be an equilibrium profile of G(p0) . We start with the construction of 
the sequence of random variables (pt, �A,t, �B,t)t∈ℕ . The sequence (pt)t∈ℕ is the mar-
tingale of posteriors obtained from (�, �A, �B) . It is therefore, immediately adapted to 
the sequence of increasing fields (Ht)t∈ℕ . Fix now a Banach limit L ∶ �∞

→ ℝ.23 A 
triple of strategies (�, �A, �B) is an L-equilibrium if: 

(1) L((�
kA,kB
T

(�, �A, �B))T∈ℕ) ≥ L((�
kA,kB
T

(��, �A, �B))T∈ℕ),∀� ∈ Σ, (kA, kB) ∈ KA × KB.
(2) L((�A

T
(�, �A, �B))T∈ℕ) ≥ L((�A

T
(�, ��

A
, �B))T∈ℕ),∀�

�
A
∈ TA.

(3) L((�B
T
(�, �A, �B))T∈ℕ) ≥ L((�B

T
(�, �A, �

�
B
))T∈ℕ),∀�

�
B
∈ TB.

For notational convenience, we shall denote L((ut)t∈ℕ) by L(ut) . A uniform equilib-
rium of the game G(p0) automatically satisfies (1), (2) and (3) above, so it is an 
L-equilibrium. For each t ∈ ℕ , let �A,t = L(�[�T |Ht]) , where �T =

1

T

∑T

t=1
A
�A

it
A
,jt
A

 and 

�B,t = L(�[�T |Ht]) , where �T =
1

T

∑T

t=1
B
�B

it
B
,jt
B

 . We now show (1) of Lemma 4.3: we 

have already argued that (pt)t∈ℕ is a martingale and it is immediate it is bounded. Fix 
now s < t and hs ∈ Hs with ℙ(hs) > 0 : �[�A,t|Hs](hs) = 
𝔼[L(𝔼[�T |Ht])|Hs](hs) =

1

ℙ(hs)
𝔼[L(𝔼[�T |Ht])1hs

] . Letting now XT ∶= �[�T |Ht]1hs
 , 

we have that X ∶= (XT )T∈ℕ ∶ Ω → �∞ is a random variable that takes finitely many 
values in �∞ . Therefore, by Lemma 4.6 in Hart (1985), L commutes with � and we 
obtain: 1

ℙ(hs)
𝔼[L(XT )] =

1

ℙ(hs)
L(𝔼[XT ]) = 1

ℙ(h
s
)
L(𝔼[𝔼[�

T
|H

t
]1

h
s
]) = L(

1

ℙ(h
s
)
𝔼[𝔼[�

T
|H

t
]1

h
s
]) , 

where the last equality follows from L being linear. Now, 
L(

1

ℙ(hs)
𝔼[𝔼[�T |Ht]1hs

]) = L(𝔼[𝔼[�T |Ht]|Hs](hs)) , from the definition of the condi-
tional expectation on a finite field. As hs was arbitrarily chosen, we have 
�[�A,t|Hs] = L(�[�T |Hs]) = �A,s a.s., proving (�A,t)t∈ℕ is a martingale adapted to 
(Ht)t∈ℕ (boundedness of this martingale is immediate from the fact that payoffs are 
bounded). The proof that (�B,t)t∈ℕ is a bounded martingale adapted to (Ht)t∈ℕ is the 
same. We now show condition (2) of Lemma 4.3. Notice that 
�A,1 = L(�[�T |H1]) = L(�[�T ]) = limT→+∞ �[�T ] , where the last equality follows 
from the fact that payoffs of an equilibrium profile converge, by definition; the limit 
limT→+∞ �[�T ] is precisely the expected payoff to player 1 in the game GA(p

0
A
) from 

the equilibrium. By the same reasoning, �B,1 is precisely the expected payoff of player 
1 in game GB(p

0
B
).

We now prove (3) from Lemma 4.3. Aiming for a contradiction, suppose there 
exists h0

t
∈ Ht with ℙ(h0

t
) > 0 , such that 𝛽A,t(h0t ) > Cav(vA)(ptA)(h

0
t
) . We will con-

struct a profitable deviation for player 2. Let �′
A
 be the following strategy. After h0

t
 

has occurred, �′
A
 will be equal to a Blackwell strategy 𝜏A(pt) for the uninformed 

23 For the definition of Banach limit, see Section 4.2 in Hart (1985).
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player in GA(ptA) , where pt ∶= pt(h
0
t
) is the posterior given h0

t
 ; otherwise, �′

A
 is equal 

to �A . We have,

where �′ is the expectation taken with respect to the p0, �, �′
A
, �B . We claim 

that L(𝔼�[�T |h0t ]) ≤ Cav(vA)(ptA(h
0
t
)),∀t ∈ ℕ . We will assume the claim for 

now and conclude the proof of (3). We then prove the claim. Taking L on the 
right-hand-side of the highlighted equation and using linearity of L, one gets: 
𝛽A,t(h

0
t
) − L(��[𝛼T |h0t ]) ≥ 𝛽A,t(h

0
t
) − Cav(vA)(ptA)(h

0
t
) > 0 . This implies a contra-

diction: since taking L on the left hand side we obtain the difference between the 
expected payoffs from (�, �A, �B) to player 1 and the expected payoffs from (�, ��

A
, �B) 

to player 1. As the expected payoffs to player 1 decreased strictly, player 2 is strictly 
better, which is a contradiction with the fact that (�, �A, �B) is an equilibrium.

We now prove the claim: note that, 𝔼�[�T �h0t ] =
𝔼
�[�T .1h0t

]

ℙ�(h0t )
=

1

ℙ�(h0t )

1

T
[∫

h0t

∑t−1

s=1
A
�A
is
A
,js
A

dP�] +
1

ℙ�(h0t )

T−t

T
[∫

h0t

1

T−t

∑T

s=t
A
�A

is
A
,js
A

dP�] . Let CT ∶=
(T−t)

T
 and KT ∶=

1

ℙ�(h0t )

1

T
[∫

h0t

∑t−1
s=1 A

�A
is
A
,js
A

dP�] . 

Then, 𝔼�[�T �h0t ] = 1

ℙ�(h0t )
CT [∫h0t

1

T−t

∑T

s=t
A
�A
is
A
,js
A

dP�] + KT . Now letting P◦(⋅) ∶= P�(⋅|h0
t
) 

and �◦[⋅] the expectation operator with respect to P◦(⋅) , we can re-write ��[�T |h0t ] as 
CT�

◦[
1

T−t

∑T

s=t
A
�A
is
A
,js
A

] + KT . Let now 𝜀 > 0 . Note that because 𝜏A(h0t ) is a Blackwell 

strategy, there exits T0 ∈ ℕ s.t. ∀T ≥ T0 , �◦[
1

T−t

∑T

s=t
A
�A
is
A
,js
A

] ≤ Cav(vA)(ptA) + � . 

Therefore, CT�
◦[

1

T−t

∑T

s=t
A
�A
is
A
,js
A

] + KT ≤ CTCav(vA)(ptA(h
0
t
)) + �CT + KT . Since 

KT → 0 and CT → 1 (as T → +∞ ), taking L on both sides of the inequality  
gives L(��[�T |h0t ]) ≤ Cav(vA)(ptA(h

0

t
)) + � . As 𝜀 > 0 is arbitrary, 

L(��[�T |h0t ]) ≤ Cav(vA)(ptA(h
0
t
)) , as required. This concludes the proof of the claim 

and the proof of (3). The proof of (4) is the exact same.

Proof of the Claim 4.6 Fix t, s ∈ ℕ with s ≥ t . Conditioning over Hs+1 and �A , we 
have

Summing over s ∈ ℕ from t ≤ s ≤ T  , and dividing by T, we have

where we used the fact that stage payoffs at any state are bounded 1. Denote 
Zt ∶=

t

T
+

1

T

∑
t≤s≤T �[�t�Ht] , where �t ∶=

∑
kA∈KA

sups≥t �pkAs+1A − p
kA
tA
� . Taking 

Banach-limits (on T) on both sides, we have �A,t ≤ VA(ptA) + �[�t|Ht] a.s.. Since 
pt → p∞ a.s., as t → ∞ , it follows by Lemma 4.24 in Hart (1985), that �[�t|Ht] → 0 
a.s..   ◻

𝔼[�T ] − 𝔼
�[�T ] = ℙ(h0

t
)(𝔼[�T |h0t ] − 𝔼

�[�T |h0t ]),

�[A
�A
is
A
,js
A

|Ht] = �[
∑
kA∈KA

p
kA
s+1A

A
kA
is
A
,js
A

|Ht] =
∑
kA∈kA

p
kA
tA
�[A

kA
is
A
,js
A

|Ht] +
∑
k∈K

�[(p
kA
s+1A

− p
kA
tA
)A

KA

is
A
,js
A

|Ht] =

= �[A(ptA)isA ,jsA |t] +
∑

kA∈KA

�[(pkAs+1A − pkAtA )A
kA
isA ,j

s
A
|t] ≤ VA(ptA) +

∑

kA∈KA

�[(pkAs+1A − pkAtA )A
kA
isA ,j

s
A
|t].

�[�T |Ht] ≤
t

T
+ VA(ptA) +

1

T

∑
t≤s≤T

∑
kA∈KA

�[|pkA
s+1A

− p
kA
tA
||Ht],
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