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Abstract
We propose a simple model of distribution of economic activity across cities of 
endogenous size and number determined by individual incentives. The individuals 
populating our model are endowed with idiosyncratic entrepreneurial creativity, the 
realization of which requires urban agglomeration linked to a crowding cost. Focus-
ing on the dynamics of urban development, our predictions include a U-shaped rela-
tion between well-known measures of urbanization and urban primacy, a hypothesis 
that we test empirically using World Bank data. Our findings complement a grow-
ing consensus on U-shaped relations between level and concentration of economic 
activity across a broad set of applications.
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1 Introduction

Galor (2009) and Ray (2010), among others, illustrate mechanisms through which 
not only the level, but the distribution of economic prosperity greatly matters for 
institutional stability and economic growth of nations in the long-run. As argued 
in Glaeser and Henderson (2017), the increasingly uneven urban development of 
emerging economies such as China, India, and Nigeria appears as one of the crucial 
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challenges of our times. The reasons are plenty and connected in a complex web of 
causalities, including the direct effects of urbanization and urban concentration on 
poverty alleviation, access to basic services, employment possibilities, socio-polit-
ical tensions, pollution and the environment (see, e.g., Ravallion 2015; Sun et  al. 
2016). Concerning socio-political tensions, the mounting rage felt by the impov-
erished provinces towards the so-called cosmopolitan elites of the capitals of the 
world is a phenomenon very much at the center of the rise of populism in recent 
times (see, e.g., Eatwell and Goodwin 2018).

Our work is chiefly motivated by the need to understand dynamics of urban 
development which, to the best of our knowledge, are so far unexplored.1 Taking 
a stylized approach in the tradition of coalition formation and threshold models of 
social interaction,2 we model the agglomeration of a population into cities of endog-
enous number and size and study how their relative size changes when a larger 
fraction of the population moves from rural to urban areas. Our equilibrium predic-
tions include a U-shaped relation between the level of urbanization (i.e., the frac-
tion of the population living in urban areas) and urban primacy (i.e., the fraction of 
the urban population living in the largest city), a hypothesis that we test empirically 
using World Bank data. The economic, environmental, and socio-political implica-
tions of such an U-shaped trend are extensive. Assuming the bottom of the U has 
been reached sometimes in the late 20th century, we should now expect the urban 
population—and thus economic activity, wealth, and power—to increasingly con-
centrate in the capital city rather than the provinces. While this may feel true for 
many industrialized countries, the bottom of the U may not have been reached yet in 
many developing countries which may thus expect the opposite trend of empower-
ment of provinces.

To illustrate the relevance of our U-shaped hypothesis in a historical example, 
consider the long run effects of the industrial revolution on the level of urbaniza-
tion and urban primacy in the United Kingdom through the last two-three centuries. 
Roughly speaking, before the industrial revolution, a large share of non-agricultural 
activity was concentrated in London and focused on services related to trade. When 
the industrial revolution took off, economic activity started diversifying across sec-
tors and geographically spreading north towards growing industrial clusters such as 
Birmingham (automotive), Manchester (textile), and Newcastle (shipbuilding and 

1 There is a vast literature that studies the spatial and agglomerative dimensions of urban distributions. 
See Fujita et al. (2001), Redding (2013), Duranton and Kerr (2018) for reviews of various subfields. This 
literature can be split into neoclassical general equilibrium models which include the urban economics 
approach of the system of cities (e.g., Picard and Tabuchi 2013; Behrens et  al. 2014; Davis and Din-
gel 2020) and more stylized approaches in the tradition of regional science (e.g., de Palma et al. 2019; 
Albouy et al. 2019). Our contribution falls into the second category.
2 Our theoretical framework can be seen as a coalition formation game with non-transferable utility 
(Peleg and Sudhölter 2007). Specifically, it is a many-to-many matching game with hedonic preferences 
defined over an individual’s coalition size relative to an individual-specific threshold (see, e.g., Bogomol-
naia and Jackson 2002; Aziz et al. 2016). Seminal contributions to the threshold approach to coalition 
formation include Simon (1954), Schelling (1969) and Granovetter (1978); we refer to Watts and Dodds 
(2009) and Benhabib et al. (2010) for reviews of related threshold-based approaches to coalition forma-
tion and network formation across the social sciences.
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steel).3 By the mid 20th century, these peripheral centers reached levels of economic 
prosperity never witnessed before, but their economic growth reached an apex some-
time in the mid 1970s and never came back. With their economic decline becoming 
evident and urbanization still on the rise, London reacquired its uncontested cen-
trality in the last decades, in line with the general pattern of the “renaissance of 
the metropolis” across the developed world (Glaeser 2011). To summarize, as time 
progresses, we observe a steadily increasing trend in the level of urbanization and 
a U-shaped trend in the level of urban primacy, with London remaining the largest 
city through the whole time span.

While our (anecdotal, and later statistical) evidence is only suggestive, it is 
remarkable that related fields in the literature found similarly U-shaped correspond-
ences between the degree of concentration and the level of mobilization of resources 
akin to economic development. One group includes, among others, Imbs and Waczi-
arg (2003) for GDP per capita and concentration of economic activity across indus-
trial sectors, and related papers on GDP per capita and sectoral concentration of 
exports.4 Another cluster revolves around inequality of income (or wealth) and GDP 
per capita as documented for instance by Piketty and Saez (2003) and Saez and Zuc-
man (2016), which points directly against the well-known Kuznets hypothesis. Our 
paper provides a theory for this U-shaped relation in the context of urban develop-
ment. While we do not claim one-to-one portability across fields, there are obvious 
interconnections between the distributions of people across space, those of people 
and resources across industrial sectors, and those of resources across people.

While other predictions of our model are broadly in line with stylized facts of 
urban economics,5 our U-shaped hypothesis directly contradicts the line of inquiry 
that, in reminiscence of the Kuznets curve, postulates an inverted U-shaped relation 
between urban primacy and the level of urbanization.6Henderson (2003) provides an 
extensive review of this literature arguing that, although the inverted U-shape may 
still be present in the 1985–1995 decade, it is much noisier than in the 1965–1975 
decade and it may be fading away in recent times (see, e.g., his Figure 4). We believe 
this fading effect is partly related to the aforementioned “renaissance of the metropo-
lis” and the tumultuous urban transformation of certain emerging economies. Hence, 
in our view, there is scope for further debate on the empirical relation between urban 
primacy and urbanization, particularly in light of the opposite projections on future 

3 For a thorough account of the geography of the industrial revolution in the United Kingdom, see Dodg-
shon and Butlin (2013). A historical dataset on urbanization trends in the United Kingdom is provided by 
Friedlander (1970).
4 See Cadot et al. (2011) and references therein.
5 As we will see, our model complies with two established facts on the correlates of the size of a city: its 
positive relation with the mean and dispersion of the well-being of the city’s residents, and its negative 
relation with the number of cities of comparable size.
6 This research tradition originates with the influential cross-country analysis in Williamson (1965) and 
subsequent contributions that illustrate the empirical pattern with data spanning from the 1950s to the 
mid 1990s. In light of this evidence, Junius (1997) develops a general equilibrium framework where cen-
tripetal and centrifugal forces interact and provide a rationale for the inverted U-curve.
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trends in urban concentration and the drastically different policy responses they may 
require.

Let us describe our framework in more detail. Our theoretical model considers 
a continuum of agents scattered on a territory, where the set of agents inhabiting a 
location is called a city if it has positive mass while it is called a village (or a soli-
tary settlement) otherwise. For simplicity we assume that all locations are equally 
distant from each other, thus abstracting from the spatial dimension and exclusively 
focusing on the distribution of population across locations. With some narrative 
license, our agents can be interpreted as entrepreneurs with different business plans 
that are heterogeneous in their degree of ambition.7 The core intuition is that while 
ambitious plans can lead to higher profits, they are more difficult to launch requiring 
more supportive stakeholders at early stages of implementation. Reflecting various 
frictions, these initial supporters are typically local and thus larger cities are more 
likely to provide the critical mass necessary to realize more ambitious plans.8 We 
thus assume that the ambition of an agent is a threshold (or type) such that her busi-
ness plan is operative if and only if she inhabits a city of size larger than or equal 
to this type. Acknowledging that larger cities also typically lead to higher crowding 
costs (e.g., higher rents, congestion, pollution, etc), we then model the agent’s pref-
erences such that her crowding cost is minimized conditional on her business plan 
being launched.

We define an urban distribution as a partition of the set of agents into cities and 
villages, and we call it an equilibrium if no agent prefers to leave her location. As the 
presence of agents in a city constitutes the very incentive for more agents to locate 
there, this naturally leads to the multiplicity of equilibria and potential coordination 
failures that are typical of the development discourse.9 We characterize the broad set 
of equilibria showing that the equilibrium distribution is always determined by an 
algorithm that lends itself to intuitive visualization in a simple diagram. Specifically, 
in every equilibrium, agents are sorted such that cities correspond to different inter-
vals of types while villages are inhabited by the lowest and the highest (but non-uti-
lized) types.10 Under mild restrictions, this implies that a larger city size positively 

10 Thus, villages and cities host “effective” or realized types. The presence of high but ineffective types 
in villages can be interpreted as these being “ahead of their time” in the sense that their ideas cannot be 
realized under the existing agglomeration structure.

7 See, e.g., Genicot and Ray (2017) for a formalization of the interaction of inherited wealth and aspira-
tions in determining an individual’s ambition.
8 As pointed out in Carlino and Kerr (2015), among the three Schumpeterian business stages of inven-
tion, innovation, and commercialization, the second is geographically highly concentrated as it concerns 
the access to financial resources backed by specialized knowledge. For instance, while the software that 
is behind an internet platform can in principle be written and sold anywhere in the world, it is most likely 
to lead to an IT startup in Bengaluru. Similarly, Paul Krugman writes that since: “the 1980s America has 
experienced growing regional divergence. We have become a knowledge economy driven by industries 
that rely on a highly educated work force, and firms in those industries, it turns out, want to be located in 
places where there are a lot of highly educated workers already – places like the Bay Area.” (New York 
Times, 27-Aug-2021)
9 For seminal contributions, see e.g., Rosenstein-Rodan (1943) and Hirschman (1958).
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affects the dispersion of the residents’ utility but not necessarily the mean, in line 
with the empirical observations in Eeckhout et al. (2014) and Gaubert (2018).11

Further analysis shows that the distribution of agents that maximizes utilitarian 
welfare is necessarily an equilibrium, and this equilibrium must be cost-efficient in 
the sense that it minimizes the aggregate crowding cost for given profits of each 
agent. This insight delivers a one-to-one mapping between the levels of urbanization 
(i.e., the fraction of agents living in cities instead of villages) and the set of cost-
efficient equilibria. A crucial feature of cost-efficient equilibria is the presence of 
an infinite number of arbitrarily small cities and a limited number of bigger cities of 
heterogeneous size, where the number of cities whose size falls within the interval 
[s, s + k] naturally decreases in s for any k (ignoring any intervals entirely devoid of 
cities). We feel this delivers a fairly realistic and tractable framework roughly in line 
with the empirical evidence on the frequency of city sizes in relation to Gibrat’s and 
Zipf’s laws.12

Focusing on cost-efficient equilibria, we then engage in comparative statics that 
are relevant for urban development in the short to long run. We consider population 
replications that increase the mass of agents, and shifts in the distribution of ambi-
tion that lead to first-order stochastic dominance and mean-preserving spreads. In 
the short run,13 we determine that increases in the mass of agents systematically 
reduce urban primacy (i.e., the share of the urban population living in the largest 
city), upward shifts in the distribution of ambition have the opposite effect, while 
higher inequality in the distribution of ambition always leads to higher (lower) urban 
primacy if the level of urbanization is sufficiently high (low). By contrast, we find 
that the long run effects depend on specific assumptions and no general pattern can 
be discerned, with one crucial exception: we fully characterize how a change in the 
level of urbanization should affect urban primacy. Under fairly general conditions, 
this delivers a U-shaped relation between urban primacy and the level of urbaniza-
tion across cost-efficient equilibria for any given distribution of ambition. We view 
this U-shaped relation to be the principal testable prediction of our paper, and using 
openly accessible World Bank data across all countries of the world from 1960 to 
2016, we provide preliminary evidence in support of this hypothesis.

The paper develops as follows. Section 2 defines the basic model. The core equi-
librium and welfare analyses are in Sect. 3, the comparative statics in Sect. 4, and the 
empirics in Sect. 5. Section 6 concludes. All proofs can be found in the Appendix.

11 For a comparison with Eeckhout et al. (2014), the relevant variable in our model is utility (to match 
wages adjusted by housing prices), while for a comparison with Gaubert (2018) it is realized profits (to 
match firms’ revenues).
12 By Gibrat’s law the growth rate of a city is independent of its size and by Zipf’s law the size of a 
city is inversely proportional to its rank, which is consistent with the independence condition on growth 
(see, e.g., Gabaix 1999; Eeckhout, 2004). Such inverse proportionality can be obtained within our model 
under suitable restrictions, and it is consistent with the general property that the frequency of city sizes 
within the interval [s, s + k] decreases in s for any k.
13 To distinguish between short run and long run effects, we assume that the level of urbanization is 
fixed in the short run while, in the long run, it may or may not adjust to a different level depending on 
welfare-efficiency and coordination.
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2  Model

2.1  Urban distributions

We consider a continuum of agents of mass a > 0 , denoted by the set A ⊂ ℝ . These 
agents are distributed on a territory constituted by an arbitrarily large set of loca-
tions. Assuming all locations are identical and abstracting from spatial distances, 
we define an urban distribution as a partition of A into a collection of sets of zero 
mass (villages) and positive mass (cities). We denote by D the set of all urban dis-
tributions of agents (i.e., the set of all possible partitions of A). Note that, solely by 
our definition of city as a set of agents of positive mass, any urban distribution has 
countably many cities; these cities can be ranked in terms of the mass of agents they 
contain, and there can be multiple cities with equal mass of agents.

Let D ∈ D be any urban distribution. For each possible rank k ∈ ℕ of a city in 
terms of mass of agents, we denote by nD

k
∈ ℕ ∪ {0} the number of cities ranked k 

and by mD
k
∈ ℝ+ the mass of agents contained in each of them. If the number of cit-

ies in the urban distribution D is finite we write mD
k
= nD

k
= 0 for all ranks k larger 

than the rank of the city with the smallest mass of agents. Then, the structure of D is 
summarized by the sequence S(D) ∶=

(

mD
k
, nD

k

)∞

k=1
.14

We define the level of urbanization of D ∈ D as the fraction of agents who are 
urban,

We think of the degree of urban concentration as a measure of the inequality of the 
distribution of the mass of the urban agents across cities. By the principle of trans-
fers (i.e., the defining property of an inequality measure) urban concentration should 
not increase whenever a positive mass of agents is relocated from a larger city to 
a smaller city (or to a village that becomes a city), as long as this transfer is small 
enough so that the receiving city or village does not become larger than the provid-
ing city. It seems also desirable that a measure of urban concentration is scale invari-
ant, in the sense that it remains constant whenever the mass of agents in each city 
is multiplied by the same positive factor (so that the proportions of mass of agents 
across cities are maintained). A measure of urban concentration that satisfies these 
properties is the generalized Herfindahl-Hirschman Index,

U(D) ∶=
1

a

∞
∑

k=1

nD
k
mD

k
.

K(D) ∶=

∞
∑

k=1

nD
k
�

(

mD
k
∕

∞
∑

k=1

nD
k
mD

k

)

,

14 For example, if D has nD
1
= 2 cities with mass of agents mD

1
= .3 and nD

2
= 1 city with mass of agents 

mD
2
= .2 we write S(D) = (.3, 2;.2, 1;0, 0;…).
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where the function � ∶ ℝ+ → ℝ+ satisfies �(0) = 0 and it is differentiable, increas-
ing and strictly convex. Finally, we define the level of urban primacy as the fraction 
of urban population that inhabits one of the largest cities,

Urban primacy is a crude but popular measure of urban concentration that is sensi-
tive only to transfers of urban agents that involve the largest cities. As we will see, 
these three measures of urban development are intimately related to the workings 
and predictions of our model. Specifically, the measure of urban concentration K(D) 
will be crucial for the interpretation of the cost-efficient equilibria our analysis will 
focus on, while the level of urbanization U(D) and the level of urban primacy P(D) 
will be the core ingredients of our U-shaped prediction.

2.2  Preferences

We think of the agents in our model as entrepreneurs, each endowed with a differ-
ent idea or business plan. These business ideas are heterogeneous in their degree 
of ambition which affects both profits and implementability. More ambitious plans 
potentially lead to higher profits but require a higher critical mass of initial stake-
holders (investors, customers, etc.) to become operative. We assume that, due to 
various frictions related to distance, these initial stakeholders are necessarily local 
and that larger cities can provide more (varied) resources. For each agent i ∈ A , we 
denote by the threshold ti ∈ ℝ the minimum city size that allows her business plan 
to realize, so that agent i makes profits if and only if she inhabits a city of mass 
larger than or equal to ti . We refer to ti as the type of agent i ∈ A , which is the critical 
mass required to implement her business plan and indicates her level of ambition.15

Our definition of agents’ preferences is schematic but at the same time relatively 
general. We shall assume that each agent always prefers to make profits to not mak-
ing profits, and because of increasing crowding costs she will prefer to live in the 
smallest available city that allows her to make profits. If she is unable to make prof-
its in any available city, she will prefer to live in a village. These statements fully 
characterize the preferences that we will use in our general analysis, which are lexi-
cographic with ‘making profits’ as the primary criterion and ‘minimizing the crowd-
ing cost’ as the secondary one.16 The basic idea is that, while an agent’s profits may 
increase steeply in her degree of ambition, they should be relatively independent of 

P(D) ∶= mD
1
∕

∞
∑

k=1

nD
k
mD

k
.

15 Here, we implicitly assume that each entrepreneur is associated with a single skill which may or may 
not realize into a business plan. The desirable generalization to the case of entrepreneurs endowed with 
multiple skills is considerably more complex and left to future research, requiring the present analysis as 
a prerequisite step.
16 Formally, agent i ∈ A prefers a city (or village) of mass m to a city (or village) of mass m′ if and 
only if one of the following conditions holds: (i) profits with m and no profits with m′ ( m ≥ ti > m′ ); 
(ii) profits with none of them and m smaller ( ti > m′ > m ); (iii) profits with both of them and m smaller 
( m′ > m ≥ ti).



898 A. Vesperoni, P. Schweinzer 

1 3

the mass of the city she inhabits (once her business plan is operative) which seems 
to be a plausible simplification if a business operates on a national or global scale.

We now define the central element of our model, the distribution of types. For 
each possible city mass m ∈ [0, a] , we denote by F(m) the total mass of agents whose 
types are lower than or equal to m, so that they all can make profits in any city of 
size m or larger. This cumulative mass function F ∶ [0, a] → [0, a] is non-decreasing 
by construction and we shall assume it is increasing and twice differentiable on the 
pre-image of [0, a), so that there is a density function f (m) ∶= dF(m)∕dm that is 
positive and differentiable on such a domain. Denoting by mF the smallest m ∈ [0, a] 
such that F(m) = a , we can then write f (m) > 0 if m < mF and f (m) = 0 if m ≥ mF.

Our examples of distributions of types will primarily focus on the case of a = 1 , 
making use of well-known distributions from probability theory. A convenient 
example distribution is the Beta density

whose cumulative mass function satisfies F(0) = 0 and F(1) = 1 for all parameter 
configurations 𝛼, 𝛽 > 0 . Another convenient distribution is based on the Gumbel 
density

which substantially differs from the Beta as F(0) > 0 and F(1) < 1 for all parameter 
configurations � ∈ ℝ , � ∈ ℝ++ . Note that by F(0) > 0 there is a positive mass of 
types (non-positive) that can make profits even in villages, while by F(1) < 1 there 
is a positive mass of types (larger than a = 1 ) that cannot make profits in any contin-
gency. With the aforementioned Beta distribution, instead, by F(0) = 0 and F(1) = 1 
such cases have zero mass.

2.3  Welfare

We now present the various welfare criteria that we will employ in our analysis. 
Let D,D� ∈ D be any pair of urban distributions. We say that D Pareto dominates 
D′ if a positive mass of agents prefers D to D′ while no positive mass of agents 
prefers D′ to D. While Pareto dominance leads to unquestionable welfare rankings, 
it typically leaves many pairs of urban distributions unranked. Hence, to sharpen 
our predictions, we impose some more structure. Let the function � ∶ ℝ → ℝ+ 
define the potential profits of each agent depending on her type, and let the function 
c ∶ ℝ+ → ℝ+ define the crowding cost of each agent depending on the mass of the 
city that she inhabits. We shall assume that these functions are twice differentiable 
and c satisfies c(0) = 0 , is increasing and weakly convex, and that 𝜋(x) > c(x) for all 

f (m) =
m�−1(1 − m)�−1

∫
1

0
x�−1(1 − x)�−1dx

,

f (m) =
1

�
e−(x−�)∕�−e

−(x−�)∕�

,
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x ∈ [0, a].17 We can now represent the preferences of each agent i ∈ A by the utility 
function

in which mD
r(i)

 denotes the mass of the city inhabited by agent i in the urban distribu-
tion D ∈ D and I(ti ≤ mD

r(i)
) is an indicator function that takes value 1 if ti ≤ mD

r(i)
 and 

0 otherwise.18 Fig. 1 is an illustration of these ideas.
We say that an urban distribution D ∈ D is cost-efficient if, for a given level of 

urbanization, it is not possible to decrease the aggregate crowding costs

without decreasing the profits of some agent. Note that the constrained minimization 
of C(D) is equivalent to the minimization of urban concentration in the form of the 
generalized Herfindahl-Hirschman Index K(D) , as urbanization is held constant in 
such minimization. Finally, we say that an urban distribution is welfare-efficient if 
it maximizes utilitarian welfare, which, for each D ∈ D , is defined by the average 
utility

Note that cost-efficiency is a necessary condition for welfare-efficiency.

3  Equilibrium and welfare analysis

In this section we develop the core theoretical results, characterizing the subset of 
urban distributions to be used in the comparative statics analysis. Specifically, we 
start by characterizing the set of equilibria and then proceed by pinning down the 

u(ti,m
D
r(i)
) = �(ti)I(ti ≤ mD

r(i)
) − c(mD

r(i)
),

C(D) ∶=

∞
∑

k=1

nD
k
mD

k
c(mD

k
)

W(D) ∶=
1

a �i∈A

u(ti,m
D
r(i)
)di

=
1

a �i∈A

�(ti)I(ti ≤ mD
r(i)
)di −

1

a
C(D).

17 Let us remark on two points regarding � and c. First, while it seems reasonable that � is non-decreas-
ing and we encourage the reader to follow this interpretation (as more ambitious plans are typically more 
profitable), we do not need this assumption for our core results to hold. Second, the assumption that 
profits strictly dominate costs is made only for convenience, in order to rule out situations in which some 
equilibria are infeasible for exogenous reasons. Our core results would carry over, for instance, to the 
case of � non-decreasing and weakly concave, as by the weak convexity of c there would be x∗ such that 
the condition 𝜋(x) > c(x) is satisfied for x < x∗ and violated for x ≥ x∗.
18 The lexicographic preferences of each agent admit a utility representation because of the restrictions 
on the domain. This specific formulation of utility is chosen for tractability. In principle, the lexico-
graphic preferences of each agent are compatible with a utility function where � depends on mD

r(i)
 as long 

as the derivative ��∕�mD
r(i)

 is sufficiently small.
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subset of equilibria that are cost-efficient, arguing that the welfare-efficient urban 
distribution is one of them.

We say that an urban distribution D ∈ D is an equilibrium if no agent prefers to 
move from her city or village to another existing city or village. The basic idea is 
that individuals are free to move from one location to another but—being of sub-
atomic size—take the existence and size of cities as given.

We say that an urban distribution D ∈ D is assortative if each of the following 
conditions holds: (i) for each rank k ∈ ℕ , the type of an agent inhabiting a city of 
mass mD

k
 takes a value in 

(

mD
k+1

,mD
k

]

 ; (ii) the type of an agent inhabiting a village 
takes a value in (−∞, 0] or 

(

mD
1
,+∞

)

 . So, by assortativeness agents are segregated 
into cities according to their types, guaranteeing that each agent inhabits the small-
est city where she can make profits while villages are inhabited by a mix of highly 
ambitious and highly unambitious agents.

We say that an urban distribution D ∈ D has nested structure if 
F(mD

k+1
) = F(mD

k
) − nD

k
mD

k
 for each rank k ∈ ℕ , which is a recurrence relation that 

determines the series of masses of cities 
(

mD
k

)∞

k=1
 given the largest city mass mD

1
 and 

the series of numbers of cities 
(

nD
k

)∞

k=1
 . Intuitively, this nestedness condition is inti-

mately related to assortativeness.

Proposition 1 1. An urban distribution is an equilibrium if and only if it is assorta-
tive. 2. Each equilibrium has nested structure.

Note that, as all equilibria have nested structure, we can represent the structure of 
each equilibrium graphically using the recurrence relation of nestedness. In Figs. 2 
and 3, we consider two examples of distributions of types and the graphical repre-
sentations of the corresponding equilibria. Each of them is useful to identify critical 
points to be addressed in the subsequent analysis.

Figure 2 illustrates the structures of six equilibria for the Beta distribution with 
parameters (�, �) = (2, 5) . Together with the equilibrium with no cities, the figure 
fully characterizes the set of all seven equilibria in this example. All shown six equi-
libria Pareto dominate the equilibrium with no cities as they introduce new cities all 
else equal, and many other pairs of equilibria can be Pareto ranked (although not all 
of them).19

In the example of Fig. 2, Pareto rankings are evident because the equilibria have a 
very limited number of cities (at most three). In reality, we typically observe a much 
higher number of cities on the territory of a country and, given that we have a con-
tinuum of agents in our model (a convenient approximation of a large finite popula-
tion), it may seem natural to expect infinitely many cities in equilibrium. This can be 

19 Specifically, each equilibrium in the bottom panels Pareto dominates the equilibrium in the top left 
panel, and the equilibrium in the top central panel Pareto dominates the equilibrium in the top left panel 
while it is Pareto dominated by the equilibria in the bottom central and bottom right panels. However, 
there is no Pareto dominance relation between the equilibrium in the top right panel and the equilibria in 
the other five panels.
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achieved with suitable restrictions on the distribution of types that are introduced in 
the next example.

Figure 3 illustrates the structures of three equilibria for the Gumbel distribution 
with parameters (�, �) = (0, .05) . As F(0) = e−1 ≈ .37 , there is a positive mass of 
agents that can make profits in villages, and the nested structure of each equilib-
rium must be identified using the shifted cumulative mass function F(m) − F(0) , 
represented by the dotted line. The maximum level of urbanization that can be 
achieved in equilibrium corresponds to the case of a single city of mass m∗ ≈ .63 
in the left panel, where m∗ is determined by the equation F(m∗) − F(0) = m∗ . There 
are uncountably many other equilibria, at least one for each size of the largest city 
m ∈ (0,m∗] , each presenting infinitely many cities and an urbanization level equal 
to (F(m) − F(0))∕a . For instance, the central panel depicts an equilibrium with an 
infinite number of cities, each of different size, where the largest size is .2, while 
the right panel depicts another equilibrium with an infinite number of cities, each 
of different size except for the two largest ones, each of size .2. Note that there is no 
Pareto dominance across these three equilibria, although we may expect the equilib-
rium in the central panel to lead to higher welfare than the one in the right panel as it 
presents equal urbanization levels (which implies equal profits for all agents) while 
having much lower urban concentration (which implies lower aggregate crowding 
cost, by the weak convexity of c). These insights on efficiency and welfare will be 
formalized shortly, in Proposition 2. Before doing so, we briefly discuss desirable 
restrictions on the distribution of types.

As suggested by the example in Fig. 3, one can show that, in our model, there 
exists an equilibrium with infinite number of cities if and only if f (0) > 1 . Note that 
this implies the existence of 𝜖 > 0 such that m < F(m) − F(0) for each m ∈ (0, �] , 
that is, there is an excess of agents which can make profits in a city of size smaller 
than or equal to � and cannot make profits in a village. In this spirit, we now consider 
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Fig. 1  The solid lines in the left, central and right panels, respectively, represent the potential profits 
�(t) = .2 + .8

√

t of an agent of type t ∈ [0, 1] , the actual profits �(t)I(t ≤ m) of an agent of type t = .25 
in a city of size m ∈ [0, 1] , and the crowding cost c(m) = .9m2 of an agent in a city of size m ∈ [0, 1] . 
Note that these specifications of potential profits, actual profits and crowding cost are consistent with our 
restrictions on preferences given a = 1
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a stronger condition on the distribution of types that allows to focus on equilibria 
with infinite number of cities for a broad set of urbanization levels.20 We say that a 
distribution of types is non-constraining if m < F(m) − F(0) for each m ∈ (0,mF) , 
which means that for each m in the pre-image of (0, a) there is an excess of agents 
which can make profits in a city of size m and cannot make profits in a village. 
This greatly simplifies the analysis, leading to the general properties of equilibria 
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Fig. 2  Given a = 1 , F(m) corresponds to the cumulative mass function of the Beta distribution with 
parameters (�, �) = (2, 5) . Each panel depicts the nested structure of a different equilibrium, where the 
solid lines indicate the sizes of the various cities
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Fig. 3  Given a = 1 , F(m) corresponds to the cumulative mass function of the Gumbel distribution 
with parameters (�, �) = (0, .05) , represented by the solid curve, while the dotted curve represents 
F(m) − F(0) . Each panel depicts the nested structure of a different equilibrium, where the vertical lines 
indicate the sizes of the various cities

20 The following restriction is purely for expositional convenience. It is straightforward to show that all 
our core results extend under the weaker assumption f (0) > 1.
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discussed in and after Remark 1. Before we turn to this discussion, however, we 
state a brief observation on the stability of the equilibria our analysis concentrates 
on.

We motivate our focus on non-constraining distributions by the argument that, 
within our framework, they guarantee the existence of equilibria with the “realis-
tic” feature of representing a high number of cities. Another way to motivate this 
focus is by the stability of the implied equilibria. The argument is that, if a distribu-
tion systematically leads to unstable outcomes, there will be forces—by evolution 
or design—pushing for a change towards stability. We briefly sketch the argument 
here, which is along the lines of Granovetter (1978) in our extended framework with 
crowding costs. For a given equilibrium, consider an exogenous marginal decrease 
in the size of a city. If, on the one hand, the distribution is non-constraining, such a 
marginal decrease does not affect the size of other cities of different size, as agents 
have no incentive to migrate to or from these cities. Conversely, it affects the size 
of other cities of equal size only minimally, as agents of these cities will margin-
ally migrate to the perturbed city so that their sizes re-balance. In this sense, the 
equilibrium may thus be considered stable. If, on the other hand, the distribution is 
constraining, in a typical equilibrium there must be a city whose size is determined 
by F crossing the 45 degree line from below (for an example, see Fig. 2 where this is 
the case for all equilibria except the one with no cities and the one with a single city 
containing the whole population). One can show that a marginal decrease in the size 
of such a city then leads to a chain reaction so that all residents leave the perturbed 
city for the villages. As this drastically alters the structure of the equilibrium, such a 
situation may thus be considered unstable.

Remark 1 Given that the distribution of types is non-constraining: 

1. For each m ∈ (0, a − F(0)) , there exists an equilibrium with size of the larg-
est city equal to m, infinite number of cities, and level of urbanization equal to 
(F(m) − F(0))∕a if m ≤ mF and equal to (a − F(0))∕a if m > mF.

2. There exist multiple equilibria exhibiting up to n ∈ ℕ cities of same size 
m ∈ (0, a − F(0)) if and only if nm ≤ F(m) − F(0).

Recall that, in the example of Fig. 2, certain equilibria Pareto dominate oth-
ers because they create new cities all else equal. Conversely, while there is no 
Pareto dominance across the equilibria of Fig. 3, we may expect the equilibrium 
in the right panel to lead to higher welfare than the one in the central panel as it 
presents equal urbanization levels while having much lower urban concentration. 
These two intuitions are at the core of our welfare analysis.

We say that an urban distribution D ∈ D has substantial structure if 
mD

1
≥ m

F
∶= F−1

(

maxm∈[0,mF]
[F(m) − m]

)

 , a condition which rules out particularly 
low levels of urbanization (e.g., no cities) because they are Pareto dominated.

We say that an urban distribution D ∈ D has hierarchical structure if nD
k
= 1 for 

each rank k ∈ ℕ with mD
k
> 0 , which means that there are no multiple cities of same 

size so that the aggregate crowding cost is minimized for a given urbanization level.
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Proposition 2 Given that the distribution of types is non-constraining: 

1. An equilibrium is cost-efficient if and only if it has hierarchical structure and the 
size of the largest city is lower than or equal to mF.

2. An urban distribution is welfare-efficient only if it is an equilibrium (up to misal-
location of zero mass of agents) that is cost-efficient and has substantial structure.

Proposition 2 formalizes aforementioned intuitions on the optimality of substan-
tial and hierarchical structures. Firstly, it states that cost-efficiency implies hierarchi-
cal structure, meaning that the urban distribution cannot present cities of equal size. 
The intuition is that, by the weak convexity of the cost function c and for a given 
mass of urbanized U > 0 , the crowding cost

is effectively a measure of urban concentration belonging the family of generalized 
Herfindahl-Hirschman indices,

with �(m∕U) = mc(m) . The crowding cost then naturally decreases when a larger 
city is dismantled (or reduced in size) by redistributing its population to smaller cit-
ies. This is exactly what happens in our model when transitioning from a non-hier-
archical to a hierarchical equilibrium, implying a lower crowding cost. Secondly, 
Proposition 2 provides novel insights on the connection between the upper bound 
mF and the cost-efficient size of the largest city as well as the relation between wel-
fare-efficiency and equilibrium (where the former implies the latter). The reason for 
the upper bound mF is best understood via the example in Fig. 4, which shows that 
increasing the size of the largest city above mF leaves urbanization (and the profits of 
each agent) unchanged while it increases urban concentration (therefore increasing 
the aggregate crowding cost). Finally, regarding the stated relation between welfare-
efficiency and equilibrium in Proposition 2, the former implies the latter because 
there is an excess of agents in the population that can make profits in a city of any 
size, the distribution of types being non-constraining.21 This implies that agents can 
always be rearranged so that there is no need to keep anyone in a city unwillingly, 
that is, it is efficient to keep an individual in a city only if such individual actually 
wants to be there. Hence, in our model the only source of inefficiency is miscoor-
dination on the wrong equilibrium, as the efficient structure is an equilibrium itself 
and thus self-sustaining.

C(D) =

∞
∑

k=1

nD
k
mD

k
c(mD

k
)

K(D) =

∞
∑

k=1

nD
k
�

(

mD
k
∕

∞
∑

k=1

nD
k
mD

k

)

,

21 We wish to remark how these considerations rely on the distribution of types being non-constraining, 
as if it was not, there would not be such excess of agents and the whole argument would collapse, in the 
sense that it may be efficient to keep certain agents in a city against their will.
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Proposition 2 greatly simplifies the maximization of utilitarian welfare. Suppose 
that the distribution of types is non-constraining. By Proposition 2, a cost-efficient 
equilibrium is fully characterized by the mass of the largest city, and a welfare-effi-
cient urban distribution must be a cost-efficient equilibrium that is substantial. Then, 
denoting by D∗(�1) ∈ D the cost-efficient equilibrium with mass of the largest city 
equal to �1 ∈ [m

F
,mF] , the maximization of utilitarian welfare can be simply stated 

as

It is noteworthy that, on the considered domain, choosing the size of the larg-
est city �1 is equivalent to choosing the corresponding level of urbanization 
U(D∗(�1)) = (F(�1) − F(0))∕a , which by our previous considerations must take a 
value in

Going back to our examples, one can show that each of the equilibria with hierar-
chical and substantial structure depicted in the left and central panels of Fig. 3 is 
welfare-efficient for some combination of cost and profit functions. This is because 
the corresponding distribution of types is non-constraining. Conversely, if the distri-
bution of types is constraining such as the one in Fig. 2, it is possible that no equilib-
rium is welfare-efficient for a given combination of cost and profit functions.

4  Comparative statics of urban development

In this section we focus on welfare-efficient solutions and study how they should 
change with shocks to the fundamentals. Assuming F to be non-constraining, we 
exclusively consider cost-efficient equilibria, as the welfare-efficient urban distribu-
tion is one of them. Specifically, the two variables of interest are the level of urbani-
zation and the level of urban primacy of cost-efficient equilibria, which can be writ-
ten as

for each size of the largest city �1 ∈ [0,mF] . Note that U(D∗(�1)) and P(D∗(�1)) 
can be easily visualized graphically as the height of the function F evaluated at �1 
(shifted by F(0) and divided by a) and the fraction of this height that lies below the 
45◦ line, respectively.

In what follows, we divide our comparative static analysis in short run and long 
run considerations. The short run is defined by a fixed level of urbanization, and we 
assume that any shock summarized by a change in the distribution of types from 
F′ to F maps each cost-efficient equilibrium given the old distribution F′ into the 

max
�1∈[mF

,mF]
W(D∗(�1)) =

1

a �

�1

0

�(t)dF(t) −
1

a

∞
∑

k=1

�kc(�k)

s.t. �k = F−1
(

F(�k−1) − �k−1

)

for each k ≥ 2.

[(

F(m
F
) − F(0)

)

∕a, (a − F(0))∕a
]

.

U(D∗(�1)) =
(

F(�1) − F(0)
)

∕a and P(D∗(�1)) = �1∕
(

F(�1) − F(0)
)
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unique cost-efficient equilibrium with same urbanization level given the new distri-
bution F. Within this framework, our short run analysis determines whether urban 
primacy should increase or decrease, depending on the specific shock. In the long 
run, we assume that urbanization can adjust to the welfare-efficient level (provided 
that coordination is achieved). While the analysis of the long run consequences of 
shocks to F does not lead to sharp predictions, we can fully determine the relation 
between the level of urbanization and the level of urban primacy across cost-efficient 
equilibria for any given distribution of types F. Intuitively, this relation is suggestive 
of the long run trends in the levels of urbanization and urban primacy of the welfare-
efficient solution driven by shifts in the functions � and c, and more generally, of the 
relation between the levels of urbanization and urban primacy across different levels 
of development akin to the solution of coordination problems.

4.1  Short run considerations

In our short run analysis, we consider three shocks to the fundamentals that change 
the qualitative properties of the distribution of types.

We say that the distribution of types F is a population replication of the distribu-
tion of types F′ corresponding to a mass of agents equal to a if there is k > 1 such 
that F(t) = kF�(t) for all t ∈ [0, a] . Then, a population replication rescales the mass 
of agents by a factor of k while leaving the distribution of types unchanged (in rela-
tive terms).

We say that the distribution of types F is more ambitious than (first-order sto-
chastically dominates) the distribution of types F′ on [0, a] if each of the follow-
ing conditions holds: (i) F(t) = F�(t) if t ∈ {0, a} ; (ii) F(t) < F�(t) if t ∈ (0, a) . This 
means that high types are relatively more abundant in F than in F′ (while low types 
are relatively scarcer).

We finally consider a mean-preserving spread that transfers mass from the center 
of a distribution to the sides, leaving the mean unchanged. Formally, we say that the 
distribution of types F is an expansion of the distribution of types F′ on [0, a] if each 
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Fig. 4  Given a = 1 , F(m) = .2 +
√

m corresponds to the cumulative mass function of the shifted Beta 
distribution with parameters (�, �) = (0, .5) , represented by the solid curve, while the dotted curve rep-
resents F(m) − F(0) where mF = .64 . Each panel depicts the nested structure of a different equilibrium, 
where the vertical lines indicate the sizes of the various cities
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of the following conditions holds: (i) F(t) = F�(t) if and only if t ∈
{

0, ∫
a

0
rdF(r), a

}

 ; 
(ii) ∫ t

0
F�(r)dr > ∫

t

0
F(r)dr for all t ∈ (0, a) ; (iii) ∫ a

0
rdF(r) = ∫

a

0
rdF�(r).

Proposition 3 Restricting attention to non-constraining distributions of types: 

1. If the distribution of types F is a population replication of F′ , urban primacy is 
lower in the cost-efficient equilibrium with F than in the cost-efficient equilibrium 
with F′ for any given level of urbanization.

2. If the distribution of types F is more ambitious than F′ on [0, a], urban primacy is 
higher in the cost-efficient equilibrium with F than in the cost-efficient equilibrium 
with F′ for any given level of urbanization.

3. If the distribution of types F is an expansion of F′ on [0,  a], there is 
�∗ ∈ (0, (a − F(0))∕a) such that urban primacy is higher (lower) in the cost-
efficient equilibrium with F than in the cost-efficient equilibrium with F′ for any 
given level of urbanization that is higher (lower) than �∗.

Figure 5 is an illustration of the results summarized by Proposition 3. The left 
panel considers a population replication that doubles the population and compares 
the old cost-efficient equilibrium with the new cost-efficient equilibrium with equal 
level of urbanization. As shown by the dotted lines, the size of the largest city is left 
unchanged, which implies that the level of urban primacy decreases with the popula-
tion replication (it becomes half). This illustrates Point 1 above.

The central panel of Fig. 5 considers a shift in the distribution of types that leads 
the new distribution to first-order stochastically dominate the old. As shown by the 
dotted lines, for a fixed level of urbanization, the size of the biggest city is larger in 
the cost-efficient equilibrium of the new distribution, which implies that urban pri-
macy is higher as predicted by Point 2 above.

Finally, the right panel of Fig. 5 considers a shift in the distribution of types that 
leads the new distribution to be an expansion of the old. As shown by the dotted 
lines, for a fixed level of urbanization, the size of the largest city is smaller in the 
cost-efficient equilibrium of the new distribution than in the corresponding equilib-
rium of the old. Moreover, this remains true for any old size of the largest city below 
.5 (the old size is .4 in the example), while the opposite would be true if the old size 
of the largest city was above .5. As the level of urbanization is proportional to the 
size of the largest city (see Point 1 of Remark 1), this illustrates Point 3 above.

4.2  Long run considerations

We now consider long run trends in urban development, when the level of urbaniza-
tion can adjust to the welfare-efficient level (provided that coordination is achieved). 
In principle, one can always identify the optimal level of urbanization by solving 
the constrained maximization problem stated at the end of Sect.  3. However, our 
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attempts suggest that results crucially depend on specific assumptions on the func-
tions F, � and c, and no general pattern emerges.22

While we cannot generally predict whether urbanization increases or decreases in 
the long run as a consequence of shocks to F, we can determine how a change in the 
urbanization level should affect urban primacy across cost-efficient equilibria for a 
given F. Intuitively, by the constrained maximization problem at the end of Sect. 3, 
this analysis is suggestive of the long run trends in the levels of urbanization and 
urban primacy of the welfare-efficient solution due to rescaling of the functions � 
and c. More generally, it can indicate the relation between the levels of urbanization 
and urban primacy across different levels of development. In this context, we can 
think of developmental increments as the solution to coordination problems limiting 
the agglomeration of agents into cities. Recall that, in our model, the expectation of 
many agents inhabiting a city constitutes the very incentive for such agents to actu-
ally go and settle there.

Proposition 4 Let F be non-constraining. For each �1 ∈ [0,mF) , the relation 
between urban primacy and the level of urbanization of the cost-efficient equilib-
rium D∗(�1) is such that a marginal increase in the urbanization level leads to an 
increase (decrease) in urban primacy if

To appreciate Proposition 4, it is fundamental to give meaning to the two vari-
ables f (�1) and 

(

F(�1) − F(0)
)

∕�1 which govern the long run relation between the 
level of urbanization and urban primacy across cost-efficient equilibria. On the one 
hand, f (�1) is the marginal density of the urbanized types in the cost-efficient equi-
librium D∗(�1) , which indicates the total mass of agents that would become urban-
ized if the level of urbanization was to be marginally increased. On the other hand, 
(

F(�1) − F(0)
)

∕�1 is the average density of the urbanized types in such an equilib-
rium, which indicates the relative abundance of agents that can make profits in the 
largest city. We are now ready to grasp the intuition of Proposition 4. Note that, by 
the nature of cost-efficient equilibria, an increase in urbanization must go hand in 
hand with a proportional increase in the size of the largest city. All newly urbanized 
agents must be residents of the largest city, but these may or may not be enough to 
match the new size of the largest city, and consequent migration in or out of the 
largest city may be triggered. Note that such migration must necessarily be from 
or to the smaller cities, not the villages, therefore involving the urban population 
only. Thus, by changing the fraction of urban population that resides in the largest 
city, these population movements directly affect urban primacy. Specifically, when 
f (𝜇1) <

(

F(𝜇1) − F(0)
)

∕𝜇1 , the mass of newly urbanized joining the largest city is 
relatively small, and a marginal increase in urbanization should lead to migration of 
agents from the smaller cities to the largest to fill in the vacant slots, thus increasing 

(1)f (𝜇1) < (>)
(

F(𝜇1) − F(0)
)

∕𝜇1.

22 The only regularity is perhaps the positive (negative) effect on the optimal urbanization level of the 
scaling up by positive multiplication of function � (function c).
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urban primacy. Conversely, when f (𝜇1) >
(

F(𝜇1) − F(0)
)

∕𝜇1 , the mass of newly 
urbanized joining the largest city is relatively large and the migration must go in the 
opposite direction, thus decreasing urban primacy.23

We now argue that, under fairly general conditions, the mechanism identified in 
Proposition 4 predicts a U-shaped relation between urban primacy and the level of 
urbanization in a cost-efficient equilibrium. While Proposition 5 identifies a suffi-
cient condition to state this formally, Fig. 6 illustrates this in an example.

We say that a distribution of types F has a density f that is single-peaked on 
(0,mF) if there is m∗ ∈ (0,mF) such that df (m)∕dm > (<)0 if m < (>)m∗ for all 
m ∈ (0,mF).

Proposition 5 Let F be non-constraining and satisfying f (�1) =
(

F(�1) − F(0)
)

∕�1 
for some �1 ∈ (0,mF).24 If the density f is single-peaked on (0,mF) , the relation 
between urban primacy and the level of urbanization of cost-efficient equilibria is 
U-shaped.

The crucial assumption behind Proposition 5 is to have a density f that is single-
peaked on (0,mF) , which we now argue to be a plausible property of a distribution 
of types. Consider an extension of our model where F is endogenously determined 
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Fig. 5  In the left panel the solid curve corresponds to the case a = 1 , depicting the cumulative mass 
function of the Beta distribution with parameters (�, �) = (0, .5) , while the dotted curve depicts a pop-
ulation replication that doubles the mass of agents. The central panel focuses on a = 1 , depicting the 
cumulative mass functions of the Beta distributions with parameters (�, �) = (0, .5) (solid line) and 
(�, �) = (0, .7) (dotted line), where the second distribution first-order stochastically dominates the first. 
The right panel also focuses on a = 1 , depicting the cumulative mass functions of the shifted Beta dis-
tributions F�(m) = m + m2(1 − m) (solid line) and F(m) = m + m(1 − m)2 (dotted line), where F is an 
expansion of F′ . Each panel depicts the nested structures of two different equilibria, where the vertical 
solid (dotted) lines indicate the sizes of the various cities that correspond to the equilibrium with the 
solid (dotted) cumulative mass function

23 This directly links to condition (1). This condition can be understood graphically as the marginal den-
sity f (�1) being the slope of the function F(�1) − F(0) evaluated at the point (�1,F(�1) − F(0)) , while 
the average density 

(

F(�1) − F(0)
)

∕�1 being the slope of the line passing through the origin and the 
same point. Urban primacy �1∕

(

F(�1) − F(0)
)

 can be understood as the reciprocal of this latter slope. In 
this setting, the relative magnitude of these slopes determines whether urban primacy should increase or 
decrease with the level of urbanization at a specific point.
24 Alternatively, instead of this last condition, it is sufficient to assume f (a) = 0.
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in a pregame interaction in which individuals choose their types by maximizing 
expected utility under strategic uncertainty on the formation of the urban distribu-
tion. Although this extension is far from obvious,25 we can immediately see that 
certain predictions should hold generally and serve to justify the single-peakedness 
of f. Intuitively, if a distribution of types emerges from the maximization of expected 
utility, business plans of intermediate ambition should be the most common as they 
are close to the optimal compromise in the trade-off between higher profits and 
lower crowding costs. Conversely, highly or minimally ambitious plans should be 
relatively scarce due to excessive crowding costs and the insufficient profits, respec-
tively. So, in this setup, we should expect f to be single-peaked in the interior, and 
the peak of f should coincide with the ex-ante optimal type.

As a final note, we wish to point out that the converse of Proposition 5 can also 
hold under different assumptions. Roughly speaking, if we consider a single-dipped 
density f (i.e., if there is m∗ ∈ (0,mF) such that df (m)∕dm < (>)0 if m < (>)m∗ for 
all m ∈ (0,mF) ), a Kuznets-type inverted U-shaped relation between urban primacy 
and level of urbanization is generated by the same arguments of Proposition 4. 
While in the following section we concentrate on the U-shaped relation using 20th 
and 21st century observations, the opposite could follow from a bi-modal distribu-
tion of ambition ascribed to the lack of access to education of large parts of pre-20th 
century populations. More generally, Kuznets-type cycles of inverted U-shaped and 
then U-shaped relations between urban primacy and level of urbanization can be 
generated as a consequence of the introduction of new technologies and the subse-
quent growth of access to education for the use of such technologies (see Chapter 2 
in Milanovic, 2016 for a related approach).

Fig. 6  Given a = 1 , the dot-
ted, dashed and solid lines 
respectively depict the (non-
constraining) shifted Beta distri-
bution F(m) = m + m2(1 − m) , 
its density function 
f (m) = 1 + 2m(1 − m) − m2 , 
and the level of urban primacy 
corresponding to the cost-
efficient equilibrium with the 
largest city of size �1 = m
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25 A challenge is the formalization of the expectation with respect to the formation of the urban distribu-
tion under strategic uncertainty, which can be conceptualized within the framework of global games (see, 
e.g., Carlsson and Van Damme 1993; Frankel et al. 2003).
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5  An empirical pattern

To test the predicted U-shaped relation empirically, we base the analysis of this sec-
tion on the World Bank’s dataset, topic “Urban Development,” which includes a 
panel reporting the levels of urbanization and urban primacy for each country in the 
world, annually from 1960 to 2016.26 As predicted by Proposition 5, the scatter plot 
in Fig. 7 suggests a U-shaped empirical relation between the level of urbanization 
and urban primacy. While this scatter plot is based on cross-country average data, 
the rest of this section tests this hypothesis further using econometric analysis of a 
panel consisting of all 218 covered countries of the world through the last 60 years.

Our analysis is similar in spirit to the highly influential Imbs and Wacziarg (2003) 
on stages of economic development. They document a remarkably robust U-shaped 
relation between sectoral concentration and GDP per capita. Since industrial sec-
tors typically cluster in specialized cities according to increasing returns from spa-
tial proximity, and since higher levels of GDP per capita typically coincide with 
higher levels of urbanization as joint manifestations of higher levels of economic 
development, we would like to pose our model as a common theoretical founda-
tion for the empirical observations in Imbs and Wacziarg (2003) and ours. With 
some caution, one may also link our prediction to the empirical U-shaped relation 
between the inequality of income (or wealth) and GDP per capita as documented for 
instance by Piketty and Saez (2003) and Saez and Zucman (2016). Intuitively, when 
economic resources concentrate in fewer cities and industries, it may also be that 
income concentrates in the hands of the fewer individuals who dominate these cities 
and industries.

In the following, our empirical strategy consists of a linear regression with the 
level of urban primacy of each country and year as dependent variable and the level 
of urbanization and the level of urbanization squared in the same country and year 
as the two main independent variables. We start by considering basic econometric 
specifications with robust standard errors with fixed effects for year and continent/
country.27 The resulting estimations are in Table 1.

As shown in columns (1) and (2), the specifications which do not include country 
fixed effects yield statistically significant estimations of the two coefficients of inter-
est which are negative for urbanization and positive for urbanization squared, and 
are thus in line with our predictions. Most notably, the specification in column (2) 
with year and continent fixed effects confirms the U-shaped relation. These estima-
tions are robust to marginal changes of the empirical specification such as excluding 
certain countries from the sample, like e.g., the ones in the top-right corner of Fig. 7. 
However, when we introduce country fixed effects the evidence is somewhat weak-
ened as the significance of the estimations depends on the exact empirical specifi-
cation. For instance, the empirical pattern continues to hold as long as we exclude 
from the sample the countries that belong to the continent-label ‘Middle East and 

26 This data is publicly available from https:// data. world bank. org/ topic/ urban- devel opment.
27 The World Bank’s dataset on Urban Development codes countries according to the continent they 
belong to.

https://data.worldbank.org/topic/urban-development
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North Africa’, as shown in column (3), while the empirical pattern is blurred when 
these countries are included. Intuitively, other dynamics than those captured by our 
analysis may be at play in these countries as many of them have been systematically 
plagued by political turmoil, civil war, and international conflict.

One weakness of the above estimations is that, when we consider the relation 
between urban primacy and urbanization within a country and across time, the dis-
tribution of types is generally not constant as assumed in Proposition 5. This moti-
vates our second empirical exercise where we introduce into a standard regression 
with country and year fixed effects control variables roughly corresponding to the 
shocks to the distribution considered in Proposition 3. As within the World Bank’s 
dataset these controls are reported only for a relatively small subset of rich coun-
tries and recent years, we exclusively focus on the corresponding subsamples within 
Europe and Central Asia and the world.28 The resulting estimations are shown in 
Table 2 which considers two alternative sets of three control variables as empirical 
proxies for the three shocks.

In these alternative specifications, ‘population replication’ is either population 
density or total population, ‘more ambition’ is either tertiary education expenditure 
(as % of total government expenditure on education) or tertiary education enrollment 
(as % of the age group that is entitled to enrollment), and ‘expansion’ is income 

Fig. 7  U-shaped cross-country relation between the average level of urbanization and the average urban 
primacy, where these averages are computed within each country across the years 1960–2016. Source: 
Own calculations based on World Bank data

28 Roughly speaking, by introducing these control variables we lose about 90 − 95 % of the observa-
tions almost exclusively focusing on years after 1990 and on a subset of countries within the continents 
‘Europe and Central Asia,’ ‘North America,’ and ‘South Asia.’
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Table 1  Relation between urban 
primacy and urbanization in the 
world sample

Columns (1) to (3), respectively, correspond to the specifications (1) 
without fixed effects, (2) with year fixed effects and continent fixed 
effects, (3) with year fixed effects and country fixed effects excluding 
the 21 countries belonging to the “continent” Middle East and North 
Africa. Standard errors are heteroscedastically robust; ***, **, and 
* indicate statistical significance at the levels of 1%, 5%, and 10%, 
respectively

Urban primacy (1) (2) (3)

Urbanization − .9504*** − .6149*** − .0816**
(.0408) (.0406) (.0384)

Urbanization squared .0096*** .0073*** .0011*** (.0003)
(.0004) (.0003) (.0003)

Observations 8689 8689 7562
R
2 0.1039 0.2127 0.9289

Table 2  Relation between urban primacy and urbanization on restricted samples with additional control 
variables

 Columns (1) and (3) correspond to the subsamples of available observations for Europe and Central 
Asia, while columns (2) and (4) for the world. Regressions include year and country fixed effects; stand-
ard errors are heteroscedastically robust; ***, **, and * indicate statistical significance at the levels of 
1%, 5%, and 10%, respectively

Urban primacy (1) (2) (3) (4)

Urbanization − 1.4579*** − .5322*** − .6450** − .6862***
(.4806) (.1581) (.2771) (.1154)

Urbanization squared .0113*** .0019 .0039* .0028***
(.0034) (.0012) (.0020) (.0010)

Population density − .0562** .0184*** – –
(.0262) (.0057) – –

Tertiary education exp .0545 .0711* – –
(.0438) (.0381) – –

Income ineq. (Gini coeff.) .0136 .0072 – –
(.0352) (.0466) – –

Total population – – 1.71e−07*** 1.71e−08
– – (5.30e−08) (2.06e−08)

Tertiary education enroll – – − .0351** − .0061
– – (.0164) (.0176)

Income ineq. (top 10%) – – − .0164 − .0462
– – (.0628) (.0479)

Observations 219 465 344 709
R
2 .9933 .9768 .9877 .9752
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inequality measured either as Gini coefficient or as income share held by the top 
10%.29 As shown in Table 2, no matter which set of controls we choose or whether 
we focus on ‘Europe and Central Asia’ or the world, our empirical estimations are 
systematically consistent with the U-shaped hypothesis.

To conclude, the econometric exercises in Tables 1 and 2 together with the scat-
ter plot in Fig. 7 are suggestive of an empirical pattern that is consistent with the 
U-shaped hypothesis predicted by Proposition 5. We provide additional evidence 
in the Appendix, in which Fig. 8 demonstrates the robustness of the pattern across 
time (with scatter plots for the time periods 1960–1979, 1980–1999, 2000–2016) 
while Table 3 and Fig. 9 show that the U-shape persists with polynomial specifica-
tions of higher order. Arguably, our handful of plots and regressions are far from a 
comprehensive analysis as many alternative empirical specifications can be chosen 
in terms of, e.g., subsamples and control variables. However, in combination with 
the much more robust evidence in Imbs and Wacziarg (2003) on the U-shaped rela-
tion between sectoral concentration and the level of economic development and the 
related findings in Piketty and Saez (2003) and Saez and Zucman (2016), we believe 
this is sufficient to motivate our model as empirically relevant.

6  Conclusions

We take a novel approach to urban development in the tradition of threshold models 
of social interaction. In our model, the number and the sizes of cities are endog-
enously determined by the incentives of agents to freely move across municipali-
ties, where settlers in larger cities face a trade-off between higher productivity and 
higher crowding costs. In this setup, we characterize the set of equilibria, study their 
welfare properties, and analyze the equilibrium relation between three key measures 
of urban development: urbanization, urban concentration, and urban primacy. One 
appealing feature of our model is that all equilibria are defined by a simple recur-
sive algorithm that can be represented graphically with an intuitive diagram, and 
welfare-efficiency corresponds to an urban distribution with an infinite number of 
cities of heterogeneous size.

Focusing on welfare-efficient solutions (and the weaker concept of cost-effi-
ciency, which does not require the level of urbanization to be welfare-efficient) we 
find that in the short run population replications tend to decrease urban primacy, 
while the short run effects on urban primacy of changes in population characteris-
tics are positive if they come in the form of first-order stochastic dominance, and 
positive/negative depending on the high/low level of urbanization if they come in 
the form of mean-preserving spreads. Although we cannot generally pin down the 
long run effects of these shocks, we can fully determine how changing the level of 
urbanization should affect other variables. Assuming that the distribution of types is 
single-peaked in the interior, our findings suggest a U-shaped relation between the 

29 All these control variables are from World Bank datasets corresponding to the topics Health, Educa-
tion and Poverty, respectively, which are publicly available from https:// data. world bank. org/ indic ator.

https://data.worldbank.org/indicator
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level of urbanization and urban primacy. We find preliminary confirmation of this 
prediction considering a panel of all countries of the world through the last 60 years.

Due to its simplicity and versatility, our model of urban development has poten-
tial for various applications and extensions. One possibility is to explore the conflict 
of interest across cities. While here we have focused on welfare-efficient solutions, 
in practice these may be difficult to implement because of the necessary compensa-
tion of the ‘losers’ using part of the gains of the ‘winners’ of a welfare improve-
ment. As these compensatory transfers should occur across cities in our model, they 
may be often infeasible and motivate an analysis of second-best solutions. From an 
empirical viewpoint, an interesting application would be to estimate the distribution 
of types of a country from the distribution of city sizes assuming that the nestedness 
condition holds. This would allow for more extensive testing of our predictions as 
one could monitor how the estimated distribution of types changes across time and 
countries, and whether these patterns are broadly in line with what we know from 
other sources.

Appendix

Proof of Proposition 1

1. Assortativeness. Recall that an urban distribution D ∈ D is assortative if and 
only if each of the following conditions holds: (i) for each rank k ∈ ℕ , the type of 
an agent inhabiting a city of mass mD

k
 takes a value in 

(

mD
k+1

,mD
k

]

 ; (ii) the type of 
an agent inhabiting a village takes a value in (−∞, 0] or 

(

mD
1
,+∞

)

 . Consider any 
assortative urban distribution. Note that each urban agent is located in a city of the 
smallest available size that is sufficiently high for her to make profits (so that her 
type is lower than or equal to such size but higher than the size of any smaller city). 
So, no urban agent prefers to move to another existing city (or village) as either it 
is too small for her to make profits or it is unnecessarily large, leading to the same 
profits but a higher crowding cost. On the other hand, no villager prefers to move to 
an existing city as either she cannot make profits in there (as her type is higher than 
the size of such city) or she already makes profits in the village (therefore moving 
to the city only increases the crowding cost). So, any assortative urban distribution 
is an equilibrium. We now prove the converse: that any urban distribution that is not 
assortative is not an equilibrium. It is easy to verify that for any urban distribution 
that is not assortative one of the following statements must be true: there is an agent 
in some city that does not make profits or that makes profits but can make profits 
in some other existing city that is smaller (i.e., condition (i) is violated); there is an 
agent in some village that does not make profits but can make profits in some exist-
ing city (i.e., condition (ii) is violated). As each of these statements is in contradic-
tion with the definition of equilibrium (as there is an agent that prefers to move), this 
proves that an urban distribution is an equilibrium if and only if it is assortative.

2. Nestedness. Finally, we need to show that all equilibria have nested structure. 
Let D ∈ D be any equilibrium. As D is necessarily assortative, by condition (ii) of 
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assortativeness a mass a − (F(mD
1
) − F(0)) on agents is in villages. Of the remaining 

mass F(mD
1
) − F(0) of urban agents, a mass nD

k
mD

k
 is in cities of rank k ∈ ℕ . By con-

dition (i) of assortativeness, nD
k
mD

k
= F(mD

k+1
) − F(mD

k
) for each k ∈ ℕ , which can 

be rearranged into the recurrence relation of nestedness F(mD
k+1

) = F(mD
k
) − nD

k
mD

k
 , 

thus concluding our proof.   ◻

Proof of Proposition 2

1. Cost-efficiency. We start by showing that an equilibrium D� ∈ D is cost-efficient 
if and only if its structure is hierarchical. Let the structure of D′ be hierarchical. Our 
strategy is to prove that any other equilibrium with same the same level of urbanization 
and same profits for each agent presents higher aggregate crowding cost than D′ . For a 
contradiction, suppose that there is another equilibrium D ∈ D with same urbanization 
level and same profits as D′ such that

As F is non-constraining, the levels of urbanization take value U(D�) = (F(mD�

1
) − F(0))∕a 

and  (D) = (F(mD
1 ) − F(0))∕a . By assumption, f (m) > 0 if m ≤ mF and f (m) = 0 if 

m > mF . We then divide our analysis in two cases: mD′

1
< mF and mD′

1
≥ mF.

Consider mD′

1
< mF . Since f (mD�

1
) > 0 , U(D�) = U(D) implies mD

1
= mD�

1
 . As D′ is hier-

archical nD�

k
= 1 for all k ∈ ℕ . Letting k ∈ ℕ being the smallest number such that nD

k
> 1 , 

condition (2) can then be rewritten as

Now, let k� ∈ ℕ be the highest number such that F(mD�

k�
) > F(mD

k+1
) . Note that such k′ 

exists by the assumption that F is non-constraining. By F(mD
k+1

) = F(mD
k
) − nD

k
mD

k
 , 

F(mD
k
) = F(mD�

k
) and F(mD�

k�
) > F(mD

k+1
) , we must have

As assortativeness implies F(mD�

k
) − F(mD�

k�
) =

∑k�−1

h=k
mD�

h
 , and mD�

k
= mD

k
 , we obtain 

(nD
k
− 1)mD

k
>
∑k�−1

h=k+1
mD�

h
 . Therefore, there is � ∈ [0, 1) such that

(2)C(D) =

∞
∑

h=1

nD
k
mD

h
c(mD

h
) ≤ C(D�) =

∞
∑

h=1

nD
�

h
mD�

h
c(mD�

h
).

(3)(nD
k
− 1)mD

k
c(mD

k
) +

∞
∑

h=k+1

nD
h
mD

h
c(mD

h
) ≤

∞
∑

h=k+1

mD�

h
c(mD�

h
).

nD
k
mD

k
= F(mD

k
) − F(mD

k+1
) > F(mD�

k
) − F(mD�

k�
).

(4)(nD
k
− 1)mD

k
=

k�−1
∑

h=k+1

mD�

h
+ (1 − �)mD�

k�
,

(5)
∞
∑

h=k+1

nD
h
mD

h
= �mD�

k�
+

∞
∑

h=k�+1

mD�

h
.
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Note that mD
k
> mD′

h
 for all h ∈ {k + 1,… , k�} and mD

k+x
> mD�

k�+x
 for all x ≥ 1 , which 

by (4) and (5) respectively imply

Then, a necessary condition for (3) to hold is

As 𝜌mD�

k�
< mD�

k�−1
 , this is possible only if c(mD�

k�
) − c(mD

k+1
) ≥ c(mD

k
) − c(mD�

k�−1
). 

However, since mD
k
+ mD

k+1
≥ mD�

k�−1
+ mD�

k�
 , mD

k
> mD�

k�−1
> mD�

k�
> mD

k+1
 and the func-

tion c is weakly convex, this condition is never fulfilled. So, we can conclude that 
given mD′

1
< mF the equilibrium D′ is cost-efficient if and only if its structure is 

hierarchical.
Consider mD′

1
≥ mF . As D′ is an equilibrium we must have mD�

1
≤ a − F(0) , and 

any equilibrium D ∈ D that has the same level of urbanization as D′ must satisfy 
mD

1
∈ [mF, a − F(0)] . We are going to show that D′ is cost-efficient if and only if 

it is hierarchical and mD�

1
= mF . Suppose D satisfies such properties. Firstly, it fol-

lows from arguments similar to the above that any other equilibrium D ∈ D with 
mD

1
= mF = mD�

1
 and which is non-hierarchical has higher aggregate crowding cost 

than D′ . Secondly, suppose mD�

1
= mF and let D ∈ D be any other equilibrium with 

mD
1
> mF . If D is non-hierarchical, by arguments analogous to our previous analysis 

it must lead to an aggregate crowding cost C(D) that is higher than the one of the 
equilibrium D�� ∈ D that is hierarchical and has largest city of same size as mD

1
 . On 

the other hand, D′′ can be derived from D′ via a series of mass transfers from larger 
cities to smaller ones, which implies C(D�) < C(D��) by the convexity of c. Then, 
C(D�) < C(D��) < C(D) and condition (2) never holds. So, combining these results 
with our previous analysis we can conclude that D′ is cost-efficient if and only if its 
structure is hierarchical and mD′

1
≤ mF.

2. Welfare-efficiency. We now show that an urban distribution that is welfare-
efficient must be a cost-efficient equilibrium (up to misallocation of zero mass of 
agents). Since welfare-efficiency implies cost-efficiency, to do so it is sufficient to 
show that a welfare-efficient urban distribution is necessarily an equilibrium. Let 
D ∈ D be a welfare-efficient urban distribution. If D has nested structure it must 
be an equilibrium, otherwise aggregate profits can be increased by reshuffling 
individuals across cities and villages without changing the structure and therefore 
without affecting the aggregate crowding cost. Suppose D has non-nested struc-
ture, which implies that F(mD

k+1
) ≠ F(mD

k
) − nD

k
mD

k
 for some k ∈ ℕ . We divide our 

analysis in two cases: F(mD
k+1

) < F(mD
k
) − nD

k
mD

k
 and F(mD

k+1
) > F(mD

k
) − nD

k
mD

k
 . If 

F(mD
k+1

) < F(mD
k
) − nD

k
mD

k
 , welfare can be augmented by decreasing by some arbi-

trarily small 𝜖 > 0 the mass of a city of size mD
k
 and increasing by the same amount 

(nD
k
− 1)mD

k
c(mD

k
) >

k�−1
∑

h=k+1

mD�

h
c(mD�

h
) + (1 − 𝜌)mD�

k�
c(mD�

k�
),

∞
∑

h=k+1

nD
h
mD

h
c(mD

h
) > 𝜌mD�

k�
c(mD�

k+1
) +

∞
∑

h=k�+1

mD�

h
c(mD�

h
).

�mD�

k�

(

c(mD�

k�
) − c(mD

k+1
)
)

≥ mD�

k�−1

(

c(mD
k
) − c(mD�

k�−1
)
)

.
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� the mass of a city of size mD
k+1

 , while reshuffling agents across cities and villages 
so that aggregate profits are unchanged while the aggregate crowding cost decreases. 
Note that this reshuffling is always possible as the distribution of types is non-con-
straining, while the aggregate crowding cost decreases as

since by assumption the function c is weakly convex. On the other hand, if 
F(mD

k+1
) > F(mD

k
) − nD

k
mD

k
 there must be a positive mass of urban agents that do not 

make profits in some city. Then, welfare can be augmented by moving an arbitrar-
ily small fraction of these agents to a village, which reduces the aggregate crowding 
cost, while reshuffling agents across cities and villages so that aggregate profits are 
unchanged. Again, this reshuffling is always possible as the distribution of types is 
non-constraining. This proves our desired result.

Finally, we are going to show that, given that an urban distribution D is welfare-
efficient, the structure of D must be substantial, that is,

We already know that D is an equilibrium (up to misallocation of zero mass of 
agents) whose structure is hierarchical. Suppose for a contradiction that

Since F is non-constraining, there is m� ∈ (mD
1
,mF) such that F(mD

1
) = F(m�) − m� , 

which implies that there is another equilibrium which is identical to D except that 
there is a new city of size m exclusively composed of agents who are villagers in D 
and that can make profits in this new city. Note that this would constitute a Pareto 
improvement on D, and that welfare-efficiency implies Pareto efficiency. Then, if D 
is welfare-efficient, it must have substantial structure.   ◻

Proof of Proposition 3

For any non-constraining distribution of types F, let D�,F ∈ D denote the cost-efficient 
equilibrium that corresponds to the level of urbanization � ∈ (0, (a − F(0))∕a) . Note 
that, as F is non-constraining, the size of the largest city is mD�,F

1
= F−1(�a + F(0)) and 

urban primacy takes value P(D�,F) = m
D�,F

1
∕(a�).

1. Population replication. Consider a distribution F that is a population replication 
of another distribution F′ which rescales the mass of agents by a factor of k > 1 , so that 
the new mass of agents is a = ka� and the new distribution of types is F(t) = kF�(t) for 
all t ∈ [0, a] . Given that urbanization is constant,

so that we obtain mD�,F

1
= m

D�,F�

1
 which implies the desired result

(mD
k+1

+ 𝜖)c(mD
k+1

+ 𝜖) + (mD
k
− 𝜖)c(mD

k
− 𝜖) < mD

k+1
c(mD

k+1
) + mD

k
c(mD

k
),

F(mD
1
) ≥ max

m∈[0,mF]
F(m) − m.

F(mD
1
) < max

m∈[0,mF]
F(m) − m.

(F(m
D�,F

1
) − F(0))∕a = � = (F�(m

D�,F�

1
) − F�(0))∕a�,
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2. First-order stochastic dominance (more ambitious). Consider a distribution 
F that first-order stochastically dominates another distribution F′ on [0, a], so that 
F(t) = F�(t) if t ∈ {0, a} and F(t) < F�(t) if t ∈ (0, a) . Given that urbanization is 
constant,

so that we obtain mD𝜆,F

1
> m

D𝜆,F′

1
 which implies the desired result P(D𝜆,F) > P(D𝜆,F� ).

3. Expansion (mean-preserving spread). Consider a distribution F that is 
an expansion of another distribution F′ on [0,  a], so that (i) F(t) = F�(t) if and 
only if t ∈

{

0, ∫
a

0
rdF(r), a

}

 ; (ii) ∫ t

0
F�(r)dr > ∫

t

0
F(r)dr for all t ∈ (0, a) ; (iii) 

∫
a

0
rdF(r) = ∫

a

0
rdF�(r) . Being a mean-preserving spread, one can show the cumula-

tive mass functions F,F′ must satisfy

Given that urbanization is constant, F(mD�,F

1
) = a� + F(0) = F�(m

D�,F�

1
). These consid-

erations jointly imply

or equivalently if 
� < (>)�∗: = (F(m̃)

− F(0))∕a . It follows that P(D𝜆,F) < (>)P(D𝜆,F� ) 
if 𝜆 < (>)𝜆∗ , which proves the desired result.   ◻

Proof of Proposition 4

Given that F is non-constraining, the set of cost-efficient equilibria is characterized 
by the unique equilibrium D∗(�1) with hierarchical structure for each size of the larg-
est city �1 ∈ [0,mF] . Take any such �1 and consider the corresponding cost-efficient 
equilibrium. As in a cost-efficient equilibrium there is a single largest city, the level of 
urbanization is

Differentiating with respect to the size of such city,

we directly see that a marginal increase in urbanization goes hand in hand with a 
marginal increase in the size of the largest city. Then, the level of urban primacy

P(D𝜆,F) =
m

D𝜆,F

1

a𝜆
< P(D𝜆,F� ) =

m
D𝜆,F�

1

a�𝜆
.

F(m
D�,F

1
) = a� + F(0) = F�(m

D�,F�

1
),

F(x) > (<)F�(x) if x < (>)m̃ ∶=
∫

a

0

rdF(r).

m
D𝜆,F

1
< (>)m

D𝜆,F�

1
if m

D𝜆,F

1
,m

D𝜆,F�

1
< (>)m̃,

U(D∗(�1)) =
(

F(�1) − F(0)
)

∕a.

dU(D∗(𝜇1))∕d𝜇1 = f (𝜇1)∕a > 0,

P(D∗(�1)) = �1∕
(

F(�1) − F(0)
)
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increases (decreases) with a marginal increase in the level of urbanization if

which is equivalent to f (𝜇1) < (>)
(

F(𝜇1) − F(0)
)

∕𝜇1 and directly leads to condition 
(1).   ◻

Proof of Proposition 5

The argument directly follows from the application of Proposition 4 to the cost-effi-
cient equilibria corresponding to the considered distribution of types. From the dis-
cussion right after Proposition 4, recall that the average density

is the average of the marginal densities f(m) in the interval m ∈ [0,�1] . This implies 
lim�1→0 Φ(�1) = lim�1→0 f (�1) . By the stated assumptions on the distribution of 
types, the density function f is single-peaked on (0,mF) so f must be first increasing 
and then decreasing, and the cumulative mass function F is non-constraining and 
satisfying

These considerations jointly imply that

where the critical point �∗
1
 lies in the subdomain of f where the density is decreas-

ing.30 Now, by Proposition 4, urban primacy increases (decreases) with a mar-
ginal increment in the urbanization level if f (𝜇1) < (>)Φ(𝜇1) . Combined with 
the analysis above, we then have that urban primacy decreases with urbaniza-
tion for �1 ∈ (0,�∗

1
) , while it increases for �1 ∈ (�∗

1
,mF) . As in any cost efficient 

equilibrium there is a single largest city, the urbanization level can be written as 
U(D∗(�1)) =

(

F(�1) − F(0)
)

∕a and thus urbanization increases with �1 . We can 
conclude that the relation between urban primacy and urbanization is U-shaped.   ◻

Robustness of U‑shaped results

See Figs. 8 and 9; Table 3.

dP(D∗(𝜇1))∕d𝜇1 = 1∕
(

F(𝜇1) − F(0)
)

− 𝜇1f (𝜇1)∕
(

F(𝜇1) − F(0)
)2

> (<)0,

Φ(�1) ∶= (1∕�1)
∫

�1

0

f (m)dm =
(

F(�1) − F(0)
)

∕�1

f (�∗
1
) = Φ(�∗

1
) for some �∗

1
∈ (0,mF).

f (𝜇1) > Φ(𝜇1) for 𝜇1 ∈ (0,𝜇∗
1
) and f (𝜇1) < Φ(𝜇1) for 𝜇1 ∈ (𝜇∗

1
,mF),

Fig. 8  U-shaped cross-country relation between the average level of urbanization and the average urban 
primacy, where averages are computed within each country across the years 1960–1979, 1980–1999, and 
2000–2016. Source: Own calculations based on World Bank data

▸

30 For a graphical visualization of the argument, as already stated in Footnote 23, note that f (�1) is the 
slope of the function F(�1) − F(0) at the point (�1,F(�1) − F(0)) , while Φ(�1) is the slope of the line 
passing through the origin and the same point.
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Table 3  Relation between urban primacy and urbanization in polynomial form of different degree (one 
to five)

 All columns correspond to specifications in the world sample with year fixed effects and continent fixed 
effects. Standard errors are heteroscedastically robust; ***, **, and * indicate statistical significance at 
the levels of 1%, 5%, and 10%, respectively

Urban primacy (1) (2) (3) (4) (5)

Constant 34.2584*** 47.3656*** 30.7888*** 61.7247*** 52.3944***
(1.6350) (1.7815) (2.0235) (2.2639) (3.0844)

Urbanization .1917*** − .6149*** .8846*** − 3.7317*** − 1.9250***
(.0143) (.0406) (.1021) (.19405) (.41468)

Urbanization2 – .0073*** − .0284*** .1532*** .04702**
– (.0003) (.0022) (.0069) (.0215)

Urbanization3 – – .0002*** − .0024*** .0001
– – (.0001) (.0001) (.00049)

Urbanization4 – – – .0001*** − 1.49e–05***
– – – (4.70e–07) (5.06e–06)

Urbanization5 – – – – 1.07e–07***
– – – – (1.92e–08)

Observations 8689 8689 8689 8689 8689
R
2 0.1643 0.2127 0.2506 0.3243 0.3275

AIC 73900.81 73384.86 72957.36 72060.67 72019.06
BIC 74360.35 73851.47 73431.04 72541.42 72499.8

Fig. 9  The five lines depict the 
relation between urban primacy 
and urbanization in polynomial 
form of different degrees. The 
second degree polynomial is 
represented in ultra thick as it is 
our chosen specification, while 
the dotted, dashed, solid, and 
thick lines respectively corre-
spond to the polynomial in first, 
third, fourth, and fifth degrees. 
The coefficients of these five 
polynomial specifications are 
determined by the five regres-
sions in Table 3 0 20 40 60 80 100
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