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Abstract
We analyze the performance of the best-response dynamic across all normal-form 
games using a random games approach. The playing sequence—the order in which 
players update their actions—is essentially irrelevant in determining whether the 
dynamic converges to a Nash equilibrium in certain classes of games (e.g. in poten-
tial games) but, when evaluated across all possible games, convergence to equilibrium 
depends on the playing sequence in an extreme way. Our main asymptotic result shows 
that the best-response dynamic converges to a pure Nash equilibrium in a vanishingly 
small fraction of all (large) games when players take turns according to a fixed cyclic 
order. By contrast, when the playing sequence is random, the dynamic converges to a 
pure Nash equilibrium if one exists in almost all (large) games.

Keywords  Best-response dynamics · Equilibrium convergence · Random games

JEL Classification  C62 · C72 · C73 · D83

1  Introduction

The best-response dynamic is a ubiquitous iterative game-playing process in which, 
at each time step, players myopically select actions that are a best-response to the 
actions last chosen by all other players. The literature at large has established the 
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equilibrium convergence properties of the best-response dynamic in games with 
specific payoff structures; particularly in potential games (Monderer and Shapley 
1996), but also in weakly acyclic games (Fabrikant et al. 2013), aggregative games 
(Dindoš and Mezzetti 2006), and quasi-acyclic games (Friedman and Mezzetti 2001; 
Takahashi and Yamamori 2002). So known results are restricted to special cases. 
The performance of the best-response dynamic in the class of all games remains to 
be established. In this paper, we consider the question of whether the best-response 
dynamic converges to a pure Nash equilibrium in a small or large fraction of all pos-
sible normal-form games.

To answer our question, we take a “random games” approach: we determine 
whether the best-response dynamic converges to a pure Nash equilibrium in a game 
drawn at random from among all possible games. The random games approach has a 
long history in game theory (since Goldman 1957; Goldberg et al. 1968, and Dresher 
1970), and has been used to address questions regarding the prevalence of Nash 
equilibria (Powers 1990; Stanford 1995, 1996, 1997; Cohen 1998; Stanford 1999; 
McLennan 2005; McLennan and Berg 2005; Takahashi 2008; Kultti et  al. 2011; 
Daskalakis et al. 2011; Quattropani and Scarsini 2020), the prevalence of rationaliz-
able strategies (Pei and Takahashi 2019), convergence to equilibrium (Pangallo et al. 
2019; Amiet et al. 2021a, b; Wiese and Heinrich 2022), and the prevalence of domi-
nance solvable games (Alon et  al. 2021).1 A guiding principle of the approach is 
that, since the property of interest (e.g. existence of Nash equilibrium, convergence 
to Nash equilibrium, dominance solvability) does not hold in all games, one can at 
least determine how likely the property is to hold in the class of all games. To do so, 
one defines a probability distribution over all games, and computes the probability 
that a game drawn randomly according to this distribution has the desired property.

The playing sequence—the order in which players update their actions—has an 
important role in our analysis. We largely focus on two specific playing sequences in 
this paper. At one extreme, we consider the random playing sequence, where play-
ers take turns to play one at a time and the next player to play is chosen uniformly at 
random from among all players. At the other extreme, we consider a natural deter-
ministic counterpart to the random sequence, which we refer to as the clockwork 
playing sequence, where players take turns to play one at a time according to a fixed 
cyclic order. The best-response dynamic under the random playing sequence is 
widely studied. It is often of interest in population and evolutionary games (Sand-
holm 2010), and its properties have been analyzed in a variety of games with spe-
cific payoff structures.2 The best-response dynamic under the clockwork playing 
sequence appears most frequently in the algorithmic game theory literature. Its prop-
erties have inter alia been studied in auctions (Nisan et  al. 2011), job scheduling 
(Berger et al. 2011), network formation games (Chauhan et al. 2017), and it has been 

1  The majority of the literature has focused on normal-form games. Arieli and Babichenko (2016) study 
random extensive form games.
2  It has been analyzed in anonymous games (Babichenko 2013), near-potential games (Candogan et al. 
2013), potential games (Christodoulou et al. 2012; Coucheney et al. 2014; Swenson et al. 2018; Durand 
et al. 2019), and games on a lattice (Blume et al. 1993). “Sink” equilibria are studied in (Goemans et al. 
2005; Mirrokni and Skopalik 2009).
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used for equilibrium selection in potential games (Boucher 2017). Using the random 
games approach, Durand and Gaujal (2016) show that, in expectation, convergence 
to equilibrium in potential games is faster under the clockwork playing sequence 
than under any other playing sequence.

The playing sequence is essentially irrelevant in determining whether the best-
response dynamic converges to equilibrium in potential games—which is the focus 
of a large part of the literature—but it is a key determinant of the dynamic’s con-
vergence properties in non-potential games. To see this, consider the 3-player game 
shown in the left-hand panel of Fig.  1 and its associated best-response digraph 
shown in the right-hand panel. Best-response digraphs are a commonly used 
reduced-form representation of a game in which the vertices are the action profiles 
and the directed edges correspond to the players’ best-responses (e.g. see Young 
1998, Chapter 7, or Pangallo et  al. 2019). It is easy to show that potential games 
have acyclic best-response digraphs, which implies that the playing sequence plays 
almost no role: as long as each player with a remaining payoff-improving action has 
a chance to play—which is the case for both the random and the clockwork playing 
sequences—the dynamic must eventually end at a sink of the digraph, i.e. at a Nash 
equilibrium of the game.3 In contrast, in the non-potential game shown in Fig. 1, 
convergence is dependent on the playing sequence: with initial profile (1, 1, 1), the 
random sequence best-response dynamic must eventually converge to the Nash equi-
librium, whereas the clockwork sequence best-response dynamic with cyclic player 
order 1-2-3-1-...will remain stuck cycling on the four profiles on the front face of the 
cube forever.

Since we are assessing the performance of the best-response dynamic over the 
class of all games (including non-potential games), it is necessary for us to be explicit 
about the details of the playing sequence. There are, of course, many possible playing 

Fig. 1   Illustration of a 3-player game with 2 actions per player (left) and its associated best-response 
digraph (right). The axes shown in the center give us our coordinate system: player 1 selects rows (along 
the depth), player 2 selects columns (along the width), and player 3 selects levels (along height). In the 
left-hand panel, the payoffs of players 1, 2, and 3 are listed in that order. The unique pure Nash equilib-
rium at the profile (1, 2, 1) is a sink of the digraph and is underlined

3  Any such playing sequence may affect the path taken to equilibrium but not whether the path ends at a 
sink.
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sequences,4 but our focus on random vs. clockwork suffices for our main finding: 
whether the best-response dynamic converges to equilibrium in a small or large frac-
tion of all games depends on the playing sequence in an extreme way. Broadly, we 
show that under a clockwork playing sequence, the fraction of all n-player games in 
which the best-response dynamic converges to a pure Nash equilibrium goes to 0 as 
the number of players and/or actions gets large. By contrast, under a random playing 
sequence, the fraction of all n-player games with a pure Nash equilibrium in which 
the best-response dynamic converges to a pure Nash equilibrium goes to 1 as the 
number of players and/or actions gets large (when n > 2).

That the best-response dynamic converges less often under a clockwork than 
under a random playing sequence is perhaps unsurprising since the clockwork 
sequence will have more difficulty escaping best-response cycles. We therefore 
expect the probability of convergence to equilibrium for the clockwork sequence 
to be less than it is for the random sequence. However, the resulting extreme jump 
in the asymptotic equilibrium convergence frequency from 1 to 0 is rather striking. 
Since most games have digraphs that contain cycles, our contribution can be seen 
as quantifying the fact that a clockwork playing sequence is very likely to become 
trapped in such cycles, whereas the random playing sequence is very likely to escape 
them.

We now provide a brief technical overview of our methods and results. To gener-
ate games at random, we follow the majority of papers in the ‘random games’ litera-
ture by drawing each player’s payoff at each action profile independently according 
to an arbitrary atomless distribution.5 This induces a uniform distribution over best-
response digraphs, and it is in this sense that we can claim convergence in a large or 
small fraction of all games. The probability of convergence to a pure Nash equilib-
rium can be reduced to working out the probability that the best-response path initi-
ated at a random vertex hits a sink of the randomly drawn digraph.6

4  The concept of a playing sequence is closely related to “revision functions” in Durand and Gaujal 
(2016) and “schedulers” in Apt and Simon (2015). Simultaneous updating by all players at each time 
step is studied in Quint et al. (1997) for 2-player games and in Kash et al. (2011) for anonymous games. 
Feldman and Tamir (2012) study the case in which the sequence of play depends on current payoffs. 
Feldman et al. (2017) study the dynamic inefficiency of the best-response dynamic under different play-
ing sequences.
5  See Goldberg et al. (1968), Stanford (1999), Berg and Weigt (1999), Rinott and Scarsini (2000), Galla 
and Farmer (2013), Sanders et al. (2018) and Pangallo et al. (2019) for work on random games with pay-
off correlations.
6  Wiese and Heinrich (2022) refer to a game as being “convergent” if, from every initial vertex, the 
clockwork best-response dynamic converges to a pure Nash equilibrium. They then show, for each k ≥ 1 , 
that the probability that a randomly drawn game is convergent and has exactly k pure Nash equilibria is 
asymptotically zero in large games. Our asymptotic results imply those of Wiese and Heinrich (2022), 
but not vice versa. Here is why. In Theorem  1, we derive upper and lower bounds on the probability 
that the clockwork best-response dynamic initiated at an arbitrarily chosen vertex converges to a pure 
Nash equilibrium. But because equilibrium convergence from every starting vertex (the focus of Wiese 
and Heinrich 2022) implies convergence to equilibrium from an arbitrarily chosen vertex (the focus of 
our paper) and not conversely, the upper bound that we find in Theorem 1 is also an upper bound for the 
probabilities derived in Wiese and Heinrich (2022). Moreover, since we show that the upper bound in 
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In Sect.  3.1, we show that the probability that the clockwork best-response 
dynamic converges to a pure Nash equilibrium in a game with n > 2 players and 
mi ≥ 2 actions per player i is, up to a polynomial factor, of order 1∕

√
qn,m , where 

qn,m ∶=
∏n

i=1
mi

maxi mi

 is the minimal number of strategic environments in the game (i.e. the 
minimal number of combinations of actions of all but one player). The proof relies 
on a coupling argument that makes it possible to deal with the path-dependence of 
the best-response dynamic. The result has two implications. (i) For large qn,m , the 
probability of convergence is determined by the value of a single parameter, namely, 
the minimal number of possible strategic environments, so all games with an identi-
cal minimal number of strategic environments have similar asymptotic probabilities 
of convergence to equilibrium. This is also  reflected in our simulations even for 
small values of qn,m . (ii) When the number of players n and/or the number of actions 
per player is large for at least two players (implying qn,m → ∞ ), the probability that 
the clockwork best-response dynamic converges to a pure Nash equilibrium goes to 
zero. This is in stark contrast with the convergence properties of the random 
sequence best-response dynamic.

In Sect.  3.2, we provide more detailed theoretical results for games with n = 2 
players. In particular, we provide results on game duration, and we derive an exact 
expression for the probability that the best-response dynamic converges to a (best-
response) cycle of given length at a particular time. As a special case, we obtain 
the exact probability that the clockwork best-response dynamic converges to a pure 
Nash equilibrium in 2-player games with mi actions per player. Unlike in games 
with n > 2 players in which the clockwork and random sequences behave very dif-
ferently from each other, the probability of convergence to equilibrium is the same 
for the random and clockwork playing sequences in 2-player games. Furthermore, 
when m1 = m2 = m , we show that this probability is asymptotically 

√
�∕m when m 

is large.
Section 4 present our simulation results. We investigate the extent to which our 

asymptotic analytical results also hold for small numbers of players and/or actions. 
Additionally, we investigate the behavior of playing sequences that interpolate 
between the extremes of clockwork and random playing sequences.

2 � Best‑response dynamics in games

2.1 � Games

A game with n ≥ 2 players and mi ≥ 2 actions per player i is a tuple

gn,m ∶= ([n], {[mi]}i∈[n], {ui}i∈[n]),

Theorem 1 goes to zero in large games, our asymptotic result implies the asymptotic results of Wiese and 
Heinrich (2022), but not vice versa.

Footnote 6 (continued)
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where m ∶= (m1,… ,mn) , [n] ∶= {1,… , n} is the set of players, and each player 
i ∈ [n] has a set of actions [mi] ∶= {1,… ,mi} and a payoff function ui ∶ M → ℝ , 
where M ∶= ×i∈[n][mi].

An action profile is a vector of actions a = (a1,… , an) ∈ M that lists 
the action taken by each player. An environment for player i is a vector 
a−i ∈ M−i ∶= ×j∈[n]⧵{i}[mj] that lists the action taken by each player but i. A best-
response correspondence bi for player i is a mapping from the set of environments 
for player i to the set of all non-empty subsets of i’s actions and is defined by

In the rest of this paper, we consider only games in which for each player i and envi-
ronment a−i , the best-response action is unique. This is the case for games in which 
there are no ties in payoffs.7

An action profile a ∈ M is a pure Nash equilibrium (PNE) if for all i ∈ [n] and all 
ai ∈ [mi] , ui(a) ≥ ui(ai, a−i) . Equivalently, a is a PNE if each player i ∈ [n] is playing 
their (assumed unique) best-response action i.e. ai = bi(a−i) . Denote the set of PNE 
of the game gn,m by PNE(gn,m) and let #PNE(gn,m) denote the cardinality of this set.

2.2 � Best‑response digraphs

The best-response structure of a game gn,m can be represented by a best-response 
digraph D(gn,m) whose vertex set is the set of action profiles M and whose edges are 
constructed as follows: for each i ∈ [n] and each pair of distinct vertices a = (ai, a−i) 
and a� = (a�

i
, a−i) , place a directed edge from a to a′ if and only if a′

i
 is player i’s best-

response to environment a−i , i.e. a�
i
= bi(a−i) . There are edges only between action 

profiles that differ in exactly one coordinate. A profile a is a PNE of gn,m if and only 
if it is a sink of the best-response digraph D(gn,m) . It is easy to show that potential 
games have acyclic best-response digraphs.8

2.3 � Best‑response dynamics

We now consider games played over time, with each player in turn myopically best-
responding to their current environment.

A playing sequence function s ∶ ℕ → [n] determines whose turn it is to play at 
each time t ∈ ℕ , where ℕ denotes the set of positive integers.9 We will be interested 
in two specific playing sequences. The clockwork playing sequence is defined by 
s
�
(t) ∶= 1 + (t − 1) mod n , so player 1 plays at time 1, followed by player 2, then 3, 

bi(a−i) ∶= arg max
ai∈[mi]

ui(ai, a−i).

7  There are no ties in payoffs if for all i ∈ [n] , all a−i , and all ai ≠ a′
i
 , ui(ai, a−i) ≠ ui(a

�
i
, a−i).

8  A game is a (generalized ordinal) potential game if there exists a function � ∶ M → ℝ such that for 
all a ∈ M , i ∈ [n] , and a�

i
∈ [mi] , ui(a�i , a−i) > ui(a) implies 𝜌(a�

i
, a−i) > 𝜌(a) (Monderer and Shapley 

1996). If the best-response digraph has a cycle (a1 ⋯ ak) then the potential function would need to satisfy 
𝜌(ak) > ⋯ > 𝜌(a1) > 𝜌(ak) , a contradiction.
9  Our results hold for any permutation of player labels.
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and so on until player n, and then the sequence returns to player 1, and so on. The 
random playing sequence s

�
 is determined as follows: for each t ∈ ℕ , draw s

�
(t) uni-

formly at random from [n]. So, at each time, the player playing at that time is drawn 
uniformly at random from among all players. It is easy to see that, starting from 
any initial profile, the random sequence best-response dynamic must eventually con-
verge to the PNE of the game shown in Fig. 1, but it is by no means guaranteed to 
converge to a PNE in all games.10 In Sects. 2 and 3 we restrict our attention to play-
ing sequences s ∈ {s

�
, s

�
}.

A path ⟨a⃗, s⟩ is an infinite sequence of action profiles a⃗ = (a0, a1,…) and an asso-
ciated playing sequence function s ∶ ℕ → [n] satisfying the constraint that only one 
player changes her action at a time, i.e. at

−s(t)
= at−1

−s(t)
 for each t ∈ ℕ . So only the 

action of player s(t) is allowed to differ between profiles at−1 and at along a path.
The best-response dynamic with playing sequence s ∶ ℕ → [n] on a game gn,m 

initiated at the action profile a0 is the following process: set the initial action profile 
to a0 and, at each time t ∈ ℕ , player s(t) myopically plays her best-response 
at
i
= bi(a

t−1
−i

) to her current environment at−1
−s(t)

 . The best-response dynamic effec-
tively generates a path ⟨a⃗, s⟩ by traveling along the edges of the best-response 
digraph D(gn,m) in direction s(t) at step t starting from the initial profile a0.11

2.4 � Convergence

For any path ⟨a⃗, s⟩ and set of action profiles A ⊆ M the hitting time 
H⟨a⃗,s⟩(A) ∶= inf{t ∈ ℕ ∶ at ∈ A} is the first time t ≥ 1 at which some element of the 
sequence a⃗ is in, or (first) hits, the set A ( inf is the infimum operator and we use the 
convention that inf � = ∞).12 We say that the s-sequence best-response dynamic on 
game gn,m initiated at a0 converges to a PNE if its path ⟨a⃗, s⟩ hits PNE(gn,m) in finite 
time. Clearly, if a path hits a PNE at some time t, it stays there forever after.

2.5 � Best‑response dynamics on random games

We generate random games by drawing all payoffs at random: for each a ∈ M and 
i ∈ [n] , the payoff Ui(a) is a random number that is drawn from an atomless dis-
tribution ℙ . The draws are independent across all i ∈ [n] and a ∈ M . The distri-
bution ℙ ensures that any ties in payoffs have zero measure, so almost surely each 

10  It is, for example, easy to construct games with a PNE in which there is a cluster of non-PNE profiles 
that, once visited, cannot be escaped by the random sequence best-response dynamic. Amiet et al. (2021) 
refer to such clusters as “best-response traps”.
11  More precisely, the infinite sequence of actions a⃗ is determined as follows: if player s(t) is already best 
responding then at−1 does not point to any vertex (a�

s(t)
, at−1

−s(t)
) ≠ at−1 and the next profile in the sequence 

is at−1 itself, i.e. at = at−1 ; otherwise, if player s(t) is not already playing her best response then travel 
to the vertex that corresponds to her playing her best-response action, i.e. set at = (a�

s(t)
, at−1

−s(t)
) where 

(a�
s(t)

, at−1
−s(t)

) ≠ at−1 is the unique vertex that at−1 points to.

12  We also say that the path hits A by t if it hits A at time � with � ≤ t , and the path hits A before (after) 
t if it hits A at time 𝜏 < t ( 𝜏 > t).
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environment has a unique best-response for each player. A random game drawn in 
this way is denoted by Gn,m ∶= ([n], {[mi]}i∈[n], {Ui}i∈[n]).

The best-response dynamic on random games is described by Algorithm 1. We 
randomly draw a game and run the best-response dynamic on the drawn game, start-
ing from a randomly drawn initial profile A0.13 Doing so induces a distribution over 
paths and PNE sets.

Algorithm 1 s-sequence best-response dynamic on Gn,m

(1) For all i ∈ [n] and a ∈ M draw Ui(a) at random according to P
(2) Draw A0 uniformly at random from M
(3) For t ∈ N:

(a) Set i = s(t)
(b) Set At

−i = At−1
−i

(c) Set At
i = Bi(At−1

−i ) where Bi(At−1
−i ) := argmaxxi∈[mi] Ui(xi,At−1

−i )

The notion of convergence given in Sect. 2.4 applies here. Namely, the s-sequence 
best-response dynamic on game Gn,m (and initial condition A0 ) converges to a PNE 
if its path ⟨A⃗, s⟩ (generated according to Algorithm 1) hits PNE(Gn,m) in finite time.

3 � Theoretical results

In this section, we present the theoretical results for best-response dynamics in ran-
dom games. In Sect. 3.1 we focus on games with n > 2 players. In this case, we find 
that best-response dynamics behave very differently under clockwork vs. random 
playing sequences. Most of our results on the probability of convergence to equilib-
rium are asymptotic. In Sect. 3.2 we focus on games with n = 2 players. In this case, 
the probability of convergence to equilibrium is the same under both clockwork 
and random playing sequences. Furthermore, we are able to provide asymptotic as 
well as exact results for game duration and for the probability of convergence to 
equilibrium.

The quantity

is central to our results and it appears frequently in the literature on random games 
(for example, see Dresher 1970, or Rinott and Scarsini 2000). As summarized in the 
proposition below, the probability that there is a pure Nash equilibrium is asymptoti-
cally 1 − exp{−1} ≈ 0.63 as qn,m gets large.

qn,m ∶=

∏
i∈[n] mi

maxi∈[n] mi

13  We draw the initial profile A0 uniformly at random from among all profiles, but this is merely a stylis-
tic choice: since the game itself is drawn at random, the choice of initial condition is actually irrelevant, 
i.e. our results would not change if we had arbitrarily fixed the initial profile to some specific value.
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Proposition 1  (Rinott and Scarsini 2000)

Since qn,m → ∞ if and only if n → ∞ or mi → ∞ for at least two players i, the 
probability that there is a PNE in a randomly drawn game approaches 1 − exp{−1} 
when the number of players gets large or when the number of actions per player gets 
large for at least two players.14

3.1 � Games with n > 2 players

The following result shows that, in large 2-action games, the random sequence best-
response dynamic converges with high probability to a PNE if there is one. Let 2 
denote a n-vector of 2s.

Proposition 2  (Amiet et al. 2021)

Combined with Proposition 1, it follows that over the class of all 2-action games, 
the random sequence best-response dynamic converges to a PNE with probability 
about (1 − exp{−1}) , i.e. in approximately 63% of those games, when the number of 
players is large.

A generalization of Proposition 2 to games with more than 2 actions per player is 
non-trivial. There are currently no existing analytical results for such cases, so this 
area remains open for future research. However, we conjecture that for n > 2 , the 
random sequence best-response dynamic converges to a PNE with high probability 
if there is one as qn,m → ∞ . Consistent with this conjecture, in the simulations of 
Sect. 4 we show that, provided n > 2 , the random sequence best-response dynamic 
does converge to a PNE with probability close to 1 − exp{−1} when n gets large or 
when the number of actions gets large for at least two players.

Our main result for the clockwork sequence best-response dynamic in games with 
n > 2 players is given below.

Theorem 1 

Consequently, since the upper and lower bound both go to zero as n gets large or 
when the number of actions gets large for at least two players,

lim
qn,m→∞

Pr
[
#PNE (Gn,m) ≥ 1

]
= 1 − exp{−1}.

lim
n→∞

Pr
[
s
�
-best-response dynamic on Gn,2 converges to a PNE | #PNE(Gn,2) ≥ 1

]
= 1.

1

4
√
n

1√
qn,m

≤ Pr

�
s
�
-best-response dynamic

on Gn,m converges to a PNE

�
≤

6n
√
log(qn,m)√
qn,m

.

14  Using results from Arratia et al. (1989), Rinott and Scarsini (2000) prove the stronger result that the 
distribution of the number of PNE in random games is asymptotically Poisson(1) as qn,m → ∞ . The 
probability that a PNE exists in a random game was previously studied by Goldberg et al. (1968) in the 
2-player case and by Dresher (1970) in the n-player case as the number of actions gets large for at least 
two players. Powers (1990) and Stanford (1995) noted that the distribution of #PNE(Gn,m) approaches a 
Poisson(1) as the number of actions gets large.
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So, with high probability, the clockwork sequence best-response dynamic does 
not converge to a PNE as the number of players gets large or as the number of 
actions for at least two players gets large. This is in sharp contrast with the asymp-
totic behavior of the random sequence best-response dynamic. It is intuitive that 
the clockwork sequence converges to a PNE less often than the random sequence 
because it will have more difficulty escaping cycles in a best-response digraph. That 
said, the extreme swing in the asymptotic probability of convergence from 1 to 0 is 
rather striking.

We briefly comment on Theorem  1 and its implications. (i) In Algorithm  1, 
drawing payoffs independently at random (from an atomless distribution) induces 
a uniform distribution over best-response digraphs.15 It is in this sense that we can 
say that the best-response dynamic converges in a “large” or “small” fraction of all 
games. (ii) Our proof of Theorem  1 relies on a coupling argument (explained in 
the appendix) that makes it possible to deal with the path-dependence of the best-
response dynamic (which arises from the fact that if a player encounters an envi-
ronment that they had seen before, they must play the same action that they played 
when the environment was first encountered). The proof centers on bounding the 
time it takes for some player to re-encounter a previously seen environment along 
a best-response path and this time is fundamentally determined by qn,m , which is 
the minimal number of possible environments. (iii) In fact, Theorem 1 gives us the 
following corollary, which shows that the asymptotic probability of convergence to 
equilibrium is determined primarily by the value of the parameter qn,m.16

Corollary 1  The asymptotic probability that the clockwork sequence best-response 
dynamic converges to a PNE is, up to a polynomial factor, of order 1∕

√
qn,m.

3.2 � Games with n = 2 players

For n = 2 players, we provide detailed results on both game duration and on the 
probability of convergence to equilibrium.

If the path ⟨a⃗, s
�
⟩ generated by the clockwork best-response dynamic on a 2-player 

game g2,m has the property that from t onwards, the sequence of 2k possibly non-
distinct action profiles at,… , at+2k−1 repeats itself forever and t is the hitting time 

lim
qn,m→∞

Pr
[
s
�
-best-response dynamic on Gn,m converges to a PNE

]
= 0.

15  This follows from the manner in which the payoffs are drawn: there is a zero probability of ties 
because ℙ is atomless and for each i ∈ [n] the probability that action ai ∈ [mi] is a best-response to envi-
ronment a−i is given by

Pr

[
Ui(ai, a−i) = max

xi∈[mi]
Ui(xi, a−i)

]
=

1

mi

.

16  Since log(qn,m) is dominated by a polynomial in n and m , and qn,m grows faster than log(qn,m) and 
than n to any power, the asymptotic behavior of each bound is governed by the behavior of the term √
qn,m in the denominator.
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to at , then we say that the clockwork best-response dynamic converged to a cycle of 
length 2k, or a 2k-cycle, at time t, where k ∈ {1,… ,m∗} and m∗ ∶= min{m1,m2}.

Theorem 2  For any k ∈ {1,… ,m∗} and t ∈ {1,… , 2(m∗ − k + 1)},17 the probability 
that the sc-best-response dynamic on G2,m converges to a 2k-cycle at time t is given 
by

Thus we have an exact expression for the probability that the clockwork sequence 
best-response dynamic converges to a 2k-cycle at time t.18 Setting k = 1 in (1) yields 
the exact probability that the clockwork sequence best-response dynamic on G2,m 
converges to a PNE at time t.

As a straightforward corollary of Theorem 2, the probability that the clockwork 
sequence best-response dynamic converges to a 2k-cycle is obtained by summing (1) 
over all t ∈ {1,… , 2(m∗ − k + 1)}:

Corollary 2  The probability that the sc-best-response dynamic on G2,m converges to 
a 2k-cycle is given by

 
Setting k = 1 in (2) yields the exact probability that the clockwork sequence best-

response dynamic on G2,m converges to a PNE.
To get a better sense of the behavior of (2), we now study its asymptotics, which 

are easiest to see when m1 = m2 = m . We maintain this restriction in the rest of this 
section. Let Φ(⋅) denote the standard normal cumulative distribution function:

We say that f(n) is asymptotically g(n) if f (n)∕g(n) → 1 as n → ∞ , and 
f (n) = o(g(n)) denotes f (n)∕g(n) → 0 as n → ∞.

Proposition 3  Set m1 = m2 = m . If k = o(m2∕3) then, as m → ∞ , (2) is asymptotically

If k = o(
√
m) then, as m → ∞ , (2) is asymptotically 

√
�∕m.

(1)
1

m
s
�
(t+2k−1)

t+2k−2∏
i=1

(
1 −

1

m
s
�
(i)

⌊
i

2

⌋)
.

(2)
2(m∗−k+1)∑

t=1

1

m
s
�
(t+2k−1)

t+2k−2∏
i=1

(
1 −

1

m
s
�
(i)

⌊
i

2

⌋)
.

Φ(x) ∶=
1√
2� ∫

x

−∞

exp

�
−
z2

2

�
dz.

2

�
�

m

�
1 − Φ

�
2k − 1√

2m

��
.

17  For any k ∈ {1,… ,m∗} the product is non-negative provided t + 2k − 2 ≤ 2m∗.
18  See also Pangallo et al. (2019) for an exact formula giving the probability of existence of cycles of any 
length in 2-player games.
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The asymptotics given in Proposition 3 help us to better understand the behavior 
of the clockwork sequence best-response dynamic in large 2-player games. (i) The 
probability of convergence to a PNE, which corresponds to setting k = 1 , goes to 
zero when m → ∞.19 (ii) Short cycles all have about the same probability. Indeed, for 
k = o(

√
m) the probability is asymptotically 

√
�∕m . Finally, (iii) it is very unlikely 

that the best-response dynamic converges to a very long cycle: if k∕
√
m → ∞ then 

the probability that the dynamic converges to a cycle of length at least 2k tends to 
0.20

Theorem 3  Set m1 = m2 = m and fix x > 0 . The probability that the s
�
-best-response 

dynamic on G2,m does not hit a cycle (of any length) until at least time step x
√
2m is 

asymptotically exp{−x2∕2} as m → ∞.

This result shows that the clockwork sequence best-response dynamic in 2-player 
games is likely to converge to a 2k-cycle (for some k ∈ {1,… ,m} ) within 

√
2m time 

steps when m is large.
We now compare the behavior of the clockwork sequence best-response dynamic 

in 2-player games with the behavior of the random sequence best-response dynamic 
in 2-player games. (i) The probability of convergence to a PNE is the same for clock-
work and for random playing sequences in 2-player games. The reason is that, under 
the random playing sequence, players’ actions do not change whenever the sequence 
asks the same player to play several times in a row. The profiles that are therefore 
visited along the path are the same under both playing sequences, which induces the 
same probability of convergence to equilibrium. However, (ii) the expected game 
duration will be different since the random playing sequence introduces delays. 
In fact, the expected game duration for the random playing sequence should be 
greater than for the clockwork playing sequence by a factor of 2. The reason is that, 
under the clockwork playing sequence, the players alternate at the tick of each time 
step, whereas, under the random playing sequence, the time it takes for the play-
ing sequence to turn to the other player is Geometric(1

2
 ). Thus the random playing 

sequence can be considered as a slowing down of the clockwork playing sequence in 
which the expected time to play the next step is 2.

4 � Simulation results

In Sects. 4.1 and 4.2, we run simulations of the clockwork and random sequence 
best-response dynamics. Our main goal is to investigate the extent to which our 
asymptotic results are also valid for a small number of players and actions. In 

19  In contrast, for n = 2 , Amiet et  al. (2021) find that “better”- (rather than best-) response dynamics 
converge to a PNE (whenever there is one) with high probability as m → ∞.
20  When k = o(

√
m) , the argument of Φ(⋅) goes to zero. Since Φ(0) = 1∕2 we have that the convergence 

probability goes to 
√
�∕m which is independent of k. If, instead, k∕

√
m → ∞ then the argument of Φ(⋅) 

grows large and since Φ(∞) = 1 , the convergence probability goes zero. Our proof of Proposition 3 
derives the asymptotics for k = o(m2∕3) . The standard normal has small tails outside this range.



715

1 3

Best‑response dynamics, playing sequences, and convergence…

these simulations, for each choice of n and m , we randomly draw 10 batches of 
1000 games. We run the best-response dynamic on each game and find the mean 
frequency of convergence to equilibrium in each batch, and then report the mean 
across the batches. The error bars in our figures are intervals of one empirical 
standard deviation (across the means for each batch).

In Sect. 4.3 we investigate the equilibrium convergence probability of playing 
sequences that interpolate between the extremes of clockwork and random play-
ing sequences, and pay particular attention to the speed of convergence.

4.1 � Simulations of clockwork best‑response dynamics

The blue markers in Fig. 2 show the frequency of convergence to a PNE in our 
simulations for different values of numbers of players and actions. In both pan-
els, the solid black line is the analytical probability of convergence to a PNE in 
2-player m-action games, calculated using Eq. (2) with m1 = m2 = m.

In the top panel, we present simulation outcomes for 2, 3, and 4-player games 
in which all players have the same number of actions. Up to sampling noise, our 
analytical result for 2-player games perfectly matches the numerical simulations. 
We also find that convergence frequency becomes lower for a given number of 
actions as the number of players increases.

The blue markers in the bottom panel of Fig. 2 are the simulation means for dif-
ferent values of n and m , all chosen to ensure that the minimal number of envi-
ronments in those games match the number of environments in a 2-player m-action 
game. All markers line up reasonably well along the solid black line. Corollary 1 

Fig. 2   Frequency of convergence to a PNE for the clockwork best-response dynamic
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implies that the asymptotic convergence probability in games Gn,m and Gn′,m′ is 
approximately the same whenever qn,m = qn�,m� . Our results show that this relation 
holds even for relatively small games.

4.2 � Simulations of random best‑response dynamics

Figure 3 shows the frequency of convergence to a PNE under clockwork vs. random 
best-response dynamics in n-player games with m actions per player.21

As argued in Sect.  3.2, when there are only n = 2 players, the random playing 
sequence has the same convergence probability as the clockwork playing sequence, 
which can be seen in the left panel of Fig. 3.

Looking across the panels, the frequency of convergence to a PNE is decreas-
ing in both n and m for the clockwork playing sequence, but the random playing 
sequence is different because its frequency of convergence rapidly settles near 
1 − 1∕e for n > 2 . Recall, Amiet et  al. (2021) proved that the random sequence 
best-response dynamic always converges to a PNE if there is one when m = 2 and 
n → ∞ . As argued in Sect. 3.1, this gives us an unconditional probability of conver-
gence of 1 − 1∕e ≈ 63% . Our simulations show that the result of Amiet et al. (2021) 
also appears to hold for games with more than two actions provided n > 2 . In fact, 
the random sequence best-response dynamic almost always converges to a PNE in 
games that have a PNE even for relatively small values of n and m.

Fig. 3   Frequency of convergence to a PNE for clockwork vs. random best-response dynamics

21  The results also hold if we allow for different numbers of actions per player.
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4.3 � Simulations of periodic best‑response dynamics

The analytical results of Sect. 3 allowed us to compare the behavior of two extreme 
playing sequences: clockwork and random. We now turn our attention to intermedi-
ate cases. A playing sequence is p-periodic if it consists of a sequence of players of 
length p ≥ n that is repeated forever, with the constraint that each player appears at 
least once in the repeated sequence. In other words,

is a p-periodic playing sequence if for each i ∈ [n] there is some j ∈ [p] such that 
ij = i.

We generate p-periodic playing sequences at random as follows: construct 
a sequence of p − n integers drawn at random from [n] and append the numbers 
1,… , n to this sequence. This results in a sequence of p integers. Now select a ran-
dom permutation of this sequence and call it � . Then �, �, �,… is a p-periodic play-
ing sequence. Clearly, if p = n , we recover clockwork playing sequences. And, fix-
ing n, we recover random playing sequences for p → ∞.

Figure 4 plots the frequency of convergence to a pure Nash equilibrium against 
the length of the random subsequence (namely p − n ) for p-periodic best-response 
dynamics in n = 3 player games with 2 and 3 actions per player. As might be 
expected, the probability of convergence to a Nash equilibrium for p-periodic 
playing sequences is increasing in p.

i1, i2,… , ip, i1, i2,… , ip, i1, i2,… , ip, …

Fig. 4   Frequency of convergence to a PNE for p-periodic best-response dynamics in n = 3 player games
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Figure 5 plots, for different lengths of the random subsequence, the distribution 
of the number of time steps until a pure Nash equilibrium is reached conditional 
on converging to a pure Nash equilibrium for p-periodic best-response dynamics 
in n = 3 player games with 2 and 3 actions per player. Interestingly, conditional 
on converging to a Nash equilibrium, the average number of time steps to reach 
equilibrium is increasing in p. This relates to the findings of Durand and Gaujal 
(2016) who showed that, in expectation, convergence to equilibrium in poten-
tial games is faster under the clockwork playing sequence than under any other 
playing sequence. Here, our results indicate that, over the space of all games, 
the speed of convergence (conditional on converging to equilibrium) is slower 
for playing sequences that have a larger share of random elements (i.e. a larger 
p − n ). The apparent trade-off between the success in finding equilibria vs. the 
speed of convergence to equilibria is an interesting area for future research.

Appendix A: Proofs

The appendix concerns only the clockwork best-response dynamic and presents 
proofs for the results stated in the main body of the paper.

Fig. 5   Conditional speed of convergence to a PNE for p-periodic best-response dynamics in n = 3 player 
games
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Proof of Theorem 1

We start by stating two lemmas that will be used to prove Theorem 1. Lemma 1 
bounds the probability that the clockwork sequence best-response dynamic con-
verges to a pure Nash equilibrium after time t. Lemma 2 bounds the probabil-
ity that the clockwork sequence best-response dynamic converges to a pure Nash 
equilibrium by time t.

Lemma 1  Let ⟨A⃗, s
�
⟩ be generated according to Algorithm 1. For any t ∈ ℕ,

Lemma 2  Let ⟨A⃗, s
�
⟩ be generated according to Algorithm 1. For any t ∈ ℕ,

We now show how Theorem  1 follows from Lemmas 1 and 2 and,  after-
wards, we provide proofs for the lemmas themselves.

Proof of Theorem  1  Let ⟨A⃗, s
�
⟩ be generated according to Algorithm  1. The prob-

ability that the s
�
-best-response dynamic on Gn,m converges to a PNE is equal to the 

probability that ⟨A⃗, s
�
⟩ hits PNE(Gn,m) . Let us start with the upper bound. For any 

t ∈ ℕ,

Equation (3) follows from Lemmas 1 and 2. Now, set

Since n ≥ 2 and mi ≥ 2 for all i, we have 
√
2qn,m log(qn,m) > 1 , so

Pr
�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) after t

�
≤ exp

⎧
⎪⎨⎪⎩
−

��
t

n
− 1

��2

2qn,m

⎫
⎪⎬⎪⎭
.

�
t

n

�
1

qn,m

⎛⎜⎜⎜⎝
1 −

��
t

n

��2

2

n

qn,m

⎞⎟⎟⎟⎠
≤ Pr

�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) by t

�
≤

t

qn,m
.

(3)

Pr
�
⟨A⃗, s

�
⟩ hits PNE(Gn,m)

�

= Pr
�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) by t

�
+ Pr

�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) after t

�

≤
t

qn,m
+ exp

⎧
⎪⎨⎪⎩
−

��
t

n
− 1

��2

2qn,m

⎫
⎪⎬⎪⎭
.

t = n

(⌈√
2qn,m log(qn,m)

⌉
+ 1

)
.
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It follows that

and that

Adding the upper bounds in (4) and (5) yields the desired result.
Let us now turn to the lower bound. For any t ∈ ℕ,

Equation (6) follows from Lemma 2. Now, set

Then,

And since n ≥ 2 and mi ≥ 2 for all i, we have t ≥ 1

2

√
nqn,m , so

Multiplying the lower bounds in (7) and (8) together yields the desired result. 	�  ◻

n

(√
2qn,m log(qn,m) + 1

)
≤ t ≤ n

(√
2qn,m log(qn,m) + 2

)
< 3n

√
2qn,m log(qn,m).

(4)t

qn,m
< 3n

√
2 log(qn,m)

qn,m
,

(5)exp

⎧
⎪⎨⎪⎩
−

��
t

n
− 1

��2

2qn,m

⎫
⎪⎬⎪⎭
≤

1

qn,m
< n

�
2 log(qn,m)

qn,m
.

(6)

Pr
�
⟨A⃗, s

�
⟩ hits PNE(Gn,m)

�
≥ Pr

�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) by t

�

≥

�
t

n

�
1

qn,m

⎛
⎜⎜⎜⎝
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��
t

n

��2

2

n
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⎞
⎟⎟⎟⎠
.
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�√
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n

�
.
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(⌈
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1

2
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�
1
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≥
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2
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Lemmas

We now turn to the proofs of Lemmas 1 and 2. These require additional notation 
which we introduce here.

The notion of convergence given in Sect. 2.4 applies to all playing sequences 
but we can provide a more direct characterization of convergence (and non-con-
vergence) in terms of path properties when the sequence is clockwork. We refer 
to one complete rotation of the clockwork sequence as a round of play; e.g. if 
a round starts at player i then each player plays once in order and the round is 
complete when it is once again i’s turn to play. For any k ∈ ℕ define

to be the first time at which an action profile is repeated k rounds later (and at 
no earlier round). If T⟨a⃗,s

�
⟩(k) is finite, the path ⟨a⃗, s

�
⟩ has the property that from 

time T⟨a⃗,s
�
⟩(k) onwards, the sequence of nk possibly non-distinct action profiles 

at,… , at+nk−1 repeats itself forever, and we say that the path ⟨a⃗, s
�
⟩ (first) hits an 

nk-cycle at time T⟨a⃗,s
�
⟩(k) . Note that there is exactly one k such that T⟨a⃗,s

�
⟩(k) is finite.

If the action profile is at at some time t and no one deviates from this profile in 
a single round (i.e. at = at+n ), then at must be a PNE. Therefore, if the path ⟨a⃗, s

�
⟩ 

hits an nk-cycle at time T⟨a⃗,s
�
⟩(k) and k = 1 ( k > 1 ) then the clockwork sequence 

best-response dynamic converges to a PNE (a best-response cycle of length nk) at 
that time.

Let

denote the first time (necessarily finite) at which the path ⟨a⃗, s
�
⟩ hits a PNE or a best-

response cycle.
For any path ⟨a⃗, s

�
⟩ and for each t ∈ ℕ define

So f⟨a⃗,s
�
⟩(t) is the first time along the path ⟨a⃗, s

�
⟩ that player s

�
(t) encounters the envi-

ronment at−1
−s

�
(t)

 . Finally, define

So F⟨a⃗,s
�
⟩ is the first time (necessarily finite) at which some player encounters an 

environment that they encountered previously along the path.
Remark 1 notes that any path generated by the clockwork best-response 

dynamic must hit a PNE or a best-response cycle before any player encounters an 
environment for the second time.

T⟨a⃗,s
�
⟩(k) ∶= inf

�
t ∈ ℕ ∶ at = at+nk and at ≠ at+nk

�

for all k� ∈ ℕ such that k� < k
�
,

T⟨a⃗,s
�
⟩ ∶= inf

�
T⟨a⃗,s

�
⟩(k) ∶ k ∈ ℕ

�
,

f⟨a⃗,s
�
⟩(t) ∶= min

�
u ≤ t ∶ au−1

−s
�
(u)

= at−1
−s

�
(t)
and s

�
(u) = s

�
(t)
�
.

F⟨a⃗,s
�
⟩ ∶= inf

�
t ∈ ℕ ∶ f⟨a⃗,s

�
⟩(t) < t

�
.
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(a) (b)

Fig. 6   The digraphs above are identical and correspond to the best-response digraph of the game shown 
in Fig. 1 but we now omit labels to avoid clutter. In panel (a), the initial profile is set to a0 . The first few 
elements of the infinite sequence a⃗ are shown. Once at the profile a3 at t = 3 , which is the unique PNE, 
the path remains there forever. Here, T⟨a⃗,s

�
⟩ = T⟨a⃗,s

�
⟩(1) = 3 and F⟨a⃗,s

�
⟩ = 6 . In panel (b), we have a differ-

ent initial profile a0 . The path moves to the bottom left corner on the front face of the cube at t = 1 and 
then cycles forever among the four profiles on the front face of the cube. In fact, T⟨a⃗,s

�
⟩ = T⟨a⃗,s

�
⟩(2) = 1 , 

so the path hits a 6-cycle at time 1: once reached, the (not all distinct) action profiles in the sequence 
a1,… , a6 are repeated forever. Here, F⟨a⃗,s

�
⟩ = 7

◦

(a) (b)

Fig. 7   Illustration of Algorithms 2 and 3. Panel (a) shows the first few elements of a possible path ⟨X⃗, s
�
⟩ 

generated according to the clockwork random walk starting at the profile X0 . Panel  (b) illustrates the 
first few elements of the corresponding path ⟨Y⃗, s

�
⟩ generated according to Algorithm 3, starting with 

an empty digraph and numbering the directed edges according to the time at which they are first placed. 
The paths in panels (a) and (b) are identical up to and including time 6. At time step 7, however, player 
1 encounters the same environment that she had encountered at time 1 ( F⟨X⃗,s

�
⟩ = F⟨Y⃗,s

�
⟩ = 7 ); namely, 

players 2 and 3 each choosing action 1. The first time that player 1 encountered this environment, she 
responded by playing action 2, so she must play action 2 again at time 7. From then on, the path in 
panel (b) will keep cycling among the action profiles on the left-hand side of the cube forever whereas 
the path in panel (a) is allowed to wander freely
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Remark 1  T⟨a⃗,s
�
⟩ < F⟨a⃗,s

�
⟩.

Roughly speaking, T⟨a⃗,s
�
⟩ denotes the time at which the path a⃗ hits an nk-cycle 

(for some k ≥ 1 ) whereas F⟨a⃗,s
�
⟩ denotes the time at which the path completes its 

first circuit.
The quantities T⟨a⃗,s

�
⟩(k) , T⟨a⃗,s

�
⟩ , and F⟨a⃗,s

�
⟩ are illustrated in an example in Fig. 6.

The main challenge posed by paths generated according to Algorithm 1 is that 
they have “memory”: whenever player s

�
(t) encounters an environment that she has 

encountered before (i.e. At−1
−s

�
(t)

= Au−1
−s

�
(u)

 for some u < t with s
�
(t) = s

�
(u) ) then, at 

time t, the player must play the same action that she played when she previously 
encountered the environment (i.e. At

s
�
(t)

= Au
s
�
(u)

 ). This path-dependence complicates 
the analysis of the clockwork best-response dynamic. We therefore study a simpler 
(random walk) process that is “memoryless” to which we couple a dynamic that 
induces the same distribution over paths as Algorithm 1. The coupled dynamic fol-
lows the random walk process until an environment is encountered by some player 
for the second time and becomes deterministic thereafter. We elaborate on our argu-
ment’s reliance on this coupling after the proof of Lemma 1.

The coupled system is described by Algorithms 2 and 3 and is illustrated in 
Fig. 7. ⟨X⃗, s

�
⟩ and ⟨Y⃗, s

�
⟩ denote paths generated according to Algorithms 2 and 3 

respectively.

Algorithm 2 Clockwork random walk

(1) Draw an initial profile X0 uniformly at random from M
(2) For t ∈ N:

(a) Set i = sc(t)
(b) Set Xt

−i = Xt−1
−i

(c) Independently draw Xt
i uniformly at random from [mi]

Algorithm 3 Coupled dynamic

(1) Set Ri(a−i) = 0 for all i ∈ [n] and a−i ∈ M−i

(2) Set the initial action profile to Y0 = X0

(3) For t ∈ N:
(a) Set i = sc(t)
(b) Set Yt

−i = Yt−1
−i

(c) If Ri(Yt−1
−i ) = 0: set Y t

i = Xt
i and Ri(Yt−1

−i ) = Y t
i

If Ri(Yt−1
−i ) �= 0: set Y t

i = Ri(Yt−1
−i )

Algorithm 2 is a “clockwork random walk” on the set of action profiles M . The 
walk starts at some randomly drawn initial profile X0 and, at each time t, moves in 
direction s

�
(t) to a profile chosen uniformly at random from among the ms

�
(t) profiles 

in that direction. A path generated according to this process does not have memory.
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Algorithm 3 describes the coupled dynamic. The process starts at the same initial 
profile as the clockwork random walk. For each player i and environment a−i , we set 
the initial “response” value Ri(a−i) to zero and update it at step (3c) of the algorithm 
in the following manner: if the response value to the current environment Yt−1

−i
 is 

zero, then the environment was never encountered before and, in that case, player i’s 
response value is set to Xt

i
 , the action drawn by the clockwork random walk at time t. 

If, on the other hand, the response value to the current environment Yt−1
−i

 is non-zero 
(i.e. the environment was encountered before), then this value is the action that i 
takes at time t. In other words, ⟨Y⃗, s

�
⟩ has the same memory property that is charac-

teristic of paths generated according to Algorithm 1.
Algorithm 1 essentially draws a best-response digraph “up-front”, then selects 

an initial profile and traces a path by traveling along the edges of the digraph 
starting at the initial profile and moving in direction s

�
(t) at step t. In contrast, 

Algorithm  3 starts with an empty digraph and then generates its edges in an 
“online” manner. Nevertheless, both algorithms induce the same distribution over 
paths, as summarized in the following remark.

Remark 2  Let ⟨A⃗, s
�
⟩ and ⟨Y⃗, s

�
⟩ be generated according to Algorithms 1 and 3 

respectively. Then ⟨A⃗, s
�
⟩ and ⟨Y⃗, s

�
⟩ have the same distribution.

By construction, the sequences X⃗ and Y⃗ must agree at least up to (but not 
including) the time at which some player encounters an environment for the sec-
ond time. At such a time, under Algorithm  3, the player must play the action 
determined by their response function evaluated at that environment but, under 
Algorithm 2, the next action may be any of the available actions for that player. 
Remark 3 summarizes the key relationship between the clockwork random walk 
and the coupled dynamic.

Remark 3  F⟨X⃗,s
�
⟩ = F⟨Y⃗,s

�
⟩.

The lemma below, which concerns paths ⟨X⃗, s
�
⟩ that are generated by the 

clockwork random walk, is useful for proving Lemmas 1 and 2. Under the clock-
work sequence, player i ∈ [n] plays at time hi(k) ∶= i + (k − 1)n for k ∈ ℕ . For any 
i ∈ [n] and any time t ≥ i , define

So k∗
i
(t) is the largest k ∈ ℕ such that hi(k) ≤ t . Between times 1 and t (inclusive), 

player i ∈ [n] plays at times hi(1), hi(2),… , hi(k
∗
i
(t)) and encounters environments 

X
hi(1)−1

−i
,X

hi(2)−1

−i
,… ,X

hi(k
∗
i
(t))−1

−i
 . Lemma 3 establishes bounds on the probability that 

these environments are all distinct.
Define � ∶=

∏
i∈[n] mi to be the cardinality of M.

k∗
i
(t) ∶= 1 +

⌊
t − i

n

⌋
.
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Lemma 3  For any i ∈ [n] and t ∈ ℕ,

Proof  For any i ∈ [n] , the environments Xhi(1)−1

−i
,X

hi(2)−1

−i
,… ,X

hi(k
∗
i
(t))−1

−i
 are inde-

pendent because they are disjoint subsets of the draws of the clockwork random 
walk. Each environment is distributed uniformly on M−i , and since M−i has cardi-
nality �

mi

,

If k∗
i
(t) > 1 +

𝜇

mi

 then the probability in (9) must be zero, and the lemma holds 

trivially ( k∗
i
(t) > 1 +

𝜇

mi

 implies 
⌊
t−i

n

⌋
> 𝜇

mi

 which, in turn, implies 
⌈

t

n

⌉
> 𝜇

mi

 , so the 
lower bound in the statement of the lemma is negative and the upper bound is posi-
tive). We will therefore consider the case in which k∗

i
(t) ≤ 1 +

�

mi

.
We obtain the following upper bound:

The first step follows from exp{x} ≥ 1 + x for all x. The final inequality follows 

from k∗
i
(t) − 1 =

⌊
t−i

n

⌋
≥

⌊
t−n

n

⌋
=
⌊

t

n
− 1

⌋
.

We now turn to the lower bound:

The first step is an application of the Weierstrass product inequality. The final ine-
quality follows from the fact that k∗

i
(t) = 1 +

⌊
t−i

n

⌋
≤ 1 +

⌊
t−1

n

⌋
=
⌈

t

n

⌉
 . 	� ◻

Define m∗ ∶= maxi∈[n] mi , so that qn,m =
�

m∗
.

Proof of Lemma 1  Recall that T⟨A⃗,s
�
⟩ is the first time at which the path ⟨A⃗, s

�
⟩ hits a 

PNE or a best-response cycle. So T⟨A⃗,s
�
⟩ > t is the event that ⟨A⃗, s

�
⟩ hits PNE(Gn,m) 

or a best-response cycle only after time t. It follows that

1 −
mi

�

��
t

n

��2

2
≤ Pr

�
X

hi(k)−1

−i
for k ∈ {1,… , k∗

i
(t)} are all distinct

�
≤ exp

⎧⎪⎨⎪⎩
−
mi

��
t

n
− 1

��2

2�

⎫⎪⎬⎪⎭
.

(9)Pr
[
X

hi(k)−1

−i
for k ∈ {1,… , k∗

i
(t)} are all distinct

]
=

k∗
i
(t)−1∏
k=1

(
1 −

mik

�

)
.

k
∗
i
(t)−1�
k=1

�
1 −

m
i
k

�

�
≤

k
∗
i
(t)−1�
k=1

exp

�
−
m

i
k

�

�

≤ exp

�
−
m

i
(k∗

i
(t) − 1)2

2�

�
≤ exp

⎧
⎪⎨⎪⎩
−
m

i

��
t

n
− 1

��2

2�

⎫
⎪⎬⎪⎭
.

k∗
i
(t)−1∏
k=1

(
1 −

mik

�

)
≥ 1 −

k∗
i
(t)−1∑
k=1

mik

�
≥ 1 −

mi

�

k∗
i
(t)2

2
≥ 1 −

mi

�

(⌈
t

n

⌉)2

2
.
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By Remarks 1, 2, and 3,

Now, let us focus on the path ⟨X⃗, s
�
⟩ and consider a player i satisfying mi = m∗ . The 

environments that player i faces between times 1 and t are given in the sequence 

X
hi(1)−1

−i
,X

hi(2)−1

−i
,… ,X

hi(k
∗
i
(t))−1

−i
 . The event F⟨X⃗,s

�
⟩ > t implies that the environments 

in this sequence are all distinct. Hence

where the final step follows from Lemma 3. 	� ◻

The proof of Lemma 1 illustrates why we study a coupled system. Finding 
an upper bound on the probability that ⟨A⃗, s

�
⟩ hits PNE(Gn,m) after t is central to 

our proof of Theorem  1. Our key step consists in showing that this probabil-
ity is bounded above by the probability that the environments Xhi(1)−1

−i
 , Xhi(2)−1

−i
,…, 

X
hi(k

∗
i
(t))−1

−i
 , which are generated by the clockwork random walk, are all distinct. This 

latter probability is easy to work out because the environments are independent uni-
form random draws. To avoid coupling, one might be tempted to argue that since the 
probability that ⟨A⃗, s

�
⟩ hits PNE(Gn,m) after t is bounded above by the probability 

that the environments Ahi(1)−1

−i
,A

hi(2)−1

−i
,… ,A

hi(k
∗
i
(t))−1

−i
 generated by Algorithm 1 are 

all distinct, one only needs to work out this latter probability. But this probability 
is not straightforward to work out: these environments are not independent uniform 
random draws since they are generated by a path-dependent process.

To prove Lemma 2, we introduce a slight modification of Algorithm  3. Algo-
rithm 4, which describes a dynamic that is also coupled with the clockwork random 
walk, is identical to Algorithm 3 except that for some particular profile x the algo-
rithm is initialized with Ri(x−i) = xi for all i ∈ [n] . This effectively “plants” a sink in 
the digraph (at x).

Pr
�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) after t

�
≤ Pr

�
T⟨A⃗,s

�
⟩ > t

�
.

Pr
�
T⟨A⃗,s

�
⟩ > t

�
≤ Pr

�
F⟨A⃗,s

�
⟩ > t

�
= Pr

�
F⟨Y⃗,s

�
⟩ > t

�
= Pr

�
F⟨X⃗,s

�
⟩ > t

�
.

Pr
�
F⟨X⃗,s

�
⟩ > t

�
≤ Pr

�
X

hi(k)−1

−i
for k ∈ {1,… , k∗

i
(t)} are all distinct

�
≤ exp

⎧⎪⎨⎪⎩
−

��
t

n
− 1

��2

2qn,m

⎫⎪⎬⎪⎭
,
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Algorithm 4 Coupled dynamic with sink x

(1) Set Ri(a−i) = 0 for all i ∈ [n] and a−i ∈ M−i

(2) Set Ri(x−i) = xi for all i ∈ [n]
(3) Set the initial action profile to Z0 = X0

(4) For t ∈ N:
(a) Set i = sc(t)
(b) Set Zt

−i = Zt−1
−i

(c) If Ri(Zt−1
−i ) = 0: set Zt

i = Xt
i and Ri(Zt−1

−i ) = Zt
i

If Ri(Zt−1
−i ) �= 0: set Zt

i = Ri(Zt−1
−i )

In the remaining steps, Algorithm  4 selects a random initial profile and starts 
tracing a path by traveling along edges that (other than those edges already point-
ing to x in the initialization) are generated in an online manner. The paths traced by 
the clockwork random walk and this coupled dynamic with a sink at x must agree 
at least up to (but not including) the time at which either an environment is encoun-
tered by a player for the second time or the environment is x−i for some player i.

⟨Z⃗, x, s
�
⟩ denotes a path generated according to Algorithm 4.

Remark 4  Consider an arbitrary action profile x ∈ M and let ⟨A⃗, s
�
⟩ and ⟨Z⃗, x, s

�
⟩ 

be generated according to Algorithms 1 and 4 respectively. Then the distribu-
tion of ⟨A⃗, s

�
⟩ conditional on x being a pure Nash equilibrium, i.e. conditional on 

x ∈ PNE(Gn,m) , is the same as the distribution of ⟨Z⃗, x, s
�
⟩.

Proof of Lemma 2  For any t ∈ ℕ,

The final step follows from Remark 4; namely, the probability that ⟨A⃗, s
�
⟩ hits {x} by 

time t conditional on x ∈ PNE(Gn,m) is equal to the probability that ⟨Z⃗, x, s
�
⟩ hits {x} 

by time t. We now analyze the expressions (10.1) and (10.2).

(10)

Pr
�
⟨A⃗, s

�
⟩ hits PNE(Gn,m) by t

�

=
�
x∈M

Pr
�
⟨A⃗, s

�
⟩ hits {x} by t and x ∈ PNE(Gn,m)

�

=
�
x∈M

Pr
�
⟨A⃗, s

�
⟩ hits {x} by t ��� x ∈ PNE(Gn,m)

�
Pr

�
x ∈ PNE(Gn,m)

�

=
�
x∈M

Pr
�
⟨Z⃗, x, s

�
⟩ hits {x} by t

�

�������������������������������������
(10.1)

Pr
�
x ∈ PNE(Gn,m)

�
�������������������������

(10.2)
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For (10.2), since payoffs are drawn identically and independently according to the 
atomless distribution ℙ , we have that

We now find upper and lower bounds on (10.1) by relating ⟨Z⃗, x, s
�
⟩ to the clock-

work random walk path ⟨X⃗, s
�
⟩ . We start with the upper bound. Notice that ⟨Z⃗, x, s

�
⟩ 

cannot hit {x} by time t unless X�−1
−s

�
(�) = x−s

�
(�) for some � ≤ t . Therefore

The penultimate step follows from the fact that X�−1
−s

�
(�) consists of n − 1 independent 

uniform random variables (one action for each player other than s
�
(�) ), so X�−1

−s
�
(�) is 

itself uniformly drawn from M−s
�
(�) , and M−s

�
(�) has cardinality �

ms
�
(�)

.

We now turn to the lower bound. If F⟨X⃗,s
�
⟩ > t and X�−1

−s
�
(�) = x−s

�
(�) for some � ≤ t 

then ⟨Z⃗, x, s
�
⟩ must hit {x} by time t. In other words, if no environments are repeated 

for any player and the environment is x−i for some player i by time t, then ⟨Z⃗, x, s
�
⟩ 

must hit {x} by time t. Therefore,

To bound the first term in (13), select a player i satisfying mi = m∗ and notice that 
X

hi(k)−1

−i
= x−i for some k ∈ {1,… , k∗

i
(t)} implies that X�−1

−s
�
(�) = x−s

�
(�) for some 

� ≤ t . Therefore

(11)Pr
[
x ∈ PNE(Gn,m)

]
=

n∏
i=1

Pr

[
Ui(x) ≥ max

x�
i
∈[mi]

Ui

(
x�
i
, x−i

)]
=

1

�
.

(12)

Pr
�
⟨Z⃗, x, s

�
⟩ hits {x} by t

�
≤ Pr

�
t�

𝜏=1

{X𝜏−1
−s

�
(𝜏)} = x−s

�
(𝜏)}

�

≤

t�
𝜏=1

Pr
�
X𝜏−1

−s
�
(𝜏) = x−s

�
(𝜏)

�

=

t�
𝜏=1

ms
�
(𝜏)

𝜇

≤
t

qn,m
.

(13)

Pr
�
⟨Z⃗, x, s

�
⟩ hits {x} by t

�
≥Pr

�
t�

𝜏=1

{X𝜏−1
−s

�
(𝜏) = x−s

�
(𝜏)} and F⟨X⃗,s

�
⟩ > t

�

=Pr

�
t�

𝜏=1

{X𝜏−1
−s

�
(𝜏) = x−s

�
(𝜏)}

����F⟨X⃗,s
�
⟩ > t

�
Pr

�
F⟨X⃗,s

�
⟩ > t

�
.
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The second line follows from the fact that since all the environments for our chosen 
player i are distinct, the events in the union are mutually exclusive. The next step fol-
lows from the fact that our process is invariant under symmetry. So for any 
k ∈ {1,… , k∗

i
(t)} and for all x−i and y−i , 

Pr[X
hi(k)−1

−i
= x−i �F⟨X⃗,s

�
⟩ > t] = Pr[X

hi(k)−1

−i
= y−i �F⟨X⃗,s

�
⟩ > t] which implies that 

Pr[X
hi(k)−1

−i
= x−i �F⟨X⃗,s

�
⟩ > t] =

m∗

𝜇
=

1

qn,m
 . The last step follows from 

k∗
i
(t) = 1 +

⌊
t−i

n

⌋
≥ 1 +

⌊
t

n
− 1

⌋
=
⌊

t

n

⌋
.

To bound the second term in (13), notice that if for each i ∈ [n] the environments 
X

hi(1)−1

−i
,X

hi(2)−1

−i
,… ,X

hi(k
∗
i
(t))−1

−i
 are all distinct then F⟨X⃗,s

�
⟩ > t . Therefore

The penultimate step follows from Lemma 3.
Gathering the results (10), (11), (12), (14), and (15) together yields the desired 

conclusion. 	�  ◻

(14)

Pr

�
t�

𝜏=1

{X𝜏−1
−s

�
(𝜏) = x−s

�
(𝜏)}

����F⟨X⃗,s
�
⟩ > t

�
≥ Pr

⎡
⎢⎢⎣

k∗
i
(t)�

k=1

{X
hi(k)−1

−i
= x−i}

����F⟨X⃗,s
�
⟩ > t

⎤
⎥⎥⎦

=

k∗
i
(t)�

k=1

Pr
�
X

hi(k)−1

−i
= x−i

���F⟨X⃗,s
�
⟩ > t

�

=

k∗
i
(t)�

k=1

m∗

𝜇

≥

�
t

n

�
1

qn,m
.

(15)

Pr[F⟨X⃗,s
�
⟩ > t] ≥ Pr

��
i∈[n]

{X
hi(k)−1

−i
for k ∈ {1,… , k∗

i
(t)} are all distinct}

�

= 1 − Pr

��
i∈[n]

{X
hi(k)−1

−i
for k ∈ {1,… , k∗

i
(t)} are not all distinct}

�

≥ 1 −
�
i∈[n]

Pr
�
X

hi(k)−1

−i
for k ∈ {1,… , k∗

i
(t)} are not all distinct

�

≥ 1 −

��
t

n

��2

2

∑n

i=1
mi

𝜇

≥ 1 −

��
t

n

��2

2

n

qn,m
.
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Results for 2‑player games

In games with n = 2 players, the action taken by player s
�
(t) at t corresponds exactly 

to the environment that player s
�
(t + 1) faces at t + 1 . We take advantage of this 

property in our proof of Theorem 2 below.

Proof of Theorem 2  Let �t denote the probability under the 2-player clockwork ran-
dom walk that, by time t, no player plays an action that corresponds to an environ-
ment that was ever encountered by the other player. For t ≥ 1 we have

The term in parentheses is the probability that player s
�
(t + 1) does not repeat any of 

the 
⌈

t

2

⌉
 environments encountered by player s

�
(t) by time t. Solving with �1 = 1 

yields

and, evidently, �t is non-negative provided t ≤ 2m∗.
For the path to hit a 2k-cycle at time t, it must be that (i) by time t + 2k − 2 , no 

player plays an action that corresponds to an environment that was ever encountered 
by the other player, and (ii) the action taken by player s

�
(t + 2k − 1) at time 

t + 2k − 1 is equal to the environment encountered by player s
�
(t) at time t. So, the 

probability that the clockwork sequence best-response dynamic converges to a 
2k-cycle at time t is �t+2k−2

ms
�
(t+2k−1)

 , which completes the proof. 	�  ◻

For the remaining proofs, we employ the following standard notation for 
asymptotics: we write f (n) = o(g(n)) if f (n)∕g(n) → 0 as n → ∞ , f (n) ∼ g(n) if 
f (n)∕g(n) → 1 as n → ∞ , and f (n) = O(g(n)) if there is M > 0 and N such that 
|f (n)| ≤ Mg(n) for all n ≥ N.

Proof of Theorem 3  �t is precisely the probability that the clockwork best-response 
dynamic does not hit a 2k-cycle (for any k) until at least time t. With m1 = m2 = m 
we can write �t as

Using Stirling’s formula which states that

�t+1 = �t ×

⎛
⎜⎜⎜⎝
1 −

�
t

2

�

ms
�
(t+1)

⎞
⎟⎟⎟⎠
.

�t =
t∏

i=1

(
1 −

1

ms
�
(i)

⌊
i

2

⌋)
,

t�
i=1

�
1 −

1

m

�
i

2

��
=

⎧⎪⎨⎪⎩

m!2

(m−
t+1

2
)!2mt+1

if t is odd�
m−

t

2

m

�
m!2

(m−
t

2
)!2mt

if t is even
.
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as n → ∞ , we obtain

and

whenever m − t → ∞ . Taking a logarithm of the last expression we get

Provided that t = o(m2∕3) , the second term goes to zero and therefore Eq. (17) 
behaves asymptotically like exp{−t2∕(4m)} . An identical argument shows that, 
under the same conditions, (16) is also asymptotically exp{−t2∕(4m)} . Hence,

This completes the proof of Theorem  3. Note that approximation (18) holds uni-
formly in the range [1, o(m2∕3)] . 	�  ◻

Proof of Proposition 3  Let T = T(m) satisfy T = o(m2∕3) and k = o(T) . We assume 

that T ≥
m2∕3

ln(m)
 so that T is not too small, and we split the summation in (2) into two 

ranges: t ≤ T  and t > T  . Since (18) holds uniformly in our first range, we have

We now approximate the summation on the right-hand side with an integral. Firstly, 
note that

n! ∼
√
2�n ⋅ nn exp{−n},

(16)m!2

(m −
t+1

2
)!2mt+1

∼

(
m −

t+1

2

m

)t−2m

exp{−(t + 1)},

(17)

(
m −

t

2

m

)
m!2

(m −
t

2
)!2mt

∼

(
m −

t

2

m

)t−2m

exp{−t},

−t + (t − 2m) ln
(
1 −

1

m

t

2

)
= −t + (t − 2m)

(
−
1

2

t

m
−

1

8

t2

m2
+ O

(
t3

m3

))

= −
1

4

t2

m
+ O

(
t3

m2

)
.

(18)
t∏

i=1

(
1 −

1

m

⌊
i

2

⌋)
∼ exp

{
−

t2

4m

}
.

1

m

T∑
t=1

t+2(k−1)∏
i=1

(
1 −

1

m

⌊
i

2

⌋)
∼

1

m

T∑
t=1

exp

{
−
(t + 2(k − 1))2

4m

}
.
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where the first step uses the transformation x = (t + 2(k − 1))∕
√
2m . Furthermore,

which goes to zero faster than (19). Since

for any positive and decreasing function f (⋅) , it follows that

It remains for us to show that the summation (2) over the second range is negligible. 
Since exp{x} ≥ 1 + x and ⌊x⌋ > x − 1 for all x, we obtain the following upper bound:

This expression is small compared to the other half of the sum. 	�  ◻
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(19)

1

m ∫

T+1

1

exp

�
−
(t + 2(k − 1))2

4m

�
dt =

�
2

m ∫

T+1+2(k−1)√
2m

2k−1√
2m

exp

�
−
x2

2

�
dx

∼

�
2

m ∫

∞

2k−1√
2m

exp

�
−
x2

2

�
dx

= 2

�
�

m

�
1 − Φ

�
2k − 1√

2m

��
,

1

m �

1

0

exp

{
−
(t + 2(k − 1))2

4m

}
dt ≤

1

m
,

�

T+1

1

f (t)dt ≤

T∑
t=1

f (t) ≤
�

T

0

f (t)dt ≤
�

T+1

1

f (t)dt +
�

1

0

f (t)dt,

1

m

T�
t=1

exp

�
−
(t + 2(k − 1))2

4m

�
∼ 2

�
�

m

�
1 − Φ

�
2k − 1√

2m

��
.

1

m

2(m−k+1)∑
t=T+1

t+2(k−1)∏
i=1

(
1 −

1

m

⌊
i

2

⌋)
≤

1

m

2(m−k+1)∑
t=T+1

T+1+2(k−1)∏
i=1

(
1 −

1

m

⌊
i

2

⌋)

≤
1

m

2(m−k+1)∑
t=T+1

exp

{
−
1

m

T+1+2(k−1)∑
i=1

(
i

2
− 1

)}

≤
2m − 2k − T + 1

m
exp

{
−

1

4m
(T + 2(k − 1) − 2)2

}
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