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Abstract
Wythoff Nim is a classical combinatorial game of queen moves on a chessboard. 
There are many ways to describe its P-positions (safe positions to move to). One 
way is to code them by the Fibonacci word 010010100100101..., which is the unique 
fixed point of the substitution of 0 by 01, and of 1 by 0. The coordinates of the n-th 
P-position are encoded by the location of the n-th zero and the n-th one in the Fibo-
nacci word. We show that a minor modification of the rules of Wythoff Nim leads 
to a game with P-positions that are coded by 010010010010100100... This word can 
be derived by deleting all 2’s from the Tribonacci word, which is the unique fixed 
point of the substitution of 0 by 01, of 1 by 02, and of 2 by 0.

Keywords Impartial combinatorial game · k-Bonacci word · Integer sequence

Mathematics Subject Classification 91A46 · 68R15

1 Introduction

Wythoff Nim is played by two people, taking alternate turns. Alice places a chess 
Queen on a large chessboard and Bob moves first. The Queen moves in the usual 
way but only west, south, or southwest, always moving closer to the lower left 
corner of the board. The player who gets the Queen in this corner is the winner. 
A position is safe if Alice can place the Queen there, knowing that if she does not 
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make any mistake later on, then Bob cannot win. This game has been extensively 
studied and modified because of the remarkable properties of the coordinates of 
the safe positions. The survey articles Duchêne et al. (2017) and Larsson (2020) 
give a comprehensive account.

In our modification of Wythoff Nim, the Queen can bounce against a side 
and continue her way, as long as the overall (Manhattan) distance to the cor-
ner decreases. More specifically, a move in the southwest direction can bounce 
against the left side and continue in the southeast direction. Or it can bounce 
against the bottom side and continue in the northwest direction. We need to con-
sider only one bounce. A second bounce would result in a symmetric position. 
The Queen cannot return to the starting position, and cannot bounce when posi-
tioned at the side of the board, because the distance to the corner has to decrease.

The order of the coordinates in a safe position is unimportant because of the 
symmetry of the game with respect to the main diagonal. We take the first coordi-
nate to be smaller than the second. We can line up the safe positions (an, bn) in an 
increasing sequence. If we denote the sequence (an) by A and (bn) by B and if we 
ignore the trivial safe position (0, 0) then we get the following table:

Some patterns emerge from this table. The A and B sequences are complemen-
tary, and the sequences of differences and sums are complementary as well. The 
differences bn − an increase slowly, sometimes skipping a number. The bn-th entry 
in A is either equal to an + bn or to an + bn − 1 . These properties are very similar 
to those of the safe positions of Wythoff Nim. The sequences A and B for Wythoff 
Nim are also complementary and they satisfy bn − an = n and abn = an + bn , see 
Gardner (1977). By allowing the Queen to bounce against a side, we have cre-
ated slight irregularities in the sequence of safe positions, but the pattern of these 
irregularities can be precisely described.

The Tribonacci word �3 is an infinite string of the three symbols 0, 1, 2:

It belongs to a family of k-bonacci words �k , which are infinite strings of k  sym-
bols, of which the Fibonacci word �2 is the best known and most studied Baake and 
Grimm (2013)  and Lothaire (2002). We will encounter these words below in our 
analysis of Table 1. The steps that we need to take to prove our results generalize to 
arbitrary k-bonacci words. That is why we put our analysis of the game in this wider 
setting.

The Tribonacci word is listed as A0808 43 in the Online Encyclopedia of Inte-
ger Sequences. It is constructed by iteratively applying the Tribonacci or Rauzy 
map �(0) = 01, �(1) = 02, �(2) = 0 , introduced in Rauzy (1982). Starting from 0, 
the finite words

produce �3 in the limit. If wn is the n-th finite word in this iteration, then 
wn = wn−1wn−2wn−3 , hence the name ‘Tribonacci’. It is listed in the OEIS as A3053 
86. If we delete all 2’s from the Tribonacci word, then we get

(1)�3 = 0102010010201010201001020102010010201010201⋯ .

0, 01, 0102, 0102010, 0102010010201, …

https://oeis.org/A080843
https://oeis.org/A305386
https://oeis.org/A305386
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A quick comparison of this sequence and Table 1 indicates that the location of the 
n-th zero and the n-th one corresponds to (an, bn).

Table  1 has appeared before in the analysis of an impartial game by Duch-
êne and Rigo. They proved that � and � are complementary (Duchêne and Rigo 
2008a, Cor. 3.6). The sequences A and B from that table are listed as A140100 
and A140101 in the OEIS. They also appear in the Greedy Queens on the spiral 
problem, which was solved by Dekking et al. (2020). The problem here is to place 
Queens on an infinite ℤ × ℤ chess board, in such a way that none of the Queens 
attack each other. The squares of the chess board are numbered along a square 
spiral, on which a new Queen is placed if it does not attack any earlier Queen.

The structure of our paper is as follows. We first define our modification of 
Wythoff Nim as a take-away game and show how Table 1 can be generated by a 
mex-rule. Our main result Theorem 1 states that the locations of the 0’s and 1’s in 
sequence 2 indeed correspond to an and bn . To prove it we introduce the notion of 
differencing tables of general k-bonacci words. It turns out that the sequences A 
and B can be obtained by differencing. The sequences � and � can be obtained by 
differencing once more. We prove in Theorem 2 that if we difference twice, then 
we get sequences that partition the integers. Then we show in Theorem  3 that 
Table 1 is indeed a table with differences and double differences, which settles 
our main result. Theorem 3 also settles that the differences bn − an skip a number 
at index n if and only if the n-th letter of the Tribonacci word is equal to 1.

We have searched for take-away games that can be coded by the 4-bonacci 
words but were unable to find any. We do establish a mex-rule to generate the 
tables of the 4-bonacci word in Theorem  4. We conjecture that abn − an − bn is 
either −1 or 0 and we prove that it is bounded by −2 and 1 in Theorem 5.

Substitutions are studied in combinatorics of words (Lothaire 2002), which is a 
well-developed field of study. We adopt some of the terminology from combina-
torics of words throughout the paper.

2  Splithoff: a modification of Wythoff Nim

Wythoff Nim can also be defined as a take-away game on two piles of counters. 
Two players alternately either take a positive number of counters from a single 
pile (at most the whole pile), or an equal positive number from both piles (at most 
the number of the smallest pile). We modify Wythoff Nim by adding an option. 
If a player takes an equal number of counters from both piles leading to a single 
pile (taking away the smallest pile), then he can split the remaining pile into two. 
For instance, from position (2, 6) (as in the chess diagram in Fig. 1) it is possible 
to move to (1, 3) by taking 2 counters from both piles and splitting the remainder 
into 1 and 3. A split is only allowed after taking counters from both piles. We call 
this Splithoff. We refer to the three possible moves as single, double, and split.

(2)� = 0100100100101001001001001001001010010010010⋯ .
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We denote a position in this game as (x, y), in which x is the number of counters 
on the smallest pile. In particular, x and y are in ℕ ∪ {0} . We write d(x, y) = y − x 
and s(x, y) = x + y (note that this is the Manhattan distance to the corner).

Lemma 1 There is a move from (x, y) to (x�, y�) if and only if the following two condi-
tions hold 

1. s(x, y) > s(x�, y�)

2. {x, y} ∩ {x�, y�} is non-empty or d(x, y) ∈ {d(x�, y�), s(x�, y�)}.

Proof If there is a move between (x,  y) and (x�y�) , then condition (1) guarantees 
that it is from (x, y) to (x�, y�) . It suffices to check that condition (2) is equivalent to 
the fact that there is a single, double, or split between the positions. The intersec-
tion {x, y} ∩ {x�, y�} is non-empty if and only if a pile in (x, y) is equal to a pile in 
(x�, y�) . Or equivalently, {x, y} ∩ {x�, y�} is non-empty if and only if there is a single 
between the two positions. Similarly, d(x, y) = d(x�, y�) if and only if there is a dou-
ble between the two positions. Finally, d(x, y) = s(x�, y�) if and only if there is a split 
from (x, y) to (x�, y�) (note that x = 0 is ruled out in this case, by condition (1)).   ◻

The standard method of constructing the P-positions (safe positions) is by 
recursion, starting from the losing position (0, 0) which has no move. Let N0 be 
the positions with a move to (0, 0); these are all N -positions (unsafe positions). 

Fig. 1  Possible moves of a 
reflecting Queen in our modifi-
cation of Wythoff Nim

Table 1  The first fifteen non-
zero safe positions for our 
modification of Wythoff Nim, 
alongside their differences � and 
sums � in the header and the 
footer of the table

� 1 2 4 5 6 7 9 10 11 13 14 15 16 18 19

A 1 3 4 6 7 9 10 12 14 15 17 18 20 21 23
B 2 5 8 11 13 16 19 22 25 28 31 33 36 39 42
� 3 8 12 17 20 25 29 34 39 43 48 51 56 60 65
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Remove N0 from the game. Let P1 be the positions with no move in this reduced 
game; these are all P-positions. Let N1 be the positions with a move to P1 . 
Remove N1 from the game, etc. The union of all Pi including {(0, 0)} is equal to 
the set of all P-positions. If we carry out this procedure for Splithoff, it turns out 
that it produces one new P-position at a time, i.e., one column in Table  1 at a 
time.

2.1  A mex‑rule for the P‑positions

Let ℕ = {1, 2,…} denote the natural numbers. For a proper subset S ⊂ ℕ , the mini-
mal excludant mex(S) is the smallest element of the complement ℕ ⧵ S . It is well-
known how the P-positions for Wythoff Nim can be generated from the mex. We 
will derive a similar rule for the P-positions in Splithoff in Table 1.

For S ⊂ ℕ , let si denote the i-th element of S, and let Si = {s1,… , si} be the 
subset of the first i elements of S. In particular, S0 is the empty set. Table 1 con-
tains four rows �,A,B,� , which are all subsets of ℕ . We denote their elements by 
� = {�1, �2,…} and A = {a1, a2,…} , etc. The following rule set generates one new 
element at a time, for each of these sets.

Think of this as a column generation. Since A and � are defined by the mex , both 
{�,�} and {A,B} partition ℕ . The sequence (an, bn) of P-positions of Splithoff Nim 
is produced by this rule.

The number zero is rather special and we do not include (0,  0) in the table of 
safe positions, even though P0 = {(0, 0)} . The set of unsafe positions N0 , as defined 
above, consists of all positions (x, y) such that x = 0 or x = y . If we remove N0 from 
the game, then the remaining positions (x, y) satisfy 0 < x < y . In the reduced game, 
the only position without a move is (1, 2), i.e., P1 = {(1, 2)} . It is the first safe posi-
tion in our table.

Lemma 2 Let ai and bi be the i-th element generated by the mex-rule for A and B. 
Then Pi = {(ai, bi)}.

Proof By induction. We already know it is true for i = 1 . Assume that the state-
ment is true for all i ≤ k . We need to prove that it is true for k + 1 . At this stage, 
we remove the set Nk of all positions with a move to (ak, bk) . By construction, the 
reduced game consists of all positions that have no move to (ai, bi) for i ≤ k . We 
need to show that Pk+1 , the set of positions with no move in the reduced game, is 
equal to {(ak+1, bk+1)}.

(3)

�i+1 =mex
(
�i ∪ �i

)

ai+1 =mex
(
Ai ∪ Bi

)

bi+1 =ai+1 + �i+1

�i+1 =ai+1 + bi+1
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First of all, observe that (ak+1, bk+1) is a position in the reduced game, 
i.e., admits no move to (ai, bi) for i ≤ k . Indeed, if there would be such a 
move, then Lemma  1 implies that either {ak+1, bk+1} ∩

(
Ak ∪ Bk

)
 is non-

empty or �k+1 = d(ak+1, bk+1) ∈ �k ∪ �k . The latter is impossible by the 
definition of �k+1 . By the definition of ak+1 we have ak+1 ∉ Ak ∪ Bk . Since 
bk+1 = ak+1 + 𝛿k+1 > ak + 𝛿k = bk , we have bk+1 ∉ Ak ∪ Bk . Therefore 
{ak+1, bk+1} ∩

(
Ak ∪ Bk

)
 is empty. It follows that (ak+1, bk+1) is a position in the 

reduced game.
Let (x, y) be a position in the reduced game. Suppose {x, y} ∩

(
Ak ∪ Bk

)
 is non-

empty, or d(x, y) ∈ �k ∪ �k . It follows from condition (2) in Lemma 1 that there is a 
move between (x, y) and (ai, bi) for some i ≤ k if s(x, y) > s(ai, bi) . Since (x, y) is in 
the reduced game, there is no move from (x, y) to (ai, bi) , hence s(ai, bi) > s(x, y) . It 
follows from Lemma 1 that there is a move from (ai, bi) to (x, y). Now (ai, bi) only 
has moves to unsafe positions, i.e., positions that have a move to (aj, bj) for j < i , or a 
move to (0, 0). It follows that (x, y) has a move to (aj, bj) or (0, 0), which is nonsense. 
We conclude that {x, y} ∩

(
Ak ∪ Bk

)
= � and d(x, y) ∉ �k ∪ �k for all positions (x, y) 

in the reduced game. In particular, x ≥ ak+1 and y ≥ ak+1 + �k+1 = bk+1 . It follows 
that (ak+1, bk+1) is the position that is closest to the corner in the reduced game. Fur-
thermore, all other positions (x, y) have a move in the reduced game. If x = ak+1 then 
there is a single from (x, y) to (ak+1, bk+1) . If x > ak+1 then there is a double from 
(x, y) to (ak+1, ak+1 + d(x, y)) , which is in the reduced game by Lemma 1. We con-
clude that the mex-rule in Eq. 3 generates the columns in Table 1.   ◻

3  The positions table of the k‑bonacci substitution

We show that Table 1 can be derived from the Tribonacci word �3 . A more general 
statement is possible, at no extra effort. This is why we study tables that are gener-
ated by general k-bonacci substitutions, instead of just the Tribonacci substitution. The 
k-bonacci substitution �k on the alphabet {0,… , k − 1} is given by

The k-bonacci word �k is the unique fixed point of this substitution. In particular, �2 
is the Fibonacci word and �3 is the Tribonacci word. If k = 4 , then starting from 0, 
the finite words

converge to �4 . In our analysis, k > 2 is fixed and we will sometimes write � and � 
instead of �k and �k.

The k-bonacci word � is a fixed point of � . If we apply � to the string 
� = �1�2�3�4�5 ⋯ then we get the concatenated string

𝜃k ∶

{
j ↦ 0 (j + 1), if j < k − 1

k − 1 ↦ 0
.

0, 01, 0102, 01020103, 010201030102010, 01020103010201001020103010201
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which is equal to � . Each �(�i) contains exactly one 0 (and is equal to 0 if �i is equal 
to k − 1 ). Therefore, the i-th occurence of 0 is in �(�i) and the difference between 
the i-th occurence and the (i + 1)-th occurence is equal to two, unless �i = k − 1 in 
which case the difference is one. This can be seen in the first row of the positions 
table of the Quadribonacci word �4 below. The difference between entries in the first 
row is equal to two, unless the entry is headed by 3 (Table 2).

If we apply �i+1 for i < k to � = �1�2�3�4�5 ⋯ then we get the concatenated 
string

which is again equal to � . It turns out that each of these words contains the letter i 
exactly once.

Lemma 3 For each i < k and each letter j ∈ {0, 1,… , k − 1} the word �i+1(j) con-
tains the letter i exactly once and always at position 2i . Indeed, it occurs in �i+1(j) as 
the final letter of �i(0).

Note that in �i+1 , the exponent has i as a number but the word �i+1(j) has i as a 
letter.

Proof We prove that i occurs only once in �i+1(j) as the final letter of �i(0) . This is 
true if i = 0 , which occurs in each �(j) at the first position. By induction, assume that 
the statement is true for i − 1 . Since i is in �(j) if j = i − 1 , we have that i occurs only 
once in �(�i(j)) , as the final letter of �(�i−1(0)) . Since this substitution doubles the 
length, as long as i < k , the result follows.   ◻

The positions of i can now easily be found from the concatenated string 
�i+1(�1)�

i+1(�2)�
i+1(�3)�

i+1(�4)�
i+1(�5)⋯ by using the lengths of the words 

�i+1(j) and the string of letters in the k-bonacci word. We summarize this as a 
lemma.

�(�1)�(�2)�(�3)�(�4)�(�5)⋯ ,

�i+1(�1)�
i+1(�2)�

i+1(�3)�
i+1(�4)�

i+1(�5)⋯ ,

Table 2  The positions table of the Quadribonacci word �4 , which is displayed in the gray heading line 

The first row X0 contains the positions of the letter 0 in �4 , the second row X1 contains the position of 1, 
etc. The first column contains consecutive powers of 2

�4 0 1 0 2 0 1 0 3 0 1 0 2 0 1

X
0 1 3 5 7 9 11 13 15 16 18 20 22 24 26

X
1 2 6 10 14 17 21 25 29 31 35 39 43 46 50

X
2 4 12 19 27 33 41 48 56 60 68 75 83 89 97

X
3 8 23 37 52 64 79 93 108 116 131 145 160 172 187
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Lemma 4 Let �i(j) be the length of �i+1(j) . If a column is headed by j in the positions 
table, then the difference between that column and the next is given by

If we add 4 to the final row in Table 1, we get a subsequence of the row right 
above it. The same happens if we subtract 4. This is a general property of the posi-
tions table.

Lemma 5 For a subset V of the integers, let V + a be its translate by a. Consider the 
rows of the positions table as sets. We have that

Furthermore 
{
Xi+1 − 2i

}
∩
{
Xi+1 + 2i

}
 contains the elements m + 2i with m taken 

from the columns labeled by k−1.

Proof The letter i + 1 occurs once in every word of the concatenation

at position 2i+1 as the final letter of �i+1(0) . In each �i+1(�j) we have that i occurs at 
most twice. To see that, write �i+1(j) = �i(�(j)) . If j < k−1 then �(j) consists of the 
two letters 0(j+1) , and i occurs twice in �i+1(0)�i+1(j + 1) . If j = k−1 then �(j) = 0 
and i only occurs once in �i+1(�j) , while i+1 occurs as its final letter. The result now 
follows from Lemma 3.   ◻

4  The difference table

Consider the positions table of the Tribonacci word below. If we subtract the first 
row from the second, and the second from the third, then we get the P-positions of 
Table 1. We prove this below (Table 3).

(4)

⎡
⎢⎢⎢⎣

𝓁0(j)

𝓁1(j)

⋮

𝓁k−1(j)

⎤
⎥⎥⎥⎦

Xi =
{
Xi+1 − 2i

}
∪
{
Xi+1 + 2i

}
.

�i+2(�1)�
i+2(�2)�

i+2(�3)�
i+2(�4)�

i+2(�5)⋯

Table 3  The positions table for the Tribonacci word 

Observe that X1 − X
0 is equal to row A in Table 1 and that X2 − X

1 is equal to row B

�3 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0

X
0 1 3 5 7 8 10 12 14 16 18 20 21 23 25 27 29

X
1 2 6 9 13 15 19 22 26 30 33 37 39 43 46 50 53

X
2 4 11 17 24 28 35 41 48 55 61 68 72 79 85 92 98
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The difference table of the k-bonacci word has rows �j = Xj+1 − Xj . We will 
prove that its rows again form a partition of ℕ . It follows from Lemma 4 and Eq. 4 
that the difference table can be derived from � . The step size is

if j is the letter heading the column (Table 4).

Lemma 6 For each 1 ≤ i ≤ k − 1 and each letter j

where �i
j
 is Kronecker’s delta.

Proof We defined �i(j) as the length of �i+1(j) . The substitution � replaces each letter 
by two letters, except the final letter k−1 , which is replaced by a single 0. It suffices 
to prove that �i(j) contains no letter k−1 unless k − 1 = i + j , in which case it con-
tains a single k−1.

If we start from j, the only instance that reaches k − 1 is produced from 
j → j + 1 → ⋯ . All other instances can only be produced from a 0, but do not reach 
k−1 because i ≤ k − 1 . The sequence j ↦ j + 1 produces k−1 after k − 1 − j substi-
tutions. Hence, we have one non-doubling letter if i = k − 1 − j .   ◻

In the positions table, the difference between consecutive entries in a row 
is minimal if an entry is in a column labeled by k−1 , and maximal if a row is 
labeled by 0. This is because �i(j) is minimal if j = k−1 and maximal if j = 0 . 
The same holds in the difference table.

Lemma 7 The difference between consecutive entries in row �i is at least 2i and at 
most 2i+1 . In row �k−2 the maximum difference is 2k−1 − 1.

Proof The differences in row �i are equal to �i+1(j) − �i(j) for the letters  j. By the 
previous lemma, these differences are

(5)

⎡
⎢⎢⎢⎣

𝓁1(j) − 𝓁0(j)

𝓁2(j) − 𝓁1(j)

⋮

𝓁k−1(j) − 𝓁k−2(j)

⎤
⎥⎥⎥⎦

�
i(j) = 2�i−1(j) − �k−1

i+j
,

Table 4  The difference table for the Quadribonacci word 

Steps between columns depend on the letter in the header. If we add or subtract 2 in the third row, then 
we get entries in the second row, etc

�4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 0

�0 1 3 5 7 8 10 12 14 15 17 19 21 22 24 26 28

�1 2 6 9 13 16 20 23 27 29 33 36 40 43 47 50 54

�2 4 11 18 25 31 38 45 52 56 63 70 77 83 90 97 104
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Now �i(j) is the length of �i+1(j) which is at most 2i+1 . It is equal to 2i if j = k − 1 , in 
which case �k−1

i+j+1
= 0.

Finally, if i = k − 2 then �k−1
i+j+1

= 1 at j = 0 and the other substitutions have length 
< 2k−1 . Therefore, the upper bound is 2k−1 − 1 in this case.   ◻

The following result is analogous to Lemma 5.

Lemma 8 Consider the rows of the difference table as sets. We have that

Furthermore 
{
�i+1 − 2i

}
∩
{
�i+1 + 2i

}
 contains the elements m + 2i with m taken 

from the columns labeled by k−1.

Proof By Lemma 5 we have

If an entry in Xi+1 is in Xi+2 − 2i+1 then the corresponding entry in Xi is in Xi+1 − 2i , 
and vice versa. Therefore we can write this intersection as

which is �i+1 − 2i ∪ �i+1 + 2i . The intersection �i+1 − 2i ∩ �i+1 + 2i contains m + 2i 
for which the difference between m and the consecutive entry is 2i+1 , which is the 
least possible difference according to Lemma 7. It occurs in columns labeled by the 
letter k−1 .   ◻

Lemma 9 The rows in the difference table are disjoint as sets:

Proof Suppose j > i . By iterating Lemma  8 we find that each element of �i is 
in some �j ± 2j−1 ±⋯ ± 2i . By Lemma  7 the minimal distance in �j is 2j and 
2j−1 +⋯ + 1 < 2j . Therefore, �i and �j are disjoint.   ◻

Lemma 10 The rows in the difference table form a partition of ℕ.

Proof We only need to prove that the rows cover ℕ . By iterating Lemma 8 each �i 
is the union of all �k−2 ± 2k−2 ±⋯ ± 2i , with �k−2 the bottom row of our table. The 
union of the rows is equal to the union of �k−2 + n for all integers n that can be writ-
ten as ±2k−2 ±⋯ ± 2i for some i and some choice of the signs. Here we take n = 0 if 
i = k − 2 . It is not hard to verify that each n ∈ {−2k−2 + 1,… , 2k−2 − 1} admits such 
an expansion. The result now follows from Lemma 7 which says that the maximum 
difference in �k−2 is 2k−1 − 1 .   ◻

�
i(j) − �k−1

i+j+1
.

�i =
{
�i+1 − 2i

}
∪
{
�i+1 + 2i

}
.

�i = Xi+1 − Xi =
(
Xi+2 − 2i+1 ∪ Xi+2 + 2i+1

)
−
(
Xi+1 − 2i ∪ Xi+1 + 2i

)
.

�i =
(
Xi+2 − Xi+1 − 2i+1 + 2i

)
∪
(
Xi+2 − Xi+1 + 2i+1 − 2i

)
,

�i ∩ �j = � if i ≠ j.
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Theorem  1 The word � , which is derived from the Tribonacci word by deleting 
the  2’s, codes the P-positions of Splithoff. More specifically, the P-positions are 
(an, bn) where an is the location of the n-th 0 and bn is the location of the n-th 1 in �.

Proof The difference table of �3 consists of two rows. We will prove below in Theo-
rem 3 that the difference table of �3 gives the P-positions of Splithoff. The step size 
in the first row of this table is two in columns headed by 0 and it is one in the col-
umns headed by 1 or 2. This implies that the first row corresponds to the locations 
of 0 if we apply the coding 0 ↦ 01, 1 ↦ 0, 2 ↦ 0 to �3 . We denote this coding by 
� . The Tribonacci word �3 is the limit of �n(0) . We conclude that � is the limit of 
�(�n(0)).

Let � be the coding 0 ↦ 0, 1 ↦ 1, 2 ↦ � , where � denotes the empty word. The 
coding �◦� is equal to � . Therefore �(�n+1(0)) = �(�n(0)) and taking limits gives 
�(�3) = � .   ◻

5  The double‑difference table

We continue by differencing the differences

and collect these as rows in a double-difference table. It turns out that we need to 
add a bottom row containing the sum

to turn the rows of the table into a partition. We call this the sum row and we call the 
other rows the difference rows. Again, we add the k-bonacci word � in the header. 
For the Tribonacci word we have one difference row and one sum row. These are the 
� and � of Table 1.

Lemma 6 implies that the step between columns is

Consider the row d�1 in Table  5, in particular the entries that are headed by the 
letter  1. These differences are 5, 18, 30, 43,… , and if we add 2, then we get the 
sequence � . For a general k, let M ⊂ d𝛥k−3 be the subsequence of entries headed by 
the letter 1. We will prove below that M + 2k−3 is equal to the sum row � , by show-
ing that both sequences have the same initial element, and the same steps (differ-
ences between consecutive elements).

By Lemma  3 the 1’s occur in �k as the second letters in the concatenation 
�2(�1)�

2(�2)�
2(�3)⋯ . Note that �2(h) is equal to 010(h + 2) if h < k − 2 , equal to 

010 if h = k − 2 , and equal to 01 if h = k − 1 . If we write �k as a concatenation 

d�i = �i+1 − �i

� = �0 +⋯ + �k−2

(6)

⎡⎢⎢⎢⎣

𝓁2(j) − 2𝓁1(j) + 𝓁0(j)

⋮

𝓁k−1(j) − 2𝓁k−2(j) + 𝓁k−3(j)

𝓁k−1(j) − 𝓁0(j)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

𝓁0(j) − �k−1
2+j

⋮

𝓁k−3(j) − �k−1
k−1+j

𝓁k−1(j) − 𝓁0(j)

⎤⎥⎥⎥⎦
.
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0w1w2w3 … of words wj with initial letter 1 and no other occurences of that letter 
(i.e., return words as defined in Durand (1998)), then the wj are either equal to 
10(h+2)0 or 100 or 10. In other words, the return word wj is equal to �2(�j) if we 
delete the initial zero, and add a zero to the end.

Lemma 11 The j-th step in M has length �k−1(�j) − �0(�j) . Therefore, the steps in 
M are equal to the steps of �.

Proof The steps in �k−3 are equal to �k−3(j) − �k−1
k−1+j

 . The Kronecker-delta is zero, 
unless j = 0 . If the j-th return word is 10(h+2)0 for h < k − 2 , then the j-th step in M 
is equal to

If we extend our notation and let �k−3(w) be the sum of the �k−3(j) over the letters in 
w, then we can write this as

where wj is the return word. This equation holds because �2(�j) has the same let-
ters as wj and because 𝜔j < k − 2 . If �j = k − 2 then the return word is 100 which 
contains two zeroes, and the same equation holds. If �j = k−1 then the return 
word 10 contains only one zero, but �0(k−1) = 1 . Again Equation  7 holds. Now 
�k−3(�2(�j)) = �k−1(�j) .   ◻

We now repeat Lemmas 8 and 9 for the difference rows in the double-differ-
ence table.

Lemma 12 d�i =
{
�i+1 − 2i

}
∪
{
�i+1 + 2i

}
.

Proof The same as the proof of Lemma 8, with minor editing.

Again, the signs depend on locations and so this is equal to

�
k−3(1) + �

k−3(0) + �
k−3(h+2) + �

k−3(0) − 2.

(7)�
k−3(wj) − 2 = �

k−3(�2(�j)) − �
0(�j),

d�j = �j+1 − �j =
(
�j+2 − 2j+1 ∪ �j+2 + 2j+1

)
−
(
�j+1 − 2j ∪ �j+1 + 2j

)

Table 5  The double-difference table for the Quadribonacci word, in which we add the sum 
� = �0

+ �1
+ �2 as a final row

�4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

d�0 1 3 4 6 8 10 11 13 14 16 17 19 21 23 24

d�1 2 5 9 12 15 18 22 25 27 30 34 37 40 43 47
� 7 20 32 45 55 68 80 93 100 113 125 138 148 161 173
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which is d�j+1 − 2j ∪ d�j+1 + 2j .   ◻

Lemma 13 d�i ∩ d�j = � if i ≠ j.

Proof Suppose j > i . By iterating Lemma  8 we find that each element of �i is in 
some d�j ± 2j−1 ±⋯ ± 2i . It follows from Eq. 6 that the minimal step size in d�j is 
2j and 2j−1 +⋯ + 1 < 2j . Therefore, d�i and d�j are disjoint.   ◻

The rows of the double differences d�i are disjoint, but they no longer cover ℕ . 
The maximum step in the final difference row d�k−3 occurs in columns with label 
1. These lead to missing values in the union of the d�i for which we need to use the 
sequence � as a filler.

Lemma 14 Let S ⊂ ℕ be the set S = M + 2k−3 . The difference rows in the double-
difference table form a partition of ℕ ⧵ S.

Proof We only need to prove that the difference rows cover ℕ ⧵ S . By iterating 
Lemma 12 each d�i is the union of all d�k−3 ± 2k−4 ±⋯ ± 2i , with d�k−3 the final 
difference row of our table. The union of these rows is the union of d�k−3 + n for 
all integers |n| < 2k−3 . The maximal step in d�k−3 is 2k−2 , which occurs in the 1-col-
umns. Therefore, the union of the difference rows is ℕ ⧵ S .   ◻

Theorem 2 The rows in the double-difference table form a partition of ℕ.

Proof We need to prove that S is equal to � . By Lemma 11 these sequences have 
equal steps. We need to show that they have the same initial element. The initial 
element of � is the sum of the initial elements of the difference sequences. This is 
�k−1(0) − �0(0) = 2k−1 − 1 . The initial element of S is m + 2k−3 with m the initial 
element of M. Now m is the second element of d�k−3 . The first element of d�k−3 is 
2k−3 and the second element is 2k−3 + �k−3(0) − 1 = 2k−3 + 2k−2 − 1 . Therefore, the 
initial element of S is 2k+3 + 2k−3 + 2k−2 − 1 = 2k−1 − 1 . S and � have the same ini-
tial element.   ◻

6  The table of safe positions of Splithoff

We already showed in Theorem 1 that deleting the 2’s from �3 gives a string that 
codes the difference table. We will now show that the difference table corresponds 
to the safe positions in Table 1. In particular, we show that we can generate this dif-
ference table by the same mex-rule that generates the safe positions in Equation 3.

We denote the elements of the difference sequence �j by aj
1
, a

j

2
,… and the ele-

ments of d�j by dj
1
, d

j

2
,… . As before, Xi denotes the first i entries of a sequence X.

(
�j+2 − �j − 2j+1 + 2j

)
∪
(
�j+2 − �j+1 + 2j+1 − 2j

)
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Lemma 15 a0
i+1

= mex
(
�0

i
∪ �1

i
∪⋯ ∪ �k−2

i

)
 .

Proof The rows partition ℕ and therefore mex
(
�0

i
∪ �1

i
∪⋯ ∪ �k−2

i

)
 occurs in one of 

the rows. Both rows and columns are strictly increasing. This mex has to be in the 
first row.   ◻

By the same argument we find the following result.

Lemma 16 d0
i+1

= mex
(
d�0

i
∪ d�1

i
∪⋯ ∪ d�k−3

i
∪ �i

)
.

We can now complete the proof of our main result.

Theorem 3 Let xi, yi, zi be the locations of the i-th 0, 1, 2, respectively, in the Tribo-
nacci word. Then the i-th P-position (ai, bi) in Table 1 is given by ai = yi − xi and 
bi = zi − yi.

Proof If k = 3 there are only the rows �0,�1, d�0,� . The previous two lemmas state 
that

By definition a1
i+1

= a0
i+1

+ d0
i+1

 and if si denotes the entries in � then by definition 
�i+1 = a0

i+1
+ a1

i+1
 . These rules are the same as for the table of P-positions in Eq. 3. 

We conclude that the difference table of the Tribonacci word is identical to the rows 
of Table 1. The double difference table is identical to the header and footer of that 
table.   ◻

Corollary 1 Let (�n) be the sequence � in Table 1. The steps �n+1 − �n are either 1 
or 2. A step is equal to 2 if and only if �n = 1.

Proof � is equal to the top row of the double-difference table, for k = 3 . According 
to Eq. 6 the step is equal to �0(j) − �

2+j

2
 . This is equal to 1 if j ∈ {0, 2} and equal 

to 2 if j = 1 .   ◻

7  A mex‑rule for the Quadribonacci table

Duchêne and Rigo asked if there exists an impartial game with positions that can be 
coded with the Quadribonacci word (Duchêne and Rigo 2008b). We were unable to 
find such a game from our results. The best that we can come up with is a mex-rule 
to generate the positions table of the Quadribonacci word.

(8)
d0
i+1

=mex
(
d�0

i
∪ �i

)

a0
i+1

=mex
(
�0

i
∪ �1

i

)
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Lemma 17 The bottom row of the k-bonacci positions table can be written as a sum

where E denotes the enumerating sequence 1, 2, 3,….

Proof This is true for the initial column. Each next column is an increment by the 
vector in Eq. 4. We need to show that

This is a consequence of the following observation. Suppose you start from 1 and 
double each time, except once, when you double and subtract one. Then the final 
number is the sum of the other numbers. We leave the verification to the reader. 
The equality above follows from the observation for i < k − 1 . In that case, we have 
�0(i) = 2 and each next �j(i) is doubled, unless k − 1 appears in �j(i) , which happens 
once. If i = k − 1 then �j(k − 1) = 2j and again the equation holds.   ◻

According to this lemma it suffices to generate the first three rows of the Quadrib-
onacci table, and compute the fourth row as a sum. These three rows can be derived 
from the first two rows of the difference table, which can be derived from the first 
row of the double-difference table, which follows from the mex rule. That is the idea 
behind Theorem 4 below, in which we generate all three tables of the Quadribonacci 
word simultaneously.

We write xj
i
 for the elements of the positions table.

Theorem  4 The following rules generate the three tables for the Quadribonacci 
word:

Proof The first and second equation follow from Lemma  15 and  16. The third 
equation can be derived in an equivalent manner. The other equations follow from 
Lemma 16 and the definition of the difference tables.   ◻

Xk−1 = E + X0 +⋯ + Xk−1,

𝓁
k−1(i) = 1 + 𝓁

0(i) +⋯ + 𝓁
j−2(i).

a0
i+1

=mex
(
�0

i
∪ �1

i
∪ �2

i

)

b0
i+1

=mex
(
d�0

i
∪ d�1

i
∪ �i

)

x0
i+1

=mex
(
X0

i
∪ X1

i
∪ X2

i
∪ X3

i

)

a1
i+1

=a0
i+1

+ b0
i+1

x1
i+1

=x0
i+1

+ a0
i+1

x2
i+1

=x1
i+1

+ a1
i+1

x3
i+1

=x0
i+1

+ x1
i+1

+ x2
i+1

+ i + 1

a2
i+1

=x3
i+1

− x2
i+1

b2
i+1

=a1
i+1

+ a2
i+1

+ a3
i+1
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8  An additive property of the safe positions

It is well-known that consecutive pairs of Fibonacci numbers occur as safe positions in 
Wythoff Nim.

This follows from the fact that abn = an + bn in Wythoff Nim. For Splithoff we con-
jecture that −1 ≤ abn − an − bn ≤ 0. We establish a slightly weaker bound below. To 
do that, we need some combinatorial properties of the Tribonacci word.

The number of letters j in a word w is denoted by |w|j . A word w is c-balanced if 
||u|j − |v|j| ≤ c for each letter j and all subwords u, v of equal length. The Tribonacci 
word �3 is 2-balanced, see (Richomme et al. 2010, Theorem 1.3). If w is a prefix of �3 , 
then jw is also a subword for any letter j ∈ {0, 1, 2} , see (Tan and Wen 2007, Remark 
1.3).

Theorem  5 The coordinates (an, bn) of the safe positions in Splithoff satsisfy 
−2 ≤ abn − an − bn ≤ 1.

Proof Recall from the proof of Theorem  1 that the coding 
�(0) = 01, �(1) = 0, �(2) = 0 converts �3 to � . Let w be the prefix of length  n 
of �3 . Then �(w) is a prefix of � containing n zeroes. Let j be the final letter of w and 
write w = w�j . Then an is equal to the length of �(w�)0 . In particular,

because � adds a 1 for each 0 in w′.
Let v be the prefix of �3 that ends with the n-th zero. Then bn is equal to the 

length of �(v) , which contains n ones and bn − n zeroes. To get to abn we need n 
more zeroes. Extend the prefix v to vu with u of length n. Let j be the final letter of u 
and write u = u�j . Then

It follows that

Since the Tribonacci word is 2-balanced, we immediately get that |abn − bn − an| ≤ 2 . 
Now suppose that |u�|0 − |w�|0 = 2 . Since vu is a prefix of �3 and since the final 
letter of v is 0, we get that 0u′ is a subword of �3 . Since w′ is a prefix, 1w′ is a 
subword of �3 . By 2-balancedness we have that |0u�|0 − |1w�|0 ≤ 2 . It follows that 
|u�|0 − |w�|0 ≤ 1 .   ◻

(1, 2), (3, 5), (8, 13), (21, 34),… .

an = |w�|0 + n

abn = bn + |u�|0 + n.

abn − bn − an = |u�|0 − |w�|0
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9  Final remarks

For Wythoff Nim, each row, column, and diagonal of ℕ × ℕ contains each Sprague-
Grundy value once and only once. For Splithoff, it looks like every row or column 
contains each Sprague-Grundy value once and only once, see Table 6. We do not 
have a proof for that. Diagonals, however, do not contain each value. For instance, 
the diagonal (n, n + 3) does not contain Sprague-Grundy value zero because 3 is 
missing from the difference sequence �.

There is a connection between Wythoff Nim and Fibonacci numeration that has 
been extended to other Wythoff-like games by Fraenkel (2010). We did not consider 
the relation between the P-positions of Splithoff and the Tribonacci numeration 
system, but it is central in the analysis of the Greedy Queens problem in Dekking 
et al. (2020). The link between numeration and words is well known and extensively 
studied. Sirvent introduced the k-bonacci substitution in Sirvent (1997) to gener-
alize results on Fibonacci and Tribonacci numbers. The link between words and  
P-positions is much less clear and has been explored by Duchêne and Rigo (2008b). 
Recently, Fraenkel and Larsson (2019) introduced the notion of playability to 
describe the complexity of the P-positions, which may be a more fruitful approach.

Splithoff is one of the many modifications of Wythoff Nim. A well-studied modi-
fication, called a-Wythoff, allows a player to remove x coins from one pile and y 
coins from the other, if |x − y| < a for a fixed number a. It is equal to the original 
game if a = 1 . We can modify our game in the same way to get a-Splithoff. We say 
that a move is a double if it removes coins from both piles. If one of the piles is 

Table 6  The Sprague-Grundy values of Splithoff for piles (m, n) containing up to sixteen counters

It can be compared to the table of Wythoff Nim (Berlekamp et al., 2001, p. 74), described as ‘chaotic’. A 
value is printed in italics if it is different for Wythoff Nim

17 13 18 20 12 11 15 22 14 4 1 19 16 10 7 24 25 21
16 17 15 19 20 14 21 12 22 0 5 8 6 24 10 9 13 25
15 16 14 18 19 17 20 21 12 2 4 22 23 7 8 11 9 24
14 15 16 17 18 13 12 19 1 3 20 21 22 23 9 8 10 7
13 14 12 11 8 16 17 0 9 5 6 18 21 19 23 7 24 10
12 9 13 7 11 15 14 2 18 8 19 20 10 21 22 23 6 16
11 12 10 13 14 9 0 16 17 6 7 15 20 18 21 22 8 19
10 11 9 8 13 12 2 15 16 17 14 7 19 6 20 4 5 1
9 10 11 12 1 7 13 14 15 16 17 6 8 5 3 2 0 4
8 6 7 10 0 2 5 3 4 15 16 17 18 9 1 12 22 14
7 8 6 9 10 1 4 5 3 14 15 16 2 0 19 21 12 22
6 7 8 1 9 10 3 4 5 13 2 0 14 17 12 20 21 15
5 3 4 0 6 8 10 1 2 7 12 9 15 16 13 17 14 11
4 5 3 2 7 6 9 10 0 1 13 14 11 8 18 19 20 12
3 4 5 6 2 0 1 9 10 12 8 13 7 11 17 18 19 20
2 0 1 5 3 4 8 6 7 11 9 10 13 12 16 14 15 18
1 2 0 4 5 3 7 8 6 10 11 12 9 14 15 16 17 13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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cleared by a double, then in a-Splithoff the player may split the remaining pile. We 
conjecture that 2-Splithoff can also be coded by the Tribonacci word, as illustrated 
by Table 7. The B-row appears to be equal to the difference between the first row 
and the third row in the positions table of �3.

Wythoff led a secluded life and was not a man of many words (Fokkink 2016). 
At the end of his very short paper (Wythoff 1907), he left two remarks, both a bit 
cryptic, on the existence of certain complementary sequences {An} and {Bn} . His 
first remark was that for any natural number a there exist An = ⌊n�⌋ and Bn = ⌊n�⌋ 
such that Bn − An = na . Wythoff specified � and � (they are quadratic numbers) and 
mentioned that there are games that have (An,Bn) as P-positions, leaving the rules 
of the games to the reader. These games were later rediscovered by Holladay (1968) 
and are now known as a-Wythoff Nim, the games we encountered in the above 
paragraph. His second remark was that for natural numbers 0 < b ≤ a there exist 
An = ⌊n� + �⌋ and Bn = ⌊n� + �⌋ such that Bn − An = na + b . Here again �, �, � , � 
are quadratic numbers. Kimberling (2011) rediscovered An and Bn , and called them 
na+b Wythoff sequences.
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