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Abstract
This paper formally introduces Hart–Mas-Colell consistency for general (possibly
multi-valued) solutions for cooperative games with transferable utility. This notion is
used to axiomatically characterize the core on the domain of convex games. Moreover,
we characterize all nonempty solutions satisfying individual rationality, anonymity,
scale covariance, superadditivity, weak Hart–Mas-Colell consistency, and converse
Hart–Mas-Colell consistency. This family consists of (a) the Shapley value, (b) all
homothetic images of the core with the Shapley value as center of homothety and with
positive ratios of homothety not larger than one, and (c) their relative interiors.

Keywords Convex games · Consistency · Converse consistency · Core · Shapley
value

JEL Classification C71

1 Introduction

Interactive situations where players are able to generate revenues in coalitions can be
modeled as cooperative games with transferable utility. In this model, the worth of
each coalition represents the monetary opportunities when these players join forces.
Once the grand coalition is formed, the worths of subcoalitions serve as benchmarks
for a fair allocation of the worth of the grand coalition. Solutions assign to each
transferable utility game a set of recommended allocations for the cooperating players.
These solutions are fundamentally distinguished on the basis of axioms, i.e., formal
expressions of properties which may or may not be satisfied.
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Already since the earlier development of cooperative game theory, the core has
been one of the central solution concepts for transferable utility games. This solution
recommends all allocations which are efficient and stable, i.e., which fully allocate
the worth of the grand coalition in such a way that each subcoalition is allocated at
least its worth. As the core of a game is closed, bounded, and convex, it consists of
zero, one, or infinitely many allocations.

The core has been mainly studied on the basis of consistency and reduced game
properties. Consistency of the core can be generally described as follows. Consider
a transferable utility game and a corresponding core allocation. Suppose that some
players leave with their allocated money and the remaining players reevaluate the
allocation. For this, a reduced game for the remaining players is specified. If the core
is consistent, then the initial allocation restricted to the remaining players is in the core
of this reduced game.

The exact formulation of consistency axioms is determined by the specific definition
of reduced games. The most appealing definition may depend on the context of the
underlying collaborative situation, and alternative definitions may admit alternative
interpretations. In fact, the core has been proven to be consistent for several definitions
of reduced games.

Inspired by Davis and Maschler (1965), Peleg (1986) showed that the core is con-
sistent when the worth of a coalition of remaining players in reduced games is defined
as the maximal surplus to any subgroup of leaving players, and that this reduced game
property characterizes the core in conjunction with individual rationality and super-
additivity. Tadenuma (1992) showed that the core is consistent when the worth of a
coalition of remaining players in reduced games is defined as the surplus to all leaving
players, and that this reduced game property characterizes the core in conjunction with
individual rationality. Funaki and Yamato (2001) showed that the core is consistent
when the worth of a coalition of remaining players in reduced games is defined as its
worth in the original game, and that this reduced game property characterizes the core
in conjunction with individual rationality and a weak version of coalitional rationality.

In fact, the results of Peleg (1986), Tadenuma (1992) and Funaki and Yamato
(2001) are derived on the domain of balanced games, i.e., transferable utility games
with a nonempty core. Nevertheless, the core is consistent on other domains as well.
Peleg (1989) and Sudhölter and Peleg (2002) characterized the core using Davis–
Maschler consistency on the subdomain of totally balanced games, i.e., transferable
utility games with a nonempty core for each subgame. Hwang and Sudhölter (2001)
presented a characterization of the core based on Davis–Maschler consistency on the
domain of all transferable utility gameswhich is also valid on several subdomains, e.g.,
totally balanced games, balanced games, and superadditive games. Recently, Hokari
et al. (2020) studied consistency characterizations of the core on the domain of convex
games.

To our knowledge, the relation of the core with another well-known consistency
axiom formulated by Hart and Mas-Colell (1989) has not been studied so far. This
reduced game property was originally introduced for single-valued solutions and
explored for the Shapley value (Shapley 1953). In the corresponding reduced game,
the worth of a coalition of remaining players is defined as the monetary surplus to the
leaving players when the solution is applied to the joint subgame. Dutta (1990) sug-
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gested an extension to multi-valued solutions in terms of selections, but explored it for
Dutta–Ray’s single-valued egalitarian solution (Dutta and Ray 1989) on the domain
of convex games, for which it boils down to the original definition.

In this paper, we formally define Hart–Mas-Colell consistency and its converse
for multi-valued solutions for transferable utility games on the basis of allocation
schemes. We show that the core is the unique inclusion-wise maximal solution satis-
fying individual rationality and a weak version of Hart–Mas-Colell consistency on the
domain of convex games and we derive a pure axiomatic characterization. Moreover,
we characterize all nonempty solutions satisfying individual rationality, anonymity,
scale covariance, superadditivity, weak Hart–Mas-Colell consistency, and converse
Hart–Mas-Colell consistency. This family consists of (a) the Shapley value, (b) all
homothetic images of the core with the Shapley value as center of homothety and with
positive ratios of homothety not larger than one, and (c) their relative interiors.

This paper is organized as follows. Section 2 provides preliminary notions and
notations. Section3 formally introducesHart–Mas-Colell consistency and its converse.
Section 4 studies the core and Sect. 5 provides a joint characterization. Section 6
concludes.

2 Preliminaries

Let U with |U | ≥ 3 be a universe of players. A coalition is a nonempty and finite
subset of U . Let N be a coalition and denote 2N = {S | S ⊆ N }. An order of N
is a bijection π : N → {1, . . . , |N |}. The set of all orders of N is denoted by �N .
An allocation for N is a vector x ∈ R

N . An allocation scheme for N is a collection
x = (x S)S∈2N \{∅} with x S ∈ R

S for all S ∈ 2N\{∅}. For each x ∈ R
N and each

S ∈ 2N , xS ∈ R
S denotes xS = (xi )i∈S , and x(S) ∈ R denotes x(S) = ∑

i∈S xi . For
all x, y ∈ R

N , x ≤ y denotes xi ≤ yi for all i ∈ N .
A transferable utility game is a pair (N , v), where N ⊆ U is a nonempty and finite

set of players and v : 2N → R assigns to each subset S ∈ 2N its worth v(S) ∈ R with
v(∅) = 0. The subgame (T , vT ) of (N , v) on T ∈ 2N\{∅} is defined by vT (S) = v(S)

for all S ⊆ T . Throughout this paper, � denotes a set of games. A set � is closed if
(T , vT ) ∈ � for all (N , v) ∈ � and all T ∈ 2N\{∅}. A game (N , v) ∈ � is additive if
v(S) = ∑

i∈S v({i}) for all S ∈ 2N . A game (N , v) ∈ � is convex (Shapley 1971) if
for all i ∈ N and all S ⊆ T ⊆ N\{i},

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).

Let �vex denote the set of convex games. Note that additive games are convex and that
�vex is closed. Moreover, (N , αv + β) ∈ �vex for1 all (N , v) ∈ �vex , all α > 0, and
all β ∈ R

N .
A solution σ on � assigns to each game (N , v) ∈ � a set σ(N , v) of feasible

allocations for N , i.e., σ(N , v) ⊆ R
N satisfies x(N ) ≤ v(N ) for all x ∈ σ(N , v). A

solution σ on � is nonempty if |σ(N , v)| 	= 0 for all (N , v) ∈ �, and single-valued

1 Here, (αv + β)(S) = αv(S) + β(S) for all S ∈ 2N .
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if |σ(N , v)| = 1 for all (N , v) ∈ �. For a single-valued solution σ on � and a game
(N , v) ∈ �, σ(N , v) is often identified with its unique element. A solution σ on � is
a subsolution of σ ′ on � if σ(N , v) ⊆ σ ′(N , v) for all (N , v) ∈ �.

Let (N , v) ∈ �. The set of preimputations, denoted by X(N , v), is the set

X(N , v) =
{

x ∈ R
N

∣
∣
∣
∣ x(N ) = v(N )

}

.

The set of imputations, i.e., individually rational preimputations, denoted by I (N , v),
is the set

I (N , v) =
{

x ∈ X(N , v)

∣
∣
∣
∣ x({i}) ≥ v({i}) for all i ∈ N

}

.

The core, denoted by C(N , v), is the set

C(N , v) =
{

x ∈ X(N , v)

∣
∣
∣
∣ x(S) ≥ v(S) for all S ∈ 2N

}

Recall that the relative interior of a convex set is the interior of this set in its affine
hull. We use “ri” for relative interior. The relative interior of a nonempty convex set
is nonempty. It is known (see Orshan and Sudhölter (2010) for a generalization) that

riC(N , v) =
{

x ∈ C(N , v)

∣
∣
∣
∣ x(S) > v(S) for all S ∈ 2N\S(N , v)

}

,

where

S(N , v) =
{

S ∈ 2N
∣
∣
∣
∣ x(S) = v(S) for all x ∈ C(N , v)

}

.

The relative interior of the core is a subsolution of the core, the core is a subsolution
of the imputation set, and the imputation set is a subsolution of the preimputation set,
and all inclusions may be strict.

For each π ∈ �N and each S ∈ 2N\{∅}, aπ,S(N , v) ∈ R
S is for all i ∈ S defined

by

aπ,S
i (N , v) = v({ j ∈ S | π( j) ≤ π(i)}) − v({ j ∈ S | π( j) < π(i)}).

If (N , v) ∈ �vex , thenaπ,S(N , v) ≤ aπ,T
S (N , v) for allπ ∈ �N and all S, T ∈ 2N\{∅}

with S ⊆ T , and, by Shapley (1971),

C(N , v) =
⎧
⎨

⎩

∑

π∈�N

λπa
π,N (N , v)

∣
∣
∣
∣ λ ∈ R

�N

+ ,
∑

π∈�N

λπ = 1

⎫
⎬

⎭
,
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and by Theorem 6.9 of Rockafellar (1970),

riC(N , v) =
⎧
⎨

⎩

∑

π∈�N

λπa
π,N (N , v)

∣
∣
∣
∣ λ ∈ R

�N

++,
∑

π∈�N

λπ = 1

⎫
⎬

⎭
. (1)

Moreover, if (N , v) ∈ �vex , then S ∈ 2N\S(N , v) if and only if v(S) + v(N\S) <

v(N ), so that

riC(N , v)=
{

x ∈ C(N , v)

∣
∣
∣
∣ x(S)>v(S) for all S ∈ 2N with v(S)+v(N\S)<v(N )

}

.

The Shapley value (Shapley 1953), denoted by φ(N , v), is defined by

φ(N , v) = 1

|N |!
∑

π∈�N

aπ,N (N , v).

If (N , v) ∈ �vex , the egalitarian solution (Dutta and Ray 1989), denoted by E(N , v),
is defined by2

E(N , v) = argmin
x∈C(N ,v)

∑

i∈N
x2i .

On the domain of convex games, both the Shapley value and the egalitarian solution
are single-valued and subsolutions of the core.

A solution σ on � satisfies

• efficiency if x(N ) = v(N ) for all (N , v) ∈ � and all x ∈ σ(N , v);
• individual rationality if x({i}) ≥ v({i}) for all (N , v) ∈ �, all x ∈ σ(N , v), and
all i ∈ N ;

• anonymity if σ(ρ(N ), ρv) = ρ(σ(N , v)) for all (N , v) ∈ � and all injections3

ρ : N → U with (ρ(N ), ρv) ∈ �;
• scale covariance if σ(N , αv) = ασ(N , v) for all (N , v) ∈ � and all α > 0 with

(N , αv) ∈ �;
• translation covariance if σ(N , v + β) = σ(N , v) + β for all (N , v) ∈ � and all

β ∈ R
N with (N , v + β) ∈ �;

• superadditivity if σ(N , v)+σ(N , w) ⊆ σ(N , v +w) for4 all (N , v), (N , w) ∈ �

with (N , v + w) ∈ �.

The preimputation set satisfies efficiency, anonymity, scale covariance, translation
covariance, and superadditivity, but does not satisfy individual rationality. The impu-
tation set and the core satisfy efficiency, individual rationality, anonymity, scale

2 For convex games, this expression is equivalent to the original definition of Dutta and Ray (1989).
3 Here, ρv(ρ(S)) = v(S) for all S ∈ 2N and, for x ∈ R

N , y = ρ(x) with ρ(x) ∈ R
ρ(N ) is given by

yρ(i) = xi for all i ∈ N .
4 Here, σ(N , v) + σ(N , w) = {x + y | x ∈ σ(N , v), y ∈ σ(N , w)}.
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covariance, translation covariance, and superadditivity. On the domain of convex
games, the Shapley value satisfies efficiency, individual rationality, anonymity, scale
covariance, translation covariance, and superadditivity, and the egalitarian solution
satisfies efficiency, individual rationality, anonymity, and scale covariance, but does
not satisfy translation covariance and superadditivity.

3 Hart–Mas-Colell consistency

Hart and Mas-Colell (1989) introduced a reduced game property for single-valued
solutions for transferable utility games which can be described as follows. After the
solution is applied to a game, some players leave with their allocated money. The
remaining players reevaluate their allocation by applying the solution to the corre-
sponding reduced game. The worth of a coalition of remaining players in this reduced
game is defined as the monetary surplus to the leaving players when the solution
is applied to the joint subgame. The solution is consistent if it assigns to each such
reduced game the restricted allocation of the original game.

Since allocatedmoney is ambiguouswhenmulti-valued solutions are applied,Hart–
Mas-Colell consistency cannot be straightforwardly defined for general solutions.
Dutta (1990) suggested an approach based on selections of a solution. We interpret
this suggestion in terms of allocation schemes as follows. For each game and each rec-
ommended allocation, there exists an allocation scheme corresponding to the solution
such that the recommended allocation is consistently assigned to all reduced games
where the worth of a coalition is defined as the monetary surplus according to this
allocation scheme. Naturally, this definition requires that all subgames and reduced
games belong to the underlying domain.

Definition 3.1 A solution σ on a closed domain � satisfies HM-consistency if, for all
(N , v) ∈ � and all x ∈ σ(N , v), there exists x = (x S)S∈2N \{∅} with xN = x and
x S ∈ σ(S, vS) for all S ∈ 2N\{∅} such that (T , vx

T ) ∈ � and xT ∈ σ(T , vx
T ) for all

T ∈ 2N\{∅}, where

vx
T (S) = v(S ∪ (N\T )) − x S∪(N\T )(N\T ) for all S ∈ 2T \{∅}.

Hart and Mas-Colell (1989) and Dutta (1990) explored HM-consistency for the
Shapley value and the egalitarian solution, respectively. According to Hokari (2002),
on the domain of convex games, the egalitarian solution does not satisfy HM-
consistency because his Example 1 shows that the corresponding reduced game is
not necessarily convex, but the proof of Dutta (1990) shows that the egalitarian solu-
tion satisfies the weaker version of the property that only requires to consider reduced
games with one or two players. According to Hokari and Van Gellekom (2003), there
also exists a non-convex reduced game corresponding to the Shapley value, but also
this solution satisfies the weak version of HM-consistency.5 For general multi-valued
solutions, weak Hart–Mas-Colell consistency is defined as follows.

5 Clearly, for a universe with three players, HM-consistency and weak HM-consistency are equivalent.
Therefore, the counterexamples for the Shapley value and the egalitarian solution have at least four players.
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Definition 3.2 A solution σ on a closed domain � satisfies weak HM-consistency if,
for all (N , v) ∈ � and all x ∈ σ(N , v), there exists x = (x S)S∈2N \{∅} with xN = x

and x S ∈ σ(S, vS) for all S ∈ 2N\{∅} such that (T , vx
T ) ∈ � and xT ∈ σ(T , vx

T ) for
all T ∈ 2N\{∅} with |T | ≤ 2.

Hart and Mas-Colell (1989) characterized the Shapley value on the domain of all
games by efficiency, HM-consistency, and standardness. A solution σ on � satisfies
standardness if, for all (N , v) ∈ � with |N | = 2,

σi (N , v) = v({i}) + 1
2 (v(N ) − v({i}) − v(N\{i})) for all i ∈ N .

In fact, the corresponding proof provided by Peleg and Sudhölter (2007) shows that
HM-consistency can be replaced by weak HM-consistency and that this stronger char-
acterization is also valid on the domain of convex games. Hence, the Shapley value is
the unique single-valued solution for convex games satisfying standardness and weak
HM-consistency.

Dutta (1990) characterized the egalitarian solution on the domain of convex games
by efficiency, weak HM-consistency, and constrained egalitarianism. A solution σ on
�vex satisfies constrained egalitarianism if, for all (N , v) ∈ �vex with |N | = 2,

σi (N , v) =
{
max{v({i}), 1

2v(N )} if v({i}) ≥ v(N\{i});
v(N ) − σN\{i}(N , v) if v({i}) ≤ v(N\{i}).

Hence, the egalitarian solution is the unique single-valued solution for convex games
satisfying constrained egalitarianism and weak HM-consistency.

Converse Hart–Mas-Colell consistency requires that if each two-player restriction
of a preimputation belongs to the solution of the corresponding reduced game accord-
ing to someparticular allocation scheme, then the preimputation belongs to the solution
of the original game. Chang and Hu (2007) formulated converse HM-consistency for
single-valued solutions and their Lemma 13 implies that both the Shapley value and
the egalitarian solution satisfy converse HM-consistency on the domain of convex
games. We provide the definition for general, possibly multi-valued solutions.

Definition 3.3 A solution σ on a closed domain � satisfies converse HM-consistency
if, for all (N , v) ∈ � with |N | ≥ 3, the following condition is satisfied for all x ∈
X(N , v) and all x = (x S)S∈2N \{∅} with xN = x and x S ∈ σ(S, vS) for all S ∈
2N\{∅, N }:

if (T , vx
T ) ∈ � and xT ∈ σ(T , vx

T ) for all T ∈ 2N with |T | = 2, then x ∈ σ(N , v).

4 The core

Although the core is consistent for several definitions of reduced game properties,
Hart–Mas-Colell consistency of the core has not been studied because this property
was introduced for single-valued solutions. Being equipped with a general definition,
the question whether the core satisfies HM-consistency now arises. The proof that
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no subsolution of the core satisfies HM-consistency on the domain of convex games
(provided that |U | ≥ 7) is available upon demand from each of the authors. We
show that both the core and its relative interior do satisfy weak HM-consistency on
the domain of convex games and converse consistency on each domain closed under
subgames and reduced games.

Lemma 4.1 The core and its relative interior satisfy weak HM-consistency on the
domain of convex games.

Proof Let (N , v) ∈ �vex and let x ∈ C(N , v). Let λ ∈ R
�N

+ with
∑

π∈�N λπ = 1
be such that x = ∑

π∈�N λπaπ,N (N , v). Define x = (x S)S∈2N \{∅} by x S =
∑

π∈�N λπaπ,S(N , v) for all S ∈ 2N\{∅}. Then xN = x and x S ∈ C(S, vS) for
all S ∈ 2N\{∅}. Let T ∈ 2N\{∅} with |T | ≤ 2. Then

vx
T (T ) = v(N ) − xN (N\T ) = xN (T ) = x(T ).

Hence, if |T | = 1, then (T , vx
T ) ∈ �vex and xT ∈ C(T , vx

T ). Assume that |T | = 2.
For all i ∈ T ,

vx
T ({i}) = v({i} ∪ (N\T )) − x {i}∪(N\T )(N\T ) = x {i}∪(N\T )({i}) = x {i}∪(N\T )

i

=
∑

π∈�N

λπa
π,{i}∪(N\T )
i (N , v) ≤

∑

π∈�N

λπa
π,N
i (N , v) = xNi = x({i}).

Therefore, (T , vx
T ) ∈ �vex and xT ∈ C(T , vx

T ). Hence, the core satisfies weak HM-
consistency on the domain of convex games.

Now, let x ∈ riC(N , v). Then we may assume that λ ∈ R
�N

++. Therefore, we also
obtain x S ∈ riC(S, vS) for all S ∈ 2N\{∅}. If |T | = 1, then xT ∈ riC(T , vx

T ).
Assume that |T | = 2. If x({i}) > vx

T ({i}) for all i ∈ T , then xT ∈ riC(T , vx
T ).

Assume that there exists i ∈ T such that x({i}) = vx
T ({i}). Denote T = {i, j}. Then

aπ,N\{ j}
i (N , v) = aπ,N

i (N , v) for all π ∈ �N . For all π ∈ �N with π(i) > π( j),

we obtain aπ,N\{i}
j (N , v) = aπ,N

j (N , v) by definition. Let π ∈ �N with π(i) < π( j)

and let π ′ ∈ �N differ from π only inasmuch as π ′(i) = π( j) and π ′( j) = π(i). For
S = {k ∈ N\{i} | π(k) < π( j)} = {k ∈ N\{ j} | π ′(k) < π ′(i)}, we deduce

v(S ∪ {i}) − v(S) = aπ ′,N\{ j}
i (N , v) = aπ ′,N

i (N , v) = v(S ∪ T ) − v(S ∪ { j}),

so that

aπ,N\{i}
j (N , v) = v(S ∪ { j}) − v(S) = v(S ∪ T ) − v(S ∪ {i}) = aπ,N

j (N , v).

Therefore,

vx
T ({ j}) =

∑

π∈�N

λπa
π,N\{i}
j (N , v) =

∑

π∈�N

λπa
π,N
j (N , v) = x({ j}),
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so that C(T , vx
T ) is single-valued, i.e., riC(T , vx

T ) = C(T , vx
T ). Hence, the relative

interior of the core satisfies weak HM-consistency on the domain of convex games. ��
Lemma 4.2 The core and its relative interior satisfy converse HM-consistency.

Proof Let (N , v) ∈ � with |N | ≥ 3 and (S, vS) ∈ � for all S ∈ 2N\{∅}, let x ∈
X(N , v), and let x = (x S)S∈2N \{∅} with xN = x and x S ∈ C(S, vS) for all S ∈
2N\{∅, N } be such that (T , vx

T ) ∈ � and xT ∈ C(T , vx
T ) for all T ∈ 2N with |T | = 2.

Let S ∈ 2N\{∅, N } and let j ∈ N\S. For all i ∈ S,

x({i}) ≥ vx{i, j}({i}) = v(N\{ j}) − xN\{ j}(N\{i, j}) = xN\{ j}({i}).

Therefore,

x(S) ≥ xN\{ j}(S) ≥ v(S).

Hence, x ∈ C(N , v) and the core satisfies converse HM-consistency.
Now, let x S ∈ riC(S, vS) for all S ∈ 2N\{∅, N } be such that xT ∈ riC(T , vx

T ) for all
T ∈ 2N with |T | = 2. Let S ∈ 2N\{∅, N }. Assume that x(S) = v(S). Then x({i}) =
vx{i, j}({i}) = xN\{ j}({i}) for all i ∈ S and all j ∈ N\S. As x{i, j} ∈ riC({i, j}, vx{i, j}),
we conclude that x({ j}) = vx{i, j}({ j}) = xN\{i}({ j}) for all i ∈ S and all j ∈ N\S,
so that x(N\S) = xN\{i}(N\S). For all i ∈ S,

v(N ) − v(S) = x(N ) − x(S) = x(N\S) = xN\{i}(N\S)

= xN\{i}(N\{i}) − xN\{i}(S\{i})
≤ v(N\{i}) − v(S\{i}) ≤ v(N ) − v(S),

so that xN\{i}(S\{i}) = v(S\{i}). As xN\{i} ∈ riC(N\{i}, vN\{i}), we obtain
v(N\S) + v(S\{i}) = v(N\{i}) for all i ∈ S, so that x(N\S) = xN\{i}(N\S) =
v(N\S). Hence, x ∈ riC(N , v) and the relative interior of the core satisfies converse
HM-consistency. ��

In linewith the reduced game properties studied by Peleg (1986), Tadenuma (1992),
andFunaki andYamato (2001), each solution satisfying individual rationality andweak
HM-consistency is necessarily a subsolution of the core. This result is valid on each
closed domain of games. To prove it, we first show that each such solution satisfies
efficiency.

Lemma 4.3 If a solution satisfies individual rationality and weak HM-consistency,
then it satisfies efficiency.

Proof Let σ be a solution on � satisfying individual rationality and weak HM-
consistency. Suppose that σ does not satisfy efficiency. Then there exist (N , v) ∈ �

and x ∈ σ(N , v) such that x(N ) < v(N ). Let i ∈ N . By weak HM-consistency,
(S, vS) ∈ � for all S ∈ 2N\{∅} and there exists x = (x S)S∈2N \{∅} with xN = x and
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x S ∈ σ(S, vS) for all S ∈ 2N\{∅} such that ({i}, vx{i}) ∈ � and xi ∈ σ({i}, vx{i}). By
individual rationality,

x({i}) ≥ vx{i}({i}) = v(N ) − xN (N\{i}) > x(N ) − x(N\{i}) = x({i}),

which is a contradiction. Hence, σ satisfies efficiency. ��
Lemma 4.4 If a solution satisfies individual rationality and weak HM-consistency,
then it is a subsolution of the core.

Proof Let σ be a solution on � satisfying individual rationality and weak HM-
consistency. By Lemma 4.3, σ satisfies efficiency. We show by induction on the
number of players that σ(N , v) ⊆ C(N , v) for all (N , v) ∈ �. By efficiency,
σ(N , v) ⊆ C(N , v) for all (N , v) ∈ � with |N | = 1. By efficiency and individ-
ual rationality, σ(N , v) ⊆ C(N , v) for all (N , v) ∈ � with |N | = 2.

Let k ∈ N with k ≥ 3 and assume that σ(N , v) ⊆ C(N , v) for all (N , v) ∈ �

with |N | < k. Let (N , v) ∈ � with |N | = k and let x ∈ σ(N , v). By efficiency,
x ∈ X(N , v). By weak HM-consistency, (S, vS) ∈ � for all S ∈ 2N\{∅} and there
exists x = (x S)S∈2N \{∅} with xN = x and x S ∈ σ(S, vS) for all S ∈ 2N\{∅} such
that (T , vx

T ) ∈ � and xT ∈ σ(T , vx
T ) for all T ∈ 2N with |T | = 2. By the induction

hypothesis, x S ∈ C(S, vS) for all S ∈ 2N\{∅, N } and xT ∈ C(T , vx
T ) for all T ∈ 2N

with |T | = 2. Then Lemma 4.2 implies that x ∈ C(N , v). Hence, σ(N , v) ⊆ C(N , v)

for all (N , v) ∈ �. ��
The following result follows directly from Lemmas 4.1 and 4.4.

Theorem 4.1 The core is the unique inclusion-wisemaximal solution for convex games
satisfying individual rationality and weak HM-consistency.

Bymeans of examples, we show that each of the properties in Theorem 4.1 is logically
independent of the remaining property. Let σ on�vex be, for all (N , v) ∈ �vex , defined
by

σ(N , v) =
{

{x ∈ R
N | x(N ) ≤ v(N )} if |N | = 1;

C(N , v) otherwise.

Then σ satisfies weak HM-consistency, but is not a subsolution of the core. The
imputation set satisfies individual rationality, but is not a subsolution of the core.
Thus, the claimed logical independence is shown.

In line with the characterizations of the Shapley value and the egalitarian solution,
weakHM-consistency canbeused to obtain a pure characterizationof the core byfixing
the solution for two-player games. There, the core coincides with the imputation set.
The corresponding property with the name unanimity was introduced by Peleg (1986)
and also exploited by Peleg (1989). A solution σ on � satisfies unanimity if, for all
(N , v) ∈ � with |N | = 2,

σ(N , v) =
{

x ∈ X(N , v)

∣
∣
∣
∣ x({i}) ≥ v({i}) for all i ∈ N

}

.
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We now show that the core on the domain of convex games is axiomatized by effi-
ciency, unanimity, weak Hart–Mas-Colell consistency, and converse Hart–Mas-Colell
consistency.

Theorem 4.2 The core is the unique solution for convex games satisfying efficiency,
unanimity, weak HM-consistency, and converse HM-consistency.

Proof The core satisfies efficiency and unanimity. By Lemmas 4.1 and 4.2, the core
satisfies weak HM-consistency on the domain of convex games and converse HM-
consistency. Let σ be a solution for convex games satisfying efficiency, unanimity,
weak HM-consistency, and converse HM-consistency. We show by induction on the
number of players that σ(N , v) = C(N , v) for all (N , v) ∈ �vex . By unanimity,
σ(N , v) = C(N , v) for all (N , v) ∈ �vex with |N | = 2. By efficiency, unanimity,
and weak HM-consistency, σ(N , v) = C(N , v) for all (N , v) ∈ �vex with |N | = 1.

Let k ∈ N with k ≥ 3 and assume that σ(N , v) = C(N , v) for all (N , v) ∈ �vex

with |N | < k. Let (N , v) ∈ �vex with |N | = k. By individual rationality and weak
HM-consistency, Lemma 4.4 implies that σ(N , v) ⊆ C(N , v). Let x ∈ C(N , v).
Then x ∈ X(N , v). By Lemma 4.1, there exists x = (x S)S∈2N \{∅} with xN = x and
x S ∈ C(S, vS) for all S ∈ 2N\{∅} such that (T , vx

T ) ∈ �vex and xT ∈ C(T , vx
T )

for all T ∈ 2N with |T | = 2. By the induction hypothesis, x S ∈ σ(S, vS) for all
S ∈ 2N\{∅, N } and xT ∈ σ(T , vx

T ) for all T ∈ 2N with |T | = 2. By converse
HM-consistency, x ∈ σ(N , v). Therefore, C(N , v) ⊆ σ(N , v). Hence, σ(N , v) =
C(N , v) for all (N , v) ∈ �vex . ��

The following result follows directly from Lemma 4.3 and Theorem 4.2.

Theorem 4.3 The core is the unique solution for convex games satisfying individual
rationality, unanimity, weak HM-consistency, and converse HM-consistency.

By means of examples, we show that each of the properties in Theorems 4.2 and 4.3
is logically independent of the remaining properties. The solution σ on �vex satis-
fies unanimity, weak HM-consistency, and converse HM-consistency, but does not
satisfy efficiency. The Shapley value on �vex satisfies individual rationality, weak
HM-consistency, and converse HM-consistency, but does not satisfy unanimity. The
imputation set on �vex satisfies efficiency, individual rationality, unanimity, and con-
verse HM-consistency, but does not satisfy weak HM-consistency. Let σ on �vex be,
for all (N , v) ∈ �vex , defined by

σ(N , v) =
{

φ(N , v) if |N | ≥ 3;
C(N , v) otherwise.

Then σ on �vex satisfies individual rationality, unanimity, weak HM-consistency, but
does not satisfy converse HM-consistency. Table 1 shows the relevant properties of
the aforementioned solutions. Thus, the claimed logical independence is shown.

123



424 B. Dietzenbacher

Table 1 Independence of
properties in Theorems 4.2 and
4.3

C σ φ I σ

efficiency + − + + +
individual rationality + − + + +
unanimity + + − + +
weak HM-consistency + + + − +
converse HM-consistency + + + + −

5 A joint characterization

On the domain of convex games, both the core and the Shapley value, as well as their
relative interiors, satisfy efficiency, individual rationality, anonymity, scale covariance,
translation covariance, and superadditivity. Moreover, the Shapley value for convex
games is a subsolution of the core, namely the barycenter of its vertices weighted by
the numbers of orders that generate them. It turns out that a nonempty solution satisfies
all the aforementioned properties if and only if it is (a) this aforementioned barycenter,
(b) a polytope that is homothetic to the core with positive ratio of homethety not larger
than one, centered at this barycenter, or (c) the relative interior of such a solution.
Formally, for each δ ∈ [0, 1], let Cδ on �vex be, for all (N , v) ∈ �vex , defined by

Cδ(N , v) = δC(N , v) + (1 − δ)φ(N , v) =
{

δx + (1 − δ)φ(N , v)

∣
∣
∣
∣ x ∈ C(N , v)

}

.

Let (N , v) ∈ �vex . As the relative interior is scale covariant and translation covariant,

riCδ(N , v) = δriC(N , v) + (1 − δ)φ(N , v).

For 0 < δ < δ′ < 1, we obtain

φ(N , v) = riC0(N , v) = C0(N , v) ⊆ riCδ(N , v) ⊆ Cδ(N , v)

⊆ riCδ′
(N , v) ⊆ Cδ′

(N , v)

⊆ riC1(N , v) ⊆ C1(N , v) = C(N , v),

where all inequalities are equalities if and only if the game is additive, and all inequal-
ities are strict if and only if the game is not additive.

Theorem 5.1 A solution σ on �vex satisfies nonemptiness, individual rationality,
anonymity, scale covariance, superadditivity, weak HM-consistency, and converse
HM-consistency if and only if there exists δ ∈ [0, 1] such that σ = Cδ or σ = riCδ .

Proof On the domain of convex games, both the core and the Shapley value satisfy
nonemptiness, individual rationality, anonymity, scale covariance, and superadditivity.
Clearly, the relative interior of the core inherits nonemptiness, individual rationality,
anonymity, and scale covariance from the core. By Lemma 1 of Hokari et al. (2020),
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it also satisfies superadditivity. The Shapley value satisfies weak HM-consistency and
converse HM-consistency. By Lemmas 4.1 and 4.2, the core and its relative interior
also satisfy these properties.

Let δ ∈ [0, 1] and let σ ∈ {Cδ, riCδ}. Then σ satisfies nonemptiness, individ-
ual rationality, anonymity, scale covariance, and superadditivity because the core, its
relative interior, and the Shapley value satisfy these properties.

In order to show weak HM-consistency, let (N , v) ∈ �vex and let x ∈ σ(N , v).
Then x = δy + (1− δ)z, where y ∈ C(N , v) or y ∈ riC(N , v), and z = φ(N , v). By
weak HM-consistency of the core, its relative interior, and the Shapley value, there
exist y = (yS)S∈2N \{∅} and z = (zS)S∈2N \{∅} with yN = y, zN = z, yS ∈ C(S, vS)

or yS ∈ riC(S, vS), and zS = φ(S, vS) for all S ∈ 2N\{∅}, respectively, such that
(T , v

y
T ), (T , vz

T ) ∈ �vex , yT ∈ C(T , v
y
T ) or yT ∈ riC(T , v

y
T ), and zT = φ(T , vz

T )

for all T ∈ 2N\{∅} with |T | ≤ 2, respectively. Let x = (x S)S∈2N \{∅} be defined by
x S = δyS + (1 − δ)zS for all S ∈ 2N\{∅}. Then xN = x and x S ∈ σ(S, vS) for all
S ∈ 2N\{∅}. As vx

T = δv
y
T + (1−δ)vz

T , we obtain (T , vx
T ) ∈ �vex and xT ∈ σ(T , vx

T )

for all T ∈ 2N\{∅} with |T | ≤ 2 by scale covariance of the core, its relative interior,
and the Shapley value. Hence, σ satisfies weak HM-consistency.

In order to show converse HM-consistency, let (N , v) ∈ �vex with |N | ≥ 3, let
x ∈ X(N , v), and let x = (x S)S∈2N \{∅} with xN = x and x S ∈ σ(S, vS) for all
S ∈ 2N\{∅, N } be such that (T , vx

T ) ∈ �vex and xT ∈ σ(T , vx
T ) for all T ∈ 2N

with |T | = 2. For all S ∈ 2N\{∅}, respectively, there exists a unique yS ∈ C(S, vS)

or yS ∈ riC(S, vS), and zS = φ(S, vS), such that x S = δyS + (1 − δ)zS . Let
y = (yS)S∈2N \{∅} and z = (zS)S∈2N \{∅}. For all T ∈ 2N with |T | = 2, respectively,
vx
T = δv

y
T + (1 − δ)vz

T , yT ∈ C(T , v
y
T ) or yT ∈ riC(T , v

y
T ), and zT = φ(T , vz

T ).
Converse HM-consistency of the core, its relative interior, and the Shapley value,
imply that y ∈ C(N , v) or y ∈ riC(N , v), and z = φ(N , v). By scale covariance
and translation covariance of the core, its relative interior, and the Shapley value, we
conclude that x ∈ σ(N , v). Hence, σ satisfies converse HM-consistency.

In order to prove the uniqueness part, let σ be a solution on the domain of convex
games satisfying nonemptiness, individual rationality, anonymity, scale covariance,
superadditivity, weak HM-consistency, and converse HM-consistency. By Lemma 3
of Hokari et al. (2020), σ satisfies translation covariance. By Lemma 4.4, σ is a
subsolution of the core. Then σ(N , v) = C(N , v) = φ(N , v) for all additive
games (N , v) ∈ �vex with |N | ≤ 2. Let (N , v) ∈ �vex with |N | = 2 and
v(N ) >

∑
i∈N v({i}). By translation covariance, we may assume without loss of

generality that v({i}) = 0 for all i ∈ N . By scale covariance, we may assume without
loss of generality that v(N ) = 1. By anonymity, we may assume without loss of gen-
erality that N = {1, 2}. We now show that σ(N , v) is a convex set. Let x, y ∈ σ(N , v)

and let θ ∈ [0, 1]. By scale covariance, θx ∈ σ(N , θv) and (1−θ)y ∈ σ(N , (1−θ)v).
By superadditivity, θx + (1 − θ)y ∈ σ(N , v). Hence, σ(N , v) is a convex set. By
anonymity, (1 − t, t) ∈ σ(N , v) for all t ∈ [0, 1] with (t, 1 − t) ∈ σ(N , v). For

δ = 1 − 2 inf

{

t ∈ [0, 1]
∣
∣
∣
∣ (t, 1 − t) ∈ σ(N , v)

}

,
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we therefore obtain σ(N , v) = Cδ(N , v) or σ(N , v) = riCδ(N , v). Hence,
σ(N , v) = Cδ(N , v) or σ(N , v) = riCδ(N , v) for all (N , v) ∈ �vex with |N | ≤ 2,
respectively.We showby induction on the number of players that σ(N , v) = Cδ(N , v)

or σ(N , v) = riCδ(N , v), respectively, for all (N , v) ∈ �vex . Let k ∈ N with k ≥ 3
and assume that σ(N , v) = Cδ(N , v) or σ(N , v) = riCδ(N , v) for all (N , v) ∈ �vex

with |N | < k. Now, let (N , v) ∈ �vex with |N | = k and let x ∈ σ(N , v). Then
x ∈ X(N , v). By weak HM-consistency, there exists x = (x S)S∈2N \{∅} with xN = x

and x S ∈ σ(S, vS) for all S ∈ 2N\{∅} such that (T , vx
T ) ∈ �vex and xT ∈ σ(T , vx

T )

for all T ∈ 2N with |T | = 2. By the induction hypothesis, x S ∈ Cδ(S, vS) or
x S ∈ riCδ(S, vS) for all S ∈ 2N\{∅, N }, respectively, and xT ∈ Cδ(T , vx

T ) or
xT ∈ riCδ(T , vx

T ) for all T ∈ 2N with |T | = 2. By converse HM-consistency of
Cδ and riCδ , x ∈ Cδ(N , v) or x ∈ riCδ(N , v). Hence, σ(N , v) ⊆ Cδ(N , v) or
σ(N , v) ⊆ riCδ(N , v) for all (N , v) ∈ �vex , respectively. Similarly, by interchanging
the roles ofσ andCδ or riCδ , we obtainCδ(N , v) ⊆ σ(N , v) or riCδ(N , v) ⊆ σ(N , v)

for all (N , v) ∈ �vex , respectively. Hence, σ = Cδ or σ = riCδ . ��
Note that all the above solutions, i.e., Cδ and ri Cδ , even satisfy additivity6 rather

than superadditivity on the domain of convex games. Indeed, the Shapley value satisfies
additivity on each domain of games, and it is known that the core satisfies additivity on
the domain of convex games. Therefore,Cδ is additive. Moreover, a careful inspection
of (1) shows the additivity of ri C so that ri Cδ is additive for each δ ∈ [0, 1] as well.
However, in the foregoing theorem it is sufficient to employ superadditivity, a property
that is satisfied by the core on each domain of games.

By means of examples, we show that each of the properties in Theorem 5.1 is
logically independent of the remaining properties. Clearly, the solution∅ on �vex that
assigns to each convex game the empty set, exclusively violates nonemptiness. The
solution σ on �vex exclusively violates individual rationality. For the following three
examples, note that each solution on the domain of convex games with at most two
players that satisfies weak HM-consistency admits a unique extension to the domain
of all convex games that satisfies weak Hart–Mas-Colell consistency and converse
Hart–Mas-Colell consistency. Let i ∈ U and let σ i on �vex be the unique subsolution
of the core that satisfies weak HM-consistency and converse HM-consistency, and is,
for all (N , v) ∈ �vex with |N | ≤ 2, defined by

σ i (N , v) =
{

φ(N , v) if i ∈ N ;
C(N , v) otherwise.

Then σ i on �vex exclusively violates anonymity. Let σ̃ on �vex be the unique subso-
lution of the core that satisfies weak HM-consistency and converse HM-consistency,
and is, for all (N , v) ∈ �vex with |N | ≤ 2, defined by

σ̃ (N , v) =
{

φ(N , v) if v(N ) − ∑
i∈N v({i}) ≤ 1;

C(N , v) otherwise.

6 A solution σ on � satisfies additivity if σ(N , v) + σ(N , w) = σ(N , v + w) for all (N , v), (N , w) ∈ �.
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Table 2 Independence of
properties in Theorem 5.1

∅ σ σ i σ̃ σ̂ I σ

nonemptiness − + + + + + +
individual rationality + − + + + + +
anonymity + + − + + + +
scale covariance + + + − + + +
superadditivity + + + + − + +
weak HM-consistency + + + + + − +
converse HM-consistency + + + + + + −

Then σ̃ on�vex exclusively violates scale covariance. Let σ̂ on�vex be the unique sub-
solution of the core that satisfies weakHM-consistency and converse HM-consistency,
and is, for all (N , v) ∈ �vex with |N | ≤ 2, defined by

σ̂ (N , v) =
{

φ(N , v) if v({i}) = v({ j}) for all i, j ∈ N ;
C(N , v) otherwise.

Then σ̂ on�vex exclusively violates superadditivity. The imputation set on�vex exclu-
sively violates weak HM-consistency. The solution σ on �vex exclusively violates
converse HM-consistency. Table 2 shows the relevant properties of the aforemen-
tioned solutions. Thus, the claimed logical independence is shown.

6 Concluding remarks

This paper introduced Hart–Mas-Colell consistency for general solutions for coopera-
tive games with transferable utility.We focused onweak Hart–Mas-Colell consistency
and converse Hart–Mas-Colell consistency of the core on the domain of convex games.
Thequestion ariseswhether the results hold on a larger domainof games.Note that such
domain should at least be closed under subgames, e.g., the domain of totally balanced
games where the core of each subgame is nonempty. A significantly smaller closed
domain that contains the set of convex games is the set of quasi-convex games7 intro-
duced by Sprumont (1990), who showed, e.g., that the Shapley value of a quasi-convex
game is still a member of the core. As the following example shows, the core does
not satisfy weak Hart–Mas-Colell consistency even on the domain of quasi-convex
games.

Example 6.1 Let (N , v) ∈ � with N = {1, 2, 3, 4} be given by

v(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

12 if S = {1, 2, 3, 4};
7 if S ∈ {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}};
4 if S ∈ {{1, 2}, {1, 3}, {1, 4}};
0 otherwise.

7 A game (N , v) ∈ � is quasi-convex if
∑

i∈S v(S)− v(S\{i}) ≤ ∑
i∈S v(T )− v(T \{i}) for all S ⊆ T ⊆

N . Hence, each subgame of a quasi-convex game is quasi-convex.
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The straightforward proof that (N , v) is quasi-convex is left to the reader. Consider
(0, 4, 4, 4) ∈ C(N , v). For each x = (x S)S∈2N \{∅} with xN = (0, 4, 4, 4) and x S ∈
C(S, vS) for all S ∈ 2N\{∅},

vx{1,2}({1}) = v({1, 3, 4}) − x {1,3,4}({3, 4}) = x {1,3,4}({1}) ≥ 1.

Therefore (0, 4) /∈ C({1, 2}, vx{1,2}). Hence, the core does not satisfy weak Hart–Mas-
Colell consistency on the domain of quasi-convex games.
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