
International Journal of Game Theory (2021) 50:547–557
https://doi.org/10.1007/s00182-021-00761-5

ORIG INAL PAPER

Search for a moving target in a competitive environment

Benoit Duvocelle1 · János Flesch1 · Hui Min Shi1 · Dries Vermeulen1

Accepted: 24 January 2021 / Published online: 17 February 2021
© The Author(s) 2021

Abstract
We consider a discrete-time dynamic search game in which a number of players
compete to find an invisible object that is moving according to a time-varying Markov
chain. We examine the subgame perfect equilibria of these games. The main result
of the paper is that the set of subgame perfect equilibria is exactly the set of greedy
strategy profiles, i.e. those strategy profiles in which the players always choose an
action that maximizes their probability of immediately finding the object. We discuss
various variations and extensions of the model.

Keywords Game theory · Search game · Optimal search · Greedy strategy · Subgame
perfect equilibrium

1 Introduction

In this paper we consider a dynamic search game, in which an object moves according
to a time-varying Markov chain across a finite set of positions. The set of compet-
ing players can be either finite or infinite. At each period, an active player is drawn
according to a fixed distribution, and he chooses one of the possible positions. If the
object is in this position, then the active player finds the object and wins the game.
Otherwise, the object moves according to the transition matrix, and the game enters

We would like to thank Aditya Aradhye, Luca Margaritella, Niels Mourmans, the Associate Editor and
two anonymous Reviewers for their precious comments and suggestions.

B Benoit Duvocelle
b.duvocelle@maastrichtuniversity.nl

János Flesch
j.flesch@maastrichtuniversity.nl

Hui Min Shi
hm.shi@student.maastrichtuniversity.nl

Dries Vermeulen
d.vermeulen@maastrichtuniversity.nl

1 Department of Quantitative Economics, Maastricht University, Maastricht, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-021-00761-5&domain=pdf
http://orcid.org/0000-0002-7191-389X


548 B. Duvocelle et al.

the next period. Each player observes the action chosen by his opponents, and the tran-
sition probabilities, initial probabilities and probabilities of being the active player are
known to all players. The goal of each player is to find the object and win the game.
So each player prefers the winning outcome and is indifferent between the outcomes
in which one of his opponents wins or in which nobody finds the object.

The main result of this paper is that the set of subgame perfect equilibria is exactly
the set of greedy strategy profiles, also known as myopic strategy profiles, i.e. those
strategy profiles in which the active player always selects one of the most likely
positions containing the object. The key to this result is to show that by playing a
greedy strategy, each player can guarantee that he wins with a probability at least as
much as his probability of being active. This implies that, in each subgame, under
a greedy strategy profile each player wins with exactly the same probability as his
probability of being active. Hence, under a greedy strategy profile, all subgames are
identical as far as the winning probabilities are concerned, and each greedy strategy
profile is robust to one-deviations: the best each player can do at a certain period
is to choose an action that maximizes the probability to win immediately. All these
arguments hinge on the fact that the active player is chosen according to the same
distribution at each period. Intuitively, this assumption ensures that the active player
cannot invest into the future by finding the object with low probability at the present
period, as this would not only benefit him but also the other players, proportionally to
the fixed probabilities with which each player becomes active.

The rest of this paper is divided as follows. In Sect. 1.1 we refer to related literature.
In Sect. 1.2 we introduce the model and in Sect. 1.3 we present an illustrative example.
In Sect. 2 we study the winning probabilities of players playing a greedy strategy, and
we present a characterization of the subgame perfect equilibria. We show that the set
of subgame perfect equilibria is exactly the set of greedy strategy profiles. In Sect. 3
we discuss some extensions of the model and see to which extend the main result still
holds or not. The conclusion is in Sect. 4.

1.1 Related literature

The field of search problems is one of the original disciplines of Operations Research,
with various applications such as military problems, R&D problems or patent races,
and many of these models involve multiple decision makers. In the basic settings,
the searcher’s goal is to find a hidden object, also called the target, with maximal
probability or as soon as possible. By now, the field of search problems has evolved
into a wide range of models. The models in the literature differ from each other by
the characteristics of the searchers and of the objects. Concerning objects, there might
be one or several objects, mobile or not, and they might have no aim or their aim
is to not be found. Concerning the searchers, there might be one or more. When
there is only one searcher, the searcher faces an optimization problem. When there
are multiple searchers, they might be cooperative or not. If the searchers cooperate,
their aim is similar to the settings with one player: they might want to minimize the
expected time of search, the worst time, or some search cost function. If the searchers
do not cooperate, the problem becomes a search game with at least two strategic non-
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cooperative players, and hence game theoretic solution concepts and arguments will
play an important role. For an introduction to search games, we refer to Alpern and
Gal (2006), Gal (1979, 2010, 2013), Garnaev (2012), and for surveys see Benkoski
et al. (1991) and Hohzaki (2016).

There are many different types of search games in the literature due to variations in
characteristics of the searchers and of the object. Pollock (1970) introduced a simple
search game with one searcher, in which an object is moving across two locations
referred to as “state 1” and “state 2” respectively, according to a discrete-time Markov
chain. The objective of the searcher can be either to minimize the expected number
of looks to find the object, or to maximize the probability of finding the object within
a given horizon. The model allows for overlooking probabilities, which means that
even if the searcher chooses the correct location, he may fail to find the object there.
Instead,Nakai (1973) investigates the search problemwith three states,while assuming
perfect detection, so not accounting for overlooking probabilities. Flesch et al. (2009)
investigates a search game similar to Pollock (1970), but in addition to searching for
the object in state 1 or state 2, the player has a third optionwhich is to wait. The point of
waiting is that it is costless and can induce a favorable probability distribution over the
two states at the next period. It is shown that there is a unique optimal strategy, which is
characterized by two thresholds. Jordan (1997) studies the structural properties of the
optimal strategy, where the goal is to find the object while minimizing the search costs.
Thereby he derived some properties of the optimal strategy for the search problemwith
a finite set of states in the no-overlook case and for the case where each state has the
same overlooking probability and cost. Assaf and Sharlin-Bilitzky (1994) investigates
a search problemwith two states in which the object moves according to a continuous-
time Markov process. The objective is to find the object with a minimal expected
cost, where the “real time” until the object is found is also taken into account in the
cost structure. A competitive environment with more searchers and a static object is
considered in Nakai (1986). Finally, in the companion paper (Duvocelle et al. 2020),
we consider a two-player competitive search game where players play by turns. We
show that an equilibrium does not always exist, but that we can find subgame perfect
ε-equilibria for all ε > 0. A classical reference for an overview of search games is the
book of Alpern et al. (2013). For a recent paper on search games, we refer to Garrec
and Scarsini (2020). They model the search game as a zero-sum two-person stochastic
game where one player is looking for the other one. They provide upper and lower
bounds on the value of the game.

1.2 Themodel

1.2.1 The game

An object is moving over a finite set S = {1, . . . , n} of states according to a time-
varying Markov chain. The initial distribution of the object is given by π = (πs)s∈S ,
and the transition probabilities at each period t ∈ N are given by the S × S transition
matrix Pt , where entry Pt (s, s′) is the probability that the object moves to state s′,
given it is in state s at period t .
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Let I denote a set of players, who compete to find the object.We assume that I ⊆ N

and |I | ≥ 2; so the set I can be either finite or countably infinite. The players do not
observe the current state of the object, but they know the initial distribution π and
the transition matrices Pt , for each t ∈ N. At each period t ∈ N one of the players
is active: player i is active with probability qi > 0, where

∑
i∈I qi = 1. The active

player chooses a state st ∈ S. If the object is in state st , then the active player finds the
object and wins the game. Otherwise the game enters period t + 1. We assume that
each player observes the actions chosen by his opponents, and knows the probabilities
qi , for each i ∈ I .

The goal of each player is to find the object and win the game. For each player
the game has three possible outcomes. The first possible outcome is that the player
himself finds the object and wins the game. The second outcome is that one of his
opponents finds the object and wins the game. The third outcome is that no one finds
the object. In this game each player prefers the first outcome, but is indifferent between
the second and third outcomes. This means that players do not have opposite interests,
which makes it a non-zero-sum game.

1.2.2 Actions and histories

The action set for each player i is Ai = S. Thus, a history at period t ∈ N is a sequence
ht = (i1, s1, . . . , it−1, st−1) ∈ S2(t−1) of past active players and past actions. By Ht =
S2(t−1) we denote the set of all histories at period t . Note that H1 consists of the empty
sequence. Given a history ht , with the knowledge of the initial probability distribution
π and the transition matrices P1, . . . , Pt−1, the players can calculate the probability
distribution of the location of the object at period t . This probability distribution does
not depend on the past active players, only on the past actions in ht .

1.2.3 Strategies

A strategy for player i is a sequence of functions σi = (σi,t )t∈N where σi,t : Ht →
�(S) for each period t ∈ N. The interpretation is that, at each period t ∈ N, if player
i becomes the active player, then given the history ht , the strategy σi,t recommends to
search state s ∈ S with probability σi,t (ht )(s). We denote by �i the set of strategies
of player i . We say that a strategy is pure if, for any history, it places probability 1 on
one action.

A strategy is called greedy if, for any history, it places probability 1 on the most
likely states. In the literature the greedy strategy is sometimes also called the myopic
strategy.

1.2.4 Winning probabilities

Consider a strategy profile σ = (σi )i∈I . The probability under σ that player i wins is
denoted by ui (σ ). Note that

∑

i∈I
ui (σ ) = 1 − Probσ [object never found].
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Fig. 1 An illustrative example

The aim of player i is tomaximize ui (σ ). If the object has not been found before period
t , and the history is ht , the continuation winning probability from period t onward is
denoted by ui (σ )(ht ) for player i .

1.2.5 Subgame perfect equilibrium

A strategy σi for player i is a best response to a profile of strategies σ−i for all
other players if ui (σ ) ≥ ui (σ ′

i , σ−i ) for every strategy σ ′
i ∈ �i . A strategy profile

σ = (σi )i∈I is called an equilibrium of the game if σi is a best response to σ−i for
each player i ∈ I .

A strategy σi for player i is a best response in the subgame at history h to a profile
of strategies σ−i for all other players, if ui (σ )(h) ≥ ui (σ ′

i , σ−i )(h) for every strategy
σ ′
i ∈ �i . A strategy profile σ = (σi )i∈I is called a subgame perfect equilibrium if, at

each history h, in the subgame at history h the strategy σi is a best response to σ−i for
each player i ∈ I . In other words, σ is a subgame perfect equilibrium if it induces an
equilibrium in each subgame.

1.3 An illustrative example

In the model we introduced the greedy strategies. However, it is not clear a priori if
those strategies are relevant, nor if one greedy strategy can be better or worst than
another one. Now we examine an example in order to try to answer those questions.
Consider the following game with a parameter c ∈ (0, 1), with two states and two
players. At each period player 1 is active with probability q1 = 0.99 = 1 − q2. The
initial probability of the location of the object is π = (c, 1 − c) and the transition
matrices are defined as follows: for all t ∈ N,

Pt = P =
(
c 1 − c
1 0

)

.

The induced Markov chain of this game is depicted in Fig. 1.
We discuss two cases.

Case 1 Consider the case in which 0 < c < 1
3 . At period t = 1 it is more likely for

the object to be in state 2 as c < 1 − c.
Intuitively, if player 2 gets the chance to be active at period 1, he should look in

state 2 as his chance to play later is quite low. However, it is not immediately clear
what player 1 should do at period 1. On the one hand, if he looks in state 1 and he
does not find the object, then he finds it in period 2 with probability 1 if he can play,
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which is likely to happen as q1 = 0.99. On the other hand he might also simply want
to maximise his chance to find the object at period 1 by looking at state 2.

More precisely, assume first that player 2 is active at period 1. If he looks at state
1, with probability c he finds the object and with probability 1 − c the active player
at period 2 can find the object by looking at state 1. In this case, player 2 finds the
object with probability c+q2 · (1−c). However, if he looks at state 2, with probability
1 − c he finds the object and with probability c the active player at period 2 can find
the object with probability 1 − c by looking at state 2. In this case, player 2 finds the
object with probability at least 1− c+ q2 · c · (1− c) > c+ q2 · (1− c) as q2 = 0.01
and c < 1

3 . Thus, it is strictly better for player 2 to look at state 2 at period 1. The same
holds for each subgame in which the probability distribution of the object is (c, 1−c);
in particular this is the case after a player choosing state 2 and not finding the object
there.

Now assume that player 1 is active at period 1. If he looks at state 1, then similarly to
the analysis of player 2, he finds the object with probability c+q1 ·(1−c). However, if
player 1 decides to choose state 2 at each period he is active, by our analysis of player
2, it follows that player 2 will also do the same. Hence player 1 finds the object with
probability (1−c)+q1 ·c ·(1−c)+q1 ·c2 ·(1−c)+. . . = 1−c+q1 ·c > c+q1 ·(1−c)
as q1 < 1 and 0 < c < 1

3 . So it is better for player 1 to choose state 2 at period 1.
From our discussion, it follows that every Nash equilibrium induces the play in

which at each period the active player chooses state 2. If a deviation occurs to state 1
and the object is not found, the next active player chooses state 1 and wins the game.
This is a greedy strategy profile as at each period the most likely state is chosen.
Case 2 Consider the case in which c = 1/2.

In this case, both states are equally likely, so a greedy strategy can choose any state
at period 1. Note that at any period, if state 1 is chosen and the object is not found,
a greedy strategy finds the object at the next period in state 1. However, if state 2 is
chosen and the object is not found, a greedy strategy can choose any of the two states at
the next period. Therefore, there are many greedy strategy profiles, and all can induce
different plays. It is then natural to ask whether every greedy strategy profile induces
the same winning probabilities. As we will show later, every greedy strategy profile
leads to the winning probability q1 for player 1 and q2 for player 2.

2 Greedy strategies and subgame perfect equilibria

In this section we prove our main result, which is that the set of subgame perfect
equilibria is exactly the set of greedy strategy profiles. We start by introducing an
intermediate result related to the winning probability guarantees of the players who
play a greedy strategy.

Proposition 1 Consider a strategy profile σ = (σ j ) j∈I and a player i ∈ I . If σi is a
greedy strategy, then under σ , the object is found with probability 1 and player i wins
with probability at least qi .

Proof Let σ = (σ j ) j∈I be a strategy profile in which player i plays a greedy strategy
(the strategies of the other players are arbitrary).
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Step 1. Under σ , the object is found with probability 1.
Proof of Step 1. Consider an arbitrary period t ∈ N and suppose that the object

has not been found yet. Then, player i plays with probability qi , and when he plays
he wins with probability at least 1/n. This implies that the object is found at period t
with probability at least qi/n. Since this holds for each period t , under σ the object is
found with probability 1.

Step 2. Under σ , player i wins with probability at least qi .
Proof of Step 2. Consider a period t ∈ N and a history h ∈ Ht . For each state

s ∈ S, let zh(s) denote the probability that the object is in state s at period t given the
history h. Let z∗h = maxs∈S zh(s).

For each player j ∈ I , let w j (h) denote the probability that after history h player j
becomes the active player and by using the mixed action σ j (h) he wins immediately.
Since σi is a greedy strategy, we have wi (h) = qi · z∗h . For each other player j �= i
we have w j (h) ≤ q j · z∗h . Hence, given that the object is found at period t after the
history h, the conditional probability that player i finds it is

wi (h)
∑

j∈I w j (h)
≥ qi · z∗h∑

j∈I q j · z∗h
= qi .

Since this holds for every period t and every history h ∈ Ht , and since by Step 1
the object is found under σ with probability 1, player i wins with probability at least
qi . 
�
Proposition 2 If σ is a greedy strategy profile or σ is an equilibrium, then under σ ,
each player i wins with probability qi .

Proof By Proposition 1, each player i can guarantee that he wins with probability at
least qi . Since

∑
i∈I qi = 1, the statement follows. 
�

Now we state and prove the main result of the paper.

Theorem 3 The set of subgame perfect equilibria is exactly the set of greedy strategy
profiles.

Proof The proof is divided into two steps.
Step 1. Every greedy strategy profile is a subgame perfect equilibrium.
Proof of Step 1. Let σ be a greedy strategy profile and consider the subgame at

a history h ∈ H . We show that σ induces an equilibrium in this subgame. Consider a
player i and a deviationσ ′

i . ByProposition 2,we have ui (σ )(h) = qi . ByProposition 1,
the strategy σ j guarantees to each player j ∈ I that he wins with probability at least
q j , even if another player deviates. Since

∑
j∈I q j = 1, we find ui (σ ′

i , σ−i ) ≤ qi .
Thus, the deviation σ ′

i is not profitable.
Step 2. Every subgame perfect equilibrium is a greedy strategy profile.
Proof of Step 2. Assume by way of contradiction that there exists a subgame

perfect equilibrium σ = (σi )i∈I , which is not a greedy strategy profile. Suppose that
σi is not greedy at history h. Let strategy σ ′

i be a one-deviation from σi at history h,
under which player i plays greedy at history h. So σ ′

i (h) �= σi (h) and σ ′
i (h

′) = σi (h′)
for every h′ ∈ H \ {h}.
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Let zh(σi (h)) denote the probability that player i finds the object immediately with
σi at history h given that he is the active player. Similarly, let zh(σ−i (h)) denote the
probability that one of the opponents of player i finds the object immediately with σ−i

at history h given that one of the opponents is active.
Then we have

ui (σi , σ−i )(h)

= qi · [zh(σi (h)) + (1 − zh(σi (h))) · qi )] + (1 − qi ) · (1 − zh(σ−i (h))) · qi
= qi · zh(σi (h)) · (1 − qi ) + qi · [qi + (1 − qi ) · (1 − zh(σ−i (h)))].

The first equality follows from the following argument. Player i has a probability of
qi of becoming the active player. Then, hewins immediatelywith probability zh(σi (h))

or he does not find the object immediately with probability 1−zh(σi (h)) and still wins
in the future with probability qi by Proposition 2. However, with probability 1 − qi
one of his opponents is active. Then, player i still has a chance to win. His opponents
fail to find the object immediately with probability 1 − zh(σ−i (h)) and then player i
can again win in the future with probability qi .

Similarly, for the deviation σ ′
i we have

ui (σ
′
i , σ−i )(h)

= qi · [zh(σ ′
i (h)) + (1 − zh(σ

′
i (h))) · qi ] + (1 − qi ) · (1 − zh(σ−i (h)) · qi

= qi · zh(σ ′
i (h)) · (1 − qi ) + qi · [qi + (1 − qi ) · (1 − zh(σ−i (h))].

Since zh(σ ′
i (h)) > zh(σi (h)) holds due to the fact that σ ′

i is greedy at h but σi is
not, we find ui (σ ′

i , σ−i )(h) > ui (σ )(h). This however contradicts the assumption that
σ is a subgame perfect equilibrium. 
�

3 Extensions and variations

In this section we consider several extensions of the model and discuss if the main
theorem still holds or not.

3.1 Extensions where our results still hold

3.1.1 History dependent transitions

In themodel descriptionwe assumed that the object moves according to a time-varying
Markov chain. A more general situation is when the transition probabilities at each
period t can also depend on (i) the sequence of past active players, (ii) the sequence
of past choices of the active players, and (iii) the sequence of states visited by the
object in the past. Without any modification in the proofs, our main result, Theorem 3,
remains valid.
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3.1.2 Overlooking

Our main result, Theorem 3, can be extended to a model with overlooking probabil-
ities. Overlooking means that the object is in the chosen state, but the active player
“overlooks” it and therefore does not find it. Note that players cannot distinguish
between overlooking and searching in a vacant state. For this extension, let δs < 1
denote the probability of overlooking the object in state s, for each s ∈ S.

The overlooking probabilities need to be taken into account when defining greedy
strategies. A greedy strategy should choose a state s that maximizes the probability of
containing the object times the probability of not overlooking the object, i.e. it should
maximize the immediate probability of finding the object.

3.1.3 No active player

The model could also be adjusted for the probability that no player is active, i.e.∑
i∈I qi < 1. Then, r := 1 − ∑

i∈I qi is the probability that no player is active at a
certain period. We still assume that qi > 0 for each player i , so that r < 1. Our main
result, Theorem 3, would still hold, as the key properties of Proposition 1 remain valid.

3.2 Variations where results break down or need adjustment

3.2.1 Robustness to finite horizon and discounting

In view of Theorem 3, the greedy strategy profiles are natural solutions in our search
games.Wewill now examine two closely related variations of ourmodel, search games
on finite horizon and discounted search games, and investigate how the greedy strategy
profiles perform in them. Consider a search game as described in Sect. 1.2, and let σ
be an arbitrary greedy strategy profile.

The search game on horizon T , where T ∈ N, is played in the same way at periods
1, . . . , T , but if the object has not been found by the end of period T , then the game
ends. Let ε > 0 be an arbitrary error-term. It follows from standard arguments that if
the horizon T is sufficiently large, then the greedy strategy profile σ is an ε-equilibrium
in the search game on horizon T . Here, an ε-equilibrium is a strategy profile such that
no player can increase his probability of finding the object by more than ε with a
unilateral deviation.

The discounted search game with discount factor δ ∈ (0, 1) is played in the same
way as the original search game, but now each player i maximizes

∑∞
t=1 δt−1 · zi,t ,

where zi,t is the probability that player i finds the object at period t . Let ε > 0 be
an arbitrary error-term. If the discount factor δ is close to 1, then the greedy strategy
profile σ is an ε-equilibrium in the search game with discount factor δ. It is quite
intuitive, and the main reason is that, as long as at least one player plays a greedy
strategy, the object will be found at an exponential rate, so essentially in finite time.

Note however that a greedy strategy profile is not necessarily a 0-equilibrium on
finite horizon. Indeed, consider the game represented in Fig. 2 over T = 2 periods.
There are three states. The initial probability distribution of the object is given by
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Fig. 2 A 2-period game

π = (1/3+ ε, 1/3+2ε, 1/3−3ε), where ε > 0 is small enough so that 0.99 · (2/3+
3ε) ≤ 2/3, and the transitions at period 1 are given by the arrows in Fig. 2. There are
two players, and player 1 plays at each period with probability q1 = 0.99.

The greedy strategy profile is to choose state 2 at period 1 and state 1 at period 2.
Under this strategy profile, player 1 finds the object with probability q1 · (2/3+3ε) ≤
2/3. However, it would be a profitable deviation for player 1 to choose state 3 at
period 1 and state 1 at period 2. Indeed, player 1 is the active player at both periods
with probability (q1)2, and in that case this strategy finds the object with probability
1.

3.2.2 Period-dependent probabilities qi

It is crucial for our proofs that the probabilities with which the players become active
do not depend on the period. Indeed, if two players alternate in searching for the target,
the (unique) greedy strategy profile in the leading example of Sect. 1.3 with c = 0.51
fails to be an equilibrium. Suppose that player 1 is active at period 1. The greedy
strategy would dictate to choose state 1. Then either player 1 wins immediately or
player 2 wins at period 2 by choosing state 1. Thus, choosing state 1 would make
player 1 win with probability c = 0.51. However, by choosing state 2 at period 1,
player 1 would win with probability much more that 0.51, as this would make player 2
uncertain about the location of the object at period 2. Intuitively, the current decision
of the active player should not only depend on the immediate probability to win, but
also on the conditional probability distribution of the object at the next period.

3.2.3 Infinitely many states

In our model, we assumed that the set of states is finite. If there are infinitely many
states, the greedy strategy profiles may fail to be an equilibrium. In fact, this can
happen even when there is only one player. As an example, consider the following
game. The set of states is S = {0} ∪ N. The object starts in state 0 with probability
0.51 and in state 1 with probability 0.49. State 0 is absorbing. If the object is in state 1,
it then moves to states 2, 3, 4 with equal probability 1

3 , and from these states it moves
to states 5,…,13, with equal probability 1

9 , and in general, at each period t it moves to
3t−1 new states with equal probability.

If the player first chooses state 2 and then state 1, he finds the object with probability
1. However, any greedy strategy would first choose state 1, and in that case the object
cannot be found with probability 1 any more, as the transition law of the object when
starting in state 2 is diffuse.
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4 Conclusion

In this paper we examined a discrete-time search game with multiple competitive
searchers who look for one object moving over finitely many locations. We showed
that if the probability to play for each player may vary among players but it is the same
at each period, the set of subgame perfect equilibria is exactly the set of greedy strategy
profiles (cf. Theorem 3). We discussed several variations, such as the finite truncation
of the game, the discounted version of the game, cases with infinitely many states,
overlooking probabilities and we examined the possibility that no player is active at a
period. A challenging task would be to investigate stochastic search games when the
probability of a player to be active depends on the history.
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