
International Journal of Game Theory (2020) 49:1143–1153
https://doi.org/10.1007/s00182-020-00736-y

ORIG INAL PAPER

Non-emptiness of the alpha-core: sufficient and necessary
conditions

Achille Basile1 · Vincenzo Scalzo1

Accepted: 1 September 2020 / Published online: 18 September 2020
© The Author(s) 2020

Abstract
We give sufficient and necessary conditions for the non-emptiness of the alpha-core
in the setting of strategic games with non-ordered and discontinuous preferences. In
order to prove our results, we can avoid the use of Scarf’s Theorem forNTU-games, by
suitably appealing to the Ky Fan minimax inequality. Examples clarify our conditions
and allow the comparison of our results with the previous ones.

Keywords Games with non-ordered preferences · Discontinuous games ·
Non-emptiness of the alpha-core

JEL Classification C60 · C71

1 Introduction

A well known cooperative solution concept for strategic form games is the α-core by
Aumann (1961). A strategy profile belongs to the α-core if no coalitions of players
have profitable joint deviations against to all strategies of the opponents. Scarf (1971)
proved the non-emptiness of the α-core when the players are endowedwith continuous
and quasi-concave utility functions and the sets of strategies are finite-dimensional.
Kajii (1992) extended Scarf’s result to the setting of games with continuous and non-
ordered preferences: each player is characterized by a mapping defined on the set of
strategy profiles, and it is assumed that all such mappings are open-graph and convex-
valued.
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1144 A. Basile, V. Scalzo

In the light of some recent advances on the existence of Nash equilibria in dis-
continuous games, new conditions for the non-emptiness of the α-core in games with
discontinuous payoff functions have been provided by Uyanik (2015). In the men-
tioned paper, the author introduces a coalitional version of the continuous-security by
Barelli and Meneghel (2013), and other conditions so that the non-emptiness of the
α-core is obtained through the non-emptiness of the core of a suitable NTU-game.
Here, Scarf’s Theorem (Scarf 1967) plays a crucial role.

In the present paper, we give necessary and sufficient conditions for the non-
emptiness of the α-core in games with discontinuous and non-ordered preferences. In
doing this, we do not use Scarf’s Theorem (Scarf 1967), but we adapt to our setting the
approach to the Nash equilibrium existence problem considered by Scalzo (2019a).
More precisely, given a game with non-ordered preferences, we define a real-valued
function so that the solutions to the corresponding Ky Fan minimax inequality (Fan
1972) coincide with the α-core elements of the game. Hence, we apply the general
results on the existence of solutions to the Ky Fan minimax inequality given by Scalzo
(2013, 2019a) and identify sufficient (and necessary) conditions on the game for the
non-emptiness of the α-core. The conditions we obtain are adaptations to our setting of
those given by Scalzo (2019a, b) for the existence of Nash equilibria in discontinuous
games.

The investigation on the non-emptiness of the α-core in games with discontinuous
and non-ordered preferences can be motivated, for example, by the analysis of situa-
tions like the following one. Consider a family of clubs {Ci : i ∈ N }, each of which
being represented by an individual i ∈ N , called administrator of Ci . Suppose that
i �= j implies Ci �= C j . Assume that clubs get benefits from a common asset and the
gain they obtain depends on the investments of all clubs. So, every club ranks profile
of investments x = (xi )i∈N by means of a rule which aggregates the preferences of
the members (for example, unanimity rule, majority rule, etc.). Even if each member
of a club has a utility function on the set of profiles of investments, the aggregation
rule may give rise to a non necessarily ordered preference (for instance, the major-
ity rule induces a non transitive preference). Moreover, the aggregate preference of
a club Ci may not satisfy the continuity properties considered by the previous liter-
ature (open-graph preferences). This is the case, for example, if i is interpreted as
the administrator of a condominium Ci . By the role, she/he is naturally led to iden-
tify amounts even when they are different but differ by less than a threshold level

λ > 0. That is: x and y are indifferent for Ci if
∣
∣
∣

∑

j∈N x j − ∑

j∈N y j
∣
∣
∣ < λ; and Ci

prefers y on x if
∑

j∈N y j ≥ ∑

j∈N x j + λ (see also Campbell and Walker 1990).
This preference cannot be represented by utility functions and the mapping Pi defined
by Pi (x) = {y : Ci prefers y on x} is not open-graph.1 Now, remaining in the con-
dominium interpretation, it is plausible that all Ci are located in a common district,
reason why cooperation among administrators is beneficial. Consequently, the α-core
solution concept plays obviously a role, whereas the results from the previous literature
do not apply.

1 One can easily see that the symmetric part of the preference is not transitive. Moreover, x̄ ∈ Pi (x) for x̄
given by x̄ j = x j + λ

|N | for each j ∈ N . Now, it is clear that there are profiles of investments x ′ indifferent
to x̄ in every open neighborhood of x . This implies that the graph of Pi is not open.
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Non-emptiness of the alpha-core. . . 1145

The paper is organized as follows. Section 2 recalls definitions and results on the
Ky Fan minimax inequality. The setting of the paper is introduced in Sect. 3, where
the previous literature on the non-emptiness of the α-core is also recalled. Our main
results, as well as the comparisonwith the previous ones, are given in Sect. 4. Section 5
concludes the paper.

2 Ky Fanminimax inequality background

Let X be a non-empty subset of a topological vector space and � be a real-valued
function defined on X × X . The following problem

(KF)

{

find x∗ ∈ X such that
�(x, x∗) ≤ 0 ∀ x ∈ X

is called Ky Fan minimax inequality corresponding to the function � (Ky Fan 1972).
An element x∗, if any exists satisfying condition (KF), is a solution to the inequality;
let S� denote the set of solutions. Below, we present some properties which play a
role in the existence of solutions to (KF).

Definition 2.1 (Scalzo 2019a) The function� is said to be slightly diagonally transfer
continuous if �(x, z) > 0 implies that there exists an open neighborhood Oz of z and
x ′ ∈ X so that �(x ′, z′) > 0 for all z′ ∈ Oz\S�.

Definition 2.2 The function � is said to be generalized lower transfer continuous if
�(x, z) > 0 implies that there exists an open neighborhood Oz of z and an upper
semicontinuous mapping ξ : Oz ⇒ X , with non-empty, convex and compact values,
so that �(x ′, z′) > 0 for all z′ ∈ Oz\S� and all x ′ ∈ ξ(z′).

The property in Definition 2.1 generalizes the diagonal transfer continuity by Baye
et al. (1993) because it allows a non-solution to (KF) to be approached by nets of
solutions. In the same spirit, Definition 2.2 presents a generalization of the generalized
0-quasi-transfer continuity given in Definition 2 by Scalzo (2013). It is clear that
every slightly diagonally transfer continuous function is generalized lower transfer
continuous, but the converse does not hold: see the example below.

Example 2.1 Let u be the real-valued function defined on X = [0, 1] × [0, 1] as
follows:

u(x1, x2) =
⎧

⎨

⎩

x1 if x1 = x2 > 0
−1 if x1 = x2 = 0
0 otherwise.

Define �(x, z) = u(x1, z2) − u(z) for all x and z belonging to X . We have S� =
{x : x1 = x2 > 0} ∪ (]0, 1] × {0}). Note that the non solution (0, 0) is the limit (in
the usual topology) of sequences of solutions to (KF). The function � is generalized
lower transfer continuous. In fact, let �(x, z) > 0 for some x and z. If z �= (0, 0),
the inequality is possible only if z1 �= z2 and x1 = z2 > 0. It is easy to see that
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the generalized lower transfer continuity is satisfied for an open neighborhood Oz

of z where z′1 �= z′2 for all z′ ∈ Oz and ξ(z′) = {z′2} × [0, 1] for each z′ ∈ Oz . If
z = (0, 0) and Oz is an open neighborhood of z, since every z′ ∈ Oz\S� is such that
z′1 �= z′2, by using the mapping ξ defined above, we recognize that � is generalized
lower transfer continuous (since (0, 0) is approached by sequences of solutions to
the Ky Fan minimax inequality, the function � is not generalized 0-quasi-transfer
continuous). Finally, in order to have �(x ′, z′) > 0 for all z′ ∈ Oz\S�, it is clear that
x ′ must change as z′ does. So, � is not slightly diagonally transfer continuous.

Definition 2.3 (Baye et al. 1993) The function � is said to be diagonally transfer
quasi-concave if, for any {x1, . . . , xk} ⊂ X there exists {z1, . . . , zk} ⊂ X , where
xh �→ zh , such that, for each z ∈ co{z1, . . . , zk} and z = ∑l

j=1 λ j zh j with λ j > 0

for j = 1, . . . , l, one has �(x, z) ≤ 0 for some x ∈ {xh1 , . . . , xhl }.
Definition 2.4 (Zhou and Chen 1988) The function � is said to be 0-diagonally
quasi-concave if, for any {x1, . . . , xk} ⊂ X and any z ∈ co{x1, . . . , xk} with
z = ∑l

j=1 λ j xh j and λ j > 0 for j = 1, . . . , l, there exists x ∈ {xh1 , . . . , xhl }
so that �(x, z) ≤ 0.

Obviously, every 0-diagonally quasi-concave function is diagonally transfer quasi-
concave, but the converse does not hold.

We have the following results on the existence of solutions to (KF).

Proposition 2.1 (Scalzo 2019a) Assume that X is a convex and compact subset of a
Hausdorff topological vector space and � be slightly diagonally transfer continuous.
Then, S� is non-empty if and only if � is diagonally transfer quasi-concave.

Proposition 2.2 Assume that X is a convex and compact subset of a locally convex
Hausdorff topological vector space. If� is generalized lower transfer continuous and
0-diagonally quasi-concave, then S� is non-empty.

Proof By contradiction, assume S� = ∅. Because of the generalized lower transfer
continuity and S� = ∅, one has that � is generalized 0-quasi-transfer continu-
ous. So, Proposition 2 by Scalzo (2013) applies and we get S� �= ∅, which is a
contradiction.2 ��
Remark 2.1 In Sect. 4, we provide α-core non-emptiness results by using the Ky Fan
minimax inequality. So, in the light of Proposition 4.2 and Remark 4.2, one can deduce
that Proposition 2.2 cannot be obtained from Proposition 2.1, and viceversa.

3 Setting and preliminaries

Let N be a finite set of players and, for each i ∈ N , let Xi be a non-empty set. Each
player i is endowed with a mapping Pi : X = ∏

j∈N X j ⇒ X . Given x ∈ X , Pi (x)

2 Proposition 2 (Scalzo 2013).Assume that X is a convex and compact subset of a locally convexHausdorff
topological vector space. If � is generalized 0-quasi-transfer continuous and 0-diagonally quasi-concave,
then S� is non-empty and compact.
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Non-emptiness of the alpha-core. . . 1147

represents the set of all strategy profiles that player i ranks better than x . For instance,
if player i compares strategy profiles by means of a binary relation and �i denotes its
asymmetric part, we have Pi (x) = {z ∈ X : z �i x}. In the same way, if ui is a utility
function of player i on X , Pi (x) = {z ∈ X : ui (z) > ui (x)}. However we point out
that the mapping Pi does not necessarily come from an ordered preference. The list
G = 〈Xi , Pi 〉i∈N of data is named strategic form game with non-ordered preferences
(game, briefly).

Given a game G, we call coalition every non-empty subset of players; N denotes
the set of coalitions of G. For each S ∈ N , let XS = ∏

j∈S X j and X−S = ∏

j /∈S X j ;
a strategy profile x ∈ X will be also denoted by x = (xS, x−S).

In this paper, we are interested in the cooperative solution concept for games pro-
posed by Aumann (1961) and recalled in the following definition:

Definition 3.1 Let G be a game. The strategy profile z ∈ X is said to be α-blocked if
there exists a coalition S and xS ∈ XS such that {xS} × X−S ⊆ ⋂

i∈S Pi (z). The set
of all non α-blocked strategy profiles is called α-core of G and is denoted by αC(G).

The first result on the non-emptiness of the α-core was given by Scarf (1971) for
games whose players are endowed with continuous, quasi-concave utilities, and the
strategy sets are finite-dimensional. Later, Kajii (1992) extended the result by Scarf
(1971) to the games where the players’ preferences are non-ordered and the sets of
strategies are included in normed vector spaces. In this result, the mappings of players
are assumed to be open graph and convex-valued. More recently, in the framework
of finite-dimensional spaces of strategies, Uyanik (2015) obtained the non-emptiness
of the α-core in normal form games with quasi-concave payoff functions: inspired
by Barelli and Meneghel (2013), the author considered a condition on payoffs which
allows discontinuities.

Let us note that Scarf’s Theorem (Scarf 1967) on the non-emptiness of the core of
NTU-games plays a significant role in all the above mentioned papers. The approach
of the present paper is different and we do not need Scarf’s Theorem for our existence
result.

4 Non-emptiness of the alpha-core

In this section, we give sufficient and necessary conditions for the non-emptiness of
the α-core in the framework of discontinuous games. We deal with games with non-
ordered preferences. To do this, we consider a suitable real-valued function � such
that the solution set to the Ky Fan minimax inequality corresponding to � coincides
with the α-core.

Let G = 〈Xi , Pi 〉i∈N be a game with non-ordered preferences. Define the function
� on X × X as follows:

�(x, z) =
∑

S∈N
min

y−S∈X−S
min
i∈S P̂i

(

(xS, y−S), z
)

, (4.1)

where P̂i
(

(xS, y−S), z
) = 1 if (xS, y−S) ∈ Pi (z) and P̂i

(

(xS, y−S), z
) = 0 otherwise.
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We have: x∗ ∈ αC(G) if and only if �(x, x∗) = 0 for all x ∈ X . Indeed, if
�(x, x∗) = 0 for all x ∈ X , we have miny−S∈X−S mini∈S P̂i

(

(xS, y−S), x∗) = 0 for
each coalition S. This implies that, for every strategy profile x and every coalition S,
there exists y−S ∈ X−S and i ∈ S such that (xS, y−S) /∈ Pi (x∗). In other words: no
coalition can use a joint deviation toα-block x∗. So, x∗ is anα-core element. Similarly,
one gets that x∗ is a solution to the Ky Fan minimax inequality corresponding to the
function � if x∗ ∈ αC(G).

Since� ≥ 0, the α-core ofG coincides with the solution set to the Ky Fanminimax
inequality corresponding to �.

The following definitions introduce to our framework some deviation properties
used in recent Nash equilibrium existence results (see Remark 4.1).

Definition 4.1 A game G is said to satisfy the coalitional deviation property if, for all
z /∈ αC(G), there exists an open neighborhood Oz of z and x ′ ∈ X such that, for any
z′ ∈ Oz\ αC(G), there exists a coalition S for which {x ′

S} × X−S ⊆ Pi (z′) for every
i ∈ S.

Definition 4.2 A game G is said to satisfy the generalized coalitional deviation prop-
erty if, for all z /∈ αC(G), there exists an open neighborhood Oz of z and an upper
semicontinuous mapping ξz : Oz ⇒ X , with non-empty, convex and compact values,
such that, for each z′ ∈ Oz\ αC(G) and each x ′ ∈ ξz(z′), there exists a coalition S for
which {x ′

S} × X−S ⊆ Pi (z′) for every i ∈ S.

Remark 4.1 The definitions above are given in the spirit of the slight single deviation
property and the generalized single deviation property introduced by Scalzo (2019a, b)
in the framework of the Nash equilibrium existence problem, where new existence
results have been obtained. The properties are generalizations of the single deviation
property given by Nassah and Tian (2008) and Reny (2009). As it is showed in the
following, the coalitional versions of the mentioned properties allow to obtain α-core
non-emptiness results in the setting of discontinuous games.

The class of gameswhich satisfy the coalitional deviation property strictly includes the
class of games where themappings Pi are open graph, as the following Proposition 4.1
and Example 4.1 show.

Proposition 4.1 Let G = 〈Xi , Pi 〉i∈N be a game. If Pi is open graph for all i ∈ N,
then G satisfies the coalitional deviation property.

Proof Suppose that z /∈ αC(G). So, for some coalition S and xS ∈ XS , we get
{xS} × X−S ⊆ Pi (z) for all i ∈ S, that is: {z} × ({xS} × X−S

) ⊆ Gr(Pi ).3 For every
i ∈ S, since Pi is open graph, there exists an open neighborhood Oi

z of z and an open
set Ai ⊆ X , which includes {xS} × X−S , such that Oi

z × Ai ⊆ Gr(Pi ). This implies
that {z′} × ({xS} × X−S

) ⊆ Gr(Pi ) for all z′ ∈ Oi
z . Now, set Oz = ⋂

i∈S Oi
z and let

x ′ be a point in X such that x ′
S = xS . We get {x ′

S}× X−S ⊆ Pi (z′) for all i ∈ S and all
z′ ∈ Oz , which proves that the coalition deviation property is satisfied (in the present
situation, the coalition which α-blocks z′ ∈ Oz does not depend on z′). ��
3 Gr(Pi ) denotes the graph of the mapping Pi , that is: Gr(Pi ) = {(u, v) ∈ X × X : v ∈ Pi (u)}.
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Non-emptiness of the alpha-core. . . 1149

Example 4.1 Consider the normal form game with discontinuous and non quasi-
concave payoff functions G = 〈Xi , ui 〉i=1,2 (borrowed from Example 2 by Scalzo
2019a) such that: X1 = X2 = [0, 1] and u(x) = (u1(x), u2(x)) is defined as below

u(x) =

⎧

⎪⎪⎨

⎪⎪⎩

(0, 1) if x1 < x2 and x /∈ B
(1, 0) if x1 > x2 and x /∈ B
(0, 0) if x1 = x2 = 0
(1, 1) if x ∈ B ,

where B = {x : x1 = x2 > 0} ∪ ({0}×]0, 1]) ∪ (]0, 1] × {0}). Define Pi (x) = {z :
ui (z) > ui (x)}. It is easy to check that αC(G) = B. Moreover, in order to see that
the coalitional deviation property holds true, it is sufficient to set x ′ = (1, 1) for every
z /∈ αC(G). Finally, it is obvious that Pi is not an open-graph mapping.

The following example proves that the property introduced in Definition 4.2 strictly
generalizes that given in Definition 4.1

Example 4.2 Let G = 〈Xi , Pi 〉i=1,2 be the game where X1 = X2 = [0, 1] and

Pi (x) =
{ {x−i } × [0, 1] if xi > x−i

∅ otherwise.

One can see that αC(G) = {x : x1 = x2}. Now, if z /∈ αC(G), for some i ∈ {1, 2},
we have zi > z−i . So, there exists an open neighborhood Oz such that z′i > z′−i for
all z′ ∈ Oz and, by setting ξz(z′) = {z′−i } × [0, 1] for all z′ ∈ Oz , one recognizes that
the generalized coalitional deviation property holds true. Moreover, only player i can
α-block every z′ ∈ Oz , and the strategy he uses depends on z′. Hence, the game does
not satisfy the coalitional deviation property.

The definitions below give coalitional versions of some quasi-concavity like properties
employed to solve the Nash equilibrium existence problem in ordinal and normal form
games. We refer to the transfer uniform quasi-concavity by Nassah and Tian (2016)
and Scalzo (2019a) and the C-condition by Scalzo (2019b). Given a subset A of a
vector space, with scoA we denote the set of all strict convex combinations of all
elements of A.

Definition 4.3 A game G is said to be coalitional transfer quasi-concave if, for each
{x1, . . . , xk} ⊂ X there exists {z1, . . . , zk} ⊂ X , where xh �→ zh , such that, for
every z ∈ sco{zh1, . . . , zhl }, with {zh1, . . . , zhl } ⊆ {z1, . . . , zk}, for at least one x ∈
{xh1 , . . . , xhl } we have that no coalition can α-block z by using x , that is: for all
S ∈ N , there is w−S ∈ X−S and i ∈ S so that (xS, w−S) /∈ Pi (z).

Definition 4.4 A game G is said to be coalitional quasi-concave if, for each
{x1, . . . , xk} ⊂ X and each z ∈ sco{x1, . . . , xk}, there exists x ∈ {x1, . . . , xk} so
that no coalition can α-block z by using x .

It is clear that coalitional quasi-concavity implies coalitional transfer quasi-concavity.
The coalitional transfer quasi-concavity is a necessary condition for the non-emptiness
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1150 A. Basile, V. Scalzo

of the α-core. Indeed, if x∗ ∈ αC(G), to see that the property is satisfied, it is sufficient
to set {z1, . . . , zk} = {x∗} for every subset of strategy profiles {x1, . . . , xk}. However,
the coalitional transfer quasi-concavity is not enough to guarantee the non-emptiness
of the α-core, as the following example shows.

Example 4.3 Consider the 2-player game with mappings P1 and P2 defined on [0, 1]×
[0, 1] as follows:

P1(x) =
{ ]x1, 1] × [0, 1] if x1 ∈ [0, 1[

]0, 1[×[0, 1] if x1 = 1
P2(x) ≡ ∅.

It is easy to see that αC(G) = ∅. Moreover, the game is coalitional quasi-concave.

It is interesting to note that, if one looks at the function � defined by means of
(4.1), the properties introduced in Definitions 4.1, 4.2, 4.3 and 4.4 can be reformulate
in terms of properties recalled in Sect. 2 for the (KF) inequality. In particular, we have
the following proposition, whose proof is obvious.

Proposition 4.2 Let G be a game and let � be defined by (4.1). One has:

(i) G satisfies the coalitional deviation property if andonly if� is slightly diagonally
transfer continuous.

(ii) G satisfies the generalized coalitional deviation property if and only if � is
generalized lower transfer continuous.

(iii) G is coalitional transfer quasi-concave if and only if � is diagonally transfer
quasi-concave.

(iv) G is coalitional quasi-concave if and only if � is 0-diagonally quasi-concave.

Now, from Proposition 4.2, in the light of Propositions 2.1 and 2.2 , we obtain
the following results on the non-emptiness of the α-core in games with non-ordered
preferences.

Theorem 4.1 Assume that Xi is a convex and compact subset of a Hausdorff topolog-
ical vector space, for each i ∈ N. Let G = 〈Xi , Pi 〉i∈N be a game that satisfies the
coalitional deviation property. Then, αC(G) is non-empty if and only if G is coalitional
transfer quasi-concave.

Theorem 4.2 Assume that Xi is a convex and compact subset of a locally convex
Hausdorff topological vector space for each i ∈ N. Let G = 〈Xi , Pi 〉i∈N be a game
that satisfies the generalized coalitional deviation property and is coalitional quasi-
concave. Then αC(G) is non-empty.

Remark 4.2 Theorem4.1 presents a class of discontinuous games (games satisfying the
coalitional deviation property) where the non-emptiness of the α-core is characterized
by means of a quasi-concavity like property (the coalitional transfer quasi-concavity).
In Theorem 4.2, the coalitional deviation property is replaced with a more general
condition; at the same time, the coalitional transfer quasi-concavity is strengthened
with the coalitional quasi-concavity. However, Theorems 4.1 and 4.2 are each other
independent.
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For instance, the game presented in Example 4.2, which satisfies the generalized
coalitional deviation property but not the coalitional deviation property, is coalitional
quasi-concave. To prove this, we proceed by contradiction and assume that there exists
z ∈ sco{x1, . . . , xk} such that: for each x ∈ {x1, . . . , xk} there is a coalition S so that
{xS} × X−S ⊆ Pi (z) for all i ∈ S. If z1 = z2, we have that z ∈ αC(G), and this is
impossible. So, we have that z1 �= z2. Suppose z1 > z2. Only coalition {1} can α-
blocks z, and we obtain {x1}×[0, 1] ⊆ P1(z) = {z2}×[0, 1] for all x ∈ {x1, . . . , xk},
which implies xh1 = z2 with h = 1, . . . , k. Since z ∈ sco{x1, . . . , xk}, we get the
contradiction z1 = z2. Similarly if z1 < z2, and the coalitional quasi-concavity holds
true. So, in this example, Theorem 4.2 applies but Theorem 4.1 not.
On the other hand, Theorem 4.1 gives a characterization of the non-emptiness of the
α-core, while Theorem 4.2 provides only sufficient conditions.

4.1 Comparison with the previous literature

Examples 4.1 and 4.2 provide games where our results apply but not those by Scarf
(1971) and Kajii (1992): the payoff functions in the first example are not continuous
and the mappings from the second one are not open-graph.

Concerning the non-emptiness of the α-core in normal form gameswith discontinu-
ous payoff functions, Theorem 1 by Uyanik (2015) assumes finite-dimensional spaces
of strategies, quasi-concave payoffs and a condition called coalitionally C-security.
This condition require that, if z /∈ αC(G), for each coalition S there exist a numerical
vector (vi )i∈S , xS ∈ XS and an open neighborhood Oz of z such that:

(a) ui (xS, w−S) ≥ vi for all w−S ∈ XS and all i ∈ S, and
(b) for each z′ ∈ Oz there is a coalition S so that ui (z′) < vi for all i ∈ S.

It is easy to see that the coalitionally C-security fails on the game by Example 4.1
because of the point z = (0, 0).

In the setting of games with discontinuous non-ordered preferences, Martins-da-
Rocha and Yannelis (2011) introduced the following condition, called α-continuity:
the mapping PS : X ⇒ XS , defined for each coalition S by

PS(x) =
{

zS ∈ XS : {zS} × X−S ⊆
⋂

i∈S
Pi (x)

}

∀ x ∈ X ,

has open lower sections. They obtained the non-emptiness of the α-core in games
satisfying the α-continuity and such that x /∈ coPi (x) for all x ∈ X and all i ∈ N .
This property can be characterized as follows:

Proposition 4.3 Let G = 〈Xi , Pi 〉i∈N be a game. Then, α-continuity holds true if and
only if the following property is satisfied: a) for each z /∈ αC(G), there exist an open
neighborhood Oz of z, a coalition S, and x ′

S ∈ XS such that {x ′
S}×X−S ⊆ ⋂

i∈S Pi (z′)
for all z′ ∈ Oz.

Proof Suppose that α-continuity holds and z /∈ αC(G). So, at least one coalition S
α-blocks z by using some xS ∈ XS , that is: {xS} × X−S ⊆ ⋂

i∈S Pi (z). Because
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of α-continuity, we have Oz ⊆ P−1
S (xS) for some open neighborhood Oz of z. Set

x ′
S = xS , we get that the property a) is satisfied. Similarly one gets the viceversa. ��

Proposition 4.3 shows that the class of α-continuous games is included in the class
of games which satisfy the coalitional deviation property. Moreover, the inclusion is
strict because the α-continuity fails on the game introduced in Example 4.1; in fact,
one has P−1

{1,2}(1, 1) = {(0, 0)}.

5 Conclusions

This paper has provided new conditions which guarantee the non-emptiness of the
α-core in the setting of games with discontinuous and non-ordered preferences and
infinite-dimensional spaces of strategies. In particular, we have introduced sufficient
and necessary conditions for the existence of α-core elements. Inspired by a recent
literature on the existence of Nash equilibria in games with non-ordered preferences,
our results have been obtained by means of the Ky Fan minimax inequality. More
precisely, given a game G with non-ordered preferences, we have defined a real-
valued functions � such that a strategy profile x∗ belongs to the α-core of G if and
only if �(x, x∗) ≤ 0 for all strategy profiles x . We have obtained two results. In the
first one, we have proved that the α-core of a game satisfying the coalitional deviation
property is non-empty if and only if the game is coalitional transfer quasi-concave.
In the second one, we have considered a condition more general than the coalitional
deviation property and we have obtained the non-emptiness of the α-core by using a
strengthening of the coalitional transfer quasi-concavity.
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