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Abstract
This paper proposes a novel approach to identify the presence of a latent factor in
the co-movements of gasoline and diesel prices in the three major European Union
economies, (France,Germany, and Italy) using daily data from January 3, 2005, to June
28, 2021.More precisely, we advance an artificial neural networks algorithm estimated
through a machine learning experiment through the backpropagation system to show
that the neural signal is altered by an element that could coincide with a latent factor
in the fuel price co-movements. We consider the role of the fuel tax systems and
the connection between gasoline and diesel prices in these countries. The estimations
indicate the presence of an unobservable component (the latent factor) in the fuel price
co-movements, capable of influencing NN. This result validates the previous findings
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reported in the literature, indicating an excess co-movement in fuel prices. It also has
implications in terms of fuel price forecasts in the short run.

Keywords Fuel prices co-movement · Artificial neural networks · Latent factor

JEL Classification C45 · Q41

1 Introduction

International oil prices recorded large fluctuations during the last decades, in the con-
text of the global financial crisis, sanitary crisis, geopolitical risks, andhighuncertainty.
Starting with the 2000s, the West Texas Intermediate (WTI) oil price index recorded
a historical pick in May 2008, with 176.89 US dollars/barrel, and a severe decline
in April 2020 in the context of Corona Virus Disease-2019 (COVID-19), when the
average WTI price was 22.10 US dollars/barrel.1 These fluctuations have noteworthy
implications for the business cycle, financial markets, and other energy prices. How-
ever, for the real economy, it is equally important to understand the fluctuations and
the co-movements of fuel prices, which are not driven only by crude oil prices, but
also by other elements, such as the taxation systems, environmental regulations, profit
margins, and the productivity level of oil firms. This is because fuel prices represent
an important cost component for all goods and services.

Gasoline and diesel prices are two critical components of the global energy
landscape, and their co-movements have far-reaching implications for economies,
industries, and consumers around the world. These fuels power the vast majority of
vehicles, from personal cars to commercial trucks and even airplanes, making them
essential commodities that directly affect people’s daily lives and the cost of doing
business.

The co-movements of gasoline and diesel prices are closely intertwined due to
their shared dependence on crude oil as the primary feedstock. Crude oil serves as
the raw material from which both gasoline and diesel are refined, so fluctuations in
crude oil prices have a significant impact on the prices of these finished products. As
such, understanding the dynamics of gasoline and diesel price co-movements requires
examining the factors that influence crude oil prices.

Geopolitical tensions, supply disruptions, and changes in global oil production all
contribute to fluctuations in crude oil prices, which, in turn, influence gasoline and
diesel prices. For example, conflicts in oil-producing regions, such as theMiddle East,
can disrupt the supply of crude oil and lead to spikes in prices for both gasoline and
diesel. Similarly, decisions by major oil-producing countries, such as OPEC (Organi-
zation of the Petroleum Exporting Countries), to increase or decrease oil production
quotas might exert a profound impact on the global supply and, consequently, prices
(Kpodar and Liu 2021).

Market forces also play a significant role in the co-movements of gasoline and
diesel prices. Supply and demand dynamics, as well as economic conditions, affect

1 https://www.macrotrends.net/1369/crude-oil-price-history-chart
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consumer behavior and the choices they make regarding the type of fuel they use.
For instance, during periods of economic growth, increased industrial activity often
leads to greater demand for diesel fuel to power heavy machinery and commercial
vehicles. Simultaneously, rising consumer confidence can result in increased gasoline
consumption as more people take to the road for leisure travel and commuting.

Environmental policies and regulations further influence the co-movements of gaso-
line and diesel prices.Governmentsworldwide have been pushing for cleaner andmore
efficient transportation options, which has led to changes in fuel formulations and
the adoption of emissions-reduction technologies. These changes can have differing
impacts on the prices of gasoline and diesel. For instance, the introduction of biofuels
or low-sulfur diesel can affect production costs and supply, leading to variations in
pricing for both fuels.

Additionally, the exchange rate between currencies can play a role in the co-
movements of gasoline and diesel prices, especially in countries that rely heavily
on imported crude oil. When a country’s currency weakens against the US dollar,
which is often used as the standard for oil pricing, it can result in higher prices for
both gasoline and diesel as the cost of imported oil rises.

In this context, several recent studies show that fuel price co-movements are not only
driven by international oil price shocks (Galeotti et al. 2003; Frondel et al. 2016; Aper-
gis and Vouzavalis 2018; Kisswani 2019; Ogbuabor et al. 2019; Schweikert 2019), but
also being influenced by fuel tax systems andfinancial distress episodes (Albulescu and
Mutascu 2021). Moreover, gasoline and diesel prices co-move at different frequencies
and time horizons (Mutascu et al. 2022). Elements like increased market transparency
(Dewenter et al. 2017), competition and market concentration (Kihm et al. 2016),
or profit margins of oil and gas companies (Albulescu and Mutascu 2021), might
also influence the fuel price co-movements, which remain very strong, even after the
isolation of the international oil price effect (Mutascu et al. 2022). With a different
perspective, Matar et al. (2023) investigated the nexus among CO2 emissions, elec-
tricity consumption, economic growth, urbanization, and trade openness for six Gulf
Cooperation Council (GCC) countries through the wavelet analysis (WA) approach,
while Brady and Magazzino (2018) explored the sustainability and co-movement of
government debt in the European Monetary Union (EMU) member countries through
a panel data analysis.

Thus, in addition to the role the international oil prices and tax systems play in
the fuel price dynamics, the excess co-movements might be explained by a series of
unobserved factors. Indeed, Pindyck and Rotemberg (1990) underline the role of latent
factors in explaining the persistent co-movement of commodity prices. Similarly, Bai
and Ng (2006) raise the question of the presence of latent factors in the co-movements
of an important number of economic series. If the business cycle explains most of the
price changes for a non-fuel commodity basket, in the case of fuel price co-movements,
the supply shocks and contract-specific events present a higher importance.

Starting from this evidence, the goal of this paper is to propose a novel approach
to identify the presence of a latent factor in the co-movements of gasoline and
diesel prices. On the one hand, the presence of a latent factor explains the excess
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co-movements of fuel prices reported by previous papers. On the other hand, the iden-
tification of a latent factor helps in predicting fuel prices, especially at shorter time
horizons.

Therefore, our first contribution to the existing literature is represented by the use
of an artificial neural network (ANN) algorithm estimated through three activation
functions in a machine learning (ML) experiment. We resort to a backpropagation
system linearizing the activation function using a Hebbian learning procedure, in
order to show that the neural signal is altered by an element that could coincide with
a latent factor. In the second step, we generate an algorithm able to isolate the neural
network (NN) signal at a precise point and use a mirror test to show the presence of a
latent factor, capable of influencing the NN. Following Magazzino and Mele (2021),
this paper innovates the literature in several ways. First, previous estimates of a latent
factor—even though related to a different topic—used inferential methods; while, to
the best of our knowledge, this is the first attempt to implement a completely different
and more robust methodology able to show this latent factor with these variables. To
achieve this objective, a new ANN algorithm has been designed, written, and tested.
This mathematical setting is able to analyze the signal proceeding from the inputs
to the latent factor and, as a final step, to the target. Furthermore, at the level of
computer programming, the results achieved represent the first empirical assessment
of the presence of a latent factor between the variables of interest.

Second, we apply this new complex algorithm to identify an unobservable driver of
fuel price co-movements in three European countries, namely France, Germany, and
Italy. In line with Albulescu and Mutascu (2021), we consider both the gasoline and
diesel price co-movements, with and without taxes. To this end, we use weekly data,
spanning the period from January 3, 2005, to June 28, 2021. Data were extracted from
the Weekly Oil Bulletin of the European Commission. The reasons for analyzing fuel
price co-movements in these countries are explained in detail byMutascu et al. (2022)
and refer to the fact that these countries are the largest EU countries, with different fuel
tax systems in place, a different structure of energy production and a different approach
taken to reduce carbon emissions. The focus on the three EU countries contributes to
the validation of previous results reported in the literature, pointing to the favor of
excess co-movements in fuel prices, even after the isolation of the effect of crude oil
prices. More precisely, our NN estimations indicate the presence of co-movements
across all categories of prices, and each variable behaves as a rescuer to correlated
cyclic variations. The excess co-movements are validated by the presence of a latent
factor.

The rest of the paper describes the ANN empirical model (Sect. 2), the activation
of NN (Sect. 3), the identification of a latent factor through fast convolution processes
(Sect. 4), and the conclusions together with relevant policy implications (Sect. 5).

2 An ANN empirical model

In this paper, we use an ML approach to estimate the presence of co-movements
and a hypothetical latent factor. According to Saqur and Narasimhan (2020), we use
a complex process of ANNs estimated through three activation functions in an ML
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experiment. In particular, we have programmed four algorithms composed of 7962
command strings. They have been developed in Java and Python. The tests presented
below represent a Python implementation of the Mplo3d package.

Our model uses the logical process of ANNs that simulates the brain at the the-
oretical level. In principle, the process defines the central body as a mathematical
model, called “node,” characterized by an activation function (instead, we generated
multiples of the activation function), a threshold value, and (possibly) a bias. Each
node receives as input a set of signals from the previous units. These signals reach
the neuron after being weighed and combined. After having added it through a matrix
algebra process, the bias becomes the variable of the activation function, determining
the activation (or the lack of activation) of the neuron. Therefore, an NN is a set of
nodes arranged in layers, connected by weights. The first layer is called the “input
layer,” while the last one is the “target.” The intermediate ones are called “hidden
layers.” The latter are usually not accessible by the algorithm, as all the characteristics
of the complete network are stored in the matrices that define the weights. The type
of network determines the type of connections between the nodes of different layers
and between those of the same layer. This model uses a triphasic structure of NNs. In
particular, we initially choose a backpropagation system and subsequently linearize
the activation function through Hebbian learning. From this process, we generate the
search for a latent factor in the binary function of the algorithm. The backpropagation
system is based on two phases: i) the forward phase, in which the network is crossed
and the error at the output is evaluated as the difference between the correct output
and the one to be obtained, and ii) the backward phase, which is the backpropaga-
tion proper, where the signal propagates in the opposite direction and the weights are
adjusted to reduce the output error. The backpropagation then adjusts the parameters
of the NN in the direction of the least error and is usually based on the application
of the gradient descent method (GDM), which guarantees to find the local minimum
of the cost function, indicating the direction of variation of the error to follow. It is
also possible to find a global minimum by repeatedly searching for local minima and
comparing them.

The Hebbian method of learning uses the Hebb (1949) postulate related to the
self-learning of biological neurons. In other words, if two neurons, one in and one
out, are simultaneously activated for a specific time, there is an increase in the ease
of transmission of the signal between these two neurons. In this way, the value of
the connection weight is increased as the synaptic force increases proportionally to
the correlation. Mathematically, the NN activation functions to manage a set of two
approaches.

We can analyze the propagation process relative to the Hebbian method in the
following way. Starting from the identification in LeCun et al. (1998) and Melchior
et al. (2016), we activate the Q-Hebb conscript approach.2

h j = φ
(
a j

) := φ

(
N∑

i

wi j (xi − μi ) + b j

)

(1)

2 An alternative way to generate the gradient training process is provided in the Appendix.
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h = φ(a) := φ
(
WT (x − μ) + b

)

= φ

(
WT x + b − WTμ

b′

)

l = φ

⎛

⎝WT

⎛

⎝x − μ +
(
WT

)−1
b

μ′

⎞

⎠

⎞

⎠ (2)

μ(t + 1) = (1 − ν)μ(t) + νμbatch(t) (3)

From Eq. 4, we apply the system of Mnih et al. (2015). It represents a propagation
process of theHebbian system through a different perspective. This approach is widely
used to simplify mathematical representations of the waves in an NN.

Q(s, a)� = maxπE
[
rt + γ rt+1 + γ 2rt+2

+ · · · | st = s, at = a, π ]
(4)

v j = �(vmo) (5)

Ė(t) = −E(t)/τE + 	(t) (6)


w(t) = (r(t) + b) · E(t) (7)

vo = vmo + vdo = vmo + Q
(
s, A;�−

i

)
(8)

ab = arg max
a

(vo) (9)

L(�) = E(s,a,r ,s′)U (D)

(
r + γmaxabvo

(
s′, ab,�−

i

)

−Q(s, a;�i ))
2 (10)

3 Activation of the neural network

To evaluate the ideal activation function for the NN to be designed, we test the one
related to Eq. (22). We have chosen a process with the sigmoid, the ReLU (Rectified
Linear Unit), and the hyperbolic tangent, using three different learning rate values
(0.7, 0.09, 0.001) and iterations [ITE] (107, 1010, 1012) to be able to cover most of the
possible combinations. After carrying out these analyses, we observe that using both
the hyperbolic tangent and the rectified linear functions, it is impossible to describe
the structure’s behavior, obtaining very high errors (higher than 10%). Such a situation
would have rendered the NN useless for the estimation since it would be unfeasible
to test both iterations and learning rates. In contrast, the sigmoid function allows us
to obtain a high accuracy of the results. Therefore, we have chosen this approach
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as the activation of neurons. It would also be possible to use different functions for
the different layers of the network; however, given the high levels of errors detected,
we decide to simplify the system and rely on the sigmoid for all layers (including the
output layer), whose values will be denormalized at the output. Regarding the learning
rate, we have built an algorithm capable of heavily affecting both the convergence and
computational time. In fact, since Eq. (18) can assume very high values, this situation
may cause non-convergence with pronounced oscillations, generating huge errors. By
contrast, Eq. (22) could generate shallow values requiring a longer time for training.

Although, in theory, the learning rate must be a number between 0 and 1, we
force the algorithm by presetting the minimum value to be 0.01 and the maximum
value to be 0.9. The results obtained would be more efficient than the standard ones.
After 89 simulations obtained in 19 h of calculation, we observe that values close
to or greater than 0.5 lead to an error beyond 1%. To this end, the value of 0.05 is
assumed for subsequent simulations, which does not involve significant increases in
computational time compared to values close to 0.1, ensuring slightly higher accuracy.
The choice of even lower learning rates (such as 0.005), on the other hand, penalizes
the NN, making it very difficult to train due to the time it takes and inconvenient to
use in case there are many knots.

Figure 1 shows our NN relative to the dataset in Table A1 (Appendix), with the
latent factor. As we can see, the NN has three levels of complexity. The first level
coincides with a high number of activation neurons concerning the inputs and targets
(11, 9, 8, 7, 6, 5–1-6, 7, 9, 10, 12); between the inputs and outputs there is a dispersed
neuron (it represents the latent factor); the number of targets is more significant than
three and coincides with 50% of the inputs. A network generated in this way requires

Fig. 1 The NN process. Notes: i) GWTG-Gasoline prices without tax in Germany, GWTF-Gasoline prices
without tax in France, GWTI-Gasoline prices without tax in Italy, DWTG-Diesel prices without tax in
Germany, DWTF-Diesel prices without tax in France, DWTI-Diesel prices without tax in Italy, GTG-
Gasoline prices with tax in Germany, GTF-Gasoline prices with tax in France, GTI-Gasoline prices with
tax in Italy, DTG-Diesel prices with tax in Germany, DTF-Diesel prices with tax in France, DTI-Diesel
prices with tax in Italy. Source: authors’ elaborations in AdNN and Oryx
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Table 1 A NN model predicted
target expression NN Variable Results

y_1_1 = sigma GWTG 4.8

y_2_2 = sigma GWTF 5.6

y_3_3 = sigma GWTI 4.7

y_4_4 = sigma DWTG 8.3

y_5_5 = sigma DWTF 8

y_6_6 = sigma DWTI 8.3

y_7_7 = sigma GTG 8.4

y_8_8 = sigma GTF 9.3

y_9_9 = sigma GTI 11.2

y_10_10 = sigma DTG 7.9

y_11_11 = sigma DTF 6.7

y_12_12 = sigma DTI 6.3

Source: authors’ elaborations in Java

an algorithm capable of separating the process into two distinct phases, while at the
same time, processing them jointly to the latent factor.

As shown in Fig. 1, to see how a NN changes behavior by moving nodes from
one layer to another while keeping the total number fixed, among the various possi-
ble combinations, the one best suited our estimate is the combination that generates
13,485,391,9203 total nodes. This process is achieved by combining both the neurons’
mass and the network’s stiffness. To obtain what is shown in Fig. 1, we have consid-
ered 27 networks with increasing node numbers. Next, we generate an algorithm that
estimates the respective mirror NNs and a reference network with n-1 nodes per inter-
mediate layer. The training of the networks is performed using the same parameters,
in terms of iterations, learning rate, and the two sets, for all the NNs tested, to have
directly comparable data. The execution time for each input-target combination aver-
ages 620 s. Since we have to carry out a dynamic analysis, we have processed the
results obtained in Table 1, through a neural propagation in Java. In other words, we
have generated pairs of the same input targets.

Table 1 shows theNN results in a dynamic process. Each variable seems to behave as
a rescuer to correlated cyclic variations. The results are the value of the beta coefficient
of the NN, which, across all levels, show positive values. The designed network has
proved to be very efficient for predicting targets concerning this complex structure that
we program. Table 1 confirms the presence of co-movement between prices.Moreover,
as we can see from the Sunburst test in Fig. 2, the errors in stiffness and mass of the
NN are almost completely absent.

Since there are n + 1 possibilities for the design of the network different from
ours, we verify the hypothetical use of an n + n input and target nodes to be inserted
as parameters within the distance between the constraints of the NN. This process is
tested through the expected variance process in ML.

3 Result = DRn,k. In this case, k, a positive integer, can also be greater than or equal to n.
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Fig. 2 Sunburst ML test results. Source: authors’ elaborations in AdNN and BigML

As we can see from Fig. 3, having fixed the binding parameters of neuronal mass,
upper and lower limits of the nodes, and stiffness, we obtain PC7 configurations that
satisfy these requirements. The script created in Fig. 3 allows estimating either param-
eter ranges if their variation is possible, or a constant value. In this way, it is possible
to use the hypothetical NN suitable for all the requirements of the basic structure in
Fig. 1. This process is possible only if the minimum and maximum values preset in
the algorithm (0 and 1) are respected. They are also essential for the standardization
process parameters. However, none of them show a value close to 90%. Therefore,
there is no different model than the one pre-depicted in Fig. 1. Subsequently, we carry
out several tests in order to evaluate the forecast reliability of the constructed NN
even in the application phase using models whose geometric characteristics are very
different from those of the training set and the validation/testing set tests. In particular,
we select 300 different random configurations whose parameters are very close to the
values at the extremes of the applicability range. As a result, no errors have been found
higher than those obtained previously (see the results of the Sunburst test).
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Fig. 3 ML explained variance. Source: authors’ elaborations in Apache Mahout

Therefore, we test our NN process following the theoretical postulate that the best
training strategy is the one that allows the least possible loss of signals within a NN.
To this end, we decide to use two specific tests: the Quasi-Newton method and the
Levenberg–Marquardt algorithm.

The Quasi-Newton method calculates an approximation of the inverse Hessian
through the gradient present in Eq. (10). The blue line represents the training error
and the orange line the selection error. As we can see, at a normalized value of 2.2
concerning 301 epochs, both the training and selection errors are practically null. In
fact, the first registers a value of 6.13 e-05 and the second of 0.00056. Therefore, since
the lines descend until they rapidly vanish as the epochs increase, the first test is correct.
The Levenberg–Marquardt algorithm, on the other hand, shows that the training and
selection errors in each epoch are reduced to the minimum value of 3.18. Again, the
training and selection errors are almost zero: the final training error is 0.0026 and the
final selection error is 0.0025.

Finally, in order to isolate the COVID-19 pandemic period, we rerun our model on
the sub-period from January 3, 2005, to December 31, 2019. The applied findings do
not show any remarkable difference.

4 A latent factor through fast convolution processes

In this section, we demonstrate the existence of a latent factor in the co-movement of
gasoline and diesel prices for the three selected countries (Italy, France, andGermany).
The presence of co-movements in prices has been reported in previous literature. Now,
we ask ourselves if there is a latent factor within our NN. We will use a complex
mechanism based on residual NNs to verify this. It is an architecture that generates
types of blocks (called residual blocks) that act within an NN through the use of a
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new and innovative algorithm. The basic concept of the residual block model is to
subject an input (x) to the sequence of operations convolution-ReLU-convolution. In
this way, it is possible to have a function F (x), and add the same x to the result.
Thus, at the output of this block, we have H (x) = F (x) + x. In a traditional feed-
forward NN, on the other hand, we would have, in practice, that H (x) = F (x).
By concatenating several such blocks, the unsupervised algorithm predicts a specific
output. This process represents the result of not learning a direct transformation from
the input data to the output, but learning a particular term F (x) to be added to the input
data to get to the target byminimizing the residual error. This approach represents what
has already been mentioned with the name of residual learning. Another reason for
the importance of this particularly effective analysis tool is represented by the fact
that in the propagation step of the backpropagation gradient, it is distributed among
the signal levels of the NN. This situation makes it possible to significantly counter
the problem of gradient degradation, which occurs markedly in networks with many
levels and hinders the gradient’s flow toward the initial levels of the network, thus
slowing down training. The ability to tackle this problem is one of the main features of
building intense networks. The proposed model can be viewed in Fig. 5. The presence
of waves in the NN and the same size correspond to those of a trained network, which
suffers from convolution problems.

As shown in Fig. 5, the NN presents numerous waves of significant magnitude. The
neural signal, in other words, despite the presence of training and selection errors close
to zero, is altered by an element that could coincide with a latent factor. To obtain the
result in Fig. 4, it is necessary to import the additional package Mplo3d into Python.
Next, it is necessary to set up the 3d visual analysis and import the results of a residual
NN. The process is correct when the computational blocks are present in 2*2 strings.

Once we have verified that the NN presents a convolution trend, we can decide to
make visible the latent factor present in our NN. Thus, we generated an algorithm
capable of isolating the NN signal at a precise point; this point represents the latent
factor. Before proceeding with the illustration of the latent factor, we divided the nodes
of the NN into three different blocks.

Through a procedure of mirror parts with opposite signs, we tested an algorithm
inside the Mplo3d package capable of dividing the NN in Fig. 1 into two parts: one to
the right of the latent factor and one to the left. Subsequently, we isolated the junction
point between the neural nodes of the inputs and those of the outputs, later reproduced
in the last graph showing the isolated part’s effect on the NN.What has been described
so far is graphically represented in Fig. 6.

Figure 6 presents three stages of the mirror test process. The first stage (on the left)
shows our NN (in Fig. 1) in the complex of signals between the left and right side
nodes concerning inputs and outputs. The nodal signal of the inputs (left) records a
value that starts from 0 and reaches (by a specular effect) the maximum at the value
− 1. This value corresponds to the maximum signal process of the NN that produces
the right side and, therefore, the target at value 1.

The central part of the three graphs in Fig. 6, on the other hand, represents the
node between the inputs and outputs. At this point, the signal seems to disappear.
Finally, combining the two graphs on the left and in the center gives us the last graph
(on the right) in Fig. 6. It shows the NN broken at the meeting point between the
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Fig. 4 Training Process tests. Source: authors’ elaborations in Oryx and NeuralAd

Fig. 5 NN convolution-ReLU-convolution. Source: authors’ elaborations in Python (Mplo3d package) and
Java
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Fig. 6 The NN Mirror test. Source: authors’ elaborations in Python (Mplo3d package)

signals of the input nodes, capable of generating the targets. This result most likely
highlights the presence of a latent factor capable of influencing the NN. Therefore, we
decide to enrich the algorithmwith a computational procedure, capable of showing the
presence of this factor. According to Magazzino and Mele (2021), we use the concept
of non-negativity, which can be written as:

K = JY → in a multi ple level is : K = J1 JnY (11)

Now we apply non-negativity in a binary process:

ρ = B · K →= B · K = B · (J1 JnY ) → min
J1 JnY ,K

1

2
‖ρ − B · (J1 JnY )‖2q (12)

In (24), we use the projected descending gradient (PDG):

K 0, J 01 , J 0n ,Y 0 → Kk = Kk − δ
(
Bt •

(
B • Kk − ρ

))
= (13)

= (Kk+1, J k+1
1 , J k+1

n ,Y k+1) → min
K ,J1 Jn ,Y

‖Kk − K‖2q (14)
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Fig. 7 The latent factor. Source: authors’ elaborations in Python and Java

We apply the mirror process in (14):

J k+1
1 = L+(J k1 − (J k1 J

k
n Y

k − Kk+1)(J k1 J
k
n Y

kK k)! (15)

J k+1
n = L+(J kn − (J k1 )!(J k1 J kn Y k − Kk+1)(J kn+1K

k))! (16)

Finally, we have:

Y k+1 = L+(Y k)((J k1 J
k
n )!

(
J k1 J

k
n Y

k − Kk
)
) (17)

The result obtained from the non-negativity process can be observed in Fig. 6.
Figure 7 shows the visibility of the latent factor, as seen from the tests carried out in
Figs. 5 and 6. It represents a disturbance process within the NN. We have been able
to amplify this process by isolating the autonomous components of the neural nodes.
In other words, the presence of a latent factor also plays a role in the co-movements
of gasoline and diesel prices in the countries under consideration.

However, although this result represents a novelty in the literature, we are not able
to explain why the latent factor is positioned in the upper right part of the neural signal
box. We are supposed to observe the latent factor set in the center. In particular, we
think of obtaining a latent factor with coordinates (− 1; − 1). Instead, as we can see
from Fig. 7, it has (0; 0) coordinates. Such a result would have justified the following
hypothesis: the latent factor is activated at the point where the neural signals of the
inputs begin to activate those capable of generating the targets. Furthermore, since the
algorithmwe have developed uses a NNwith memory, each effect represents the result
of what “the NN remembers.” Therefore, the expected value would have coincided
with (− 1; − 1).

5 Conclusions and policy implications

The goal of this paper was to analyze fuel price co-movements resorting to an ANNs
algorithm estimated through a ML experiment. Starting from the previous results
reported in the literature, we included in our NN gasoline and diesel prices, with and
without taxes, in order to identify those co-movements. The additional goal was to
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identify an unobservable component that explains excess co-movements documented
in previous papers. Resorting to a backpropagation system and a mirror test, we doc-
umented that the neural signal was altered by an element that could coincide with a
latent factor in the fuel price co-movements. This latent factor was not only repre-
sented by crude oil prices, but also by cost competition and the profit margins of oil
firms.

We designed, programmed, and tested a new ANNs algorithm able to capture and
graphically visualize the latent factor in the co-movements of gasoline and diesel
prices in the three bigger EU countries. Moreover, this is the first paper in the related
literature that uses an AI approach, and it provides a graphical 3D representation of
the latent factor.

In terms of policy implications, policymakers should carefullymonitor the oil firms’
competition and profit margins as their business responses can be also the result of
speculative behavior. On the one hand, in such a context, an adaptive price policy
is more than required by limiting either the level of retailed oil prices or the oil
firms’ mark-up margins. In contrast, the movements of international oil prices should
be a notable signal, indicating future-induced reactions of the internal market, often
being accompanied by a speculative behavior. Therefore, such expectations should be
strongly considered in order to especially counteract the imported rise of oil interna-
tional prices by offering price subsidies for retail chains or monitoring those related
prices through regulations.

However, from a technical point of view, the coordinates of the latent factor were
unusually placed in the upper right part of the neural signal box. We could only
explain this result by the fact that the latent factor was activated at the point where
the neural signals of the inputs begun to activate those capable of generating the
targets. This represents a limitation of our research. Therefore, future research, through
filteringmethodology inML (which should be programmed adhoc), could isolate these
components and better explain the positioning of the NN. Notwithstanding, despite
this programming dilemma, it remains proven that the latent factor is visible and affects
the signal of the NN.

Funding Open access funding provided by Università degli Studi Roma Tre within the CRUI-CARE
Agreement.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper. The datasets used during
the current study are available from the website and are available on request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1936 C. Magazzino et al.

Appendix

J (θ0, θ1) = 1

2m

m∑

i=1

hθ (x
(i) − y(i))2 → min

(θ0θ1)
J (θ0, θ1) (A1)

In (1), we add the GD as:

θ j ← θ j − α
δ

δθ j
J (θ) (A2)

In (2), we use the Cauchy approach, so that:

θ j = θ j − α
δ

δθ j
J (θ0 − θ1) (A3)

In (A3), according to Chen et al. (2013), we apply the six principles of an NN, and
we have:

f (x, θ) = oL = o1 = σ
(
a1

)
= σ

(
W 1o1 + b1

)
→ 1 = [1, 2 . . . L], a1 = W 1o1 + b1, o0 = x

(A4)

With n layer network: L = n → b1 = 0 our functions are:

f (x, θ) = on = σ
(
Wno1σ

(
Wn−1x

))
(A5)

If σ is not linear:

σ = (x) = 1

1 + exp(exp(−x))
; σ ′(x) = σ(x)(1 − σ(x)) → ϑ(−1; 1)is a tanh f unction

(A6)

tanh(x) = e ↑ x − e ↑ −x

e ↑ x + e ↑ −x
; tan h′(x) → Relu(x) =

{
x; x > 0
0; x ≤ 0

(A7)

In (7)

MSE(θ) = 1

2N

N∑

n=1

I I f (xn, θ) − tn I I
2
2 (A8)

where →

f (xn, θ) − tn I I
2
2 (A9)

is the squared in the normal Gaussian. The GDM in (A8) can be written as:

θ∀ = θ − η∇θ → ∇θ is the gradient respect to θ (A10)

123



The presence of a latent factor in gasoline and diesel prices co-… 1937

In (A10), the backpropagation is equal to

∂E

∂Wl
i j

= 1

N

N∑

n=1

f (xn, θ) − ti
∂

∂Wl
i j

f (xi , θ) (A11)

Now, we develop the process as

∂

∂Wl
i j

(xi , θ) = (A12)

∂

∂Wl
i j

(xi , θ) = ∂

∂Wl
i j

oL = ∂

∂Wl
i j

σ
(
aL

)
= σ ′(aL

) ∂

∂Wl
i j

(
aL

)
= σ ′(aL

) ∂

∂Wl
i j

(
WLoLbL

)

(A13)

= σ ′(aL
)
WL ∂E

∂Wl
i j

oL−1 = σ ′(aL
)
WL ∂E

∂Wl
i j

σ
(
aL−1

)
= σ ′(aL

)
WLσ ′(aL−1

)
WL−1 ∂E

∂Wl
i j

oL−n

(A14)

a′(aL
)
WLσ ′(aL−1

)
WL−1 ∂E

∂Wl
i j

o1 =
L∏

K=l+1

(σ ′(aK
)
WK )

∂

∂Wl
i j

o1
∂

∂Wl
i j

on

(A15)

= ∂

∂Wl
i j

o1
[
σ ′(W 1o1−n + b1

)]
= σ ′(a1

) ∂

∂Wl
i j

(
W 1o1−n + b1

)
= σ ′(a1

)
ol−1
j,n

(A16)

In (A16), we can calculate the error term

∂E

∂Wl
i j

=
⎡

⎣ 2

N

((
f

(
xn

)
, θ

) − t i
) L∏

K=l+1

(σ ′′′(ak
)
Wkσ ′

(
al

)
ol−1
j

⎤

⎦DL
i j (A17)

If in (A17) we generate an NN propagation effect, we have:

DL
i j = 2

N
f (xi , θ)−ti → Dl

i jσ
′(al

)
W 1Dl+1

i j = ∂E

∂Wl
i j

Dl
i jσ

′(al
)
ol−1
j (A18)

Now, we use in (A18) the Martens and Sutskever (2011) approach:

∂E

∂bli
= Dl

i j →
DL oL t
D1 W 1 o1

o1−n b1 D1−n
(A19)

In (A19) we implement a gradient training process, so:

min
θ

= E
(
f
([

xT−Nt , . . . xT−Nt
]
, θ

)
, t

)
→ E(θ)

1

2
I I f

(
x
[
xT−Nt , . . . xT−Nt

])
, θ) − t)I I 22

(A20)
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Then, we activate the Hebbian learning in (A18) and (A20), therefore:
⎧
⎪⎨

⎪⎩

∂E

∂Wl
i j

Dl
i jσ ′

(
al

)
ol−1
j

wi j = ∂xi x j

= max
0≤n≤1

∂E

∂Wl
i j

Dl
i jσ ′

(
al

)
ol−1
j

∼= w − εwi j (A21)

Equation (A21) represents our automatic learning ratio in an NN context where a
latent factor is estimated.

See Table 2.

Table 2 Summary statistics (weekly data, January 3, 2005 to June 28, 2021)

Statistics Gasoline Price (tax included) Diesel Price (tax included)

Germany France Italy Germany France Italy

Variable GTG GTF GTI DTG DTF DTI

Mean 1404.884 1383.883 1484.325 1231.095 1230.086 1367.962

Median 1387.625 1375.325 1489.735 1210.25 1229.59 1368.96

Maximum 1773 1666.4 1889.81 1569 1533.09 1777.8

Minimum 1077 1015.1 1082.64 940.8 914.48 1004.31

Std. Dev 135.4637 133.3436 180.1089 142.3637 150.027 192.546

Skewness 0.181457 − 0.26927 0.024085 0.323572 − 0.05752 0.131905

Kurtosis 2.498013 2.237187 2.186691 2.115873 1.848613 2.045397

Jarque–Bera 13.01378 29.572 22.5136 40.71617 45.41185 33.26758

Probability 0.001493 0 0.000013 0 0 0

Sum 1143,576 1126481 1208241 1002111 1001290 1113521

Sum Sq. Dev 14918890 14455554 26373079 16477415 18299079 30141138

Observations 814 814 814 814 814 814

Statistics Gasoline Price (tax excluded) Diesel Price (tax excluded)

Germany France Italy Germany France Italy

Variable GWTG GWTF GWTI DWTG DWTF DWTI

Mean 530.2044 525.1906 565.4286 567.6933 544.3081 594.3023

Median 514.725 518.12 557.585 546.62 529.255 579.055

Maximum 835.42 780.81 833.43 848.09 787.94 851.86

Minimum 250.54 259.55 338.2 325.4 322.47 354.85

Std. Dev 109.8287 104.9496 105.1521 116.2709 111.7376 116.6087

Skewness 0.23073 0.100634 0.310605 0.354955 0.255774 0.381996

Kurtosis 2.55767 2.296229 2.342128 2.166815 2.049928 2.214476

Jarque–Bera 13.85839 18.17264 27.76752 40.6379 39.48973 40.72477

Probability 0.000979 0.000113 0.000001 0 0 0

Sum 431586.4 427505.2 460258.9 462102.3 443066.8 483762.1

Sum Sq. Dev 9806685 8954724 8989304 10990889 10150547 11054847

Observations 814 814 814 814 814 814

Data are extracted from the Weekly Oil Bulletin of the European Commission
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