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Abstract
This paper provides two specification tests for the system of spatial autoregressive
model of order m. We derive the theoretical limit distributions and show in a detailed
Monte Carlo simulation study that the tests result in reasonable sized testing proce-
dures with large power. In the empirical application, we analyze Euro Stoxx 50 returns
in two different time spans, looking for insights howwellmodelswith different specifi-
cations of the spatial weightingmatrices (local, country, industry and country-industry
specific dependencies including interaction effects) fit to the data. The analyzes also
demonstrate the ability of the tests to detect inaccurate Value-at-Risk forecasts.

Keywords Heteroscedasticity · Method of moments · Spatial dependence · Stock
returns · Value-at-Risk

JEL Classification C12 · C51

1 Introduction

The purpose of this paper is a contribution to the literature of specification testing
in spatial econometric models, focusing on systems of models. We consider a spatial
autoregressive model in which amultivariate random variable is explained by spatially
weighted lags of itself. Doing this, we allow for more than one spatial matrix and for
cross-sectional heterogeneity of the error variances.
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A classical reference for the question about the presence of global spatial depen-
dence in a given data set is Moran’s I (Moran 1950). This statistic is often used mainly
in a descriptive way, but is also used for testing spatial dependence in linear and non-
linear panel models (Kelejian and Prucha 2001). Li et al. (2007) provide an alternative
measure to Moran’s I. Other diagnostic tests for spatial dependence are the LM-tests
by Anselin (1996) and the regression-based tests by Born and Breitung (2011). Su and
Qu (2017) propose specification tests for SAR models.

However, neither of the mentioned tests consider the case of several time points.
This is different for Baltagi et al. (2003) who propose LM-tests for spatial dependence
and for Millo (2017) who proposes a randomization test in a factor-augmented panel.
Kelejian and Piras (2016) propose a J-test procedure for testing a null model against
non-nested alternatives for a fixed effects spatial panel data framework.

The model that we consider is slightly different from those considered in the
approaches from the last paragraph. We focus on a repeated cross-sectional model, i.e.
we have a SAR(m)-model for a fixed time point and stack these models for different
time points. The model parameters can be estimated in a straightforward way by a
two-step approach. This way, heterogeneity in the error variances can be incorporated
easily.

Another related branch consists of testing procedures for selecting the best spatial
weighting matrix from a set of potential candidates (Herrera et al. 2019; Kelejian and
Piras 2011; LeSage and Pace 2014, e.g.). While our test can also be used for such
model selection issues, the focus of specification testing is broader, since it tests the
correctness of a model and its accompanying assumptions. We illustrate this in our
application by first identifying spatial matrices modeling the spatial dependence of
stock returns. We then use these spatial matrices to define different models, which we
finally test with our model specification test.

It is precisely the connection between spatial dependence and stock returns that has
received particular interest in the economics and finance literature in recent years.
Asgharian et al. (2013), for instance, investigate in which way stock market co-
movements are determined by countries’ economic and geographical relations. Tam
(2014) analyzes equity market linkages in East Asia, Blasques et al. (2016) extend
the spatial Durbin model by a time-varying spatial dependence parameter, Selan and
Kalatzis (2017) analyze peer effects in Brazil.

A general observation is that the use of spatial and network statistical models is
becoming more popular for modelling common stocks (both returns and volatility)
rather than only stock markets of different countries. The role of geographical dis-
tance for modelling stock markets cross-correlation is quite debated, so the concept
of "distance" is discussed and broadened using general definitions in the literature
(cf. Fernández-Avilés et al. 2012; Fülle and Otto 2023; Mattera and Otto 2023; Zhou
et al. 2020.)

More relevant for our work is Arnold et al. (2013) who consider a system of spatial
autoregressive (SAR) models for stock returns in order to capture local dependencies
and dependencies within industrial branches. Wied (2013) considers structural breaks
in these models and Schmitt et al. (2016) combine the approach with local normaliza-
tion techniques. Gong and Weng (2016) use the model for value at risk forecasts in
the Chinese stock market. Catania and Billé (2017) generalize the SAR model with
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autoregressive and heteroscedastic disturbances by including methods from score-
driven models. Various empirical analyses in the aforementioned papers show that the
SAR model is generally suitable for Value-at-Risk (VaR) forecasts and outperforms,
e.g., the one-factor model.

The model in the present paper is a generalization of the model from Arnold et al.
(2013) since we allow for an arbitrary fixed number of spatial matrices. We propose
two methods on how to check the model fit, Note the fact that the model fits the data,
implies that the spatial dependence structure incorporated in the model fits the data.
Thus, we can interpret a specification test as a test for spatial dependence.

The basic idea stems from the model assumption that spatial weighting matrices
capture all spatial dependence and that the remaining error terms are spatially uncor-
related. Therefore, we consider the model residuals to have the characteristic that
if the covariance matrix of the residuals is basically diagonal, i.e. its off-diagonal
elements are close to zero, the tests do not reject the null hypothesis of a correctly
specified model. We derive the asymptotic distribution of our test statistics and show
in simulations that the tests have reasonable power properties against sparse error term
covariance matrices. In the simulations, we also account for conditional heteroscedas-
ticity, a feature that is considered to be important if spatial models are used for VaR
predictions (see, e.g., Zhang et al. 2018). In an empirical application on stock data
from the Euro Stoxx 50, we test the model fit for different spatial weighting matrices
and analyze in which sense the tests’ results are related to the quality of VaR fore-
casts. We consider the time spans around the global financial crisis in 2008 and the
COVID-19 crisis in 2020.

This paper is organized as follows: Sect. 2 describes the classical spatial autoregres-
sivemodel, discusses its assumptions and efficient estimation procedures and provides
two model specification tests. Section3 presents an extensive Monte Carlo simulation
study and Sect. 4 covers our empirical application. Finally, Sect. 5 concludes. The Sup-
plementary Material contains all proofs of our theoretical results, as well as the results
of the extensive MC study.

2 A cross sectional correlation based specification test for a system
of SAR(m)models

In this section, we initially introduce a system of SAR(m) models of order m with
m ∈ IN and discuss its assumptions and efficient parameter estimation procedures.
We then present two model specification tests, with the latter showing better power
properties as demonstrated in Sect. 3.

2.1 SAR(m): assumptions and parameter estimations

We consider observations yti for individuals i = 1, . . . , n and time periods t =
1, . . . , T . For each t , the yti can be modeled by a spatially autoregressive model of
order m ∈ IN , SAR(m), i.e.
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yyyt =
m∑

i=1

ρiWi yyyt + εεεt (1)

where yyy′
t = (yt1, . . . , ytn) and εεε′

t = (εεεt1, . . . , εεεtn). The parameters ρi with i =
1, . . . ,m are the scalar spatial autoregressive coefficients andWi for i = 1, . . . ,m the
pre-specified n×n spatial weighting matrices that do not vary over time. An overview
of commonly used spatial matrices is given in Piras et al. (2012). By rearranging, we
obtain a simplified version of model (1), i.e.

yyyt = (In −
m∑

i=1

ρiWI )
−1εεεt . (2)

The observations in the cross-sectional dimension i are assumed to be fixed. We
impose the following model assumptions:

Assumption 1 1. The sequence {εεεt }t∈IN has zero mean, is stationary and ergodic.
2. For i ∈ {1, . . . ,m}, r = 1, . . . , n, s = 1, . . . , n, Wi,rs ≥ 0, Wi,rr = 0.
3. For i ∈ {1, . . . ,m} and r = 1, . . . , n,

∑n
s=1 Wi,rs = 1.

4. The parameter space Sρρρ is defined as Sρρρ = {ρρρ ∈ R
m : ||ρρρ||1 < 1} where || · ||1

defines the L1-norm, i.e. ||ρρρ||1 =
m∑
i=1

|ρi |.
5. The spatial parameter vector ρρρ is uniquely identified.

6. Define �
d= Cov (εεεt ). For t ∈ Z, diag(�) = (

σ 2
1 , . . . , σ 2

n

) ∈ R
n .

7. Each element of the vector

(
1√
T

T∑
t=1

εεεtεεε
′
t

)

i< j

meets the assumption of a central

limit theorem and the corresponding long-term covariances

∑

s,t∈IN
Cov [εεεi tεεε j t , εεεksεεεls]

are finite for every i < j and k < l, where we interpret (·)i< j as the stacked vector
of the upper triangular matrix.

The zero mean and stationarity condition in Assumption 1.1. are plausible espe-
cially in the context of daily stock returns (see Aue et al. 2009). If this assumption
is violated, trend adjustment, centering or, to be more general, considering appropri-
ate residuals, could ensure that it is (asymptotically) met. To exclude self-neighbors,
the diagonal elements of Wi with i = 1, . . . ,m are conventionally set equal to zero
(Assumption 1.2.). Additionally, Assumption 1.2. claims that all elements are non-
negative (which is natural), as distances are measured. Assumption 1.3. ensures that
the matrices are bounded and standardized. Assumption 1.4. restricts the parameter
space to the sum of the absolute values of the elements of ρρρ ∈ R

m smaller than 1.
While the assumption could slightly be generalized (cf. Piras et al. 2012), we follow
the notation of Arnold et al. (2013) as it guarantees that thematrix (In−∑m

i=1 ρiWi ) is
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non-singular.1 Assumption 1.5. yields a high-level identification assumption which is
specified in the Supplementary Material in Assumption 3.1. It rules out certain combi-
nations of spatial weighting matrices, e.g., these matrices must be pairwisely distinct.
Assumption 1.6. allows for heteroscedastic error variances and Assumption 1.7. is
a standard asymptotic condition that allows for deriving non-degenerate asymptotic
distributions of the estimators and test statistics.

We consider the two step GMM procedure of Arnold et al. (2013) in order to obtain
efficient estimates for the parameters ρi with i = 1, . . . ,m and σ 2

l with l = 1, . . . , n.
This consists of the following two steps:
First, we estimate the spatial parameters ρi , i = 1, . . . ,m using the method of

moments. Due to its construction, this step does not depend on the parameters of
variance σ 2

l with l = 1, .., n. Second, for given spatial estimates, the estimation of
variance parameters is obtained by computing the mean of the estimated ε̂2i t with
i = 1, . . . , n. Under some regularity assumptions, the GMM estimator ρ̂ρρ is consistent
and asymptotically normal (cf. Theorem 2.2). While this is worked out in Arnold et al.
(2013) for the special case of m = 3, a detailed derivation for the GMM estimator in
the general case is presented in the Supplementary Material 2.2, i.e. m ∈ IN is finite
and fixed.

2.2 A two step GMM estimation procedure for a system of SAR(m) models

In the following, we assume that Assumption 1 is fulfilled. The covariance matrix of

uuut = (In −
m∑
i=1

ρiWI )
−1εεεt is given by

Cov[uuut ] =
(
In −

m∑

i=1

ρiWi

)−1

�

(
In −

m∑

i=1

ρiW
′
i

)−1

=: V .

For the estimation, a two step procedure is considered: First, we estimate the corre-
lation parameters by the method of moments which does not depend on the parameters
of variance. Secondly, we estimate the variance parameters.

The moment estimator for the correlation parameters uses the followingm moment
conditions:

E
[
εεε′
tWiεεεt

] = tr(Wi�) = 0 for i = 1, . . . ,m. (3)

Clearly, the variance parameters σ 2
i for i = 1, . . . ,m do not enter the moment condi-

tions. Replacing εεεt by

εεεt =
(
In −

m∑

i=1

ρiWi

)
uuut

1 The matrix (In − ∑m
i=1 ρi Wi ) is strictly diagonally dominant.
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and averaging over t gives the theoretical system of equations

�λλλ + γγγ = 0,

where λλλ = λλλ(ρρρ) is a functional vector of ρρρ = (ρ1, . . . ρm) of dimension
M = (m

1

)+(m+2−1
2

)
,
(·
·
)
denoting the binomial coefficient, such that

λi = ρi for i = 1, . . . ,m (4)

λm+i = ρ2
i for i = 1, . . . ,m (5)

λ2m+#{i j | i< j,i<l, j≤k} = ρlρk for l, k = 1, . . . ,m, (6)

where #{i j | i < j, i < l, j ≤ k} represents the number of integer pairs i j such that
the conditions i < j, i < l and j ≤ k are fulfilled for l, k = 1, . . . ,m. The elements
of � ∈ R

m×M and γ ∈ R
m are defined by for i, j = 1, . . . ,m,

�i, j = E

[
− 1

T

T∑

t=1

uuu′
t

(
Wi + W ′

i

)
Wjuuut

]
, (7)

�i,m+ j = E

[
1

T

T∑

t=1

uuu′
tW

′
jWiW juuut

]
, (8)

�i,2m+#{i j | i< j,i<l, j≤k} = E

[
1

T

T∑

t=1

uuu′
tW

′
l

(
Wi + W ′

i

)
Wkuuut

]
,

γi = E

[
1

T

T∑

t=1

uuu′
tWiuuut

]
. (9)

Let G and ggg be the empirical counterparts of � and γγγ , i.e. the expectation operator is
left out. The moment estimator for ρρρ = (ρ1, . . . , ρm)′ is defined as

ρ̂ρρ = (ρ̂1, . . . , ρ̂m)′ = argmin
ρρρ∈S ||Gλλλ + ggg||

where || · || represents the euclidean norm.

Remark 2.1 For k, l ∈ {1, . . . ,m}, the entries of E[G] = � given in (7)–(9) can be
calculated as

�k,l = tr
((
Wk + W ′

k

)
WlV

)
,

�k,m+l = tr
(
W ′

l WkWlV
)
,

�i,2m+#{i j | i< j,i<l, j≤k} = tr
(
W ′

l

(
Wi + W ′

i

)
WkV

)
.

Since the theoretical term �λλλ+γγγ is equal to zero for the true parameter values, the
moment estimator for ρ̂ρρ minimizes the corresponding empirical systemGλλλ+ggg. Arnold
et al. (2013) prove consistency and asymptotic normality of the moment estimator
(cf. Theorem 2.2) for T → ∞, for which an additional assumption is needed.
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Assumption 2 1. The true parameter ρρρ ∈ S is the unique solution of the theoretical
system of equations, i.e.

�λλλ + γγγ = 0 ⇔ ρ̂ρρ = ρρρ.

2. The matrix E
(

∂(Gλλλ+ggg)
∂ρ̂ρρ

(yyyt ,ρρρ)
)

=: ddd = �λλλ(1) exists, is finite and has full rank with

λλλ(1) a (M × m) dimensional matrix defined as

λλλ(1)(l, l) = 1, λλλ(1)(2m + #{i j | i < j, i < l, j ≤ k}, l) = ρk

λλλ(1)(m + l, l) = 2ρl , λλλ(1)(2m + #{i j | i < j, i < l, j ≤ k}, k) = ρl

for all l, k = 1, . . . ,m.
3. For

f (uuut ,ρρρ) =
⎛

⎜⎝
εεε′
tW1εεεt

...

εεε′
tWmεεεt

⎞

⎟⎠ ,

it holds that, for j → ∞, E[ f (uuut ,ρρρ) | f (uuut− j ,ρρρ), f (uuut− j−1,ρρρ), . . .] converges in
mean square to zero and that, for

vvv j = E [ f (uuut ,ρρρ) | f (uuut− j ,ρρρ), f (uuut− j−1,ρρρ), . . .)

− E [ f (uuut ,ρρρ) | f (uuut− j−1,ρρρ), f (uuut− j−2,ρρρ), . . .]

the infinite sum
∑∞

t=−∞ E[(vvv jvvv j )
1
2 ] is finite.

Under the Assumptions 1 and 2 the GMM estimator ρ̂ρρ is consistent and asymptotic
normal as the following theorem shows:

Theorem 2.2 Let Assumptions 1 and 2 hold. Then, for SW = ∑∞
t=−∞ E[ f (uuut ,ρρρ)

f (uuut ,ρρρ)′] and T → ∞ it holds:

1. ρ̂ρρ
p→ ρρρ

2.
√
T (ρ̂ρρ − ρρρ)

d→ N (0,ddd−1SW (ddd−1)′).

The proof of this theorem is similar to the proof of Theorem 2.1 in Arnold et al.
(2013).

2.3 The specification test

Our proposed test is a variation of the classical Portmaneau test, i.e. we check if the
covariancematrix of the idiosyncratic error resembles a diagonalmatrix.Under the null
hypothesis, the off-diagonal elements do not deviate too far from zero. Let Ĥ ∈ R

n×n

denote the empirical covariance matrix of the residuals times the square root of the
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time horizon T , i.e. Ĥ = √
T ˆCov [ε̂εεt ] and Ĥi j its elements with i, j ∈ {1, 2, . . . , n}.

Let σ 2
i j denote the (i, j)-th element of the theoretical counterpart �, i.e. the error

covariance matrix. Since Ĥ and � are symmetric, it is sufficient to consider only the
elements of the upper triangle of the matrix �. Hence, the null hypothesis is given by

H0 : σ 2
i j = 0 for all i < j vs. H1 : ∃ i, j with i < j : σ 2

i j �= 0. (10)

We opt to use χ2-type tests for this testing problem. Instead of considering each
element or the maximum of the absolute value of all off-diagonals, we take the sum
of each element squared into account. Thus, the test statistic is given by

S =
∑

i< j,i, j=1,...,n

(Ĥi j )
2. (11)

The aim of the following theorem is to decompose the limit in distribution of the
empirical covariance matrix times

√
T into three matrices, which allow to determine

the limit in distribution of the sum of the elements of the upper triangular matrix. Here

and in the following dlim
T→∞ denotes limit in distribution and

d= equality in distribution.

Theorem 2.3 Under the null hypothesis H0 : σ 2
i j = 0 for all i < j and the assumptions

of Theorem 2.2, the following holds for 1 ≤ i, j ≤ n

dlim
T→∞

√
T ˆCov [ε̂εεt ] = A + B + B

′ ∈ R
n×n (12)

with Aii = lim
T→∞

√
T

T∑
t=1

σ 2
i t = ∞ and Ai j∼N

(
0, lim

T→∞Var [ 1√
T

∑T
t=1 εεεi tεεε j t ]

)
,

where
Cov[Ai j , Akl ] = 0 for i �= j and k �= l with (i, j) �= (k, l). We also define

B
d=

(
m∑

i=1

XiWi

)(
In −

m∑

i=1

ρiWi

)−1

�, where

XXX
d=(X1, . . . , Xm) ∼ N (0,ddd−1SW (ddd−1)

′
) ∈ R

1×m, SW
d=

∞∑

t=−∞
E[ f (uuut ,ρρρ) f (uuut ,ρρρ)′]

with f (uuut ,ρρρ)
d= (

εεε′
tW1εεεt , · · · , εεε′

tWmεεεt
)′

and ddd defined in Assumption 2.

Three remarks about Theorem 2.3 are in order. First, the leading elements of matrix
A diverge to infinity. However, the tests consider only the off-diagonal elements (i �=
j, i, j = 1, . . . , n) which are finite by Assumption 1.7. This in turn ensures that the
test is well defined. Secondly, since

(
In − ∑m

i=1 ρiWi
)
is strictly diagonally dominant,

the inverse exists. Thirdly, we note that the matrices B and its transposed appear in the
limit. This is due to the fact of estimating ρρρ instead of using the unknown population
quantity. The analysis of such a residual effect (see Demetrescu and Wied 2019) is
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somewhat complicated, since the additional terms need different standardizing factors
in the proof.2 However, all terms in the limiting distribution are based on the same
error terms. Thus, the convergence is jointly and the limiting distribution in (12) is
multivariate normal. If we additionally assume serial independence in the error vector,
the variance of the elements in the limiting matrix A simplifies to a product shown in
the following remark.

Remark 2.4 Suppose the assumptions of Theorem 2.3 hold. If {εεεt }t∈{1,...,T } is serially
independent, then

Ai j ∼ N (0, σ 2
i σ 2

j ) for i �= j . (13)

In accordance with our test statistic S (11), we can reformulate the test in vectorial
notation, i.e.

S = α̂αα
′
α̂αα, (14)

where α̂αα represents the vector of the upper triangle of the empirical covariance matrix
of the residuals times

√
T , i.e. Ĥ . Since the empirical covariance matrix consists of

n2 elements, the upper triangular matrix vector consists of n(n − 1)/2 elements and
has the following form:

α̂αα
d= dlim

T→∞

(√
T ˆCov [ε̂εεt ]

)

i< j, i, j=1,...,n

= dlim
T→∞

(
1√
T

∑
ε̂εεt ε̂εε

′
t

)

i< j, i, j=1,...,n
= dlim

T→∞
1√
T

T∑

t=1

ε̂εε
∗
t ∈ R

n(n−1)
2

with ε̂εε
∗
t

d= (
ε̂1t ε̂2t , . . . , ε̂1t ε̂nt , ε̂2t ε̂3t , . . . , ε̂2t ε̂nt , . . . , ε̂(n−1)t ε̂nt

)′
.

By means of Slutzky’s theorem we define the theoretical counterpart

ααα
d= (A)i< j, i, j=1,...,n

= dlim
T→∞

(
1√
T

∑
εεεtεεεt

′
)

i< j, i, j=1,...,n
= dlim

T→∞
1√
T

T∑

t=1

εεε∗
t ∈ R

n(n−1)
2

with εεε∗
t

d= (
ε1tε2t , . . . , ε1tεnt , ε2tε3t , . . . , ε2tεnt , . . . , ε(n−1)tεnt

)′

which stacks the upper triangular matrix of the covariance matrix of the errors times√
T in a vector. Analogously, δδδ defines the vector of the stacked upper triangular

matrix of B and δδδ∗ of B ′, respectively, i.e. for ZW = dlim
T→∞

m∑
g=1

√
T (ρg − ρ̂g)WG we

define

2 For a detailed analysis of the convergence rate we refer to Lemma A.1 in the Supplementary Material.
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2092 T. Kutzker, D. Wied

δδδ
d= (B)i< j,i, j=1,...,n =

⎛

⎝ZW (In −
m∑

g=1

ρgWG)−1�

⎞

⎠

i< j, i, j=1,...,n

∈ R
n(n−1)

2 ,

δδδ∗ d= (
B ′)

i< j,i, j=1,...,n =
⎛

⎝�
′
(In −

m∑

g=1

ρgW
′
G)−1Z

′
W

⎞

⎠

i< j, i, j=1,...,n

∈ R
n(n−1)

2 .

The vectors δδδ and δδδ∗ are well defined, since B is not necessarily symmetric.

Lemma 2.5 δδδ represents the stacked vector of the upper triangle and δδδ∗ of the lower

triangle of the matrix ZW (In −
m∑

g=1
ρgWG)−1�, i.e. for i, j ∈ {1, . . . , n}

δδδ∗ =
⎛

⎝ZW (In −
m∑

g=1

ρgWG)−1�

⎞

⎠

i> j, i, j=1,...,n

∈ R
n(n−1)

2 . (15)

The next lemma provides the limit distribution of our test statistic S (14).

Lemma 2.6 Suppose the assumptions of Theorem 2.3 hold. Then the test statistic S
(11) is asymptotically distributed as

S = α̂αα
′
α̂αα

d−−−→
T→∞ (ααα + δδδ + δδδ∗)′(ααα + δδδ + δδδ∗),

where the covariance matrix for ααα is given by

Cov [ααα] =

⎛

⎜⎜⎜⎝

lim
T→∞Var [ 1√

T

∑T
t=1 εεε1tεεε2t ] · · · 0

...
. . .

...

0 · · · lim
T→∞Var [ 1√

T

∑T
t=1 εεε(n−1)tεεεnt ]

⎞

⎟⎟⎟⎠ .

Toobtain the corresponding critical values, first, themodel parameters are estimated
for all models considered in the empirical application below. Second, a bootstrap pro-
cedure is employed to generate the critical values by drawing from the estimated
model. Tables 6 and 7 show the corresponding critical values for all models consid-
ered in the empirical application below. As shown in Sect. 3, our proposed test takes
care of size demands and has good power properties. The next subsection presents a
modification of the proposed specification test with a simpler limit distribution.

2.4 Simplified tests

In Theorem 2.3 we have shown that the elements of the limiting distribution follow a
multivariate normal distribution. Thus, if we standardize the test statistic S (14) by its
covariance matrix, we get a new test statistic S∗

χ which is χ2-distributed, i.e.
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S∗
χ = α̂αα

′
(Cov [ααα + δδδ + δδδ∗])−1α̂αα ∼ χ2

n(n−1)
2

. (16)

The quantiles of this limit distributions can be easily obtained, but the implementation
of test statistic is more complicated than that of (11). The following discussion shows
how the implementation can be simplified.

The terms δδδ and δδδ∗ can be regarded as additional noise which comes from the
estimation procedure. This additional noise can be extracted by decomposing the
covariance matrix given in (16) into two parts. Thus, we have

Cov [ααα + δδδ + δδδ∗] = Cov [ααα] + 
 (17)

with 
 = Cov [δδδ + δδδ∗] + Cov [ααα,δδδ + δδδ∗] + Cov [ααα,δδδ + δδδ∗]′. The first part Cov [ααα]
covers the underlying variance structure while the second part 
 can be considered
as a noise term.3

If either ||(Cov [ααα])−1
|| < 1 or ||
(Cov [ααα])−1|| < 1 holds,4 the inverse of the
covariance matrix (17) can be estimated by means of a Taylor series approximation
and a telescoping sum.5 This yields

(Cov [ααα + δδδ + δδδ∗])−1 = (Cov [ααα])−1 − (Cov [ααα])−1
(Cov [ααα])−1

+ (Cov [ααα])−1
(Cov [ααα])−1
(Cov [ααα])−1 − . . .

≤ (Cov [ααα])−1.

Thus, (Cov [ααα])−1 is an upper bound for the inverse of the covariance matrix (17).
Hence, for

Sχ = lim
T→∞

1

T

T∑

t=1

ε̂εε
∗′
t (Cov [ααα])−1

T∑

t=1

ε̂εε
∗
t , (18)

we have the algebraic relation Sχ ≥ S∗
χ ∼ χ2

n(n−1)
2

. Therefore, using the test statistic

Sχ with the quantiles of the χ2
n(n−1)

2

leads to a liberal test. This test might be preferred

in applications if it appears to be too time-consuming to generate critical values by
simulations. In order to study the behavior of S and Sχ in finite samples, we perform
an extensive Monte Carlo simulation study which can be found in the next section.

3 If we additionally assume serial independence, the covariance matrix of ααα can easily be implemented,
since only the variances need to be estimated, cf. Lemma A.3. Otherwise, the covariance matrix of ααα is
given in Lemma 2.6.
4 In our Monte Carlo simulation we observed that this is usually the case whenever the variance of εεεi t is
greater than 1 for all i = 1, . . . , n.
5 The sum and product of two symmetric positive semidefinite (psd) matrices is still psd.
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3 Monte Carlo simulation

3.1 Serial independence

The Monte Carlo (MC) simulation study consists of three main simulations, and in
all simulations we assume a SAR(m) for m = 3, 4. The results of our extensive
MC simulation study are provided in the Supplementary Material. While the first two
simulations assume serial independence, the third simulation examines the behavior of
the test in the case ofGARCH(1,1) driven errors. To examine size and power properties
of the test S (2.3), we draw B = 300 times from the asymptotic limit distribution given
in Lemma (2.6). The overall number of MC repetitions is equal to 701.

First setting: The first simulation depicts a SAR(3) model, i.e.

yyyt = ρ1W1yyyt + ρ2W2yyyt + ρ3W3yyyt + εεεt , (19)

where yyyt , εεεt ∈ R
n for t = 1, . . . , T and (W1)i j = 1

n−1 for all i �= j and (W1)i i = 0.
The spatial matrices W2 and W3 are defined as

(W2)i j
d=

⎧
⎪⎨

⎪⎩

1, if j even and i �= j

1, if j − 1 = i

0, otherwise

(W3)i j
d=

{
1/(n/2 − 1), if i, j ≤ n

2 or i, j > n
2

0, otherwise,

where additionally the matrix W2 is row standardized by its row sum
∑

j (W2)i j for
i = 1, . . . , n. In terms of interpretation, the matrixW1 can be regarded as a weighting
matrix, where each firm has the same weight. Thus, the matrix W1 captures a general
effect, e.g. global crisis, market performance in the past etc.6 Another interpretation in
terms of networks might be that there is a fully connected network, i.e. that all stocks
are related to each other in the same manner. The spatial matrix W2 is an example of
an asymmetric weighting matrix.This might be interesting from an economic point
of view, if there is evidence that a particular (large) country has much influence on
another (smaller) country, but that there is less dependence in the other direction.

In economic analyses, W3 functions as a pivotal dichotomous matrix, segmenting
the market into distinct sectors. This dichotomy underscores the contrast between
entities who benefit from specific interventions, e.g. tax reforms, aid disbursements,
or market shifts, and those who remain unaffected or neutral to these changes. This
dichotomous framework is particularly apt for policy evaluation, as it offers a nuanced
insight into the differential impacts and subsequent redistributive consequences of
policies or market dynamics.

6 Even ifW1 is equally weighted, ρ1 cannot be considered as a fixed affect which affects market participant
equally, since fixed effects are time independent. SAR models try to capture this time dependence structure
with fixed weighting matrices.
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The vector of observation yyyt is generated by a multivariate normal error vector
εεεt with zero mean and covariance matrix � = σ 2 In , where In represents the n-
dimensional identity matrix and the model representation in (19). The parameter of
spatial dependence is given by ρρρ = (0.45, 0.3, 0.15) and the homoscedastic variance
equals σ 2 = 2.

To calculate the power of our tests, we do not simulate the errors from amultivariate
normal with a diagonal covariance matrix. Instead, we use the following misspecifi-
cation: If we consider a market with n participants, then there are n(n− 1)/2 possible
pairs that represent the off-diagonal elements of the covariance matrix. After a simple
transformation these off-diagonal elements can be considered as participants that are
correlated with each other. The parameter ζ describes the portion of pairs,7 the param-
eter κ2 describes their correlation. E.g. if we consider a market that consists of n = 20
actors, then there are n(n − 1)/2 = 190 different pairs. If ζ = 0.1 and κ = 0.2,
we assume that there are 19 pairs that have a correlation coefficient that is equal to
0.04. No further assumptions are made about the structure of correlation. However, the
correlation structure is completely random,8 i.e. we predetermine only generally the
proportion of correlated pairs and their correlation and not the correlation of specific
pairs. Results are presented in Table 1 in the Supplementary Material.

Results for S: Collectively, the test holds the size level. In small samples, i.e.
whenever the ratio of T over n is small (T ≤ 100, n ≤ 50) and the dependence
structure in the error term is more or less negligible (cf. κ = ζ = 0.05) the power of
the test is low. However, if there are sufficient observations (i.e. T

n > 10) and if the
dependence structure in the data set is not negligible (κ, ζ ≥ 0.1), the test provides
good power properties even in small samples. All in all we observe an increasing
power whenever the dependence structure (κ or ζ ) or the number of observations (n
or T ) increase.

Results for Sχ : Similar results are obtained for the second test Sχ (11) which
can be found in Table 2.9 In small samples, Sχ performs worse than S in terms of
size and power. This is due to the fact that we are using the empirical approximation
for the inverse covariance matrix that is employed in Sχ , which is biased in small
samples. Consequently, as T tends to infinity the size of the test Sχ converges to the
desired nominal level of 5% and the power increases as the level of misspecification
rises. However, additional simulations show that the tests’ power decreases in the
case of too large ζ , i.e. a highly non-sparse covariance matrix. Here, the population
moment conditions of the GMM estimate (cf. equation (3) given in the Supplementary
Material) are severely violated so that the model is misspecified and the behavior of
the model estimators ρ̂ is unclear (Fleming 2004).

To summarize, both tests show good size and power properties whenever the ratio
T over n is greater than 10. Based on the simple limiting distribution of S∗

χ , the test
Sχ is also very easy to implement since the test statistic Sχ requires only the empirical
covariance matrix of the residuals.

7 In case that ζ · n(n − 1)/2 is odd we round down.
8 This procedure of misspecfication ensures that the moment conditions (3) are violated, thus, the GMM
estimator is biased (Hansen 1982).
9 The second test is applicable since for every simulation it holds true that either ||(Cov [ααα])−1
|| < 1 or
||
(Cov [ααα])−1|| < 1.
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Second setting: For the second MC simulation we consider a SAR(4) model

yyyt = ρ1W1yyyt + ρ2W2yyyt + ρ3W3yyyt + ρ4W4yyyt + εεεt , t = 1, . . . , T ,

whereW1 is a group interactionmatrix of the first two-thirds (the off-diagonal elements
of the first two-third upper sub-matrix are set to 1/( 23n − 1) and all other elements to
zero),W2 is a group interaction matrix of the last third (cf.W1),W3 a binary contiguity
matrix of the third-order neighbors assuming the observations 1, . . . , n are arranged
in a circular pattern, e.g., 2 is a third-order neighbor of n − 1, n, 1 and 3, 4, 5, and10

(W4)i j
d=

{
1

2·�n−1� , if i is even and j odd or vice versa

0, otherwise.

The vector of autoregressive parameters ρ is given by ρρρ = (−0.2 0.05 0.1 0.5).
Moreover, we presuppose heteroscedastic normal error terms, i.e. σi ∼ N (0, 1) for
i = 1, . . . , n. In order to analyze the power in case of misspecification, we choose ζ

and κ likewise to the first MC simulation. To determine the size and power we draw
B = 300 times from the asymptotic limit distribution given in Lemma (2.6). The
overall number of MC repetitions is equal to 701. The results of the tests can be found
in Table 3.

Results for S and Sχ : Even if the results of the second analysis are not entirely
comparable with those from the first simulation,11 it is clearly observable that the tests
S and Sχ hold the size level. The power increases if either the correlation structure (κ
or ζ ) or the number of observation increases (n or T ). Thus, the results presented in
the second, more complex study are in line with those given in the first simulation.

The next section shows that the test holds size and power demands even if the error
terms follow a GARCH process.

3.2 GARCH(1,1)

One of many problems researchers and practitioners face when analyzing financial
data is its volatile structure. Volatility of financial data has been extensively studied
in the last twenty years. An important aspect of the analysis is volatility clustering,
where conditional heteroskedasticity, which leads to an increase in the probability
of rare events, can be modeled with GARCH errors. Since the SAR(m) model is a
powerful instrument in modeling financial data12, the third Monte Carlo simulation
for our proposed test statistic (14) assumes that the errors of the data generating process
(DGP) are driven by a GARCH(1,1) model, i.e. for t = 1, . . . , T and i = 1, . . . n

yit = σi t (In − ρ1W1 − ρ2W2 − ρ3W3)
−1εi t ,

10 Matrices W1,W2,W3 are the counterparts to the matrices G1,G2, BC3 given in Piras et al. (2012).
11 The model presupposes heteroscedasticity and the spatial structure is completely different. From this it
follows that the violation of the moment condition (3) is not one-to-one comparable.
12 The empirical analysis in Sect. 4 shows that a SAR(3) seems reasonable in times of no economic crisis.
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σ 2
i t = 0.33 + 0.33σ 2

i(t−1) + 0.075y2i(t−1),

εi t
i .i .d∼ N (0, 1).

To receive comparable results, the spatialmatricesW1,W2,W3 are the same as those of
the first MC simulation of Sect. 3. The size and power results are presented in Table 4.
At first, it should be noted that the number of observation of a GARCH adjusted data
set needs to be significantly higher than a data set with no GARCH adjustment, i.e.
T > 1000, since for the case of a GARCH adjustment an initial estimate needs to be
conducted and a primarily high error of estimation violates the stationarity assumption.
However, with a sufficiently large set of observations, the test S (14) also performs
well with reference to size and power.

4 Empirical analysis

In the empirical application, we analyze the spatial dependencies of the daily stock
returns of the Euro Stoxx 50 members for the period from April 2003 to December
2009 and from January 2018 to December 2020, using the composition of January
2010 and January 2018.13 The stock prices are adjusted and transferred to log returns.

To model the spatial relations, we consider four spatial matrices WG , WC , WB and
WI , which are designed to capture the dependencies in different ways. The matrix
WG represents general dependencies14 while the matrices WC and WB depict local
and industry-specific dependencies, respectively.15 Finally, thematrixWI captures the
spatial interaction effect of countries and industries, i.e. we affiliate two stocks that
belong to the same country and industry. Note that due to construction, none of the
spatial matrices WG , WC , WB and WI are symmetric.

In our analysis, we examine 15 different SARmodels, i.e. we consider SARmodels,
where the number and composition of spatial matrices varies between the models. In
the simplest case, only one spatial matrix constitutes our SAR model, e.g., yyyt =
ρGWG + εεεt ; in the most complex case, all four spatial matrices are included, i.e.,
yyyt = ρGWGyyyt + ρCWCyyyt + ρBWByyyt + ρI WI yyyt + εεεt . Thus, for m ∈ {1, 2, 3, 4} the
general model for the log stock returns on day t = 1, . . . , T is given by

yyyt =
m∑

i=1

ρiWi yyyt + εεεt with WI ∈ {WG,WC ,WB,WI } (20)

where yyyt is the vector of log stock returns on day t and ρi the corresponding spatial
parameter. In this model, we can interpret the termsWiyyyt as specific factors, in which
external information (about countries and industries) is included. The term WGyyyt

13 For the partitioning of the Euro Stoxx 50 members into branches and countries we refer to Table 5.
14 The off-diagonal elements ofWG are first set to 1 and then standardized using the market capitalization.
Thus, WG captures impacts that affect all stocks in a similar way, such as past stock market performance.
15 The construction of the matrices WC and WB is similar to the one of the matrix WG : First, the off-
diagonal elements are set to 1 if to stocks belong to the same country (WC ) or industry (WB ), respectively.
Finally, the rows are standardized based on the correspondingmarket capitalization of the associated stocks.
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represents themarket factor. Our empirical analysis is motivated by two key questions:
First, how well can the different SAR models explain the movement of stocks and
which spatial matrices do we need for a sufficiently good model? Secondly, can we
use the model specification test applied to the 15 different models to ascertain which
spatial matrix provides the greatest explanatory power?

To answer these questions, we consider a rolling window of the length of one
quarter (T = 63), i.e., we check whether our model specification test rejects the
null hypothesis that the log returns can be modeled by an SAR(m) model for m ∈
{1, 2, 3, 4}. Furthermore, we use the observation period of the rolling window to
calculate one-day Value-at-Risk (VaR) forecasts for each model to see if the in-sample
performances of the models (as measured by our new test) correspond to the out-of-
sample performances. This means that we check if there is a dependence between high
proportions of incorrect VaR forecasts and low p-values of the tests. If this dependence
exists, our new specification testmight be interpreted as a backtest in the spirit of Ziggel
et al. (2014) among others. All analyses are performed on a significance level of 5%.
The number of draws from the limit distribution is set to B = 300. The results for
the time periods from 2003 to 2009 and 2018 to 2020 are depicted in Figs. 1 and 2,
respectively.

Figure 1 shows the results of our suggestedmodel specification test applied to the 15
models from (20) in a rollingwindow for the period fromApril 2003 toDecember 2009
of theEuro Stoxx 50. In order to apply themodel specification testwe initially calculate
the spatial parameters of the underlying model using a two step GMM estimation
procedure (cf. Sect. 2.2) and then apply our model specification test. The blue line
in the subplots of Fig. 1 describes the ratio of the test statistic and its 95%-quantile.
Thus, if the value is greater than 1, there is no statistical evidence to reject the null
hypothesis. A value smaller than 1, however, provides evidence against the underlying
model.

In addition, we generate VaR forecasts with standard normally distributed errors for
theminimum-variance portfolio based on the underlyingmodel on a rollingwindow of
size T = 63. The proportion of incorrect VaR forecasts is represented by the number
in each subplot. In Figure 1, a total of four core observations can be made:

First, it seems that more complex models with at least two spatial matrices describe
the data better. On the one hand, the period in which the null hypothesis of a correct
model assumption cannot be rejected is longer compared to models incorporating
only one spatial matrix and on the other hand, false VaR predictions are close to the
significance levelα = 5%.Secondly, Fig. 1 illustrates that in periods of economic crisis
the spatial model (20) is less applicable, since in all models the ratio (blue line) is on a
significantly lower level. Particularly, this can be observed in the period of the financial
crisis beginning in summer 2007. This is also consistent that in times of bear markets
the correlation among market participants increases significantly. Thus, the resulting
extensive dependency structure cannot be well captured by a simple SAR(m) model.
Accordingly, the results of our test provide evidence that the effects of the dot-com
bubble crisis around 2000 last until summer 2004, since the test rejects the application
of model (20). In the two following years (2004–2006), however, subplot 6 of Fig. 1
depicts evidence to apply the model, since the blue line is often greater than 1. In the
remaining observation period the test indicates that a spatial model is inappropriate,
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Fig. 1 Rolling Window for T = 63 from 2003 to 2009. Rolling window parameter estimation of size
T = 63 in a data set of size 1861 and dimension n = 50. 15 different models are considered. The first figure
describes the SAR(1) model incorporating only a single general dependence structure (WG ). The last figure
depicts the results of the SAR(4) model incorporating the spatial matrices WG ,WC ,WB ,WI . The number
of draws from the limit distribution is set to B = 300. The blue line depicts the ratio of the 95%-quantile
of the limit distribution given in Lemma (2.6) over the test statistic S from (11). A value below 1 indicates
that the assumed model is not correct. The orange line is the accumulated spatial dependence parameter in
the L1−norm. The number in each subplot represents the proportion of VaR forecast violations
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Fig. 2 Rolling Window for T = 63 from 2018 to 2020. Rolling window parameter estimation of size
T = 63 in a data set of size 653 and dimension n = 50. 15 different models are considered. The first figure
describes the SAR(1) model incorporating only a single general dependence structure (WG ). The last figure
depicts the results of the SAR(4) model incorporating the spatial matrices WG ,WC ,WB ,WI . The number
of draws from the limit distribution is set to B = 300. The blue line depicts the ratio of the 95%-quantile
of the limit distribution given in Lemma (2.6) over the test statistic S from (11). A value below 1 indicates
that the assumed model is not correct. The orange line is the accumulated spatial dependence parameter in
the L1−norm. The number in each subplot represents the proportion of VaR forecast violations
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which overlaps with the period of the financial crisis. Thirdly, however, applying
the model specification test to the 15 different models also clearly demonstrates that
the spatial matrix WG , which describes a general influence, provides the strongest
explanatory power. Country and industry specific effects seem to have a minor impact
(WC and WB) when considering the ratio and the number of VaR forecast violations
(0.1804 for subplot 2 and 0.2372 for subplot 3, respectively). Fourthly, the interaction
effect of industry and country affiliation seems to play aminor role in the Euro Stoxx 50
modeling, as both the ratios and the VaR forecast violations of subplots 11 and 15 are
similar (0.0546 and 0.0579, respectively). Taking the ratio of VaR forecast violations,
the time period in which the null hypothesis cannot be rejected and parsimony in the
number of variables as goodness of fit criteria, the SAR(2) incorporating general and
industry-specific dependencies, i.e. yyyt = pGWG + pBWB +εεεt (cf. subplot 6 of Fig. 1),
seems to be the most appropriate.

Figure 2 shows the results of the second application of our proposed model specifi-
cation test for the period of 2018–2020, where our proceeding is identical to that from
the first empirical application: First, we compute the spatial model parameters using a
two-step GMM approach. Then, in a second step, we calculate the test statistics of our
model specification test. The results of the second application seem to corroborate the
findings of the first application: Even if the 15 considered SARmodels are rejected by
our model specification test in the period 2018–2020, it is striking that models which
incorporate at least two spatial matrices model the Euro Stoxx 50 better. This can be
seen from the fact that in models with at least two appropriate spatial matrices (WG

should be incorporated) both the ratio of the test statistic and its quantile is larger and
VaR forecast violations correspond approximately to the significance level of α = 5%.
Furthermore, the beginning of the COVID-19 pandemic in March 2020 is also clearly
visible in every subplot of Fig. 2, as the ratio (blue line) decreases significantly. In
summary, in terms of parsimony with regard to the number of variables included in a
model, the ratio of the test statistic and the quantile and the proportion of VaR fore-
cast violations the SAR(2) model incorporating general and industry-specific effects
(cf. subplot 6 in Fig. 2) seems to be the most suitable modeling the Euro Stoxx 50 in
the periods considered.

5 Conclusion

In this paper, we propose two novel specification tests for systems of spatial autore-
gressivemodels, which are based on the idea ofmeasuring themagnitude of regression
residuals. The proposed tests show good size and power properties in finite samples
for both initial data and GARCH adjusted data. An empirical analysis of the Euro
Stoxx 50 between 2003 to 2009 and 2018 to 2020 gives evidence that a SAR model
which models general and industry-specific dependencies is in general appropriate, in
particular in bull markets. However, in bear markets a simple spatial model captures
the extensive structure of relations andmarket dependencies to a lesser extent. Accord-
ingly, our proposed testing procedure provides statistical evidence that the model fit
is worse in the time after the dot-com bubble, the time around the Lehman Brothers
bankruptcy and the time of the COVID-19 pandemic.
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In future research, it might be interesting to extend the idea of the tests to other type
of spatial dependence models and to compare the fit to stock data with our specific
model. Also, a more detailed analysis about the ability of our tests to assess VaR
forecast performances or an extension to �-hypothesis such as considered in Kutzker
et al. (2021) might be interesting.
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