
Empirical Economics (2023) 65:2867–2898
https://doi.org/10.1007/s00181-023-02447-1

The dynamics of labor force participation: Is all quiet on the
Appalachian front?

Josh Beverly3 · Shamar L. Stewart1 · Clinton L. Neill2

Received: 18 August 2022 / Accepted: 24 May 2023 / Published online: 5 July 2023
© The Author(s) 2023

Abstract
This study examines the divergence and synchronicity of labor force participation rate
(LFPR) dynamics across the USA. Using a dynamic factor model with time-varying
stochastic volatility, we decompose each state’s LFPR into a national, regional, and
state-specific latent factor. We find significant time variation in our factors and hetero-
geneous labor market responses and relative sensitivities. Our results show that, save
forWest Virginia, there is no strong Appalachian regional component, and instead, the
national and state-specific components explain much of the variation in state LFPRs.
Our results suggest the need for more targeted and localized labor market policies dur-
ing periods of divergence in LFPRs (i.e., recessions and shocks) and federal policies
during national economic booms or periods of recovery.
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1 Introduction

The effects of labor market shocks often vary across and within geographical regions.
For instance, while most areas around the USA experienced declines in economic
activity during the OPEC oil embargo of the 1970s, the Appalachian region expe-
rienced increased employment, labor force participation (LFP), and earnings (Juhn
1992; Black et al. 2002; Van Zandweghe et al. 2017). Later, in the 1980s, these eco-
nomic experiences were reversed due to a subsequent bust in the coal market, one of
the Appalachian region’s main industries (Black et al. 2002). While heterogeneous
labor market responses to macroeconomic shocks have been explained by industry
composition (Zens et al. 2020), increases in automation (Autor and Dorn 2013), cap-
ital replacement (Dolado et al. 2021), time effects (Mumtaz and Zanetti 2015), and
disproportionate and compound negative effects on low-skilled workers (Heathcote
et al. 2020), little-to-no work has been done on the intertemporal dynamics and het-
erogeneous labor market responses of US states and regions.

Specific to Appalachia in the USA, there is a growing strand of literature centered
on determining how labor force participation (and general labor market dynamics) has
changed and whether there is a structural difference in the region (see Dorsey 1991;
Isserman and Rephann 1993; Bradley et al. 2001; Stephens and Deskins 2018). While
this strand is limited, it is buoyed by recent developments in the macroeconomic labor
market heterogeneity literature. For example, Zens et al. (2020) demonstrate that
workers and industries are disproportionately affected by monetary policy shocks.
Zens et al. (2020) also show that occupations with many manual tasks are strongly
connected to the effect that increases in interest rates have on unemployment. The
positive response of theAppalachian labormarkets compared to the negative responses
of the rest of the USA to the shock on the natural resource supply in the 1970s, as one
example, provides credence for the existence of a unique or at least heterogeneous
Appalachian labor market.

In this paper, we help to fill the gap for US state and regional labor market het-
erogeneity literature by determining whether national, regional, or state components
drive labor force participation rates.With a particular focus on theAppalachian region,
we determine if labor force participation rate (LFPR) dynamics within the region, in
general, might explain its heterogeneous labor market responses. We reserve investi-
gations into specific driving forces, such as industry composition, for future research.
To answer these questions, we decompose state LFPR into national (also referred
to as a common component), regional (Appalachia, Northeast, South, Midwest, and
West), and state-specific (idiosyncratic) latent factors estimated using a Dynamic Fac-
tor Model (DFM) with time-varying (TV) and stochastic volatility (SV) components.
We assume that changes in state LFPR are described by these latent variables which
capture national, regional, and state comovements and measure shocks or trends at the
respective geographic levels. By calculating the time-varying correlation of LFPR in
each US state with these factors, we determine the role and relative contribution to the
volatility of LFPRs across labor market and macroeconomic conditions.

We focus on the Appalachian region (see Fig. 1), for three reasons. First, literature
documents evidence of a unique relationship between the LFPR and this geographic
region itself (Stephens and Deskins 2018; Dorsey 1991). Researchers often attribute
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Fig. 1 US Regional Composition. Note The regions depicted are defined primarily using the US Census
region definitions. The official Appalachian region, as defined by the Appalachian Regional Commission,
consists of 420 counties across 13 states (presented with the red outline)—Alabama, Georgia, Kentucky,
Maryland, Mississippi, New York, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Vir-
ginia, and West Virginia. For the purposes of this paper, we select only the seven ‘core states’ to define
the Appalachian region (i.e., Alabama, Georgia, Kentucky, Pennsylvania, South Carolina, Tennessee, and
West Virginia). This is driven by the fact that our analysis is at the state level and states such as Mary-
land, Mississippi, New York, North Carolina, Ohio, and Virginia include large urban populations and few
Appalachian counties. Instead, we include them in their respective Census Bureau-defined regions. This
determination was based on a 15% of total population residing in an Appalachian county threshold (Column
4 of Table 2). The reader is directed to Table 3 for a detailed lists of the states included in each region.
Source: Appalachian Regional Commission, US Census Bureau. (Colour figure online)

this connection to the abundant natural resources, such as coal, oil, natural gas, and
timber, which have comprised the primary industries in the region for many years.
Dorsey (1991) suggests that the labor market history as well as other factors have
created an “Appalachian effect” or unique Appalachian culture that persistently and
independently decreases the LFPR in the region compared to the rest of the USA.
Stephens and Deskins (2018) investigate the drivers of LFP between the Appalachian
and non-Appalachian regions and find the rural indicator to be significant in explaining
lower LFPR but also attributed the unexplained portion of their results to a potential
Appalachian effect. While we do include the Northeast, South, Midwest, and West
regions of the USA in this analysis, we find no other region with a geographic rela-
tionship to LFP that is steeped in so much historical rhetoric as the Appalachian region
(Behringer and Friedell 2006; Billings 1974; Grossman and Levin 1961; Rogers et al.
1997). Therefore, if a strong regional component that drives LFPRs and rate comove-
ments were to exist in the USA, we would expect to find it in the Appalachian region.

Secondly, by virtue of its low LFP, the Appalachian region arguably has the largest
potential to contribute to economic growth compared to other regions of the USA.
This region is often characterized by its economic disparity, persistent poverty, and
historically low levels of skilled labor (Grossman and Levin 1961; Rogers et al. 1997;
Bollinger et al. 2011; Partridge et al. 2013; Stephens and Deskins 2018; Appalachian
Regional Commission 2020). As seen in Fig. 2, the LFPR in Appalachia has been
consistently lower than in the rest of the USA over the past 45 years. Studies show
that increases in LFP, specifically, have large and positive effects on employment
growth and gross domestic product (GDP) (see Bryant et al. 2004; Juhn and Potter
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Fig. 2 US Labor Force Participation Rate Dynamics. Note NBER-dated recessions are in gray. The
Appalachian values displayed reflect the average LFPR across the 7 “core” Appalachian states (Alabama,
Georgia, Kentucky, Pennsylvania, South Carolina, Tennessee, and West Virginia, as seen in Fig. 1) for each
year from 1976 to June 2022. The Northeast, South, Midwest, andWest calculations are averages of LFPRs
for the states included in each region, respectively, as defined by the US Census Bureau . Source: Bureau
of Labor Statistics (BLS); Authors’ calculations

2006; Shoven 2007; Cai and Lu 2013; Bustelo et al. 2019, for example). Taylor (2016)
suggests that policy-induced increases in LFPR are an essential part of both short-term
and long-run increases for the growth rate of the economy. All things equal, one would
expect, therefore, that increasing LFPR at the state and regional levels would not only
have positive effects on local growth but on national growth as well.

Lastly, while Appalachia performs poorly in LFP relative to the rest of the USA,
the 13 official states within the region accounts for approximately 31% of national
GDP between 1976 and 2020, as seen in Fig. 3. Other regions in the USA. such as
the Midwest and the Northeast have declined to about 18% (Bureau of Economic
Analysis 2021). Figure3 also shows that Appalachia’s contribution to national GDP
has remained relatively stable since the 1970s. These observations illuminate the
Appalachian region’s importance in terms of labor activity and productive potential.
As such, even small improvements in the region’s LFP could have substantial impacts
not only for the region but on national growth as well.

Through our analysis, we find substantial variation in state LFPR comovement
over time, geographic level, and during different macroeconomic conditions. We find
that the choice of time and state is crucial to the relative importance of the estimated
geographic components on observed change in LFPR variations. For example, around
97% of the variation in the LFPR in West Virginia is explained by the Appalachian
regional factor in 1982, but less than 1% of the variation is explained by this same
factor in 2010. Additionally, West Virginia’s LFPR is strongly connected with the
Appalachian region component for periods coinciding with regional labor market
shocks such as the coal boom (1970s) and bust (1980s). We also find that in the last
three decades, there has been an increase in the influence of a national component on
state LFPRs.
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Fig. 3 Percent Contribution to National GDP. Note The Appalachian values displayed reflect the sum
of the GDP for the 13 states (Alabama, Georgia, Kentucky, Maryland, Mississippi, New York, North
Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, and West Virginia) in the ARC defined
Appalachian region as a percentage of the total US GDP. A breakdown of the relative contribution of
each state to the composition of the Appalachian region can be found in Table 2 of “Appendix.” The
Northeast, South, Midwest, and West calculations are sums of the GDP for the states included in each
region, respectively, as defined by the US Census Bureau and seen in Fig. 1 as a percentage of the total US
GDP . Source: Bureau of Economic Analysis (BEA); Authors’ calculations

Yet, we find divergence in state LFPRs due to a national component occurring
around periods of national recessions, regional labor market shocks or restructuring,
and state-specific labor shocks like natural disasters. Thus,we suggest that labormarket
policies that are broader or more national in scopemay be appropriate during business-
cycle expansions as they would take advantage of the increased synchronization of
LFPR.These broadpolicieswould potentially induce employment andGDPgrowth for
both struggling and prospering areas alike. In contrast, during recessionary periods or
idiosyncratic (state-specific) shocks, more localized and targeted labor policies would
be more efficient. In other words, targeting less aggregated geographic levels when
LFPR changes are heterogeneous across states could induce employment and GDP
growth for struggling areas without the risk of unintended effects from “one-size fits
all” policies.

To the best of our knowledge, this is the first study to apply the DFM framework to
evaluate regional US labor force participation dynamics. Other studies have used this
methodology to investigate variables such as output growth (Bian et al. 2020), bond
yield (Bhatt et al. 2017), changes in business cycles (Del Negro and Otrok 2008), labor
market conditions (Chung et al. 2014), inflation (Mumtaz and Surico 2012), equity
market valuations (Ma et al. 2018), commodities (West andWong 2014), oil (Aastveit
et al. 2015), and cattle prices (Foster et al. 1995; Walburger and Foster 1998).

In addition, related work on labor force dynamics has been done in the macroeco-
nomic literature with a majority focused on investigating the cyclicality of the LFPR
(see Van Zandweghe et al. 2017; Cajner et al. 2021; Veracierto 2008; Strand and
Dernburg 1964; Hornstein 2013, for example). While we do not directly study the
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cyclicality of LFPR, our dynamic analysis of LFPRs provides insight into the rela-
tionship between LFPR and the business cycle. Other literature on LFPR dynamics
includes studies on labor income variation (Vidangos 2009), dynamics between LFP,
GDP, and labor force productivity (Epstein 2018), labor force exit and entry behavior
in the USA over time (Blau 1998), and identifying trends and disequilibria affecting
labor market adjustments in Romania (Voicu 2001). We contribute to this strand of
literature by applying LFPR dynamic analysis to US state and regional levels. We also
contribute to the methodology of examining LFPR by applying DFMs to study labor
comovements.

Another strand of the literature particularly focused on the impact of single eco-
nomic events (like the 2008/9 recession) on LFPR or unemployment and on national
level data (see Van Zandweghe 2012; Hotchkiss and Rios-Avila 2013; Aaronson et al.
2014;Council of EconomicAdvisors 2014; Erceg andLevin 2014, for example).Addi-
tionally, the extant literature investigating the Appalachian region uses data before the
most recent economic downturns and analyzes only one or two years at a time. These
studies, however, fail capture longer horizons and the spatiotemporal variance of LFPR
simultaneously. Therefore, we seek to fill the gap in the literature by examining the
long-run trends in LFPR across multiple economic events.We also add to the literature
on Appalachia by assessing the connection between state LFPR with regional compo-
nents and emphasize the important implications for Appalachia’s labor and economic
growth potential, in particular.

The remainder of the paper is organized as follows. Section2 presents a description
of the data and summary statistics. A discussion of the empirical methodology is found
in Sect. 3. Discussion of our results is outlined in Sects. 4 and5, we conclude and offer
potential policy recommendations.

2 Data

To investigate the synchronicity and response of the Appalachian region’s LFPRs to
changing economic environments, we use monthly labor force participation rates for
the 50 US states andWashington D.C. over the period January 1976 - December 2020.
The LFPR represents the percentage of the civilian and noninstitutional working-age
population that is either working or actively looking for work. Table 1 highlights that
the LFPR varies within the Appalachian region and across all states. We estimate
our model using the first difference of the state-level LFPR and the differenced data
averaged nationally and across regions can be seen in Fig. 4.1 Thes data are collected
from the Bureau of Labor Statistics (BLS).2

Regional labor market heterogeneity can be observed in Fig. 4 as each region shows
differences in responses during periods of recessions, financial crises, and the COVID-
19 pandemic. For example, theAppalachian andMidwest regions show large increases

1 In Sect. 4, we present the estimation results from our DFM-TV-SVmodel with the 1976–2020 data. Given
the visible and large decreases in the labor force participation rates (Fig. 4) during the COVID-19 period,
we also re-estimated the model excluding data for 2020. The results were quantitatively similar and are
available upon request.
2 Retrieved at: https://download.bls.gov/pub/time.series/la/.

123

https://download.bls.gov/pub/time.series/la/


The dynamics of labor force participation: Is all quiet… 2873

Fig. 4 Change in US Regional Labor Force Participation Rates. Note Shaded regions are the NBER-dated
recessions

in LFPR in the late 1980s, whereas the West region displays a large decrease at the
same time. However, the South region shows a couple of shocks corresponding to
2006 and 2010 whereas the Northeast region displays more constant variation over
time except for the COVID-19 pandemic in 2020. Overall, changes in US regional
LFPRs exhibit heterogeneous responses to periods of economic shock, labor market
distress, and high unemployment across states and time.

While the unemployment rate is often used for empirical analysis and economic
policies, we use the LFPR as it provides amore accurate representation of labormarket
conditions (Juhn and Potter 2006). That is, the unemployment rate does not always
reflect that people have dropped out of the labor force (Juhn and Potter 2006;Hotchkiss
andRios-Avila 2013; Stephens andDeskins 2018). An economymight simultaneously
experience a high level of discouraged workers (individuals who give up looking for
a job and fall out of the labor force) and a low unemployment rate (Hotchkiss and
Rios-Avila 2013).3 At face value, this would signal improving economic conditions
and a thriving labor market. Consequently, unemployment rates in distressed areas
can be comparable to the national average when labor force participation remains low,
but not necessarily in other cases. For example, since 2000, West Virginia reported
an average rate of unemployment of 6.2% compared to the national average of 6%.

3 In addition, unemployment does not gauge the size of the underground or “informal” economy - as
evidenced by the fact that some developing countries have low official unemployment rates (Bradley et al.
2001).
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Yet, West Virginia has persistently lower LFPR (Table 1), ranks higher in negative
health indicators (Raghupathi and Raghupathi 2018; Behringer and Friedell 2006),
and is often characterized by its economic disparity relative to the rest of the country
(Dorsey 1991). While we focus on the LFPR in this study, investigations into other
labor market variables and connections to specific industries in the region may prove
insightful. However, these alternate investigations are outside the scope of this paper
and we reserve them for future research.

Previous literature suggests that labor force dynamics of the Appalachian region
may change over time with economic conditions. Moreover, (counter)cyclical factors
play a large role in national and sector-specific labor markets. The global COVID-
19 pandemic and the Great Recession were felt worldwide. The USA dropped 31
places in international LFPR rankings between 2000 and 2020 (World Bank 2021).
Utilizing monthly LFPR data over 45 years allows us to account for long-term trends,
and major economic events, and measure the evolution and relative importance of the
Appalachian region. While more granular data are arguably better, we use state-level
LFPR data given the unavailability of monthly county-level data for a similar sample
period. This aggregation reflects a potential drawback to our choice of analysis at the
state level. However, given the large number of counties and equivalents across the
USA (3143), the computational burden of our model estimation prevents convergence.
Therefore, we are restrained to a state-level analysis. Regardless, research at this level
helps fill the gap in the analysis of statewide participation rates as many studies on
individual labor force participation decisions already exist. Additionally, using aggre-
gate state participation rates allows for a focus on regional differences and actionable
policy at the state level, since potentially, only a few metropolitan areas may be able
to implement local labor market policy.

3 Structural model

We consider a dynamic factor model with time-varying stochastic volatility (DFM-
TV-SV) in the spirit of Del Negro and Otrok (2008). In general, the dynamic factor
model is a dimension-reducing technique that models the co-movements of a high-
dimensional vector of time series variables (the LFPR) as a function of a few latent
dynamic factors (Stock and Watson 2011).

Using a similar state space analysis, Stock and Watson (2016) posit that comove-
ments of many macroeconomic variables can be described by an unobserved single
index or dynamic factor.We build off this premise andmodel changes in state LFPR as
functions of national, regional, and idiosyncratic (state-specific) factors. Restricting
our latent factors of LFPR to a small number in our dynamic factor analysis is con-
sistent with standard dynamic equilibrium macroeconomic theory (Stock and Watson
2016). To this end, we employ the Monte Carlo Markov Chain (MCMC) Bayesian
estimation method using uninformed conjugate inverse-gamma priors to estimate this
general model for a panel of state LFPR data in the USA for the past few decades.
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3.1 Standard dynamic factor model

We consider the following specification for our measurement equation:

yi,t = ωi,tCt + ˜βi,tRt + ξi,t (1)

where yi,t is the change in labor force participation rate4 for state (and Washington,
D.C.) i = 1, 2, . . . n, (n = 51) and month t . Ct is the national or common factor that
affects yi,t . Rt is a vector that contains the five regional factors, R j,t , j = 1, . . . , 5
corresponding to Appalachia, the North, South, Midwest, and West regions of the
USA.

We should note that the Appalachian region is officially defined at the county
level. Thirteen (13) states (Alabama, Georgia, Kentucky, Maryland, Mississippi, New
York, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, and
West Virginia) contain at least one (1) of such Appalachian county. However, given
that our analysis is at the state level, we exclude Maryland, Mississippi, New York,
North Carolina, Ohio, and Virginia from our definition of the Appalachian region.
This decision to exclude these states was largely predicated on the fact that the actual
population living in anAppalachia-designated countywas less than our 15% threshold.
To this end, we contend that a state below this threshold is more heterogeneous and
could potentially confound the findings and the estimations of the regional factor.5

For the sake of brevity, and the fact that the Appalachian region is of primary interest,
we focus our discussion and results on Appalachia.6 Lastly, in our specification, ξi,t
are the idiosyncratic or state-specific factors. The idiosyncratic factors account for
movement by each state after the national and regional factors are removed. Since the
geographical characteristics of the comovements are unobserved, we infer them from
factor loadings which are the coefficients of the vectors of the lagged factors.

The national factor’s loading parameter, ωi,t , captures the correlation between the
national (common) factor, which measures national shocks or trends in the changes
in LFPR for all n = 51 states, and the change in LFPR for each state, i , at each time,
t . The row vector ˜βi,t has a nonzero time-varying regional loading parameter βi,t for
the position corresponding to the region for state i and zeros for all other elements.
Accordingly, each regional factor, R j,t , measures shocks or trends in the changes in
the LFPR specific to each region and is separately identified by setting other regional
loadings to zero.7 We capture the dynamics of each factor by including time-varying
factor loading parameters.

4 All Augmented Dickey–Fuller tests supported the conclusion of a unit root process and high persistence.
Therefore, we will estimate in first differences (changes in LFPRs)
5 We thank the referees for pointing out this potential heterogeneity issue in an earlier version of this
manuscript. We note here that, barring South Carolina, the states included in the 15% population-share
threshold also represent the 6 states with the highest percentage of their counties belonging to Appalachia.
See Table 2. In our specification we include New York in the Northeast region, Ohio in the Midwest region
and Maryland, North Carolina, Mississippi, and Virginia in the South region.
6 Full results are available upon request.
7 Regions are mutually exclusive; states can only belong to one region.
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The transition equations for each factor evolve as stationary processes:

Ct =
P

∑

p=1

φC
pCt−p + eh

C
t · νCt ; νCt ∼ i .i .d.N (0, σ 2

C ) (2)

where φC
p is the autoregressive coefficient for the national factor. eh

C
t represents the

stochastic volatility components, and νCt the innovation to the law of motion for the
national (common) factor.

R j,t =
L

∑

l=1

φR
j,tR j,t−l + eh

R
j,t · νRj,t ; νRj,t ∼ i .i .d.N (0, σ 2

j,s) (3)

where φR
j,t , j ∈ {1, 2, . . . , 5} is the autoregressive coefficient for each regional factor,

eh
R
j,t , the stochastic volatility components, and νR

j,t the innovation to the law of motion
for the regional factor.

ξi,t =
Q

∑

q=1

φqξt−q + eh
S
i,t · νSi,t ; νsi,t ∼ i .i .d.N (0, σ 2

i ) (4)

where φq , i ∈ {1, 2, . . . , 51} is the autoregressive coefficient for the idiosyncratic

shock. The stochastic volatility components are denoted as eh
S
i,t , and νSi,t is the inno-

vation to the law of motion for the idiosyncratic factor.
Following the standard approach in the literature, we set the optimal number of

lags in our transition equations to 2 (that is, Q = P = L = 2) (see Ma et al. 2018;
Neely and Rapach 2011, for example). Additionally, we assume that the innovations
(νCt , νRj,t , and νSi,t ) are orthogonal to each other. The functional forms of the stochastic
volatilities are detailed in turn below.

3.2 Dynamic factor model with time-varying stochastic volatility

To capture the dynamics in the volatility over time, we follow Del Negro and Otrok
(2008) and employ stochastic volatility in the laws of motion of the national, regional,
and idiosyncratic factors (Eqs. 2–4), This extension of the standard DFM framework
allows for random, rather than constant, innovations (error terms) of each factor.8

Importantly, this assumption and specification allow us to capture changes in the sen-
sitivity of our factors to labor conditions across our sample and economic conditions.
To this extent, we capture potential volatility changes due to new or amended labor
policy and major localized and national economic shocks such as the COVID-19 pan-
demic and natural disasters.

8 Formally, the stochastic volatility model assumes that the variance of the error term is itself normally
distributed.
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Formally, the innovations, e•, vary over time and each stochastic volatility term,
h•, evolves according to a random walk process without drift such that9:

hCt = hCt−1 + σ h
C · ηCt ; ηCt ∼ i .i .d.N (0, 1) (5)

hRj,t = hRj,t−1 + σ h
j,R · ηRj,t ; ηRj,t ∼ i .i .d.N (0, 1) (6)

hSi,t = hSi,t−1 + σ h
i · ηSi,t ; ηSi,t ∼ i .i .d. N (0, 1) (7)

where σ h
C , σ h

j,R, σ h
i , for i ∈ {1, 2, . . . , 51}, and j ∈ {1, 2, . . . , 5}, are the standard

deviations of the innovation to each law of motion, respectively, and ηCt , ηRj,t , and
ηSi,t are the orthogonal volatility shocks. We use uninformed or diffuse conjugate

inverse-gamma distributions for the key priors σ h
C , σ h

j,R, σ h
i . This ensures we avoid

any preconceived notions about the location and shape of the distributions. In addition,
this in practice focuses on the belief that volatilities evolve slowly over time and capture
permanent trend changes in the labor market (Del Negro and Otrok 2008). This prior
setup is typically robust to various prior assumptions and distributions (Del Negro
and Otrok 2008). For these reasons, we follow this setting which is standard across
applications (see Del Negro and Otrok 2008; Neely and Rapach 2011; Bhatt et al.
2017; Ma et al. 2018; Bian et al. 2020, for example).

Given that the scale of the factor loadings and the standard deviations for each factor
cannot be separately identified, we restrict the shocks of the national and regional
factors σ 2

C = σ 2
j,R = 1, j ∈ {1, 2, . . . , 5}. This is also consistent with the standard

approach in the literature (see Del Negro and Otrok 2008; Sargent et al. 1977; Stock
and Watson 1989, for example). Given that the idiosyncratic factor represents the
fluctuations in the state time series that are not attributed to either national or regional
factors, normalization of σ 2

i is not necessary. Second, since the scale of stochastic
volatility term h• is determined by the initial condition, we constrain each h in the
stochastic volatility equations (Eqs. 5 – 7) to a starting value of zero. That is, hC0 =
hRj,0 = hSi,0 = 0. This assumes no stochastic volatility before the sample period but
allows for the derivation of an ergodic distribution for the initial conditions (Del Negro
and Otrok 2008).

3.3 Gibbs sampling

Following Del Negro and Otrok (2008); Bhatt et al. (2017); Bian et al. (2020), we
estimate our model via a Markov chain Monte Carlo (MCMC) Bayesian estimation
utilizing the Gibbs-sampling algorithm a lá Kim et al. (1999). We take 50,000 draws
of each parameter estimated in the model. The first 10,000 draws serves as “burn-ins,”

9 Del Negro and Otrok (2008) opines that policy or structural changes occurring over time are permanent
and not transitory.We therefore, model the time variation as a drift rather than a stationary process. This is an
innovation to previous studies on Appalachia’s LFPR (Dorsey 1991; Isserman and Rephann 1993; Stephens
and Deskins 2018) as they do not account for long-term trends or changes in national- and state-level labor
force conditions.We contend that our approach offers greater flexibility and accounts for potential long term
trends and structural changes in LFP conditions. This DFM-TV-SV model approach, therefore, provides
added value and contributes to previous literature.
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which are discarded in order to reach confidence in the initial conditions imposed. We
use the remaining 40,000 draws as keepers, which are saved after the allotted burn-in
values have been reached. While other papers with similar methodologies use fewer
draws [for example Del Negro and Otrok (2008): 22,000 andMa et al. (2018):10,000],
we use 50,000 to ensure appropriate signs and convergence of our model given the
number of parameters being estimated. For additional information about our execution
of the procedure and the Gibbs sampler, the interested reader is directed to “Appendix
A.1” and the technical appendix of Bhatt et al. (2017).

4 Results

We find that, over time, the economic structure of the states and their connection to the
national and regional economies exhibit varying sensitivities. This provides a strong
justification for using a model with time-varying loading parameters and stochastic
volatility. Figure5 shows the national and regional factors or components estimated
by our model. These values are the median values of the 40,000 kept draws from
the posterior distribution plotted with the 5th and 95th percentiles. Our results reveal
several shocks, by geography, over the sample period. These shocks are represented
as peaks in a given factor. A positive spike for a factor indicates that a shock in that
region explains a divergence or a relatively large change in the LFPRs. The National
factor hovers around its mean (zero) for much of the sample period. The major shocks
are observed at or near recessionary periods (1990, cerca 2010) and during the recent
COVID-19 pandemic. The regional factors appear to be more time varying and pass
through their means on several occasions. On account of the tight confidence intervals,
it would appear that all the factors are estimated relatively accurately.

Figures 6 and 8 present the time-varying loading parameters (posterior medians) of
the latent national/common factor and theAppalachian regional factor forAppalachian
states. The factor loadings reflect changes in the sensitivity or correlation between the
change in a given state’s LFPR with the respective factor. That is, these loadings
indicate whether a national/regional shock is correlated with an increase or decrease
in LFPR for a given state, i , and time t . In short, relatively strong nonzero factor
loadings reflect a higher measure of synchronization of regional/national LFPR. The
tight confidence intervals around our median estimates indicate a low level of param-
eter uncertainty. The results and key takeaway from the dynamics of each factor are
explained in the subsections that follow.

For the sake of brevity, we suppress the results for all regions except Appalachia.
For a quick reference and comparison, the averaged values for the other regions are
presented in Figs. 10, 11 and 12 of “Appendix.”10

4.1 National factors loadings

In Fig. 6, we observe considerable time variations in the national factor loading param-
eters across states. The lower bound of the 90% confidence bands in the latter part

10 The full results are available from the authors upon request.
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Fig. 5 Estimated Factors. Note This graph presents the latent factors over time. Shaded regions here corre-
spond to the NBER-dated recessions. The blue solid lines represent the median of the posterior distribution.
Dashed lines represent the 5th and 95th percentiles. (Colour figure online)
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of the sample period is above the upper bound of the confidence bands for several
periods over the sample. This indicates that with increases in the national compo-
nent, changes in state LFPRs tend to increase together. For the middle two decades
of our sample, increases in the synchronization of state LFPR changes coincide with
greater susceptibility to national labor market conditions. This has implications for
both positive and negative labor shocks. During periods of high synchronization that
coincide with economic prosperity, business-cycle expansions, or implementation of
participation-encouraging policy, large positive increases in LFPR are most likely to
ensue.

Uniformly across states, we also see several periods of negative factor loadings.
This indicates that with increases in a common component, changes in state LFPRs
decreased together or experienced relatively more stable LFPR. The zero correlation
seen around the years 1990, and 2010 correspond to the national shocks seen in Fig. 5.
These periods are then characterized by a lack of synchronization across states and
no relationship between the national factor and increases (decreases) in LFPR. These
disparate results not only provide further justification for using a more generalized
approach for modeling comovement among state LFPR, but it also validates our use
of time-varying parameters.

4.2 Cross-state correlation

Figure7 presents the average cross-state time-varying correlation for the change in
LFPR for all states (Panel A), Appalachia (Panel B), the Northeast (Panel C), the South
(Panel D), the Midwest (Panel E), and the West (Panel F). The estimates depicted are
the computed median values of the average pair-wise correlations coefficients at each
point in time as implied by the factor model.

As seen in Fig. 7, the sample can be crudely split into four sub-samples (1976–
1980; 1980–1990; 1990–2010 and 2010–2020). These demarcations generally follow
the business cycle and exhibit peaks in correlation near the middle of each cycle.
This trend, along with the similarity of the results across panels, supports that LFPR
movements are relatively synchronized across states during growth and expansion
periods. These findings are in congruence with our national factor loading results
displayed in Fig. 6. A couple of notable difference across the panels in Fig. 7 is the
divergence in the Midwest (Panel E) and Southern (Panel D) regions, as cross-state
correlation for the change in LFPR increases sharply in 1990 and 2010, respectively.
Together with the national factor loading results, these findings demonstrate that labor
force participation rate dynamics are relatively more synchronized across the USA
regardless of regional designation.

4.3 Regional factor loadings

Turning our attention to the loading parameters of the Appalachian regional factor,
Fig. 8 reveals that the sensitivity of statewide LFPR to the Appalachian region factor is
much more heterogeneous (compared to their national factor counterpart). Although
we observe a large degree of parameter uncertainty for most Appalachian states over
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Fig. 6 National Factor Loadings for Appalachian States.NoteThis figure presents time plots of the common
factor loadings (ωi,t in Eq.1) of each state. Shaded regions correspond to NBER-dated recessions. The
blue solid lines represent the median of the posterior distribution. Dashed lines represent the 5th and 95th
percentiles. (Colour figure online)

much of the sample period, West Virginia is a notable exception. The confidence
bounds are much tighter around that West Virginia’s median estimates during the
early and late 1980s. In the early 1980s, West Virginia exhibits strong and negative
regional factor loadings. This would indicate a strong sensitivity and negative corre-
lation with the Appalachian region factor. That is, with increases in the influence of
an Appalachian region component, changes in West Virginia LFPR tend to decrease.
West Virginia and the Appalachian region experienced plummeting and persistently
low LFPR during this time. This is attributed to a coal bust which was followed by
high levels of unemployment contemporary with the early 1980s national recession
(Black et al. 2005). Our results indicate that the West Virginia LFPR became low to
stable in subsequent years.
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Fig. 7 Pairwise Cross-State Correlation Average by Region. Note This figure presents the average cross-
state correlation, at each point in time. The average cross-state correlation is computed by averaging the
correlation coefficients for each state-pair within the region of interest at each time point, t . The shaded
regions correspond to NBER-dated recessions. The blue solid lines represent the median of the posterior
distribution. Dashed lines represent the 5th and 95th percentiles. (Colour figure online)

A decade later, LFPR in West Virginia finally returned to pre-coal bust and pre-
recession levels during a period of growth and expansion contemporaneously with a
movement away from natural resource dependency (Howe and Parks 1989). Much of
the regional economy shifted away from the reliance on coal and restructured theWest
Virginia labor market into other industries (Stevens 1986). This is indicated by the
positive factor loadings in the late 1980s which attribute a trend of increasing changes
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Fig. 8 Regional Factor Loadings by State in the Appalachian Region. Note Shaded regions are the NBER-
dated recessions. The blue solid lines represent the median of the posterior distribution. Dashed lines
represent the 5th and 95th percentiles. (Colour figure online)

in LFPR to the Appalachian region factor. Together with the decline in the sensitivity
to the national factor (see Fig. 6) forWest Virginia during this time, our results point to
a potentially more regionally dependent West Virginian economy, suggesting higher
susceptibility to regional shocks. We note that these results also justify our use of
methodology as our model not only differentiate the national from regional sensitivity
but reveals thatwhile the connection to the national economy is relatively strong during
this time, the connection to the regional economy for West Virginia is stronger.

4.4 Variance decompositions

From Eq.1, our model implies the following variance structure:

Var(yi,t ) = ω2
i,t Var(Ct ) + ˜βi,t Var(Rt )˜β

′
i,t + Var(ξi,t ) (8)
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Therefore, the fraction of volatility attributable to, say the national factor, C, can
be computed as:

ω2
i,t Var(Ct )
Var(yi,t )

(9)

The variance contributions of the regional and idiosyncratic factors would be com-
puted similarly. Below, we discuss the computed contribution of each of the three
components (of Eq.8) to the state LFPR.

Figure9 plots the percentage contributions of the national, regional, and state factors
to the total change in LFPR variations for all states within the Appalachian region.11

These plots allow us to ascertain the relative importance of each factor in explaining
labor market dynamics. We observe that, in general, the national and idiosyncratic
factors are consistently the dominant contributors. This implies that much of the vari-
ation in the change in state LFPR is explained by either national or individual labor
market trends or shocks.

Despite the dominance of the national and idiosyncratic factors, we also observe
heterogeneity across space and time. Concerning time, the contribution of the national
factor ismost pronounced during periods of recessions, financial crises, or the COVID-
19 pandemic. At times, close to 100% of the variation in the change in LFPR is
explained by the national factor which corresponds to most of the zero correlation of
the state changes in LFPR with the national factor observed in Fig. 6. Naturally, the
stark changes in LFPR across states induced by these national shocks manifest as a
strong common component picked up by our model. However, outside these periods,
the idiosyncratic factor is more important. This implies that states are more influenced
by state-specific labor and economic shocks (potentially positive and negative) outside
of national recessions or trends. For example, Fig. 9 shows a stark increase in variations
in the change in LFPR explained by the idiosyncratic factor for Georgia in 1992 and
2008. The first time period coincides with a notable period of growth and expansion in
the state. The second corresponds to a potential heterogeneous labor market response
to the 2008–09 recession. We also find a stark increase for variations in the change in
LFPR explained by the idiosyncratic factor for Southern states such as Louisiana and
Mississippi corresponding to the devastating impacts of Hurricane Katrina (which we
do not display for brevity).

Throughout our analysis, we find West Virginia to be rather curious. Unlike its
Appalachian counterparts, the state appears to bemuchmore connected to the regional
economy outside of national crisis windows. Figure9 reveals that the Appalachian
factor explains a large portion of West Virginia LFPR dynamics compared to the
other states. On several occasions, the computed regional variance contribution sur-
passes 75%. In fact, in the mid-1980s, the Appalachian factor explains almost 100%
of the change in LFPR for West Virginia. During those same periods, most other
Appalachian states experience much smaller contributions from this “Appalachian
factor.” For these remaining Appalachian states, incidents of increased relative impor-

11 Our estimation algorithm included all 50 states (plus Washington D.C.). The full results, including
figures for non-Appalachian states, are available upon request.
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Fig. 9 Variance contribution of factor by state in the Appalachian region. Note Colored areas represent the
percent contribution of each factor to observed variation in the change in LFPR. Percent contributions are
respective medians of the posterior distribution. (Colour figure online)

tance of the Appalachian factor appear to coincide with periods of economic recovery
and booms.

We believe it pertinent here to place our study and findings in the context of existing
studies on Appalachian state LFPR. These studies investigate the open-ended question
about whether an “Appalachian effect” or measurable Appalachian region component
contributes to the lower LFPR in the region (Dorsey 1991; Isserman and Rephann
1993; Stephens andDeskins 2018). However, a consensus has yet to be reached and the
question remains unanswered. While our model and results do not attempt to measure
how the Appalachian region itself affects LFPR, we suggest that our findings, which
are based on time series data over a large sample period than the existing studies, may
provide context for the contrasting results and ensuing debate in this literature. As a
part of this debate, Isserman and Rephann (1993) criticizes Dorsey (1991) for using
only one year of data. The authors contend that it may producemisleading conclusions,
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especially if empirical results depend on the choice of year, which the authors conclude
to be the case. As we have determined in this study, changes in individual state LFPR
are variably correlated with increases in national synchronization of LFPR for most
of our sample. Additionally, both convergence and divergence of state LFPR at the
national and regional levels explain large proportions of the variation in LFPR across
states and time. We find it conceivable that prolonged labor market shocks such as
national recessions or regional industry and labor market restructuring (compounded
on an already distressedAppalachian region) may help explain results found in Dorsey
(1991), Isserman and Rephann (1993), and Stephens and Deskins (2018). We come to
this conclusion based on a few comparative examples between our results and these
previous studies.

Dorsey (1991) specifically focuses on West Virginia as it is the only state to be
completely encompassed in the Appalachian region. Dorsey (1991) and Isserman and
Rephann (1993) find the strongest relativeAppalachian region effects onWest Virginia
LFPR in 1987. Additionally, Dorsey (1991) attributes the unexplained variance in the
modeling over this year to an “Appalachian effect” as well. This coincides with the
strong negative correlation between change in West Virginia LFPR and the distinct
Appalachian region factor we observe in the late 1980s, shown in Fig. 9. Isserman and
Rephann (1993) subsequently find little to no Appalachian effect on West Virginia
LFPR for 1980 and 1991. For these years, we also find zero correlation between
the change in West Virginia LFPR and the Appalachian region factor. We contend
therefore that these results found in Dorsey (1991) and Isserman and Rephann (1993)
may have been driven by regional shocks, such as the coal bust during the late 1980s,
or the state of the regional economy and its connection to West Virginia at the time.

Placing our findings in the context of a more recent study, Stephens and Deskins
(2018) investigate LFPR for all US counties focusing on Appalachian counties and a
rural vs. urban county comparison for the years 2000 and 2010. Through a Blinder-
Oaxaca decomposition, the authors find a 1.1 percentage point unexplained difference
for Appalachian counties. Like Dorsey (1991), they posit this as evidence supporting
an “Appalachian effect.” Additionally, Stephens and Deskins (2018) find strongly sig-
nificant and negative coefficients on the state fixed effect forWest Virginia, suggesting
other phenomena unexplained by their model. Our median results show a slight neg-
ative relationship between change in West Virginia LFPR and the regional economy
surrounding 2010 as seen in Fig. 8, but the confidence bands are relatively wide during
this time. However, as we discussed earlier, the early 2000s and 2010 are character-
ized by dominance in the national factor’s contribution to explained LFPR variations.
Figure9 shows that for Pennsylvania, South Carolina, andWest Virginia, the variation
explained by the national factor for each state exceeds 98% for the middle part of
2010. Specific to West Virginia’s LFPR, while our model highlights a slight regional
connection, it clearly emphasizes the connection to national trends at the time. Given
our results, we suggest that the unexplained variation and significant West Virginia
state fixed effect found in Stephens and Deskins (2018) may be related to a dispropor-
tionate or compounded effect of national economic shocks or trends on the already
economically distressed Appalachian region and state of West Virginia.
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5 Conclusion and policy implications

In this paper, we demonstrate that comovement of the change in state LFPR varies over
time and geographic level – much of which can be attributed to economic and labor
market fluctuations. We examine the connection between state changes in individual
state labor force participation rates and national and Appalachian regional measures of
LFPR synchronization. We also investigate the relative contribution of these measures
to the labor force participation dynamics of US states over time. We pay particular
attention to the Appalachian region to explore a different angle of the documented con-
nection between the region and LFP, as well as to inform policy targeted at increasing
employment growth and LFP in the region and the rest of the USA. Using a dynamic
factor model with time-varying parameters and stochastic volatility, we determine that
in the last three decades as the national synchronization of state LFPR increase, the
change in individual state LFPR tend to increase as well. We also find two periods
where the change in the West Virginia LFPR is strongly connected with the synchro-
nization of LFPR in the Appalachian region. Finally, we show that the choice of time
and state togetherwith given economic conditions are crucial to the relative importance
of the level of synchronization on observed change in LFPR variations.

Our results are important for policymakers and potential improvements in regional
and national output growth. Our results suggest that federal labor policy may be more
effective during periods of economic growth. Policies implemented during these times
would take advantage of the potential positive increases in LFPR and be less likely
to jeopardize struggling areas with “one-size-fits-all” policies. It is also important to
note that state LFPRs are gradually growing more synchronized and connected to the
national factor. While this presents opportunities to implement more effective federal-
level “blanket” policies in the future to assist depressed labor markets, it also reduces
the nation’s ability to absorb negative labor market shocks. This has important long-
term implications for the Appalachian region since poor and rural areas are already
more vulnerable to economic shocks (Börner et al. 2015).

During periods of divergence (e.g., recession) in state LFPR, more localized and
targeted labor policies may be more efficient. Given the heterogeneous behavior of
changes in LFPR during recessions and other shocks, it is conceivable that “blanket”
policies may have positive effects for some areas but negative for others (Tödtling
and Trippl 2005). Given the importance of time, place, and economic conditions high-
lighted by our analysis, federal policy on the Appalachian region’s behalf should be
state and region-specific during periods of LFPR divergence.

5.1 Limitations and avenues for future work

Given that this study is limited to state-level data we do not address concerns in
Isserman and Rephann (1993) related to the idea that a more disaggregated geographic
level of the data may significantly contribute to certain findings.12 A future avenue
for research would be to circumvent this issue and focus instead on a county level

12 Due to the high computational burden of our model and the curse of dimensionality, we are not able
to use this methodology and explore this issue at the county level, for example. We would expect to see
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disaggregation to analyze the Appalachian region and the differences across the rural–
urban spectrum. While we specifically emphasize the macroeconomic nature of state-
level LFPR, further investigation into the impact on the rural/urban divide of these
results may be warranted. This is buoyed by the fact that West Virginia appears to be
structurally different– as evidenced by the persistently low labor force participation
and relatively large variance contributions of the Appalachian region factor in addition
to findings in Dorsey (1991) and Stephens and Deskins (2018). While our results
for Appalachia indicate that “all is quiet on the Appalachian front,” West Virginia
stands out. Since West Virginia is the only state with all counties designated in the
AppalachianRegion, further research intowhy the state is differentmayprovide insight
into helping struggling sub-regions and identifying why certain areas, in general,
remain economically distressed. Moreover, this will allow for direct comparability
with the extant literature.

Lastly, our results prompt questions about the relationship between the national,
regional, and state factors and known drivers of labor force participation. For exam-
ple, studying how industry composition, health, and other variables are related to the
comovements of LFRPs within the region is a natural next step. Other examples of
avenues for future work pertain to when and how West Virginia adjusts to shocks
in LFP, and how much of the variation and error realization of the latent factors are
explained by unexpected changes in other factors and included variables. Ultimately,
more research is needed to alleviate decades of low labor force participation and max-
imize the growth potential for West Virginia and the rest of the Appalachian region.
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A.1 Appendix

Gibbs sampling algorithm

Below, we provide a brief description of our model estimation.

more diversity within and between states and counties and a potentially more pronounced (and estimable)
Appalachian factor.
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Model estimation method and priors

We employ the Monte Carlo Markov Chain (MCMC) Bayesian estimation method
using uninformed or diffuse conjugate inverse-gamma priors for the standard devia-
tions of the innovations to the law of motions of the loadings, stochastic volatilities,
and the non-time-varying part of the idiosyncratic volatility. We use normal distri-
bution priors for the initial condition of the loadings, for the constant terms, and the
autoregressive coefficients for the factors and idiosyncratic shocks (Figs. 10, 11, 12).

In our estimation, we take 50,000 draws of each parameter in the model to ensure
appropriate signs and convergence of our model given the number of parameters. The
first 10,000 draws are used as burn-ins,which are discarded in order to reach confidence
in the initial conditions. We then use the remaining 40,000 draws as keepers, which
are saved after the allotted burn-in values have been reached (Tables 1, 2, 3).

Algorithm

For notational ease, let 	 be the collection of time-varying coefficients and hyperpa-
rameters such that

	 =
(

ωT ′, βT ′, ϕ′
C, ϕ′

R, ϕ′
S , g2, {hC1,t }Tt=1, {hR1,t }Tt=1, {hR2,t }Tt=1, {{hS1,t }Tt=1}n′

i=1

)

,

where ωT = {(ω1, ω2, . . . , ωn)
′}Ti=1 and βT = {(˜β1, ˜β2, . . . , ˜βn)

′}Tt=1 denote our
time-varying coefficients. ϕC = (φC

1 , φC
2 ), ϕR = (φR

1,1, φ
R
1,2, φ

R
2,1, φ

R
2,2 . . . φR

5,1, φ
R
5,2),

ϕS = (φ1,1, φ1,2, φ2,1, φ2,2, . . . , φn,1, φn,2), and g2 = {σ 2
i }ni=1) are the time invariant

variances. Lastly, the h• represent the latent stochastic volatilities and n = 51.

1. Draw the national and regional (5) (i.e., Appalachia, Northeast, South, Midwest,
and West) factors conditioned on the time-varying factor loadings, the autoregres-
sive coefficients of the national and idiosyncratic components, the time invariant
variance, and the stochastic volatilities.

f

(

{Ct }Tt=1, {R1,t }Tt=1, {R2,t }Tt=1, . . . , {R5,t }Tt=1

∣

∣

∣

∣

	

)

Given the presence of stochastic volatility, this process requires modification from
the original procedure outlined in Chib and Greenberg (1994). This modification
is described in detail in Del Negro and Otrok (2008).

2. Take a random draw of the AR(Q) and variance parameters for the idiosyncratic
factor conditioned on the national factor, regional factors, time-varying factor
loadings, and the idiosyncratic stochastic volatility.

f

(

ϕS, g
2
∣

∣

∣

∣

{Ct }Tt=1, {R1,t }Tt=1, {R2,t }Tt=1, . . . , {R5,t }Tt=1, ω, ˜β, {hi,t }Tt=1

)

123



2890 J. Beverly et al.

Fi
g.

10
A
ve
ra
ge

C
om

m
on

Fa
ct
or

L
oa
di
ng

s
by

R
eg
io
n.

N
ot
e
Sh

ad
ed

re
gi
on

s
ar
e
th
e
N
B
E
R
-d
at
ed

re
ce
ss
io
ns
.
T
he

bl
ue

so
lid

lin
es

re
pr
es
en
t
th
e
m
ed
ia
n
of

th
e
po

st
er
io
r

di
st
ri
bu
tio

n.
D
as
he
d
lin

es
re
pr
es
en
tt
he

5t
h
an
d
95

th
pe
rc
en
til
es
.(
C
ol
ou

r
fig

ur
e
on

lin
e)

123



The dynamics of labor force participation: Is all quiet… 2891

Fi
g.
11

A
ve
ra
ge

R
eg
io
na
lF

ac
to
r
L
oa
di
ng

s
by

G
eo
gr
ap
hi
ca
lR

eg
io
n.

N
ot
e
Sh

ad
ed

re
gi
on

s
ar
e
th
e
N
B
E
R
-d
at
ed

re
ce
ss
io
ns
.T

he
bl
ue

so
lid

lin
es

re
pr
es
en
tt
he

m
ed
ia
n
of

th
e

po
st
er
io
r
di
st
ri
bu
tio

n.
D
as
he
d
lin

es
re
pr
es
en
tt
he

5t
h
an
d
95

th
pe
rc
en
til
es
.(
C
ol
ou

r
fig

ur
e
on

lin
e)

123



2892 J. Beverly et al.

Fi
g.
12

A
ve
ra
ge

V
ar
ia
nc
e
C
on

tr
ib
ut
io
n
by

Fa
ct
or

an
d
G
eo
gr
ap
hi
ca
lR

eg
io
n.
N
ot
e
C
ol
or
ed

ar
ea
s
re
pr
es
en
tt
he

pe
rc
en
tc
on

tr
ib
ut
io
n
of

ea
ch

fa
ct
or

to
ob

se
rv
ed

va
ri
at
io
n
in

th
e

ch
an
ge

in
L
FP

R
.S

in
ce

th
e
pe
rc
en
tc

on
tr
ib
ut
io
ns

ar
e
co
m
pu

te
d
as

th
e
m
ed
ia
ns

of
th
e
po

st
er
io
r
di
st
ri
bu
tio

n
at

ea
ch

tim
e
po

in
t,
th
ey

m
ig
ht

po
te
nt
ia
lly

no
ts
um

to
1.

(C
ol
ou

r
fig

ur
e
on

lin
e)

123



The dynamics of labor force participation: Is all quiet… 2893
Ta
bl
e
1

D
es
cr
ip
tiv

e
st
at
is
tic
s—

st
at
e
la
bo
r
fo
rc
e
pa
rt
ic
ip
at
io
n
ra
te
s

St
at
es

M
ea
n

M
ed
ia
n

M
in

M
ax

S.
D
.

St
at
es

M
ea
n

M
ed
ia
n

M
in

M
ax

S.
D
.

A
la
ba
m
a

60
.5
0

60
.9
0

55
.9
0

64
.5
0

2.
29

M
on

ta
na

65
.9
5

66
.6
0

61
.4
0

69
.0
0

1.
91

A
la
sk
a

70
.8
7

71
.9
0

61
.1
0

75
.3
0

2.
72

N
eb
ra
sk
a

70
.5
9

71
.3
0

64
.8
0

74
.1
0

2.
53

A
ri
zo
na

63
.1
6

63
.5
0

59
.1
0

67
.1
0

2.
00

N
ev
ad
a

68
.7
2

69
.7
0

58
.0
0

73
.5
0

3.
37

A
rk
an
sa
s

60
.9
8

61
.1
5

56
.2
0

64
.2
0

2.
02

N
ew

H
am

ps
hi
re

70
.3
5

70
.9
0

65
.1
0

73
.6
0

1.
84

C
al
if
or
ni
a

65
.1
2

65
.7
0

59
.2
0

68
.0
0

1.
77

N
ew

Je
rs
ey

65
.3
6

65
.9
0

61
.4
0

67
.6
0

1.
48

C
ol
or
ad
o

70
.5
4

70
.6
0

64
.9
0

74
.3
0

2.
06

N
ew

M
ex
ic
o

61
.5
6

62
.4
0

55
.0
0

63
.9
0

2.
07

C
on

ne
ct
ic
ut

67
.6
4

67
.6
0

63
.3
0

71
.3
0

1.
71

N
ew

Y
or
k

61
.4
2

61
.6
0

56
.8
0

63
.6
0

1.
41

D
el
aw

ar
e

65
.9
5

66
.6
0

60
.1
0

70
.9
0

3.
00

N
or
th

C
ar
ol
in
a

65
.6
8

66
.6
0

56
.2
0

69
.0
0

2.
52

D
is
tr
ic
to

f
C
ol
um

bi
a

67
.5
0

67
.4
0

63
.0
0

72
.1
0

2.
20

N
or
th

D
ak
ot
a

69
.6
5

70
.5
0

62
.3
0

74
.7
0

2.
96

Fl
or
id
a

60
.6
3

61
.4
0

54
.9
0

63
.7
0

2.
32

O
hi
o

64
.8
2

64
.6
5

59
.8
0

67
.7
0

1.
78

G
eo
rg
ia

65
.9
5

66
.3
0

59
.4
0

69
.3
0

2.
34

O
kl
ah
om

a
62

.9
6

63
.6
0

58
.9
0

65
.5
0

1.
60

H
aw

ai
i

65
.5
8

66
.4
0

56
.2
0

69
.9
0

2.
54

O
re
go

n
65

.7
1

66
.0
0

59
.2
0

68
.9
0

2.
31

Id
ah
o

66
.8
2

66
.6
0

62
.7
0

71
.4
0

2.
33

Pe
nn

sy
lv
an
ia

62
.5
6

63
.1
0

58
.3
0

65
.3
0

1.
88

Il
lin

oi
s

66
.4
2

66
.2
0

60
.4
0

70
.0
0

1.
70

R
ho

de
Is
la
nd

66
.1
3

66
.3
0

59
.4
0

68
.4
0

1.
44

In
di
an
a

66
.0
9

66
.1
0

61
.2
0

70
.9
0

1.
96

So
ut
h
C
ar
ol
in
a

63
.3
0

63
.9
0

56
.6
0

66
.9
0

2.
73

Io
w
a

69
.7
2

70
.0
0

64
.1
0

73
.5
0

2.
53

So
ut
h
D
ak
ot
a

69
.9
2

70
.1
0

64
.3
0

73
.2
0

2.
32

K
an
sa
s

68
.9
8

69
.1
0

64
.9
0

71
.5
0

1.
61

Te
nn

es
se
e

62
.9
0

62
.9
0

58
.0
0

67
.2
0

2.
02

K
en
tu
ck
y

61
.5
1

62
.0
0

56
.0
0

63
.7
0

1.
59

Te
xa
s

66
.9
0

67
.3
0

60
.2
0

69
.4
0

1.
96

L
ou

is
ia
na

60
.5
4

60
.8
0

54
.6
0

68
.7
0

1.
45

U
ta
h

69
.2
2

69
.4
0

62
.5
0

73
.4
0

2.
77

M
ai
ne

64
.8
4

65
.1
5

58
.6
0

68
.8
0

2.
35

V
er
m
on

t
69

.3
4

70
.4
5

60
.9
0

72
.6
0

2.
36

M
ar
yl
an
d

68
.7
8

69
.0
0

63
.0
0

71
.5
0

1.
65

V
ir
gi
ni
a

67
.5
8

67
.8
0

63
.2
0

70
.9
0

1.
54

M
as
sa
ch
us
et
ts

66
.9
3

67
.1
0

60
.4
0

69
.4
0

1.
25

W
as
hi
ng

to
n

66
.2
0

66
.3
0

60
.6
0

69
.9
0

2.
22

M
ic
hi
ga
n

64
.0
9

64
.2
0

57
.4
0

68
.8
0

2.
34

W
es
tV

ir
gi
ni
a

54
.0
9

54
.6
5

51
.0
0

56
.2
0

1.
55

M
in
ne
so
ta

71
.8
7

71
.5
0

65
.4
0

75
.7
0

2.
37

W
is
co
ns
in

69
.7
6

69
.3
0

65
.4
0

74
.5
0

2.
44

M
is
si
ss
ip
pi

59
.6
3

59
.8
0

53
.3
0

63
.3
0

2.
39

W
yo

m
in
g

69
.6
9

70
.3
5

64
.1
0

72
.4
0

2.
01

M
is
so
ur
i

66
.1
8

66
.0
0

59
.8
0

71
.0
0

2.
65

St
at
is
tic
s
re
fle
ct
th
e
st
at
e-
le
ve
ll
ab
or

fo
rc
e
pa
rt
ic
ip
at
io
n
ra
te
s
ov
er

th
e
sa
m
pl
e
pe
ri
od

Ja
nu
ar
y
19
76
–D

ec
em

be
r
20
20
.S

.D
re
fe
rs
to

th
e
st
an
da
rd

de
vi
at
io
n

123



2894 J. Beverly et al.

Table 2 Composition of Appalachia by State

State % of State in Appalachia % of Appalachia % of State in Appalachia % of Appalachia
(Counties) (Counties) (Population) (Population)

Alabama 55.22 8.81 42.53 11.77

Georgia 23.27 8.81 19.80 10.50

Kentucky 45.00 12.86 18.51 4.64

Maryland 12.50 0.71 2.89 0.96

Mississippi 29.27 5.71 13.97 2.40

New York 22.58 3.33 3.66 4.24

North Carolina 29.00 6.90 11.93 6.26

Ohio 36.36 7.62 11.50 7.93

Pennsylvania 77.61 12.38 30.03 22.66

South Carolina 13.04 1.43 17.04 4.45

Tennessee 54.74 12.38 29.17 10.51

Virginia 18.38 5.95 5.99 2.71

West Virginia 100.00 13.10 100.00 10.97

The (13) states listed in this table are apart of the officially defined Appalachian Region by the (ARC),
given that they all contain at least one Appalachian county. Column 2 is calculated by taking the number
of counties in each state that are designated in the Appalachian Region and dividing by the total number of
counties in each respective state. Column 3 is calculated by taking the number of counties in each state that
are designated in the Appalachian Region and dividing by the total number of counties in the Appalachian
Region

Table 3 Compositions of regions

Appalachia Northeast South Midwest West

Alabama Connecticut Delaware Indiana Arizona

Georgia Maine District of Columbia Illinois Colorado

Kentucky Massachusetts Florida Michigan Idaho

Pennsylvania New Hampshire Maryland Ohio New Mexico

South Carolina Rhode Island North Carolina Wisconsin Montana

Tennessee Vermont Virginia Iowa Utah

West Virginia New Jersey Mississippi Kansas Nevada

New York Arkansas Minnesota Wyoming

Louisiana Missouri Alaska

Oklahoma Nebraska California

Texas North Dakota Hawaii

South Dakota Oregon

Washington

We define states to be included in the Appalachian region if over 15% of the state population resides in
Appalachian counties (seen in Table 2). States included in Northeast, South, Midwest, and West regions
are otherwise defined by the US Census Bureau
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3. Get a random draw of the time-varying loadings parameters, conditioned on the
national factor, regional factors, the autoregressive coefficients of the national
factor, the time invariant variances, and idiosyncratic stochastic volatility.

f

(

ω, ˜β

∣

∣

∣

∣

{Ct }Tt=1, {R1,t }Tt=1, {R2,t }Tt=1, . . . , {R5,t }Tt=1, ϕc, σ
2, {hi,t }Tt=1

)

Since we assume the errors, conditional on the factors in Eq. 1, and the innovations
in the factor loadings are independent across i , we can draw the time-varying
loadings one at a time. This diminishes the effect of dimensionality and aid in
efficiency.

4. Take a random draw of the AR parameters of the national and regional factors,
conditioned on their respective loading factor and stochastic volatilities.

f

(

ϕC
∣

∣

∣

∣

{Ct }Tt=1, {hC1,t }Tt=1

)

f

(

ϕR
∣

∣

∣

∣

{R1,t }Tt=1, {R2,t }Tt=1, . . . , {R5,t }Tt=1, {hR1,t }Tt=1, {hR2,t }Tt=1, . . . , {hR5,t }Tt=1

)

5. Get a random draw of the time invariant and time-varying stochastic volatility
for the national, regional and idiosyncratic components, conditioned on the factor
loadings and autoregressive parameters. This step follows the algorithm fromKim
et al. (1998)

f

(

{hC1,t }Tt=1, σ
h
C

∣

∣

∣

∣

{Ct }Tt=1, ϕC
)

f

(

{hR1,t }Tt=1, {hR2,t }Tt=1, . . . {hR5,t }Tt=1, σ
h
1 , σ h

2 , . . . , σ h
5

∣

∣

∣

∣

{R1,t }Tt=1, {R2,t }Tt=1, . . . , {R5,t }Tt=1, ϕR
)

f

(

{hS1,t }Tt=1, σ
h
i

∣

∣

∣

∣

{Ct }Tt=1, {R1,t }Tt=1, {R2,t }Tt=1, . . . , {R5,t }Tt=1, ω, ˜β, ϕS
)

6. Repeat steps 1–5: (B + K ) number of times where B is the number of burn-ins or
draws discarded in order to reach confidence in the initial conditions imposed. K
is the number of keepers or draws that are saved after the allotted burn-in values
have been reached. We use B = 10,000 and K = 40,000 draws, respectively.
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