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Abstract
Standard two-stage least squares (2SLS) regression remains dominant in instrumental
variables estimation of causal effects even though the literature has shown that 2SLS
may be inconsistent when effects are heterogenous and the instrument is only valid
when conditioning on covariates. To show that this is not merely a hypothetical threat,
this paper re-estimates the returns to college using college proximity as an instrument
based on the data from Card (Aspects of labour market behavior: essays in honour of
John Vanderkamp, University of Toronto Press, Toronto, 1995). The results show that
2SLS yields systematically larger estimates of the returns to college than more flexible
estimators based on the instrument propensity score. In the full sample, differences
amount to about 50 to 100%. This is due to the implicit conditional-variance weighting
performed by 2SLS. Moreover, in line with the theoretical prediction by Sloczynski
(When should we (not) interpret linear IV estimands as LATE? IZA discussion papers
14349, Institute of Labor Economics (IZA), 2021), findings suggest that the impact of
the conditional-variance weighting is larger when instrument groups are not roughly
the same size. Thus, it is advised to use 2SLSwith caution and use estimators based on
the instrument propensity score insteadwhen groups are of different size and covariates
are predictive of the instrument.
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1 Introduction

The number of available methods for causal inference has seen enormous growth in
the last three decades (see Abadie and Cattaneo 2018, for a recent overview). Although
progress has been tremendous, applied research does not always keep up. On the one
hand, flexible semi- and non-parametric methods based on the propensity score (PS)
are widely applied when estimating causal effects under the selection-on-observables
assumption (e.g., see Austin and Stuart 2015; Thoemmes and Kim 2011). On the other
hand, much of the literature using instrumental variable (IV) estimation to overcome
bias due to unobserved factors relies on two-stage least squares (2SLS). This is despite
the fact that 2SLS may yield inconsistent estimates of treatment effects when effects
are heterogenous and covariates are predictive of the instrument (Abadie 2003).

This paper concentrates on the most common case in which the researcher aims
to estimate causal effects of some treatment using a single binary IV. First, the paper
reviews available results from the literature on implications of using standard linear-
in-covariates 2SLS estimation under effect heterogeneity. Most importantly for this
paper, the literature shows that 2SLS yields a ratio of conditional variance-weighted
average of covariate-specific effects. If effects are indeed heterogenous and related to
the PS, then 2SLS yields inconsistent estimates. Estimators based on the PS provide a
consistent (Frölich 2007), readily-available and intuitive alternative. Hence, the paper
briefly describes some basic IV estimators using the PS as well as the novel efficient
covariate balancing approach by Heiler (2021). By re-estimating the returns to college
using these approaches—exploiting college proximity as an instrument using the data
by Card (1995)—the paper shows that the threat of obtaining inconsistent estimates
when using 2SLS is not merely hypothetical. 2SLS yields systematically larger effect
estimates than more flexible estimators based on the PS. Further inspection shows that
this difference is mainly due to the implicit conditional-variance weighting performed
by 2SLS.

This case study has been widely used to teach Economics students around the world
about the use of IV methods to overcome bias due to unobserved confounders as well
as the importance of effect heterogeneity. Moreover, the case study has been widely
used in a variety of papers, see for example Tan (2006), Huber and Mellace (2015),
Kitagawa (2015), Mourifié and Wan (2017), Andresen and Huber (2021), Sloczynski
(2021), Sloczynski et al. (2022) and Blandhol et al. (2022). Most of these papers are
concerned with instrument validity, an issue that is discussed but not of main interest
in this paper. The only study known to the author that compares parametric estimators
of the returns to college with more flexible estimators for this case study is Sloczynski
et al. (2022). They too find sizable gaps in estimates. However, in contrast to this paper,
they do not offer an explanation for this phenomenon.

The remainder of this paper is organized as follows: Sect. 2 reviews identification
and estimation using IVs, Sect. 3 applies 2SLS and comparison methods based on the
PS to the data. Section 4 concludes.
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2 Identification and estimation using Instrumental variables

Assume we have an i.i.d. sample for i = 1,…,N units, where for each unit we observe
some exogenous characteristics Xi, a binary treatment variable Di, an outcome Yi
and a single binary instrument Zi. Furthermore, assume that there is an unobserved
confounder Ui that has an impact both the treatment variable Di and the outcome Yi.
In the language of classical least squares regression, this creates an omitted variable
bias and the selection-on-observables assumption fails (Wooldridge 2010, Chap. 4).
To stick to the returns-to-college example used throughout this paper, conditioning
on observed characteristics such as labor market experience or region of residence
is insufficient to remove bias from standard regression or matching estimates of the
effects of college attendance on wages if unobserved ability has an impact on the
college decision and labor market earnings (Blackburn and Neumark 1993).

Under such circumstances, one can use IV techniques to estimate causal effects
by exploiting variation in the treatment variable Di through the instrument Zi. When
effects are heterogenous, IV methods identify local treatment effects, i.e. average
effects for specific sub-populations influenced by the instrument. For this identification
result to hold, the instrument needs to be exogenous, i.e. the instrument has to be as
good as randomly assigned after conditioning on covariates and there must not be a
direct effect of the instrument on the outcome.Moreover, the instrumentmust influence
the treatment decision in a monotonous way. Imbens and Angrist (1994) introduce
what Sloczynski (2021) calls “strong monotonicity”, which is the assumption that
the instrument weakly increases or decreases the treatment probability for everyone.
Under this assumption, IV methods identify the local average treatment effect (LATE,
Imbens and Angrist 1994), also called the complier average causal effect (CACE),
i.e. the average treatment effect of individuals who act in line with the instrument.
If defiers, i.e. individuals who act in the opposite direction of compliers, exist, and
one is willing to assume that the sign of the effect of the instrument on treatment is
determined solely by covariates (“weak monotonicity”, Sloczynski 2021), the CACE
may be recovered by averaging effects for individuals with covariate values estimated
to behave in the direction of compliers. Moreover, a more general effect, the mover
average causal effect (Kolésar 2013), i.e. the average treatment effect for compliers
and defiers, is identified.

Using the standard potential outcomes framework (Imbens andAngrist 1994; Rubin
1974), define Di(1)and Di(0) as the potential treatment states if the unit was assigned
Zi = 1 or Zi = 0. If the instrument indeed has no direct impact on the outcome, one
may write potential outcomes as Yi(di ), with Yi(1)and Yi (0) being the outcomes that
would be observed under treatment and without. Assuming the instrument raises the
chance of receiving treatment on average, the strong monotonicity assumption implies
that for compliers Di (1) > Di (0), i.e. they receive treatment if assigned Zi = 1and
they do not if assigned Zi = 0. Based on these definitions and assumptions, the
standard CACE can be written as

�CACE = E[Yi (1) − Yi (0)|Di (1) > Di (0)]. (1)
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The MACE is defined as �MACE = E[Yi (1) − Yi (0)|Di (1) �= Di (0)] and can be
recovered by using a reordered instrument ZR

i , i.e. an adapted instrument which is
reversed for defiers, defined as1

Z R
i = Zi I

(
δD(Xi ) ≥ 0

)
+ (1 − Zi )I

(
δD(Xi ) < 0

)
, (2)

where δD(Xi ) = E[Di (1) − Di (0)|Xi ] is the covariate-specific average effect of the
instrument on the treatment decision and I (·) is the indicator function (Sloczynski
2021).

For the empirical analysis of the paper, the exogeneity assumption is assumed to
hold. Moreover, it is assumed that at least the weak monotonicity assumption holds
as well. While the failure of the monotonicity assumption makes the interpretation of
estimands difficult if not impossible, differences in estimates of these quantities are
still interesting to inspect in order to understand the estimators’ behavior under effect
heterogeneity.

For the following exposition of estimation methods, assume that strong monotonic-
ity holds.2 While Frölich (2007) shows that the CACE is non-parametrically identified
under exogeneity and strong monotonicity, most applied research still uses 2SLS to
estimate effects using an IV. Typically, researchers model the outcome and treatment
equations as linear functions of the instrument and covariates. That is, they build
regression models that look something like

Yi = αY + β ′
Y Xi + γ Y Zi + εYi (3)

Di = αD + β ′
DXi + γ DZi + εDi , (4)

where it is (implicitly) assumed that slope-coefficients are constant and that εYi and
εDi are well-behaved error terms. The corresponding 2SLS estimator can be written
as �̂2SLS = γ̂ Y /γ̂ D , i.e. the ratio of the reduced form (3) OLS coefficient γ̂ Y and
the first stage (4) OLS coefficient γ̂ D on Zi . Under effect heterogeneity and standard
regularity conditions, Sloczynski (2021) shows that �̂2SLS converges to3

plim�̂2SLS = E
[
δY (Xi )δ

D(Xi )Var(Zi |Xi )
]

E
[
δD(Xi )Var(Zi |Xi )

] , (5)

where δY (Xi ) = E[Yi (1) − Yi (0)|Xi , Di (1) > Di (0)]is the average covariate-
specific effect of treatment on the outcome for compliers. Hence, 2SLS yields a

1 As noted by Sloczynski (2021), this requires the estimation of δD(Xi )
2 If Z R

i were known, all results presented would also hold for the estimation of the MACE. However, as it

is unknown how the estimation of Z R
i affects the behavior of estimators and deriving such results is beyond

the scope of this paper, the author does not further discuss estimators based on the reordered instrument in
this part. Nonetheless, Sect. 3 applies this methodology in order to provide evidence that a failure of the
strong monotonicity does not drive differences between 2SLS and PS-bases estimators.
3 This formula also follows immediately by combining results fromAngrist (1998) on probability limits for
OLS regressions and the continuous mapping theorem, as 2SLS is simply a ratio of two OLS coefficients.
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conditional-variance weighted average of covariate-specific effects for compliers. As
Var(Zi |Xi ) = P(Zi = 1|Xi )(1−P(Zi = 1|Xi ),weights attain amaximumwhen the
PS P(Zi = 1|Xi ) = 0.5 (e.g., see Angrist and Pischke 2008). An important but typi-
cally under-appreciated consequence of this weighting is that plim�̂2SLS �= �CACE

if δY (Xi ) and δD(Xi ) depend on the PS. Depending on the correlation structure at
hand, this may lead to substantial inconsistencies when using 2SLS.

As an alternative, this paper considers IV estimators of �CACEbased on the PS
as derived by Frölich (2007) as well as a recent extension by Heiler (2021).4 These
estimators do not restrict effect heterogeneity. As a consequence, they are consistent
even when effects are not homogenous (Frölich 2007, and Heiler, 2021).

The IV-matching estimator based on the PS pairs up each unit from the groups
defined by the instrument with one, multiple or weighted averages of units from the
opposite group based on the PS in order to infer the missing counterfactuals. Let ̂Yi (1)
and ̂Di (1)denote the estimated counterfactuals for the outcome and the treatment
variable if the unit was assigned Zi = 0 as obtained by matching. Analogously, let
̂Yi (0) and ̂Di (0) be the estimated counterfactual outcome and treatment variable if the
unit was assigned Zi = 1. Based on this definition, the IV-matching estimator can be
written as

δ̂MAT =
∑N

i=1 Zi

(
Yi − ̂Yi (0)

)
+ (1 − Zi )(̂Yi (1) − Yi )

∑N
i=1 Zi

(
Di − ̂Di (0)

)
+ (1 − Zi )(̂Di (1) − Di )

. (6)

To estimate the PS, a standard logit regression is used. Moreover, kernel matching
(KM) is employed as it has been shown to be among the top-performing PS-based
matching methods in several simulation studies under the selection-on-observables
paradigm (e.g., see Frölich 2004; Busso et al. 2014). More specifically, the matching
procedure is implemented using an Epanechnikov kernel with a bandwidth chosen
via weighted cross-validation (Galdo et al. 2008). To avoid extrapolation, common
support is imposed via the min-max criterion by Dehejia and Wahba (1999) as is
standard in the PS-based literature (Caliendo and Kopeinig 2008).

The (un-normalized) inverse probability weighting (IPW) IV-estimator can be writ-
ten as

δ̂I PW =
∑N

i=1
Zi Y i
P̂i

− (1−Zi )Y i
1−P̂i∑N

i=1
Zi Di
P̂i

− (1−Zi )Di
1−P̂i

, (7)

where P̂i is an estimate of the PS P(Zi = 1|Xi ). IPW has been shown to be semi-
parametrically efficient in the IV context (Donald et al. 2014). To estimate the PS,
two approaches are used. First, the same logit estimate as for KM is employed. To
ensure better performance, weights of this estimator are normalized as un-normalized

4 Other flexible estimators are available. See Abadie (2003), Tan (2006), MaCurdy et al. (2011) and Donald
et al. (2014), Sant’Anna et al. (2022) and Sloczynski et al. (2022). The latter two are promising extensions
of the so-called “kappa weighting” by Abadie (2003).
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weights may yield unreliable results (Frölich 2004; Busso et al. 2014). Akin to KM,
the min-max criterion is used to ensure common support. In the context of IPW, this
sort of trimming may be even more important as IPW with PS close to zero or one
may lead to invalid statistical inference when using the non-parametric bootstrap as
is done for all estimators considered. See Heiler and Kazak (2021) for derivations
and alternative bootstrap approaches or Sasaki and Ura (2022) for trimming based
methods.

Second, as IPWmethodsmaybeoverly sensitive to the specification of the estimated
PS (Schafer andKang 2008), this paper also uses the novel efficient covariate balancing
(ECB) procedure by Heiler (2021) to estimate the PS. This approach specifies a loss-
function tailored to the estimation of treatment effects using IVs and algorithmically
minimizes covariate imbalances, leading to improved bias and variance properties
in finite-samples compared to standard IPW methods (see Heiler, 2021, for details).
This approach has several advantages. First, akin to IPW, ECB is semiparametrically
efficient. Second, ECB is doubly-robust if covariates are specified flexibly and third,
the ECB method tends to shrink the PS which may alleviate the need to implement
heuristic trimming approaches such as themin-max criterion.5 Due to the last property,
IPW based on the ECB is implemented without further common support restrictions.

Ultimately, choosing an IV estimator involves a trade-off: Standard 2SLS is more
easily applied than matching or weighting but 2SLS may be inconsistent under effect
heterogeneity. Moreover, recent simulation evidence by Sloczynski et al. (2022) sug-
gests that more flexible estimators may even be competitive in terms of mean squared
error compared to standard 2SLS. However, more research on the relative performance
of IV estimationmethods under realistic data-generating processes is necessary to pro-
vide better guidance to researchers.

3 Re-estimating the returns to college exploiting college proximity

This Section provides empirical evidence on the relevance of potential inconsistencies
in 2SLS estimates when an instrument is only valid conditional on covariates. This
is done by re-estimating the wage returns to college exploiting college proximity as
instrument using the data originally analyzed by Card (1995).

3.1 Data and descriptives

The data stem from the National Longitudinal Survey of Young Men, which inter-
viewed men aged 14–24 in 1966 with follow-up surveys until 1981. The dataset
contains information on 1976 log-earnings, years of education, and an indicator for
growing up in a local labor market with an accredited 4-year college as well as covari-
ates. The latter consist of potential experience, indicators for the 1966 census region,
an indicator for being black, and living in the south as well as in an urban area in 1966
and 1976. Following Sloczynski (2021), a subset of the original data is analyzed with

5 Note that ECB weights are normalized by construction if an intercept is included in the model, which is
done for all analyses performed using ECB in this paper.
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Table 1 Descriptive statistics
Growing up near a
4-year college?

p value

Yes No

Zi = 1 Zi = 0

Mean experience (years) 8.67 9.21 0.00

Share black 0.21 0.28 0.00

Share south in 1966 0.33 0.60 0.00

Share urban in 1966 0.80 0.33 0.00

Share with some college 0.55 0.42 0.00

Mean log-wages 6.31 6.16 0.00

Observations 2038 950

p values are obtained from a t test of equal means

at least five observations in each covariate cell given by the interactions of the five
indicators for being black, living in the south and in an urban area in 1966 and 1976.
This restriction results in a sample of 2988 individuals instead of the 3010 originally
analyzed by Card (1995).6

The main idea of the instrumental variable set-up is that children who grew up near
a college may live with their parents throughout their studies and thus face lower cost
of post-secondary education, which should increase the likelihood of going to college
independent of their ability. Accordingly, the treatment variable is defined as “some
college”, i.e. having strictly more than 12 years of education.7

Table 1 provides some select descriptive statistics for the sample, split by whether
individuals grew up near a college (Zi = 1) or not (Zi = 0).

The descriptive statistics reveal quite sizable differences in terms of covariate distri-
butions between groups defined by the binary instrument. Themost-striking difference
can be seen in the likelihood of living in an urban area: 80%of individuals who grew up
near a 4-year college lived in an urban area in 1966, whereas the same is only true for
33% among individuals who grew up without a college nearby. Similarly, individuals
who lived in the south in 1966 are under-represented among individuals who grew up
near a 4-year college: of those who did (not) grow up near a 4-year college, 33 (60)
percent lived in the south. Moreover, differences in racial composition and experience
are also non-negligible. All of these differences are highly statistically significant as
indicated by the small p values obtained from equality of means tests. As these vari-
ables tend to show quite strong associations with the outcome of interest, it is unlikely

6 None of the results presented are sensitive to this restriction.
7 Note that this definition of the treatment variable is a binarized variable based on an underlying multi-
valued treatment variable (i.e. years of education). Such binarizationmay lead to a violation of the exclusion
restriction (Andresen and Huber 2021). While such violations may affect the resulting estimates, the impact
of this issue should be of minor importance as this paper compares differences between estimators which
are all affected by such an issue.
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that the instrument is valid without conditioning on covariates and hence, an uncondi-
tional comparison of college attendance rates and log-wages across instrument groups
is unlikely to be informative about the true effect of college attendance on earnings.

3.2 Specification and estimationmethods

The returns to college will be estimated using two different sets of covariates. First,
the main specification of Card (1995)—referred to as the baseline specification—will
be used. This specification consists of potential experience in linear and squared form,
indicators for the 1966 census region, an indicator for being black, and living in the
south in 1976 as well as indicators for living in an urban area in 1966 and 1976.
Second, following Sloczynski (2021), a saturated, i.e. fully interacted, specification
based on the indicator for being black, living in the south in 1966 and 1976 and living
in an urban area in 1966 and 1976 is used. Sloczynski (2021) adopted this flexible
specification because Kitagawa (2015) provided evidence in favor of the validity of
the instrument after conditioning on these covariates.

To estimate effects of college attendance on wages, the previously discussed meth-
ods are used. That is, naïve OLS and standard 2SLS andmore flexible estimators based
on the PS are applied. The latter consist of KM with an Epanechnikov kernel using a
bandwidth chosen via weighted cross-validation (Galdo et al. 2008), IPW based on a
logit estimate of the PS as well as ECB (Heiler 2021). When estimating effects based
on the logit estimate of the PS, common support is imposed via the min–max criterion
by Dehejia and Wahba (1999) as is standard in the PS-based literature (Caliendo and
Kopeinig 2008).

As Sloczynski (2021) raises doubts about the validity of the strong monotonicity
assumption, all estimators are also be applied using the reordered instrument. Follow-
ing Sloczynski (2021), this adjusted instrument is obtained by estimating first stage
effects non-parametrically for each covariate cell of the saturated specification and
then reversing the instrument for individuals estimated to be defiers such that Z R

i
encourages treatment for everyone. This changes the target parameter from CACE
to MACE. In order to take care of this additional estimation step when performing
statistical inference, standard errors are estimated using the non-parametric bootstrap
not just for the PS-based estimators but also for 2SLSwhen using the reordered instru-
ment. Standard errors are obtained using 999 replications, inference is based on the
normal approximation.

3.3 Implementingmatching and weighting

Before turning to actual estimates, it is imperative to check overlap and common
support in terms of the PS as well as covariate balancing after matching or weighting
(Caliendo and Kopeinig 2008). Figure 1 shows histograms of estimated PS with a
bin size of 2.5%. Visual inspection suggests sufficient overlap between instrument
groups, independent of the specification and estimation procedure used. Moreover,
the PS distributions appear to be sufficiently bounded away from zero or one, which
is important for the non-parametric bootstrap employed to be valid (Heiler and Kazak
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Fig. 1 Propensity score distributions. This figure shows histograms of estimated propensity scores using
either a logit regression or the efficient covariate balancing procedure by Heiler (2021). The baseline
specification consists of experience, experience squared and indicators for being black, living in the south,
urban in 1966 and 1976 as well as census region of residence. The saturated specification consists of group
dummies for the fully-interacted set of dummy variables for being black, living in the south in 1966 and
1976 as well as residence in an urban region in 1966 and 1976.
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Table 2 Balancing

Before After balancing

KM IPW ECB

A. Baseline specification

Pseudo-R2 0.211 0.009 0.006 0.000

Overall p value 0.000 0.151 0.570 1.000

No. of individuals off support 36 36

B. Saturated specification

Pseudo-R2 0.207 0.000 0.000 0.000

Overall p value 0.000 1.000 1.000 1.000

No. of individuals off support 0 0

C. Saturated specification with reordered instrument

Pseudo-R2 0.221 0.000 0.000 0.000

Overall p value 0.000 1.000 1.000 1.000

No. of individuals off support 0 0

Pseudo-R2 are from a (weighted) logit regression of the (reordered) instrument on covariates. The overall
p value is taken from a likelihood-ratio test on the excludability of covariates. The baseline specification
consists of experience, experience squared and indicators for being black, living in the south, urban in 1966
and 1976 as well as census region of residence. The saturated specification consists of group dummies
for the fully-interacted set of dummy variables for being black, living in the south in 1966 and 1976 as
well as residence in an urban region in 1966 and 1976. Kernel matching (KM) is performed using an
Epanechnikov kernel using a bandwidth chosen via weighted cross-validation (Galdo et al. 2008). Inverse
probability weighting is based on either the logit estimate of the propensity score (IPW) or the efficient
covariate balancing (ECB) score by Heiler (2021). For KM and IPW, observations off support according to
the min-max criterion are discarded (Dehejia and Wahba 1999)

2021; Sasaki and Ura 2022).8 Applying the min-max criterion for KM and IPW based
on the standard specification of the logit PS leads to the exclusion of 36 individuals.
This equals roughly 1.2% of the sample and thus, one should not be overly concerned
that estimated effects are no longer representative of the target estimand. Regarding
covariate balance, Table 2 shows the pseudo-R2 from a logit regression before and after
matching or weighting for each specification used. All balancing approaches yield a
substantial reduction in imbalance fromaround 20% to less than 1%.As intended, ECB
delivers exact balance, independent of the specification used. Moreover, p values of
likelihood-ratio tests suggest that after matching or weighting, covariates are no longer
statistically associated with the instrument. Hence, these statistics suggest adequate
covariate balance in order to move on to the outcome analysis.

8 The minimum and maximum PS values obtained via logit regression are 0.172 and 0.950 (baseline spec-
ification), 0.250 and 0.931 (saturated specification) and 0.086 and 0.931 (saturated specification, reordered
instrument). The minima and maxima obtained via ECB are very similar to the logit estimates for the
standard specification and identical for the others.
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3.4 Comparing parametric andmore flexible estimates of the returns to college

Focusing on the standard specification in the first two columns of Table 3, one can
see that the 2SLS estimate of roughly 0.6 log-points is more than twice as large as the
OLS estimate of about 0.24 log-points. This is in line with the findings of Card (1995)
using multi-valued years of education as the treatment variable instead of a binary
variable as in this case. Similar results are found using the saturated specification:
2SLS yields a point estimate of 0.57 log-points and the naïve OLS estimate is even
smaller than when using the standard specification. Card (1995) attributes the sizable

Table 3 Main Results

OLS 2SLS KM IPW ECB

A. Baseline specification

Return to college 0.238*** 0.603** 0.279 0.323 0.289

(0.017) (0.289) (0.228) (0.219) (0.212)

Reduced form effect 0.039** 0.028 0.033* 0.028

(0.018) (0.021) (0.020) (0.019)

First stage effect 0.065*** 0.099*** 0.102*** 0.098***

(0.019) (0.024) (0.021) (0.020)

B. Saturated specification

Return to college 0.111*** 0.570 0.266 0.266 0.266

(0.015) (0.350) (0.399) (0.399) (0.505)

Reduced form effect 0.034* 0.022 0.022 0.022

(0.018) (0.020) (0.020) (0.019)

First stage effect 0.059*** 0.082*** 0.082*** 0.082***

(0.022) (0.023) (0.023) (0.023)

C. Saturated specification with reordered instrument

Return to college 0.111*** 0.289 0.192 0.192 0.192

(0.015) (0.195) (0.173) (0.173) (0.169)

Reduced form effect 0.031 0.023 0.023 0.023

(0.024) (0.023) (0.023) (0.022)

First stage effect 0.106*** 0.119*** 0.119*** 0.119***

(0.017) (0.020) (0.020) (0.020)

The baseline specification consists of experience, experience squared and indicators for being black, living
in the south, urban in 1966 and 1976 as well as census region of residence. The saturated specification
consists of group dummies for the fully-interacted set of dummy variables for being black, living in the
south in 1966 and 1976 as well as residence in an urban region in 1966 and 1976. Kernel matching (KM) is
performed using an Epanechnikov kernel using a bandwidth chosen via weighted cross-validation (Galdo
et al. 2008). Inverse probability weighting is based on either the logit propensity score (IPW) or the efficient
covariate balancing (ECB) score by Heiler (2021). Standard errors for matching and weighting estimators
as well as the 2SLS estimator based on the reordered instrument are obtained via 999 bootstrap replications.
Tests on statistical significance use the normal approximation. Significance at the 10/5/1% level is denoted
by */**/***

123



2990 S. Tübbicke

gap in estimates between 2SLS andOLS to possibly higher returns to education among
individuals with a relatively poor background as they are the most likely to be induced
to receive additional education by the instrument. This may explain why effects are
expected to be larger, but estimates appear to be unreasonably large. Sloczynski (2021)
argues that the large estimate may be caused by the existence of defiers. Indeed, his
results—which are replicated in Table 3—show that when accounting for the existence
of defiers by using the reordered instrument, the 2SLS estimate drops substantially to
around 0.29 log-points. Nonetheless, the estimated effect is still considerably larger
than the effect of roughly 20% suggested by other research on the returns to college
(see for example Hoekstra 2009; Smith et al. 2020; Zimmerman 2014).

Turning to the more flexible estimates based on the PS in columns three to five of
Table 3, one can see thatmatching andweighting estimators yield substantially smaller
point estimates of the returns to college than 2SLS.9 Estimates range from 0.28 to 0.32
log-points for the baseline specification. Estimates using the saturated specification
are essentially identical due to their non-parametric nature, independent of whether
KM or IPW with a logit or ECB PS is used. These estimates suggest a roughly a 0.27
log-point gain in wages from college attendance. If one uses the reordered instrument
instead, matching and weighting estimates drop to roughly 0.2 log-points, which is
fairly close to the estimates suggested by the literature. Furthermore, Table 3 shows that
these smaller point estimates of returns to college are both due to smaller reduced form
estimates as well as larger first stage effects when using PS-based estimators compared
to 2SLS.Overall, the results suggest that the implicit conditional-varianceweighting of
2SLS may have a substantial impact on resulting effect estimates when estimating the
returns to college using college proximity. 2SLS estimates are somewhere between 50
and 100% larger than more flexible PS-based estimates.10 These differences are rather
sizeable, underscoring the potential value in using more robust PS-based estimators
when estimating effects using an IV set-up.

3.5 Inspecting effect heterogeneity

To further illustrate the impact of the conditional-variance weighting by 2SLS, Table 4
compares 2SLS estimates with effect estimates using PS-based estimators as well as
the estimates one would obtain if one weighted PS-based estimators with an estimate
of the conditional variance of the instrument, i.e. mimicking the asymptotic behavior
of 2SLS. This is done for the full sample as well as for two subsamples. For the sake
of brevity, results are shown only for the saturated specification with the reordered

9 This result is also supported by contemporaneous findings by Sloczynski et al. (2022) using different
versions of the kappa-approach by Abadie (2003).
10 Note that most matching or weighting estimates of the returns to college are insignificant at common
levels and that differences discussed are also not statistically different from zero due to large standard errors.
The significance of differences across estimators was tested using a random sampling splitting as well as a
bootstrap procedure. Both procedures lead to highly insignificant differences (results not shown, available
from the author upon request). While differences may be insignificant using the sample at hand, simply
focusing on statistical significance may falsely discourage the use of more robust estimation methods in
favor of 2SLS in applied work.
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Table 4 Effect heterogeneity—saturated specification with reordered instrument

2SLS KM Variance
weighted
KM

IPW Variance
weighted
IPW

ECB Variance
weighted
ECB

A. Full sample withP
(
Z R = 1

)
= 0.67

Return
to
college

0.289 0.192 0.289 0.192 0.289 0.192 0.289

(0.195) (0.173) (0.195) (0.173) (0.195) (0.238) (0.307)

Reduced
form
effect

0.031 0.023 0.031 0.023 0.031 0.023 0.031

(0.024) (0.023) (0.024) (0.023) (0.024) (0.031) (0.035)

First
stage
effect

0.106*** 0.119*** 0.106*** 0.119*** 0.106*** 0.119*** 0.106***

(0.017) (0.020) (0.017) (0.020) (0.017) (0.023) (0.022)

B. Urban sample withP
(
Z R = 1

)
= 0.79

Return
to
college

0.249 0.137 0.249 0.137 0.249 0.137 0.249

(0.308) (0.225) (0.308) (0.225) (0.308) (0.231) (0.311)

Reduced
form
effect

0.030 0.019 0.030 0.019 0.030 0.019 0.030

(0.041) (0.033) (0.041) (0.033) (0.041) (0.032) (0.039)

First
stage
effect

0.119*** 0.136*** 0.119*** 0.136*** 0.119*** 0.136*** 0.119***

(0.026) (0.029) (0.026) (0.029) (0.026) (0.028) (0.025)

C. Rural sample withP
(
Z R = 1

)
= 0.44

Return
to
college

0.342 0.347 0.342 0.347 0.342 0.347 0.342

(0.246) (0.250) (0.246) (0.250) (0.246) (0.247) (0.247)

Reduced
form
effect

0.031 0.031 0.031 0.031 0.031 0.031 0.031

(0.025) (0.026) (0.025) (0.026) (0.025) (0.025) (0.025)
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Table 4 (continued)

2SLS KM Variance
weighted
KM

IPW Variance
weighted
IPW

ECB Variance
weighted
ECB

First
stage
effect

0.092*** 0.089*** 0.092*** 0.089*** 0.092*** 0.089*** 0.092***

(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.024)

This table shows estimated effects for the full sample, the urban and the rural sample using the saturated spec-
ification and the reordered instrument. Living in an urban area is defined as living in a standard metropolitan

area in 1966. The probability being assigned Z R = 1 in the respective samples is 0.67 (full). 0.79 (urban)
and 0.44 (rural). Kernel matching (KM) is performed using an Epanechnikov kernel using a bandwidth
chosen via weighted cross-validation (Galdo, 2008). Inverse probability weighting is based on either the
logit estimate of the propensity score (IPW) or the efficient covariate balancing (ECB) score by Heiler
(2021). Variance-weighted estimators mimic the asymptotic behavior of 2SLS and weight observations by
the estimated variance of the instrument obtained via logit regression. All standard errors are obtained via
999 bootstrap replications. Tests on statistical significance use the normal approximation. Significance at
the 10/5/1% level is denoted by */**/***

instrument. Results for the other specifications—which are similar to the ones pre-
sented here—can be found in Tables 5 and 6 in the “Appendix”.

PanelAofTable 4first replicates estimates for 2SLSand thePS-based estimators for
the full sample found inTable 3: 2SLSyields an estimate of college returns of 0.289 log-
points, PS-Based estimators suggest returns of 0.192 log-points. Conditional-variance
weightedKMand the other PS-based approaches yield an estimate of 0.289 log-points,
which is identical to the 2SLS estimate. Thus, in the fully saturated specification, the
difference between 2SLS and more flexible estimators can be entirely attributed to the
conditional-varianceweighting performed by 2SLS.When using a non-saturated spec-
ification, this property breaks down. However, results still clearly show that variance
weighting has a major impact on resulting estimates (see Table 5).

As pointed out byoneof the reviewers, results bySloczynski (2021) imply that 2SLS
is expected to yield similar estimates to more flexible estimators when the (reordered)
instrument groups are roughly of the same size, i.e. when P(Zi = 1) ≈ 0.5 or P(ZR

i =
1) ≈ 0.5. To inspect this implication, Panel B and C of Table 4 estimate effects for
individuals who grew up an in urban environment with P

(
ZR
i = 1|urban) = 0.79 or

in a more rural area with P
(
ZR
i = 1|rural) = 0.44. Indeed, 2SLS estimates are much

more similar to PS-based estimates in the rural sample (0.342 and 0.347 log-points)
than in the urban sample (0.249 and 0.137 log-points). Again, these differences are
completely accounted for by the conditional-varianceweighting. Hence, it appears that
2SLS is expected to yield estimates close to more flexible estimators when instrument
groups are roughly equal size because the conditional-variance weighting plays less
of a role in that case.
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4 Conclusion

By re-examining the Card (1995) data on college proximity and the returns to college,
this paper shows that potential inconsistencies in 2SLS estimates of local treatment
effects documented in the theoretical literature are not merely a hypothetical threat
when effects are heterogenous. For the data at hand, 2SLS yields systematically larger
effects than more flexible estimators based on the PS with differences amounting to
roughly 50 to 100%. It is shown that this is because standard linear-in-covariates 2SLS
yields a conditional variance-weighted average effect, putting more weight on units
with a PS close to a coin flip. In line with theoretical predictions by Sloczynski (2021),
the results suggest that 2SLS estimates can be expected to be more trustworthy when
sample shares of instrument groups are roughly of equal size. Moreover, the paper
shows that this is because the effects of conditional-variance weighting tend to be less
severe when groups sizes are similar. Overall, the results show that the presumption
that 2SLS yields point estimates close to more flexible estimators based on the PS as
argued by Angrist and Pischke (2008) does not apply in general and that one should be
suspicious of 2SLS estimates when group sizes differ substantially and covariates are
predictive of the instrument. In that case it may be best to use semi- or non-parametric
estimation techniques instead. At the very least, one should use these methods to
assess the sensitivity of estimates regarding implicit parametric assumptions made
when using linear-in-covariates 2SLS.
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Appendix

See Tables 5 and 6.

Table 5 Effect heterogeneity – baseline specification

2SLS KM Variance
weighted
KM

IPW Variance
weighted
IPW

ECB Variance
weighted
ECB

A. Full sample with P(Z = 1) =
0.68

Return
to
college

0.603** 0.182 0.314 0.323 0.590 0.289 0.559

(0.289) (0.243) (0.548) (0.219) (0.505) (0.212) (9.430)

Reduced
form
effect

0.039** 0.021 0.023 0.033* 0.037** 0.028 0.032*

(0.018) 0.024 (0.021) (0.020) (0.018) (0.019) (0.019)

First
stage
effect

0.065*** 0.117*** 0.073*** 0.102*** 0.063*** 0.098*** 0.058***

(0.019) (0.025) (0.023) (0.021) (0.018) (0.020) (0.019)

B. Urban sample with P(Z = 1)
= 0.84

Return
to
college

0.376 0.092 0.422 0.027 0.394 0.172 0.349

(0.282) (0.199) (0.701) (0.177) (0.513) (0.218) (0.339)

Reduced
form
effect

0.034 0.014 0.037 0.005 0.035 0.022 0.031

(0.026) (0.031) (0.028) (0.029) (0.026) (0.027) (0.025)

First
stage
effect

0.091*** 0.152*** 0.088*** 0.172*** 0.089*** 0.129*** 0.089***

(0.027) (0.031) (0.030) (0.028) (0.027) (0.026) (0.025)

C. Rural sample
withP(Z = 1) = 0.39

Return
to
college

1.032 0.867 1.024 0.969 1.129 1.198 1.031

(0.607) (41.18) (7.288) (17.16) (26.79) (7.913) (6.251)
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Table 5 (continued)

2SLS KM Variance
weighted
KM

IPW Variance
weighted
IPW

ECB Variance
weighted
ECB

Reduced
form
effect

0.055** 0.054* 0.055* 0.049* 0.049** 0.064** 0.055*

(0.026) (0.030) (0.029) (0.027) (0.025) (0.027) (0.026)

First
stage
effect

0.054*** 0.062* 0.053* 0.050* 0.043 0.054* 0.053**

(0.026) (0.033) (0.031) (0.030) (0.027) (0.028) (0.027)

This table shows estimated effects for the full sample, the urban and the rural sample using the baseline
specification and the original instrument. Living in an urban area is defined as living in a standardmetropoli-
tan area in 1966. The probability of growing up near a four-year collegeP(Z = 1)in the respective samples
is 0.68 (full), 0.84 (urban) and 0.39 (rural). Kernel matching (KM) is performed using an Epanechnikov
kernel using a bandwidth chosen via weighted cross-validation (Galdo, 2008). Inverse probability weight-
ing is based on either the logit estimate of the propensity score (IPW) or the efficient covariate balancing
(ECB) score by Heiler (2021). Variance-weighted estimators mimic the asymptotic behavior of 2SLS and
weight observations by the estimated variance of the instrument obtained via logit regression. Standard
errors of matching and weighting estimates are obtained via 999 bootstrap replications. Tests on statistical
significance use the normal approximation. Significance at the 10/5/1% level is denoted by */**/***. ECB
estimates for sub-samples are obtained using covariate-adjusted regressions on the re-weighted samples
due to insufficient balance after weighting
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