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Abstract
This paper investigates the relationship between the price of oil and real output in
the United States in the context of a Markov regime switching, identified, structural
GARCH-in-Mean VAR model with copulas. We use the copula method to investigate
the nonlinear dependence structure, as well as (upper and lower) tail dependence,
between the price of oil and real output growth, and Markov regime switching to
account for changing oil price dynamics over the sample period.Wefind an asymmetric
negative dependence structure between oil price and output growth shocks and that
oil price uncertainty has a negative and statistically significant effect on real output
growth.
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1 Introduction

This paper adds to the ongoing debate in macroeconomics about how oil price shocks
and oil price uncertainty affect the level of economic activity. As Serletis andXu (2019,
p. 1045) recently put it, “ those of the view that positive oil price shocks have been
the major cause of recessions in the United States (and other oil-importing countries)
as, for example, Hamilton (1983, 1996, 2011), Hooker (1996), and Herrera et al.
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(2011), appeal to models that imply asymmetric responses of real output to oil price
increases and decreases. Thesemodels are able to explain larger economic contractions
in response to positive oil price shocks and smaller economic expansions in response
to negative ones. On the other hand, those of the view that positive oil price shocks do
not cause recessions as, for example, Kilian (2008), Edelstein and Kilian (2009), and
Kilian and Vigfusson (2011a, b), appeal to theoretical models of the transmission of
exogenous oil price shocks that imply symmetric responses of real output to oil price
increases and decreases. These models cannot explain large declines in the level of
economic activity in response to positive oil price shocks.”

In this paper, we investigate the relationship between the real price of oil and real
output, focusing on the role of oil price uncertainty. In doing so, we build on a series
of recent papers by Elder and Serletis (2010, 2011), Bredin et al. (2011), Rahman
and Serletis (2011, 2012), Pinno and Serletis (2013), Jo (2014), Elder (2018), and
Serletis and Mehmandosti (2019) that appeal to the real options theory—see, for
example, Bernanke (1983), Brennan and Schwartz (1985), Majd. and Pindyck (1987),
Brennan (1990), Gibson and Schwartz (1990), and Dixit and Pindyck (1994). We use
quarterly data for the United States, over the period from 1974:q1 to 2022:q4, and a
different approach to the investigation of the relationship between the real oil price
and real GDP. In particular, we use the copula approach to examine correlation and
dependence structures between the real price of oil and real GDP, in the context of a
Markov switching, bivariate identified structural GARCH-in-Mean VAR model. As
in Serletis and Xu (2019), we take the Markov regime switching approach, associated
with Hamilton (1988, 1989), and modify the Elder et al. (2010) model to account for
instabilities in the relationship between the real oil price and real output. Moreover,
we take the copula approach to investigate the nonlinear dependence structure, as well
as tail dependence, between the real price of oil and real output.

The copula approach in this paper distinguishes it from the literature. Although the
structural VAR model is similar to that in Serletis and Xu (2019), it is also signifi-
cantly different. The present paper estimates theMarkov switching, bivariate identified
structural GARCH-in-Mean VAR model using the copula approach, thus capturing
the dependence structure between oil prices and real output. In particular, the assump-
tion in the standard VAR analysis is that the structural oil price and output shocks are
not related. However, there can still be a dependence structure between the shocks.
For example, a positive dependence between the oil price and output growth shocks
implies that they are more likely to be large together or to be small together. This is
a new approach to the investigation of the comovement between oil prices and real
economic activity.

We estimate our internally-consistent simultaneous equations model by full infor-
mation maximum likelihood, avoiding Pagan’s (1984) generated regressor problems.
We associate the oil price change VAR residual with exogenous oil price shocks, use
the conditional standard deviation of the forecast error for the change in the real oil
price as a measure of uncertainty about the impending real price of oil, and find that
oil price uncertainty has had a negative and statistically significant effect on real GDP
growth. We also find that asymmetric responses to oil price shocks; these results are
consistent with the evidence in Elder et al. (2010); Elder and Serletis (2011), Bredin
et al. (2011), Rahman and Serletis (2011, 2012), Pinno and Serletis (2013), Jo (2014),
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Elder (2018), and Serletis and Mehmandosti (2019). We find an asymmetric negative
dependence structure between the oil price and output growth shocks, with the oil
price shock more closely related to output growth dynamics when it is large and posi-
tive. However, such negative dependence could switch to symmetric relationship with
changes in economic conditions. We present generalized impulse response functions
that take into account theMarkov regime switching in the Appendix.We show that our
generalized impulse response functions are asymmetric, and this finding is consistent
with the literature.

The rest of the paper is organized as follows. Section 2 discusses the data. Section
3 presents the Markov switching structural GARCH-in-Mean copula VAR model and
a discussion of identification and estimation issues. Section 4 presents the empirical
results. Section 5 investigates robustness of our results to alternative model specifica-
tions. The final section concludes the paper.

2 The data

We use quarterly data for the United States over the period from 1974:q1 to 2022:q4.
For the real output series, Yt , we use the real GDP series GDPC1 from the Federal
Reserve Economic Database (FRED) maintained by the Federal Reserve Bank of St.
Louis. For the real oil price, Ot , we use the WTI oil price WTISPLC divided by the
consumer price index CPIAUCSL, with both series obtained from FRED.

We test for cointegration between ln Yt and ln Ot , using the Johansen (1988) maxi-
mum likelihood approach, and find that ln Yt and ln Ot are not cointegrated. Based on
this evidence, in what follows, we adopt the VAR model as the basic framework, as
in Elder et al. (2010) and Serletis and Xu (2019), and use the first differences of ln Yt
and ln Ot , � ln Yt and � ln Ot , denoted in what follows by yt and ot , respectively.

In the next section, we use the two variables in a near-VAR model, and analyze the
preliminary results to gain statistical evidence for supporting the copula approach.

3 Methodology

We first discuss the basic near-VARmodel that is estimated based on the conventional
OLS approach. The results indicate a dependence structure for oil and output shocks.
In Sect. 3.2, we show how to incorporate copulas in the estimation.We further improve
the modeling by allowing a time-varying copula function that can capture the dynamic
dependence structure.

3.1 The structural VAR

We modify the Elder et al. (2010) bivariate structural GARCH-in-Mean VAR model

Bzt = C +
k∑

i=1

�izt−i + �
√
hot +

m∑

j=1

�̃ j rt− j +
n∑

l=1

�̄l gt−l + εt (1)
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where

zt =
[
ot
yt

]
; εt =

[
εot
εyt

]
; B =

[
1 0
b 1

]
; �i =

[
γi,11 γi,12
γi,21 γi,22

]
; � =

[
0 0
ψ 0

]
;

�̃ j =
[

γ̃ j,11
γ̃ j,21

]
; �̄l =

[
γ̄l,11
γ̄l,21

]
.

The Bmatrix,which is lower triangular, identifies themodel.Under such an identifying
assumption, oil price shocks are treated as predetermined, and this assumption has
been adopted by Edelstein and Kilian (2007), Kilian (2009), and Elder et al. (2010).
In particular, Kilian (2009) states that this assumption is not testable, however, it can
be well defended as detailed in Kilian (2009). Therefore, εot could be referred to as
oil price shock and εyt is the output growth shock. hot is the time-varying variance
of oil price growth, which is used to capture oil price uncertainty. The parameter ψ

measures the effect of oil price uncertainty on economic growth.
It is to be noted that model (1) is a near-VAR since we also include two macroe-

conomic controls, which are crucial in the determination of oil prices. r is the federal
funds rate (obtained from the FRED) capturing the stance of monetary policy and g is
the index of global real economic activity in industrial commoditymarkets as proposed
by Kilian (2009). It captures global oil demand, and was obtained from the Federal
Reserve Bank of Dallas. To determine the lag lengths k, m, and n in equation (1), we
allow each of k, m, and n to vary from 1 to 12 and by running 1728 regressions for
each bivariate relationship we choose the specification that minimize the AIC value.
The optimal lags are k = 2, m = 3, and l = 2.

We use the univariate GARCH(1,1) specification to model hot as follows

hot = d1 + d2ε
2
ot−1

+ d3hot−1 . (2)

Conventional estimation of the model consisting of Eqs. (1) and (2) assumes

εt ∼ (0,Ht ), Ht =
[
hot 0
0 hy

]
.

Note that we only specify a GARCHmodel for the disturbances of the oil price growth
but not for output growth. Assuming a GARCH model for the output growth shock
increases the complexity of the model and introduces estimation difficulties of the
highly nonlinear model.

We verify the validity of the normality assumption by conducting a series of tests
reported in Table 1. Panel A in Table 1 shows there is little evidence for a joint normal
distribution of εot and εyt . This result indicates that assuming a normal probability
density for the maximum likelihood estimation may not be appropriate. On the other
hand, Panel B suggests there is a negative dependence relationship between the two
shocks. In this context, dependence is based on the concept of concordance. A positive
dependence between εot and εyt implies that they are more likely to be large together
or to be small together—see Joe (1997).
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Table 1 Bivariate normality tests and dependence measures between oil price and output growth shocks

A. Bivariate normality tests

Mardia’s test (Skewness) 176.880 (0.000)

Mardia’s test (Kurtosis) 57.023 (0.000)

Henze-Zirkler’s test 6.076 (0.000)

Royston’s test 99.919 (0.000)

Doornik-Hansen’s test 277.956 (0.000)

B. Dependence measures

Spearman’s ρ −0.226

Kendall’s τ −0.155

C. Akaike information criterion

Structural VAR 2112.231

Structural copula VAR 2047.898

Markov switching structural copula VAR 2001.325

Sample period, quarterly data: 1974:q1-2022:q4

Note that a dependence relationship in the context of the structuralVARmodel is not
inconsistent with our identification strategy. For example, we use the lower triangular
B matrix in Eq. (1) to identify the model. It follows that the structural shocks, εot and
εyt , are not related. However, they can still hold a dependence structure. In that sense,
a correlation coefficient of zero, which is equivalent to a zero covariance between
the two structural shocks, does not mean that there is no dependence. Therefore, we
will estimate the model (1) to investigate the dependence between oil price shock and
output growth shock, using the copula approach in the following section.

3.2 Dependence and copulas

Based on the evidence in Table 1, we estimate the structural VARmodel using copulas.
The copula is a multivariate distribution. Its univariate margins all follow the (0,1)
uniform distribution. In our case, the copula C is defined by

F(εt ) = C(F1(εot ), F2(εyt )) (3)

based on the Sklar (1959) theorem. In Eq. (3), F(εt ) is an unknown joint distribution
function for εot and εyt , and F1(·) and F2(·) are the two univariate margins corre-
sponding to the structural shocks. The theorem permits the bivariate distribution F(·)
to be made of the two margins with a dependence structure. In other words, we could
piece together the joint distribution of εot and εyt with the assumed margins and the
dependence structure.

An appropriate copula to use is one which best captures dependence features of
the outcome variables. In this paper, we use the BB1 copula in Joe (1997). The BB1
copula is given by
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C(u, v) =
(
1 + [(u−θ − 1)ϑ + (v−θ − 1)ϑ ] 1

ϑ

)− 1
θ

(4)

for ϑ ≥ 1 and θ ≥ 0. In our case,

u = F1(−εot ) (5)

v = F2(εyt ). (6)

Eq. (5) is a transformation that enables us to use the BB1 copula. In particular, the
BB1 copula can only accommodate positive dependence. However, according to the
evidence reported in Table 1, there is a negative dependence structure between the oil
price growth shock and the output growth shock. Therefore, we define u using Eq. (5)
to get a (constructed) positive dependence structure for estimation purposes.

To obtain a better understanding of the dependence structure between the oil price
and output growth, let’s define

λU = lim
k→1

Pr [εot > F−1
1 (k)|εyt > F−1

2 (k)]
= lim

k→1
Pr [εyt > F−1

2 (k)|εot > F−1
1 (k)]. (7)

When λU is between 0 and 1, one would say the copula has upper tail dependence and
no upper tail dependence if λU = 0; see Joe (1997). It is important to know that the
concept of upper tail dependence is still built on the concept of dependence. Eq. (7)
says that if λU is bigger than zero, there is a positive probability that one of εot and
εyt takes values greater than k given that the other is greater than k, for k is arbitrarily
close to 1. In our case with the transformation in Eq. (5), λU quantifies the probability
of a very large output growth shock since the oil price shock is very small.

On the other hand, let’s define

λL = lim
k→0

Pr [εot < F−1
1 (k)|εyt < F−1

2 (k)]
= lim

k→0
Pr [εyt < F−1

2 (k)|εot < F−1
1 (k)]. (8)

In a similar fashion to λU , λL quantifies the probability of having a smaller output
growth shock, given that the oil price shock is larger. The BB1 copula accommodates
both upper tail dependence and lower tail dependence. Notably, in the case of the BB1
copula, we have λU = 2 − 21/ϑ and λL = 2

−1/ϑθ
.

Note that the choice of the copula is important in our study. There are many copula
functions used in the literature and some of them are asymmetric, such as for example
the Clayton copula. However, the Clayton copula only allows for lower tail depen-
dence, and adopting it would not capture upper tail dependence. For this reason, and
because there is no clear prior about which type of tail dependence exists in our data,
we use the relatively more flexible BB1 copula which allows for both lower tail and
upper tail dependence.
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3.3 Markov regime switching

Many studies have shown that the data correlations may not be constant [see, for
example, Engle (2002)], suggesting that treating dependence as a constant is ques-
tionable. Patton (2006) is the first study that proposes a parametric model to describe
the evolution of the copula function. In this regard, Manner and Reznikova (2012) pro-
vide a detailed survey of different time-varying copula approaches. According to their
simulations, the Markov regime-switching copula is one of the superior time-varying
copula approaches.

In what follows, we use the Markov switching approach, which allows us to study
the dependence structure between oil prices and economic activity across different
macroeconomic regimes. To support the validity of the time-varying approach, in
panel C of Table 1 we report the AIC values of the near-VAR with the normality
assumption, the near-VAR with the BB1 copula, and the Markov switching near-VAR
with the BB1 copula. As can be seen, the time-varying approach is favored by the
data.

TheMarkov regime switching, copula, bivariate structural VARmodel can be writ-
ten as

Bst zt = Cst +
k∑

i=1

�i,st zt−i + �st

√
host ,t +

m∑

j=1

�̃ j,st rt− j +
n∑

l=1

�̄l,st gt−l + εst ,t (9)

with

F(εst ,t ) = C(F1(−εost ,t ), F2(εyst ,t )) (10)

εost ,t ∼ N (0, host ,t ) (11)

εyst ,t ∼ N (0, hyst ,t ) (12)

and

Bst =
[

1 0
bst 1

]
; �i,st =

[
γi,st ,11 γi,st ,12
γi,st ,21 γi,st ,22

]
; �st =

[
0 0

ψst 0

]
;

�̃ j,st =
[

γ̃ j,st ,11
γ̃ j,st ,21

]
; �̄l.st =

[
γ̄l,st ,11
γ̄l,st ,21

]
.

In Eqs. (9)–(12), st denotes the unobserved economic regime, and is assumed to follow
a first order, homogeneous, two-state Markov chain governed by the transition matrix

P =
[
p11 p12
p21 p22

]

where pi j = P (st = i |st−1 = j ), i, j = 1, 2 and p11 = 1− p21 and p12 = 1− p22.
Equation (9) suggests that all the parameters in the Bst , Cst , �st , and 9st matri-

ces are regime-dependent, taking different values across the two regimes (i and j
can only take two values). The two assumed regimes will sufficiently describe the
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dynamic interactions between the oil price and economic growth; as suggested by
Hamilton (1988, 1989), the two-regime model is sufficient for modeling recessions
and expansions observed in many macroeconomic time series.

Equation (10) tells us that the copulaC has two different forms in the two unknown
regimes. Equations (11) and (12) assume that the two structural shocks follow a uni-
variate normal distribution in each regime. To make the model as flexible as possible,
we allow the variance of GDP growth to be different across regimes, thus allow-
ing homoscedasticity within each regime, but heteroscedasticity across regimes. We
construct aMarkov regime switchingGARCH(1,1) specification regarding the regime-
dependent variance of oil price growth, as follows

host ,t = d1,st + d2,st ε
2
ost−1,t−1

+ d3,st host−1,t−1 . (13)

The estimation of our model is challenging under the Markov regime switching
GARCH(1,1) specification inEq. (13). In particular, Eq. (13) implies that host ,t depends
on st and also indirectly on {st−1, st−2, . . .}. That is, host ,t at time t depends on the
entire sequence of regimes up to time t . One has to construct the likelihood function
by integrating over all possible paths, and as it turns out the estimation is not tractable;
this is a problem, called path dependence, that typically shows up in the estimation
of regime-switching GARCH models. To address this problem, we need to use a
collapsing procedure that could facilitate the evaluation of the likelihood function.

In this paper, we follow Gray (1996) and integrate out the regime-dependent error
term εot and the regime-dependent variance host ,t at time t−1 by taking the expectation
so that the GARCH specification does not require the entire sequence of regimes up
to time t . Therefore, we construct the regime-independent error term ε̄ot and the
regime-independent oil price volatility h̄ot by calculating

ε̄ot = p(st = 1|�t−1)εost=1,t + p(st = 2|�t−1)εost=2,t

and

h̄ot = p(st = 1|�t−1)[(�ot − εost ,t=1)
2 + host=1,t ]

+p(st = 2|�t−1)[(�ot − εost=2,t )
2 + host=2,t ]

−[p(st = 1|�t−1)(�ot − εost=1,t ) + p(st = 2|�t−1)(�ot − εost=2,t )]2

where p(st = 1|�t−1) and p(st = 2|�t−1) are the prediction probabilities from the
Hamilton (1989) filter. We then plug ε̄ot and h̄ot into the GARCH specification (13)
for the oil price so that it becomes

host ,t = d1,st + d2,st ε̄
2
ot−1

+ d3,st h̄ot−1 . (14)

Thus, host ,t depends only on the value of st and the likelihood function becomes
tractable. Under the BB1 copula assumption, the density at time t conditional st = i
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Table 2 Maximum likelihood
parameter estimates

Estimate
Parameter Regime 1 Regime 2

ψ −0.047 (0.000) −0.027 (0.000)

δ 1.225 (0.000) 1.768 (0.000)

θ 0.629 (0.000) 0.805 (0.000)

λU 0.407 0.614

λL 0.239 0.520

Sample period, quarterly data: 1974:q1-2022:q4. Numbers in paren-
theses are p values

and lag information set �t−1 is

f (εt |st = i,�t−1) = F(εst ,t ) = C(F1(−εost ,t ), F2(εyst ,t ))

The density at time t can be found by summing over all possible regimes:

f (εt |�t−1) =
2∑

i=1

f (εt |st = i,�t−1)p(st = i |�t−1). (15)

The tractable log-likelihood is then

L =
T∑

t=1

ln f (st |�t−1) (16)

with the conditional variance of εost ,t governed by equation (13). The corresponding
estimation is performed inRATSusingMaximumLikelihood and theBFGS (Broyden,
Fletcher, Goldfarb & Shanno) algorithm combined with the derivative-free Simplex
pre-estimation method.

4 Estimation results

We estimate the model using full information maximum likelihood. That is, all the
parameter estimates are obtained simultaneously by maximizing the logged joint den-
sity built on the copula function and its density function. We report the ψ , δ, and θ

parameter estimates, as well as the tail dependence parameters, λU and λL , in Table
2 for each of the two regimes, as they are defined by the copula function. We find
that oil price uncertainty has a negative effect on economic growth in both regimes
(ψ = −0.047 with a p-value of 0.000 in regime 1 and ψ = −0.027 with a p-value of
0.000 in regime 2), with the negative effect being larger in regime 1. The estimates of
ψ highlight the important role of oil price uncertainty on the business cycle.Moreover,
this effect is time-varying.
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Table 2 shows that there is upper tail dependence in regime 1 (λU = 0.407), and
to a larger extent in regime 2 (λU = 0.614), meaning that there is a tendency for
output growth to significantly decline in the case of large oil price shocks. Moreover,
a non-zero λL (λL = 0.239 in regime 1 and λL = 0.520 in regime 2) suggests
lower tail dependence with that dependence being higher in regime 2. The interesting
finding here is that upper tail dependence is larger than lower tail dependence in
both regimes. To better understand the dependence structure between the oil price
and economic growth, in Fig. 1 and 2 we provide the smoothed probabilities of each
regime, p(st = i |�), for i = 1, 2, where � is the full sample information, as well
as the distribution simulation (100000 draws) of the oil price and economic growth
shocks, based on their joint distribution which is modeled by the copula function—see
Joe (1997) for the algorithm.

The upper panel of Figure 1 shows that the U.S. economy has been in regime 1,
which covers the major economic recessions, including the global financial crisis and
the Covid-19 recession. More importantly, as can be seen in the lower panel of Fig. 1,
there is negative dependence between the oil price and output growth shocks in that
regime. It means that it is likely to observe a large positive (negative) oil price shock
and a large negative (positive) output growth shock at the same time. The simulated
distribution captures the strong upper tail dependence very well and also shows that
lower tail dependence is relatively weak when the oil price shock takes large negative
values. This feature is consistent with the reported tail dependence parameters in Table
2; the upper tail dependence parameter, λU , is larger than the lower tail dependence
parameter, λL .We conclude that there is a higher chance for the negative output growth
shock to become significantly large when the positive oil price shock is significantly
large, compared with the case of having a significantly small and negative oil price
shock and a significantly large and positive output growth shock. We conclude that the
dependence structure between the price of oil and output growth is asymmetric, with
the oil price shock more closely related to output growth dynamics when it is large
and positive.

In the upper panel of Fig. 2, we see that regime 2 shows up in the non-recession
periods. The lower panel of Fig. 2 also suggests a negative dependence between the
oil price and economic growth shocks in regime 2. In fact, the upper tail dependence is
slightly larger than the lower tail dependence, consistent with the reported dependence
parameters in Table 1, since λU = 0.614 and λL = 0.520 in that regime.

5 Robustness

As noted byKilian andVigfusson (2011b), empirical results regarding the relationship
between the price of oil and economic activity can be sensitive to the sample period and
the choice of the oil pricemeasure. They argue that the price of oil should be specified in
real terms (which is what we have done), that the evidence using pre-1973 data should
be viewedwith caution, and that the refiners’ acquisition cost (RAC) for imported crude
oil should be used as the oil price series. In this section we investigate the robustness of
our results to these model specifications. In particular, we use the refiners’ acquisition
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Fig. 1 Probability of regime 1 and simulated distribution

cost for imported crude oil to investigate the dependence relationship between the real
price of oil and real GDP growth.

Table 3 reports the key parameter estimates. We still find negative impacts of oil
price uncertainty in both regimes. Moreover, the upper tail dependence and low tail
dependence are evident. In Figs. 3 and 4, we present results with the real refiners’
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Fig. 2 Probability of regime 2 and simulated distribution

acquisition cost for imported crude oil, in the same fashion as in Figs. 1 and 2, respec-
tively, with the real WTI oil price for the post-1973 era. As can be seen in Figs.
3 and 4, the regimes and simulated distributions are similar to those in Figs. 1 and
2. There is negative dependence between the oil price and output growth shocks in
regime 1 (which covers economic recessions) as well as in regime 2 (which covers
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Table 3 Maximum likelihood
parameter estimates with the
RAC

Estimate
Parameter Regime 1 Regime 2

ψ −0.045 (0.000) −0.005 (0.000)

δ 1.268 (0.000) 2.388 (0.000)

θ 0.564 (0.000) 0.797 (0.000)

λU 0.380 0.695

λL 0.273 0.663

Sample period, quarterly data: 1974:q1-2022:q4.
Numbers in parentheses are p values

the non-recession periods). The simulated distributions capture the strong upper tail
dependence in both regimes. In particular, λU = 0.380 and λL = 0.273 in regime 1.
On the other hand, λU = 0.695 and λL = 0.663 in regime 2.

Overall, the asymmetric tail dependence is robust when considering two measures
of oil prices. We especially show that the magnitude of the asymmetry is larger during
economic recessions. The estimates indicate a large positive oil price shock will be
more likely to accompany a large negative output shockwhen the economyexperiences
contractions. The policy implication is that oil reserves and stocks are important in
mitigating oil price shocks, and they are particularly relevant during recessions.

Finally, in order to make our GARCH-in-Mean model comparable to the literature
that studies oil price uncertainty, we present generalized impulse response functions
that take into account the Markov regime switching in the Appendix (see Appendix
Figures 5 and 6based on theWTI and theRAC, respectively). The degree of asymmetry
is stronger based on the RAC. Therefore, our generalized impulse response functions
track the changing economic environment and are in line with the literature which
shows that the output impulse responses are not generally symmetric to positive and
negative oil price shocks—see, for example, Elder et al. (2010) and Serletis and Xu
(2019).

6 Conclusion

We investigate the dependence structure between the price of oil and real output in
the context of a bivariate, Markov regime switching, identified structural GARCH-
in-Mean VAR model with copulas. We use quarterly data for the United States (over
the period from 1974:q1 to 2022:q4) and find that oil price uncertainty has a negative
and statistically significant effect on economic growth, consistent with evidence in
Elder et al. (2010) and Serletis and Xu (2019). We also present clear evidence of
an asymmetric negative dependence structure between oil price and output growth
shocks, and provide a new explanation of asymmetric responses of output growth to
oil price shocks characterized by upper tail dependence.

A possible extension of the current study will be the investigation of dependence
structures between oil prices and macroeconomic activity across countries, potentially
making a distinction between oil producers and oil importers. Given that the scope
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Fig. 3 Probability of regime 1 and simulated distribution: Refiners’ acquisition cost

of the present paper is the development of the Markov switching near-VAR copula
model for the US economy, we leave this as an area for potentially productive future
research.
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Fig. 4 Probability of regime 2 and simulated distribution: Refiners’ acquisition cost
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Appendix

Generalized Impulse Response Functions
To get a comprehensive understanding of the impact of oil price shocks on output

growth, we generalize the method in Gray (1996) and calculate generalized impulse
response functions that take into account the switching between regimes. In doing
so, we also consider the responses of output growth to positive and negative oil price
shocks in the environment where the economy could switch between the two regimes.
We define the unconditional generalized impulse response function by

E(zt+k |�̄t+k−1, δ) − E(zt+k |�̄t+k−1) (17)

where E(zt+k |�̄t+k−1, δ) is the predicted value of zt+k based on a simulated infor-
mation set �̄t+k−1, the change in the regimes over time, and an oil shock δ at time
t , where δ is the standard deviation of the growth rate of the price of oil. Equation
(17) gives the response of output growth to a change in the oil price considering the
history of the regimes. Because the path-dependence problem makes the calculation
intractable, we adopted the collapsing procedure in Gray (1996) here to address this
issue. For example, we have

E(zt+k |�̄t+k−1, δ) = p(st+k=1|�̄t+k−1, δ)(zt+k |�̄t+k−1, st+k=1, δ)

+p(st+k=2|�̄t+k−1, δ)(zt+k |�̄t+k−1, st+k=2, δ) (18)

where

�̄t+k−1 = {
E(zt+k−1|�̄t+k−2, δ), ..., E(zt+1|�̄t , δ), E(zt |�t−1, δ)

} ∪ �t−1.

The calculations are as follows:

• Step 1 We start from time period t in our data. We then calculate host ,t for each
regime, using the information set �̄t−1.

• Step 2 We draw εost ,t from the univariate normal distribution with zero mean and
variance host ,t which is obtained from Step 1 for each regime. We then draw εyst ,t
using the corresponding BB1 copula conditional on εost ,t for each regime.

• Step 3 Repeat Step 1 and Step 2 recursively for time period i where i ∈ [t +
1, . . . , t + k] for all i ∈ [t + 1, ..., t + k]. In doing so, we construct the time-
varying variance of the oil price shock using Eq. (14) and the collapsing procedure
proposed by Gray (1996).

• Step 4 E(zi |�̄i−1, si ), i ∈ [t, · · · , t+k] is constructed based on the recursiveVAR
system with Eq. (18) given εi,st from the previous three steps. To take into account
the switching from t to t+k, we update the predicted probabilities p(si = 1|�̄i−1)

and p(si = 2|�̄i−1) where i ∈ [t, . . . , t + k] by adopting the Hamilton (1994)
filter.
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Fig. 5 Impulse response functions for the Markov switching structural GARCH-in-mean copula VAR
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Fig. 6 Impulse response functions for the Markov switching structural GARCH-in-mean copula VAR:
Refiners’ acquisition cost
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• Step5Weinject the oil price shock δ into the systemat time t for E(zi |�̄i−1, si , δ), i ∈
[t, ..., t + k]. A new vector of error terms ε̂t for time t only is constructed by

ε̂t,st = εt,st + (δ, 0)′

where εt,st is from Step 2. We then redo Step 4 for E(zi+k |�̄i−1, si+k, δ), i ∈
[t, ..., t + k] with the error terms ε̂t,st at time period t .

• Step 6 Take the difference between E(zi |�̄i−1, si , δ) and E(zi |�̄i−1, si ) for i ∈
[t, . . . , t + k].

• Step 7 Average the difference in Step 6 across the sample periods. In other words,
we choose each different period to initialize the calculation for its average. See
Figures 5 and 6.
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