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Abstract
A two-step estimator of a nonparametric regression function via Kernel regularized
least squares (KRLS) with parametric error covariance is proposed. The KRLS, not
considering any information in the error covariance, is improved by incorporating a
parametric error covariance, allowing for both heteroskedasticity and autocorrelation,
in estimating the regression function. A two step procedure is used, where in the first
step, a parametric error covariance is estimated by using KRLS residuals and in the
second step, a transformed model using the error covariance is estimated by KRLS.
Theoretical results including bias, variance, and asymptotics are derived. Simulation
results show that the proposed estimator outperforms the KRLS in both heteroskedas-
tic errors and autocorrelated errors cases. An empirical example is illustrated with
estimating an airline cost function under a random effects model with heteroskedastic
and correlated errors. The derivatives are evaluated, and the average partial effects of
the inputs are determined in the application.
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1 Introduction

Peter Schmidt has made many seminal contributions in advancing the statistical infer-
ence methods and their applications in time series, cross section, and panel data
econometrics in general (Schmidt 1976a) and, in particular, in the areas of dynamic
econometric models, estimation and testing of cross-sectional and panel data models,
crime and justice models (Schmidt and Witte 1984), survival models (Schmidt and
Witte 1988). His fundamental and innovative contributions on the econometrics of
stochastic frontier production/cost models have made significant impact on the gen-
erations of econometricians (e.g., Schmidt 1976b, Aigner et al. 1977, Amsler et al.
2017, Amsler et al. 2019). Also, he has contributed many influential papers on devel-
oping efficient procedures involving the generalized least squares (GLS) method (see
Guilkey and Schmidt 1973, Schmidt 1977, Arabmazar and Schmidt 1981, Ahu and
Schmidt 1995) among others. These were for the parametric models, whereas here we
consider the nonparametric models.

Nonparametric regression function estimators are useful econometric tools. Com-
mon methods to estimate a regression function are kernel based methods, such as
Kernel Regularized Least Squares (KRLS), Support Vector Machines (SVM), Local
Polynomial Regression, etc. However, in order to avoid overfitting the data, some type
of regularization, lasso or ridge, is generally used. In this paper, we will focus on
KRLS; this method is also known as Kernel Ridge Regression (KRR) in the machine
learning literature and is the kernelized version of the simple ridge regression to allow
for nonlinearities in the model.

In this paper, we establish fitting a nonparametric regression function via KRLS
under a general parametric error covariance. Some theoretical results, including point-
wise marginal effects, unbiasedness, consistency and asymptotic normality, on KRLS
are found in Hainmueller and Hazlett (2014). However, Hainmueller and Hazlett
(2014) only consider errors to be homoskedastic and that the estimator is unbiased for
estimating the postpenalization function, not for the true underlying function. Con-
fidence interval estimates for Least Squares Support Vector Machine (LSSVM) are
discussed in De Brabanter et al. (2011), allowing for heteroskedastic errors. Although
not directly stated, the LSSVM estimator in De Brabanter et al. (2011) is equivalent to
KRR/KRLS when an intercept term is included in the model. Following Hainmueller
and Hazlett (2014), we will use KRLS without an intercept. Although De Brabanter
et al. (2011) allow for heteroskedastic errors, none of the papers mentioned thus far
discuss incorporating the error covariance in estimating the regression function itself,
making these type of estimators inefficient. In this paper, we focus on making KRLS
more efficient by incorporating a parametric error covariance, allowing for both het-
eroskedasticity and autocorrelation, in estimating the regression function. We use a
two step procedure where in the first step, we estimate the parametric error covariance
from the residuals obtained by KRLS and in the second step, we estimate a model
by KRLS based on transformed variables using the error covariance. We also provide
estimating derivatives based on the two step procedure, allowing us to determine the
partial effects of the regressors on the dependent variable.

The structure of this paper is as follows: Sect. 2 discusses the model framework and
the GKRLS estimator, Sects. 3, 4, and 5 show the finite sample properties, asymptotic
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properties, and partial effects and derivatives of the GKRLS estimator, respectively,
Sect. 6 runs through a simulation example, Sect. 7 illustrates an empirical example
for a random effects model with heteroskedastic and correlated errors, and Sect. 8
concludes the paper.

2 Generalized KRLS estimator

Consider the nonparametric regression model:

Yi = m(Xi ) +Ui , i = 1, . . . , n, (1)

where Xi is a q × 1 vector of exogenous regressors, andUi is the error term such that
E[Ui |X1, . . . , Xn] = E[Ui |X] = 0, where X = (X1, . . . , Xn)

� and

E[UiU j |X] = ωi j (θ0) for some θ0 ∈ R
p, i, j = 1, . . . , n. (2)

In this framework, we allow the error covariance to be parametric, where the errors
can be autocorrelated or non-identically distributed across observations.

2.1 KRLS estimator

For KRLS, the function m(·) can be approximated by some function in the space of
functions constituted by

m(x0) =
n∑

i=1

ci Kσ (xi , x0), (3)

for some test observation x0 and where ci , i = 1, . . . , n are the parameters of interest,
which can be thought of as the weights of the kernel functions Kσ (·). The subscript
of the kernel function, Kσ (·), indicates that the kernel depends on the bandwidth
parameter, σ .

We will use the Radial Basis Function (RBF) kernel,

Kσ (xi , x0) = e− 1
σ2

||xi−x0||2 . (4)

Notice that the RBF kernel is very similar to the Gaussian kernel, in that it does not
have the normalizing term out in front and that σ is proportional to the bandwidth
h in the Gaussian kernel often used in nonparametric local polynomial regression.
This functional form is justified by a regularized least squares problem with a feature
mapping function thatmaps x into a higher dimension (Hainmueller andHazlett 2014),
where this derivation of KRLS is also known as Kernel Ridge Regression (KRR).
Overall, KRLS uses a quadratic loss with a weighted L2-regularization. Then, in
matrix notation, the minimization problem is

argmin
c

(y − Kσ c)�(y − Kσ c) + λc�Kσ c, (5)
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where y is the vector of training data corresponding to the dependent variable, Kσ is
the kernel matrix, with Kσ,i, j = Kσ (xi , x j ) for i, j = 1, . . . , n, and c is the vector of
coefficients that is optimized over. The solution to this minimization problem is

ĉ1 = (Kσ1 + λ1I)−1y. (6)

The kernel function can be user specified but in this paper we only consider the
RBF kernel in Eq. (4). The kernel function’s hyperparameter σ and the regularization
parameter λ can also be user specified or can be found via cross validation. The
subscript of one denotes the KRLS estimator, or the first stage estimation. Finally,
predictions for KRLS can be made by

m̂1(x0) =
n∑

i=1

ĉ1,i Kσ1(xi , x0). (7)

2.2 An efficient KRLS estimator

The KRLS estimator, m̂1(·) does not take into consideration any information in the
error covariance structure and therefore is inefficient. As a result, consider the n × n
error covariance matrix, �(θ), where ωi j (θ) denotes the (i, j)th element. Assume
that�(θ) = P(θ)P(θ)′ for some square matrix P(θ) and let pi j (θ) and vi j (θ) denote
the (i, j)th element of P(θ) and P(θ)−1. Let m ≡ (m(X1), . . . ,m(Xn))

′ and U ≡
(U1, . . . ,Un)

′. Now, premultiply the model in Eq. (1) by P−1, where P−1 = P−1(θ)

and we condense the notation and the dependence on θ is implied.

P−1y = P−1m + P−1U. (8)

The transformed error term, P−1U has mean 0 and covariance matrix as the identity
matrix. Therefore, we consider a regression of P−1y on P−1m. This simply re-scales
the variables by the inverse of their square root of their variances. Since m = Kσ c,
the quadratic loss function with L2 regularization under the transformed variables is

argmin
c

(y − Kσ c)��−1(y − Kσ c) + λc�Kσ c. (9)

The solution for vector is

ĉ2 = (�−1Kσ2 + λ2I)−1�−1y (10)

Note that the solution obtained depends on the bandwidth parameter σ2 and ridge
parameter λ2, which can be different than the hyperparameters used in the KRLS
estimator. In practice, cross validation can be used for obtaining estimates for both
hyperparameters. Here, it is assumed that � is known if θ is known. However, if θ is
unknown, it can be estimated consistently and � can be replaced by �̂ = �̂(θ̂).1

1 �̂ can be thought of as a working covariance matrix since the parametric functional form may be subject
to misspecification. One method to avoid misspecification is to estimate� nonparametrically. For example,

123



Generalized Kernel regularized... 3063

Furthermore, predictions for the generalized KRLS estimator can be made by

m̂2(x0) =
n∑

i=1

ĉ2,i Kσ2(xi , x0) (11)

The two step procedure is outlined below

1. Estimate Eq. (1) by KRLS from Eq. (7) with bandwidth parameter, σ1 and ridge
parameter, λ1. Obtain the residuals which can then be used to get a consistent
estimate for �.

2. Estimate Eq. (8) by KRLS under the transformed variables as in Eqs. (9) and (11).
Denote these estimates as GKRLS.

2.3 Selection of hyperparameters

Throughout this paper, we focus on the RBF kernel in Eq. (4), which contains the
hyperparameter σ1 (and σ2). Since these parameters are squared in the RBF kernel in
Eq. (4), we can instead search for the hyperparameters σ 2

1 and σ 2
2 . The selection of

the hyperparameters λ1, λ2, σ
2
1 , and σ 2

2 is selected via leave one out cross validation
(LOOCV). However, prior to cross validation, it is common in penalized methods to
scale the data to have mean of 0 and standard deviation of 1. This way, the penalty
parameters λ1 and λ2 do not depend on the scale of the data or the magnitude of the
coefficients. Note that the scaling of the data does not affect the interpretations of
predictions and marginal effects since the estimates can be translated back to their
original scale and location.

For the hyperparameters,σ 2
1 andσ 2

2 ,Hainmueller andHazlett (2014) suggest setting
σ 2 = q, the number of regressors. Therefore, in items 1. and 2. in the two step
procedure, σ 2

1 = q and σ 2
2 = q. Then, only the penalty hyperparameters λ1 and λ2

need to be chosen. λ1 is chosen via LOOCV in item 1. of the two step procedure using
Eq. (5). λ2 is then chosen via LOOCV in item 2. of the two step procedure using Eq.
(9). If one wishes to also search for σ 2

1 and σ 2
2 , one would perform LOOCV to find

λ1 and σ 2
1 simultaneously in item 1. using Eq. (5) and then perform another LOOCV

to find λ2 and σ 2
2 simultaneously in 2. of the two step procedure using Eq. (9).

3 Finite sample properties

In this section, finite sample properties of both KRLS and GKRLS estimators,
including the estimation procedures of bias and variance, are discussed in detail.

Footnote 1 continued
under heteroskedasticity, one can estimate � by a semiparametric KRLS estimator of the conditional
variance (Dang and Ullah 2022). Other solutions may be explored as future work.
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3.1 Estimation of bias and variance

In this subsection, we estimate the bias and variance of the two step estimator. Fol-
lowing, De Brabanter et al. (2011), notice that the GKRLS estimator is a linear
smoother.

Definition 1 An estimator m̂ of m is a linear smoother if, for each x0 ∈ R
q , there

exists a vector L(x0) = (l1(x0), . . . , ln(x0))� ∈ R
n such that

m̂(x0) =
n∑

i=1

li (x0)Yi , (12)

where m̂(·) : R
q → R.

For in sample data, Eq. (12) can be written in matrix form as m̂ = Ly, where
m̂ = (m̂(X1), . . . , m̂(Xn))

� ∈ R
n and L = (l(X1)

�, . . . , l(Xn)
�)� ∈ R

n×n , where
Li j = l j (Xi ). The i th row ofL show the weights given to each Yi in estimating m̂(Xi ).
For the rest of the paper, we will denote m̂2(·) as the prediction made by GKRLS for
a single observation and m̂2 as the n × 1 vector of predictions made for the training
data.

To obtain the bias and variance of the GKRLS estimator, we assume the following:

Assumption 1 The regression function m(·) to be estimated falls in the space of
functions represented by m(x0) = ∑n

i=1 ci Kσ (xi , x0) and assume the model in Eq.
(1).

Assumption 2 E[Ui |X] = 0 and E[UiU j |X] = ωi j (θ) for some θ ∈ R
p, i, j =

1, . . . , n

Using Definition 1, Assumption 1, and Assumption 2, the conditional mean and
variance can be obtained by the following theorem.

Theorem 1 The GKRLS estimator in Eq. (11) is

m̂2(x0) =
n∑

i=1

li (x0)Yi

= L(x0)�y,

(13)

and L(x0) = (l1(x0), . . . , ln(x0))� is the smoother vector,

L(x0) =
[
K ∗�

σ2,x0(�
−1Kσ2 + λ2I)−1�−1

]�
, (14)

with K ∗
σ2,x0 = (Kσ2(x1, x0), . . . , Kσ2(xn, x0))

� the kernel vector evaluated at point
x0.
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Then, the estimator, under model Eq. (1), has conditional mean

E[m̂2(x0)|X = x0] = L(x0)�m (15)

and conditional variance

Var[m̂2(x0)|X = x0] = L(x0)��L(x0). (16)

Proof see Appendix A. �	

From Theorem 1, the conditional bias can be written as

Bias[m̂2(x0)|X = x0] = E[m̂2(x0)|X = x] − m(x0)

= L(x0)�m − m(x0)
(17)

Following De Brabanter et al. (2011), we will estimate the conditional bias and
variance by the following:

Theorem 2 Let L(x0) be the smoother vector evaluated at x0 and let m̂2 = (m̂2(x1),
. . . , m̂2(xn))� be the in sample GKRLS predictions. For a consistent estimator of the
covariance matrix such that �̂ → �, the estimated conditional bias and variance for
GKRLS are obtained by

B̂ias[m̂2(x2)|X = x0] = L(x0)�m̂2 − m̂2(x0) (18)

and

V̂ar[m̂2(x0)|X = x0] = L(x0)��̂L(x0). (19)

Proof See Appendix B. �	

3.2 Bias and variance of KRLS

First, note that the KRLS estimator is also a linear smoother, so the bias and the
variance take the same form as in Eqs. (18) and (19), except that the linear smoother
vector L(x0) will be different. Let

L1(x0) =
[
K ∗�

σ1,x0(Kσ1 + λ1I)−1
]�

(20)

be the smoother vector for KRLS. Then, Eq. (7) can be rewritten as

m̂1(x0) = L1(x0)�y. (21)
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Using Theorem 1 and Theorem 2 and applying them to the KRLS estimator, the
estimated conditional bias and variance of KRLS are

B̂ias[m̂1(x0)|X = x0] = L1(x0)�m̂1 − m̂1(x0) (22)

V̂ar[m̂1(x0)|X = x0] = L1(x0)��̂L1(x0), (23)

where m̂1 is the n × 1 vector of fitted values for KRLS. Note that the estimate of the
covariance matrix, �, will be the same for both KRLS and GKRLS.

4 Asymptotic properties

The asymptotic properties of GKRLS, including consistency, asymptotic normal-
ity, and bias corrected confidence intervals are covered in this section. To obtain
consistency of the GKRLS estimator, we also assume:

Assumption 3 Let λ1, λ2, σ1, σ2 > 0 and as n → ∞, for singular values of LP given
by di ,

∑n
i=1 d

2
i grows slower than n once n > M for some M < ∞.

Theorem 3 Under Assumptions 1–3, and let the bias corrected fitted values be denoted
by

m̂2,c = m̂2 − Bias[m̂2|X], (24)

then
lim
n→∞Var[m̂2,c|X] = 0 (25)

and the bias correctedGKRLSestimator is
√
n-consistentwith plim

n→∞
m̂c,n(xi ) = m(xi )

for all i .

Proof See Appendix C. �	
The estimated conditional bias from Eq. (18) and conditional variance from Eq.

(19) can be used to construct pointwise confidence intervals. Asymptotic normality of
the proposed estimator is given via the central limit theorem.

Theorem 4 Under Assumptions 1–3, m̂2 is asymptotically normal by the central limit
theorem: √

n(m̂2 − Bias[m̂2|X] − m)
d→ N (0,Var[m̂2|X]), (26)

where Bias[m̂2|X] = Lm − m and Var[m̂2|X] = L�L�.

Proof See Appendix D. �	
SinceGKRLS is a biased estimator form,weneed to adjust the pointwise confidence

intervals to allow for bias. Since the exact conditional bias and variance are unknown,
we can use Eqs. (18) and (19) as estimates and can conduct approximate bias corrected
100(1 − α)% pointwise confidence intervals from Theorem 4 as

m̂2(xi ) − B̂ias[m̂2(xi )|X = xi ] ± z1−α/2

√
V̂ar[m̂2(xi )|X = xi ] (27)
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for all i . Furthermore, to test the significance of the estimated regression function at
an observation point, we can use the bias corrected confidence interval to see if 0 is
in the interval.

5 Partial effects and derivatives

We also derive an estimator for pointwise partial derivatives with respect to a certain
variable x(r). The partial derivative of the GKRLS estimator, m̂2(x0) with respect to
the r th variable is

m̂(1)
2,r (x0) =

n∑

i=1

∂Kσ2(xi , x0)

∂x(r)
0

ĉ2,i

= 2

σ 2
2

n∑

i=1

e
− 1

σ22
||xi−x0||2 (

x(r)
i − x(r)

0

)
ĉ2,i ,

(28)

using the RBF kernel in Eq. (4) and where m̂(1)
2,r (x0) ≡ ∂m̂2(x0)

∂x(r) . To find the conditional
bias and variance of the derivative estimator, we use the following:

Theorem 5 The GKRLS derivative estimator in Eq. (28) with the RBF kernel in Eq.
(4) can be rewritten as

m̂(1)
2,r (x0) = Sr (x0)�y, (29)

where 	r ≡ 2
σ 2
2
diag(x(r)

1 − x(r)
0 , . . . , x(r)

n − x(r)
0 ) is a n × n diagonal matrix, and

Sr (x0) =
[
K ∗�

σ2,x0	r (�
−1Kσ2 + λ2I)−1�−1

]�
(30)

is the smoother vector for the first partial derivative with respect to the rth variable.
Then, the conditional mean of the GKRLS derivative estimator is

E[m̂(1)
2,r (x0)|X = x0] = Sr (x0)�m (31)

and conditional variance is

Var[m̂(1)
2,r (x0)|X = x0] = Sr (x0)��Sr (x0). (32)

Proof see Appendix E. �	
Using Theorem 5, the conditional bias and variance can be estimated as follows

Theorem 6 Let Sr (x0) be the smoother vector for the partial derivative evaluated
at x0 and let m̂2 = (m̂2(x1), . . . , m̂2(xn))� be the in sample GKRLS predictions.
For a consistent estimator of the covariance matrix such that �̂ → �, the estimated
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conditional bias and variance for GKRLS derivative estimator in Eq. (28) are obtained
by

B̂ias[m̂(1)
2,r (x0)|X = x0] = Sr (x0)�m̂ − m̂(1)

2,r (x0) (33)

and

V̂ar[m̂(1)
2,r (x0)|X = x0] = Sr (x0)��̂Sr (x0). (34)

Proof See Appendix F. �	
The average partial derivative with respect to the r th variable is

m̂(1)
avg,r = 1

n′
n′∑

j=1

m̂(1)
2,r (x0, j ) (35)

The bias and variance of the average partial derivative estimator is given by

Bias[m̂(1)
avg,r |X ] = 1

n′ ι
�
n′S0,rm − 1

n′ ι
�
n′m

(1)
0,r (36)

and

Var[m̂(1)
avg,r |X ] = 1

n′2 ι�n′S0,r�S�
0,r ιn′ , (37)

where n′ is the number of observations in the testing set, ιn′ is a n′ × 1 vector of ones,
S0,r is the n′ × n smoother matrix with the j th row as Sr (x0, j ), j = 1, . . . , n′, and
m(1)

0,r is the n
′ × 1 vector of derivatives evaluated at each x0, j , j = 1, . . . , n′.

5.1 First differences for binary independent variables

Unlike for the continuous case, partial effects for binary independent variables should
be interpreted as and estimated by first differences. That is, the estimated effect of
going from x (b) = 0 to x (b) = 1 can be determined by

m̂FDb (x0) = m̂(x (b) = 1, x0) − m̂(x (b) = 0, x0)

= LFDb(x0)
�y

(38)

where m̂FDb(·) is the first difference estimator for the bth binary independent variable,
x (b) is a binary variable that takes the values 0or 1,x0 is the (q−1)×1vector of the other
independent variables evaluated at some test observation, and LFDb (x0) ≡ L(x (b) =
1, x0) − L(x (b) = 0, x0) is the first difference smoother vector. The conditional bias
and variance of the first difference GKRLS estimator in Eq. (38) are shown in the
following theorem.
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Theorem 7 Using Theorems 1 and 2, the conditional bias and variance for the GKRLS
first difference estimator in Eq. (38) are obtained by

Bias[m̂FDb(x0)|X = x0] = LFDb (x0)
�m − mFDb (x0) (39)

and

Var[m̂FDb(x0)|X = x0] = LFDb(x0)
��LFDb (x0), (40)

where mFDb(x0) = m(x (b) = 1, x0) − m(x (b) = 0, x0).

Proof See Appendix G. �	
Then, the conditional bias and variance can be estimated as follows:

B̂ias[m̂FDb(x0)|X = x0] = LFDb(x0)
�m̂ − m̂FDb(x0) (41)

V̂ar[m̂FDb(x0)|X = x0] = LFDb(x0)
��̂LFDb(x0). (42)

Note that Eq. (38) provides the pointwise first difference estimates. If one is inter-
ested in the average partial effect of going from x (b) = 0 to x (b) = 1, the following
average first difference GKRLS estimator would be used.

m̂FD,b = 1

n′
n′∑

j=1

m̂FDb (x0, j ). (43)

This average partial effect of a discrete variable is similar to the continuous case and
can be compared to traditional parametric partial effects as in the case of least squares
coefficients. The conditional bias and variance of the average first difference GKRLS
estimator in Eq. (43) are:

Bias[m̂FDb
(x0)|X = x0] = 1

n′ ι
�
n′LFD0,bm − 1

n′ ι
�
n′mFD0,b (44)

Var[m̂FDb
|X = x0] = 1

n′2 ι�n′LFD0,b�L�
FD0,b

, (45)

where LFD0,b is the n′ × n smoother matrix with the j th row as LFDb(x0, j ), j =
1, . . . , n′, andmFD0,b is the n

′×1 vector of first differences evaluated at each x0, j , j =
1, . . . , n′. The conditional bias and variance of the average first difference estimator
can be estimated using Eqs. (41) and (42).

6 Simulations

We conduct simulations that show the performance with respect to gaining efficiency
of the proposed generalized KRLS estimator. Consider the data generating process
from Eq. (1):
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Yi = m(Xi ) +Ui , i = 1, . . . , n. (1)

We consider the sample size of n = 200 and three independent variables X that is
generated from

X1 ∼ Bern(0.5)

X2 ∼ N (0, 1)

X3 ∼ U (−1, 1).

(46)

The specification for m is:

m(Xi ) = 5 − 2Xi,1 + sin(Xi,2) + 3Xi,3 (47)

and the partial derivatives with respect to each independent variable are given by

m(1)
1 (Xi ) = −2

m(1)
2 (Xi ) = cos(Xi,2)

m(1)
3 (Xi ) = 3

(48)

For the error terms, we consider two cases.

Ui = 0.7Ui−1 + Vi

Vi ∼ N (0, 52)
(49)

and
Ui ∼ N

(
0, exp(Xi,1 + 0.2Xi,2 − 0.3Xi,3)

)
(50)

First, in Eq. (49), Ui is generated by an AR(1) process. Second, Ui is heteroskedastic
but independent of each other with Var[Ui |X] = exp(Xi,1 + 0.2Xi,2 − 0.3Xi,3).

In addition to the proposed estimator, we compare four other nonparametric esti-
mators: the KRLS estimator (KRLS), Local Polynomial (LP) estimator with degree
zero, Random Forest (RF), and Support Vector Machine (SVM). The KRLS estimator
is used as a comparison to GKRLS to show the magnitude of the efficiency loss from
ignoring the information in the error covariance matrix. In addition, the KRLS, LP,
RF, and SVM estimators do not utilize the covariance matrix in estimating the regres-
sion function and excludes heteroskedasticity or autocorrelation of the errors. For the
GKRLS and KRLS estimators, we set σ 2

1 = σ 2
2 = 3, the number of independent

variables in this example, and implement leave one out cross validation to select the
hyperparameters, λ1 and λ2.2 The variance function under the heteroskedastic case
is estimated by least squares from the regression of the log residuals on X . Taking
the exponential would give the predicted variance estimates. Under the case of AR(1)
errors, the covariance function is estimated from an AR(1) model. We run 200 simu-
lations for each of the two cases and the bias corrected results are reported below in
Table 1.3 To evaluate the estimators, mean squared error is used as the main criterion,

2 The hyperparameters of the LP, RF, and SVM estimators are chosen by their default methods in their
respective R packages.
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Table 1 The table reports the
bias, variance, and MSE of
GKRLS, KRLS, LP, RF, and
SVM estimators for the
regression function m(x0) under
the cases of heteroskedastic and
AR(1) errors generated from
Eqs. (46),(47),(49) and (50). The
GKRLS and KRLS estimates are
bias corrected. All estimates are
averaged across all simulations

MSE Variance Bias

Simulation evaluation for m(x0)

Autocor. errors GKRLS 2.8562 1.6311 0.0140

KRLS 2.9767 2.3835 −0.0094

LP 3.4623 3.0822 −0.0112

RF 3.8442 3.5013 0.0205

SVM 5.7663 5.6482 0.0263

Heterosk. errors GKRLS 0.2287 0.1702 0.0103

KRLS 0.2366 0.1766 −0.0148

LP 0.2696 0.1958 0.0055

RF 0.5917 0.1372 0.0178

SVM 0.2632 0.2105 −0.0001

where we also investigate the bias and variance. To compare results, all estimators are
evaluated from 300 data points generated from Eqs. (46) and (47).

Table 1 displays the evaluations, including bias, variance, and MSE of the esti-
mators for the regression function under both error cases. Note that the GKRLS and
KRLS estimates in Table 1 are bias corrected. All estimates are averaged across all
simulations. Estimates based on GKRLS seem to exhibit similar finite sample bias
as KRLS, and there is an obvious reduction in the variability with smaller variance
of the proposed estimator relative to KRLS. Note that GKRLS estimation provides
a 31.6% and a 3.6% decrease in the variance for estimating the regression function
for the autocorrelated and heteroskedastic errors, relative to KRLS. With smaller vari-
ance, GKRLS also has a smaller MSE, making GKRLS superior to KRLS. Compared
to the other nonparametric estimators, LP, RF, and SVM, the GKRLS estimator out-
performs the others in terms of MSE and is the preferred method in the presence of
heteroskedasticity or autocorrelation.

Table 2 displays the evaluations, including bias, variance, and MSE of the bias
corrected GKRLS and KRLS estimators for the partial derivatives of the regression
function with respect to each of the independent variables under both error cases.4

Since X1 is discrete, the partial derivative is estimated by first differences discussed
in Sect. 5.1. Similar to the regression estimates, for both heteroskedastic and AR(1)
errors, the variability from estimating the derivative is reduced by GKRLS estimation
relative to KRLS estimation. In addition, the efficiency gain in estimating both the
regression and the derivative seems to be more evident in the AR(1) case compared to
the heteroskedastic case. A possible explanation for this is that the covariance matrix
contains more information in the off-diagonal elements compared to the diagonal

3 The following R packages were used for conducting simulations: Borchers (2021), Hyndman and Khan-
dakar (2008),McLeod et al. (2007), Boos andNychka (2022), Hayfield andRacine (2008), Liaw andWiener
(2002), and Meyer et al. (2022).
4 The derivatives are not reported for LP, RF, and SVMsince derivative estimation for RF and SVMmethods
are uncommon. The derivative estimates for LP can be obtained but in this simulation the GKRLS estimator
is superior with respect to MSE.
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Table 2 The table reports the bias, variance, and MSE of the bias corrected GKRLS and KRLS estimators

and the cases of heteroskedastic and AR(1) errors for the derivative of the regression function m(1)
r (x0)

generated from Eqs. (46)–(50). Each row represents the MSE, variance, and bias of the partial derivative
estimates with respect to Xr , r = 1, 2, 3. All estimates are averaged across all simulations

GKRLS KRLS

MSE Variance Bias MSE Variance Bias

Simulation evaluation for m(1)
r (x0)

Autocor. errors X1 1.1708 0.4092 0.8239 2.1013 1.7419 0.5017

X2 0.3800 0.0887 −0.3567 0.7745 0.5502 −0.2700

X3 5.2002 0.3361 −2.0737 5.5494 1.6599 −1.7282

Heterosk. errors X1 0.3290 0.2835 0.0950 0.3291 0.2922 0.0914

X2 0.2414 0.1695 −0.0421 0.2524 0.1718 −0.0534

X3 2.0529 0.5746 −0.7904 2.1461 0.5876 −0.8218

Table 3 The table reports the bias, variance, and MSE of the GKRLS estimator for both the regression
function and the partial derivatives and for the cases of heteroskedastic and AR(1) errors generated from
Eqs. (46)–(50) for different sample sizes, n = 100, 200, 400. All reported estimates are biased corrected
and are averaged across all simulations. The kernel hyperparameters are set as σ 2

1 = σ 2
2 = 3 and the

hyperparameters λ1 and λ2 are found by LOOCV

Autocor. errors Heterosk. errors

MSE Variance Bias2 MSE Variance Bias2

Simulation results for consistency of GKRLS

m(x0) n = 100 4.9665 2.8562 1.6112 0.4113 0.2287 0.1309

n = 200 2.7170 1.6311 0.8786 0.3012 0.1702 0.0993

n = 400 2.2496 1.2251 0.7326 0.1101 0.0585 0.0316

m(1)
1 (x0) n = 100 2.3091 0.5590 1.7501 0.5880 0.5196 0.0683

n = 200 1.1708 0.4092 0.7615 0.3290 0.2835 0.0455

n = 400 0.6992 0.2647 0.4345 0.1964 0.1695 0.0269

m(1)
2 (x0) n = 100 0.4614 0.1164 0.3449 0.3751 0.2702 0.1049

n = 200 0.3800 0.0887 0.2913 0.2414 0.1695 0.0719

n = 400 0.2962 0.0715 0.2247 0.1601 0.1063 0.0539

m(1)
3 (x0) n = 100 6.6704 0.4951 6.1753 2.8633 0.8853 1.9780

n = 200 5.2002 0.3361 4.8641 2.0529 0.5746 1.4783

n = 400 4.4179 0.2261 4.1918 1.5181 0.3793 1.1388

covariance matrix in the heteroskedastic case. Overall, when estimating the regression
function and its derivative for this simulation example, the reduction in variance and
therefore MSE is clearly evident in Tables 1 and 2, making the GKRLS the preferred
estimator.

Table 3 shows the simulation results for the consistency of GKRLS. The bias,
variance, andMSEare reported for sample sizes of n = 100, 200, 400. In this example,
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we set σ 2
1 = σ 2

2 = 3 and the hyperparameters λ1 and λ2 are found by LOOCV. For
the regression function and the derivative and for both error covariance structures,
the squared bias, variance, and MSE all decrease as the sample size increases, which
implies that the GKRLS estimator is consistent in this simulation exercise.

7 Application

We implement an empirical application from the U.S. airline industry with het-
eroskedastic and autocorrelated errors using a panel of 6 firms over 15 years.5 For
the data set, we set aside a portion of the data for training and the other for testing.
We estimate the model with four methods, GKRLS, KRLS, LP, and Generalized Least
Squares (GLS), and compare their results in terms of mean squared error (MSE). To
evaluate the out of sample performance of each method, the predicted out of sample
MSEs are computed as follows

MSEe = 1

n′T

n′∑

i=1

T∑

t=1

(
y0,i t − m̂e(x0,i t )

)2 (51)

where MSEe is the mean squared error for the eth estimator and n′ is the number
of observations in the testing data set and j = 1, . . . , n′. In this empirical exercise,
n′ = 1 and T = 15 since we leave out the first firm as a test set. To assess the estimated
average derivatives, we use the bootstrap to calculate the MSEs for the average partial
effects.We report the bootstrappedMSEs for the average derivative by the following.6

MSEe,r = 1

B

B∑

b=1

(
m̂(1)

avg,e,r ,b − 1

4

∑

e

m̂(1)
avg,e,r

)2

(52)

where B is the number of bootstraps with b = 1, . . . , B, m̂(1)
avg,e,r ,b(·) is the bth

bootstrapped average partial first derivative with respect to the r th variable for the
eth estimator, and 1

4

∑
e m̂

(1)
avg,e,r is the simple average of the average partial first

derivatives with respect to the r th variable from the four estimators (GLS, GKRLS,
KRLS, and LP):

m̂(1)
avg,e,r = 1

nT

n∑

i=1

T∑

t=1

m̂(1)
e,r (xit ),

e = {GLS,GKRLS,KRLS,LP}
(53)

5 The data for the application is from Greene (2018) and can be downloaded at https://pages.stern.nyu.edu/
~wgreene/Text/Edition7/tablelist8new.htm.
6 The R package by Callaway (2022) was used to obtain the bootstrap samples.
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7.1 U.S. airline industry

We obtain the data on the efficiency in production of airline services from Greene
(2018). Since the data are a panel of 6 firms for 15 years, we consider the one way
random effects model:

logCit = m(log Qit , log Pit ) + αi + εi t , (54)

where the dependent variable Yit = logCit is the logarithm of total cost, the inde-
pendent variables Xit = (log Qit , log Pit )� are the logarithms of output and the price
of fuel, respectively, αi is the firm specific effect, and εi t is the idiosyncratic error
term. In this empirical setting, we assume E[εi t |X] = 0, E[ε2i t |X] = σ 2

εi
, E[αi |X] =

0, E[α2
i |X] = σ 2

αi
, E[εi tα j |X] = 0 for all i, t, j , E[εi tε js |X] = 0 if t 
= s or i 
= j ,

and E[αiα j |X] = 0 if i 
= j . Consider the composite error termUit ≡ αi + εi t . Then,
the model in Eq. (54) can be rewritten as

logCit = m(log Qit , log Pit ) +Uit , (55)

In Eq. (55), the independent variables are strictly exogenous to the composite error
term,E[Uit |X] = 0. The variance of the composite error term isE[U 2

i t |X] = σ 2
αi

+σ 2
εi
.

Therefore, in this empirical example, we allow for firm specific heteroskedasticity.
In other words, the variance of the error terms are not constant across firms, but
are constant over time for each firm. Since there is a time component, we allow
an individual firm to be correlated across time but not with other firms, that is,
E[UitUis |X] = σ 2

αi
, t 
= s and E[UitU js |X] = 0 for all t and s if i 
= j . Note

that the correlation across time can be different for every firm. Therefore, in this
empirical framework, we allow the error terms to be heteroskedastic across firms and
correlated across time.

To estimate Eq. (55) by GKRLS and KRLS in the framework set up in this paper,
we can write the model in matrix notation. Consider

y = m + U, (56)

where y is the nT × 1 vector of logCit , m is the nT × 1 vector of the regression
function m(Xit ), and U is the nT × 1 vector of Uit , i = 1, . . . , n and t = 1, . . . , T .
Then, the nT × nT error covariance matrix � is

� = Var[U|X] = diag(�1, . . . , �n), (57)

where �i = σ 2
εi
IT + σ 2

αi
ιT ι�T , i = 1, . . . , n has dimension T × T , IT is a T × T

identity matrix and ιT is a T × 1 vector of ones. To use the GKRLS estimator in
this empirical framework, we first estimate Eqs. (55) or (56) by KRLS and obtain the
residuals, denoted by ûi t . To estimate the error covariance matrix �, the variances of
the firm specific error and the idiosyncratic error, σ 2

αi
and σ 2

εi
need to be estimated.
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Table 4 Bias corrected average
partial derivatives and their
standard errors in parentheses
are reported for GLS, GKRLS,
KRLS, and LP estimators. The
columns represent the estimates
of the average partial derivative
with respect to each regressor

log (Q) log (P)

Average partial derivatives for airline data

GLS 0.8436 0.4188

(0.0311) (0.0181)

GKRLS 0.8130 0.4247

(0.0034) (0.0082)

KRLS 0.8248 0.4581

(0.016) (0.0457)

LP 0.5885 0.2260

(0.0276) (0.0138)

Consider the following consistent estimators using time averages,

σ̂ 2
Ui

= 1

T
û�
i ûi (58)

σ̂ 2
αi

= 1

T (T − 1)/2

T−1∑

t=1

T∑

s=t+1

ûi t ûis (59)

σ̂ 2
εi

= σ̂ 2
Ui

− σ̂ 2
αi

, (60)

where ûi is the T ×1 vector of residuals for the ith firm. Now, plugging these estimates
in for�, the GKRLS estimator can be estimated as in the previous sections. For further
details, please see Appendix H.

With regards to the other comparable estimators, the KRLS and LP estimators are
used to estimate Eqs. (55) or (56) ignoring the heteroskedasticity and correlation in
the composite error,U. Note that the KRLS estimator uses the error covariance matrix
in the variances and standard errors but does not use the error covariance in estimating
the regression function. Lastly, the GLS estimator is used as a parametric benchmark
to compare to the standard random effects panel data model.7

The data contain 90 observations of 6 firms for 15 years, from 1970–1984. We split
the data into two parts, where the first 15 observations, which corresponds to the first
firm, are used as testing data and 75 observations, which corresponds to the last five
firms, are set as training data to evaluate out of sample performance. Thus, the training
data, i = 1, . . . , 5 and t = 1, . . . , 15, has a total of 75 observations. For the GKRLS
and KRLS estimators, all hyperparameters are chosen via LOOCV.8

The bias corrected average partial derivatives and corresponding standard errors are
reported in Table 4. These averages are calculated by training each estimator on the five
firms with 75 observations in the training data set. The estimates are bias corrected and
the results from Sect. 5 are used in our calculations. All estimators display positive and

7 The R package by Croissant and Millo (2008) was used to obtained the Random Effects GLS estimator.
8 For the LP estimator, cross validation is used to select the hyperparameters. The local constant estimator
is used, although one can use the local linear estimator, which gives similar results to that of the local
constant.
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Table 5 The MSEs are reported
for the GLS, GKRLS, KRLS,
and LP, estimators. The first
column are the out of sample
MSEs calculated by Eq. (51) and
the second and third columns are
the bootstrapped MSEs for the
average partial derivatives
calculated by Eq. (52). The
GKRLS and KRLS estimates are
bias corrected

MSE MSElog Q MSElog P

MSEs for airline data

GLS 0.0106 0.0042 0.0018

GKRLS 0.0091 0.0030 0.00001

KRLS 0.0306 0.0031 0.0024

LP 0.0191 0.2900 0.0867

significant relationships between cost and each of the regressors, output and price, with
their average partial derivatives being positive. The elasticity with respect to output
ranges from 0.5885 to 0.8436 and with respect to price ranges from 0.2260 to 0.4581.
More specifically, for the GKRLS estimator, a 10% increase in output would increase
the total cost by an average of 8.13% and a 10% increase in fuel price would increase
the total cost by an average of 4.25% holding all else fixed. Comparing the GKRLS
and KRLS methods, the estimates of the average partial derivatives are similar but the
standard errors are significantly reduced for GKRLS for both output and fuel price,
implying a gain in efficiency. Therefore, using the information and the structure of
the error covariance in Eq. (57) in estimated the regression function allows GKRLS
to provide more robust estimates of the average partial effects of each independent
variable compared to KRLS.

Table 4 shows that the GLS estimator slightly overestimates the elasticity with
respect to output and underestimates the elasticity with respect to fuel price compared
to those of GKRLS. The LP estimator appears to provide different average partial
effect estimates compared to the rest of the estimators. One possible explanation
is that the bandwidths may not be the most optimal since data-driven bandwidth
selection methods (e.g., cross validation) fail when there is correlation in the errors
(De Brabanter et al. 2018). Since the data is panel structured, there is correlation
across time, making bandwidth selection for LP estimators difficult. The LP estimates
are from the local constant estimator; however, the local linear estimator provides
similar estimates of the average partial effects to those of the local constant estimator.
Nevertheless, theLPaverage partial effects of each variable are positive and significant,
which are consistent with the other methods. Furthermore, GKRLS provides similar
average partial effects with respect to output and price but is more efficient in terms
of smaller standard errors relative to the other considered estimators.

To assess the estimators in terms of out of sample performance, we calculate the
MSEs using the 15 observations in the testing data set. Table 5reports MSEs for the
four considered estimators. The first column reports the out of sample MSEs using the
15 observations from the first firm. Out of all the considered estimators, the GKRLS
estimator outperforms the others in terms of MSE. In other words, the GKRLS esti-
mator can be seen as the superior method in estimating the regression function in
this empirical example. The bootstrapped MSEs for the average partial derivatives,
calculated by Eq. (52), are reported in the second and third columns of Table 5. For
both the average partial derivatives with respect to output and price, GKRLS produces
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the lowest MSE, outperforming the other estimators. In addition, since GKRLS incor-
porates the error covariance structure, efficiency is gained and therefore reductions
in MSEs are made relative to KRLS. Overall, GKRLS is considered to be the best
method in terms of MSE for estimating both the airline cost function and the average
partial effects with respect to output and price.

8 Conclusion

Overall, this paper proposes a nonparametric regression function estimator via KRLS
under a general parametric error covariance. The two step procedure allows for het-
eroskedastic and serially correlated errors, where in the first step, KRLS is used to
estimate the regression function and the parametric error covariance, and in the sec-
ond step, KRLS is used to estimate the regression function using the information in
the error covariance. The method improves efficiency in the regression estimates as
well as the partial effects estimates compared to standard KRLS. The conditional bias
and variance, pointwise marginal effects, consistency, and asymptotic normality of
GKRLS are provided. Simulations show that there are improvements in variance and
MSE reduction when considering GKRLS relative to KRLS. An empirical example is
illustrated with estimating an airline cost function under a random effects model with
heteroskedastic and correlated errors. The average derivatives are evaluated, and the
average partial effects of the inputs are determined in the application. In the empiri-
cal exercise, GKRLS is more efficient compared to KRLS and is the most preferred
method for estimating the airline cost function and its average partial derivatives in
terms of MSE.
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Appendices

A Proof of Theorem 1

First, we note that the GKRLS estimator is a linear smoother by substituting Eqs. (10)
into (11)

m̂2(x0) =
n∑

i=1

ĉ2,i Kσ2(xi , x0)

= K ∗�
σ2,x0 ĉ2

= K ∗�
σ2,x0(�

−1Kσ2 + λ2I)−1�−1y

= L(x0)�y,

where L(x0) = [
K ∗�

σ2,x0(�
−1Kσ2 + λ2I)−1�−1

]�
and K ∗

σ2,x0 = (Kσ2(x1, x0), . . . ,
Kσ2(xn, x0))

� the kernel vector evaluated at point x0.
Then, the conditional mean and variance of GKRLS can be derived as follows

E[m̂2|X = x0] = L(x0)�E[y|X]
= L(x0)�m

and

Var[m̂2(x0)|X = x0] = L(x0)� Var[y|X]L(x0)

= L(x0)��L(x0).

B Proof of Theorem 2

The exact bias for GKRLS for the training data is given by

E[m̂2|X = x] − m = (L − I)m,

and observe that the residuals are obtained by

û2 = y − m̂2

= y − Ly

= (I − L)y.

And the expectation of the residuals is given by

E[̂u2|X = x] = m − Lm

= −Bias[m̂2|X].
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De Brabanter et al. (2011) suggests estimating the conditional bias by smoothing
the negative residuals

B̂ias[m̂2|X] = −Lû2
= −L(I − L)y

= (L − I)m̂2.

Therefore, the conditional bias can be estimated at any point x0 by

B̂ias[m̂2(x0)|X = x0] = L(x0)�m̂ − m̂2(x0)

For the conditional variance, we assume that the error covariance matrix� = �(θ)

can be consistently estimated by �̂ = �̂(θ̂). Then, using a consistent estimator of the
error covariance matrix, the conditional variance of GKRLS can be estimated by

V̂ar[m̂2(x0)|X = x0] = L(x0)��̂L(x0).

C Proof of Theorem 3

Since the bias corrected fitted values, m̂c, have zero conditional bias, we can focus
on the conditional variance. From Theorem 1, the conditional variance of the GKRLS
estimator is

Var[m̂2|X] = L�L�

= LPP�L�

= LP(LP)�

= AA�,

where A ≡ LP . Consider the singular value decomposition of A, where D, U, V are
the singular values, left singular vectors, and right singular vectors respectively.

Var[m̂2|X] = AA�

= UDV(UDV)�

= UD2U�

= U

⎛

⎜⎝
d21 . . . 0
...

. . .
...

0 . . . d2n

⎞

⎟⎠U�,

where di , i = 1, . . . , n denotes the i th diagonal element of D, i.e. the i th singular
value of LP . To examine the sum of the variances of m̂2, the trace of the variance
matrix is evaluated.
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tr(Var[m̂2|X]) = tr(UD2U�)

= tr(D2U�U)

= tr(D2)

=
n∑

i

d2i .

For large enough n, tr(D2) slows in growth and converges to some constant, M , and
the average variance of m̂(xi ) is 1

n

∑n
i=1 d

2
i . Recall that d

2
i denotes the i th squared

singular value of LP and is proportional to the variance explained by a given singular
vector of LP . Given the construction of LP , the columns of this product matrix can
be thought of as weights of the data, scaled by the standard deviation of the error
term. Therefore, the number of large singular values will grow initially with n but
the number of important dimensions or singular values will start to grow slowly with
n. As a result, the average variance of m̂(xi ), which is 1

n

∑n
i=1 d

2
i , shrinks to zero as

n → ∞. Since the average variance shrinks to zero, then each individual variance
must approach zero as n becomes large.

We also provide an alternative proof of consistency. Consider the GKRLS
coefficient estimator of c in Eq. (10):

ĉ2 = (�−1Kσ2 + λ2I)−1�−1y

= (�−1Kσ2 + λ2I)−1�−1 (
Kσ2c + u

)

=
(
1

n
�−1Kσ2 + λ2

n
I
)−1 1

n
�−1 (

Kσ2c + u
)

=
(
1

n
�−1Kσ2 + λ2

n
I
)−1 (

1

n
�−1Kσ2

)
c +

(
1

n
�−1Kσ2 + λ2

n
I
)−1 (

1

n
�−1

)
u

Again, since we consider the bias corrected estimator, m̂2,c, we can focus on the con-
ditional variance. However, below we also show that the non-bias corrected estimator
has zero conditional bias in the limit. Taking the conditional bias of ĉ2:

Bias[̂c2|X] =
(
1

n
�−1Kσ2 + λ2

n
I
)−1 (

1

n
�−1Kσ2

)
c − c,

where the strict exogeneity assumptionE[u|X] = 0 is used. Furthermore, if we assume
λ2 is fixed or does not grow as fast as n and

( 1
n�−1Kσ2

) → Q, a positive definite
matrix with finite elements, when n → ∞, then Bias[̂c2|X] → 0 as n → ∞.

Taking the conditional variance of ĉ2:

Var[̂c2|X] = 1

n

(
�−1Kσ2

n
+ λ2I

n

)−1 (
�−1

n

) [(
�−1Kσ2

n
+ λ2I

n

)−1
]�

.
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Again, we assume that λ2 is fixed or does not grow as fast as n and
( 1
n�−1Kσ2

) →
Q, a positive definite matrix with finite elements. Furthermore, if we assume that( 1
n�−1

) → Q�, a matrix with finite elements when n → ∞, then Var[̂c2|X] → 0 as
n → ∞. Therefore, plim

n→∞
ĉ2 = c.

Now, consider the GKRLS estimator m̂2 = Kσ2 ĉ2. Then,

plim
n→∞

m̂2 = Kσ2

(
plim
n→∞

ĉ2

)

= Kσ2c

= m,

proving consistency of m̂2. Note that since the variance is O(1/n), m̂2 is
√
n-

consistent.

D Proof of Theorem 4

Consider the difference between the bias corrected fitted values and the true values,
m̂2 − Bias[m̂2|X] − m, where Bias[m̂2|X] = Lm − m,

m̂2 − Bias[m̂2|X] − m = Lu

Note that E[Lu|X] = 0 and Var[Lu|X] = L�L�. The following results will
be for the case of heteroskedastic errors, where observations are independent and
heterogeneously distributed. Consider the individual variances for each observation,

Var[L(xi )ui |X] = L(xi )��L(xi )

and let s2n be the sum of the variances,

s2n =
n∑

i=1

L(xi )��L(xi ).

As long as the sum is not dominated by any particular term and if L(xi )ui are indepen-
dent vectors distributed with mean 0 and variance L(xi )��L(xi ) < ∞ and s2n → ∞
as n → ∞, then

√
nLu

d→ N (0,L�L�),

by Lindeberg-Feller central limit theorem. It then follows that

√
n(m̂2 − Bias[m̂2|X] − m)

d→ N (0,L�L�).
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The following results will be for the case of autocorrelated errors,
where observations are dependent and identically distributed.9 Define Ln ≡
Kσ2

(
�−1Kσ2+λ2I

n

)−1

�−1 and Ln(Xt ) as the t−th row of Ln . Given (i) Yt =
m(Xt ) + ut , t = 1, 2, . . .; (ii) {(Xt , ut )} is a stationary ergodic sequence; (iii) (a)
{Ln(Xthi )uth,Ft } is an adapted mixingale of size −1, h = 1, . . . , p, i = 1, . . . , n;

(b) E|Ln(Xthi )uth |2 < ∞, h = 1, . . . , p, i = 1, . . . , n; (c) Vn ≡ Var
(

1√
n
Lnu

)
is

uniformly positive definite; (iv) E|Ln(Xthi )|2 < ∞, h = 1, . . . , p, i = 1, . . . , n; (v)
lim
n→∞Ln(Xt ) = L(Xt ) and lim

n→∞Ln = L.

Consider n−1/2 ∑n
t=1 λ�V−1/2Ln(Xt )ut , where V is any finite positive definite

matrix. By Theorem 3.35 of White (2001), {Zt ,Ft } is an adapted stochastic sequence
because Zt is measurable with respect to Ft . To see that E(Z2

t ) < ∞, note that we
can write

Zt = λ�V−1/2Ln(Xt )ut

=
p∑

h=1

λ�V−1/2Ln(Xth)uth

=
p∑

h=1

n∑

i=1

λ̃i Ln(Xthi )uth,

where λ̃i is the i th element of the n × 1 vector λ̃ ≡ V−1/2λ. By definition of λ and
V, there exists 	 < ∞ such that |λ̃i | < 	 for all i . It follows from Minkowski’s
inequality that

E(Z2
t ) ≤

[ p∑

h=1

n∑

i=1

(
E|λ̃i Ln(Xthi )uth |2

)1/2
]2

≤
[
	

p∑

h=1

n∑

i=1

(
E|Ln(Xthi )uth |2

)1/2
]2

≤ [	pn	1/2]2 ≤ ∞,

since for 	 sufficiently large, E|Ln(Xthi )uth |2 < 	 < ∞ given (i i i .b) and the
stationarity assumption. Next, we show {Zt ,Ft } is a mixingale of size −1. Using the
expression for Zt just given, we can write

E([E(Z0|F−m)]2) = E

⎛

⎝
[

E

( p∑

h=1

n∑

i=1

λ̃i Ln(X0hi )u0h |F−m)

)]2
⎞

⎠

= E

⎛

⎝
[ p∑

h=1

n∑

i=1

E

(
λ̃i Ln(X0hi )u0h |F−m

)]2
⎞

⎠ .

9 We follow the proof similar to the case of dependent identically distributed observations provided by
White (2001).

123



Generalized Kernel regularized... 3083

Applying Minkowski’s inequality, it follows that

E([E(Z0|F−m)]2) ≤
[ p∑

h=1

n∑

i=1

(
E

[
E

(
λ̃i Ln(X0hi )u0h |F−m

)2])1/2
]2

≤
[
	

p∑

h=1

n∑

i=1

(
E

[
E(Ln(X0hi )u0h |F−m)2

])1/2
]2

≤
[
	

p∑

h=1

n∑

i=1

c0hiγmhi

]2

≤ [	pnc̄0γ̄m]2,

where c̄0 = maxh,i c0hi < ∞ and γ̄m = maxh,i γmhi is of size −1. Thus, {Zt ,Ft } is
a mixingale of size −1. Note that

Var(
√
n Z̄n) = Var

(
1√
n

n∑

t=1

λ�V−1/2Ln(Xt )ut

)

= λ�V−1/2VnV−1/2λ → σ̄ 2 < ∞.

Hence Vn converges to a finite matrix. Set V = limn→∞ Vn = L�L� which is
positive definite given (iii.c). Then, σ̄ 2 = λ�V−1/2VV−1/2λ = 1. Then by the mar-

tingale central limit theorem, n−1/2 ∑n
t=1 λ�V−1/2Ln(Xt )ut

d→ N (0, 1). Since this
holds for every λ such that λ�λ = 1, it follows from Cramér-Wold Theorem, that

n−1/2V−1/2 ∑n
t=1 Ln(Xt )ut

d→ N (0, I). Hence,
√
nLu

d→ N (0,L�L�) and it then
follows that

√
n(m̂2 − Bias[m̂2|X] − m)

d→ N (0,L�L�).

E Proof of Theorem 5

First, we note that the GKRLS derivative estimator is a linear smoother by substituting
Eqs. (10) into (28),

m̂(1)
2,r (x0) = 2

σ 2
2

n∑

i=1

e
− 1

σ22
||xi−x0||2

(x(r)
i − x(r)

0 )̂c2,i

= K ∗�
σ2,x0	r ĉ2

= K ∗�
σ2,x0	r (�

−1Kσ2 + λ2I)−1�−1y

= Sr (x0)�y,
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where 	r ≡ 2
σ 2
2
diag(x(r)

1 − x(r)
0 , . . . , x(r)

n − x(r)
0 ) is a n × n diagonal matrix and

Sr (x0) =
[
K ∗�

σ2,x0	r (�
−1Kσ2 + λ2I)−1�−1

]�
(61)

is the smoother vector for the first partial derivative with respect to the r th variable.
Then, the conditional mean and variance of the GKRLS derivative can be derived as
follows

E[m̂(1)
2,r (x0)|X = x0] = Sr (x0)�E[y|X]

= Sr (x0)�m

and

Var[m̂(1)
2,r (x0)|X = x0] = Sr (x0)� Var[y|X]Sr (x0)

= Sr (x0)��Sr (x0).

F Proof of Theorem 6

The bias of the GKRLS derivative estimator in Eq. (28)

Bias[m̂(1)
2,r (x0)|X = x0] = Sr (x0)�E[y|X] − m(1)

r (x0)

= Sr (x0)�m − m(1)
r (x0),

where m(1)
r (x0) is the true first partial derivative of m with respect to the r th vari-

able. Since this quantity as well as m is unknown, we estimate both to calculate the
conditional bias.

B̂ias[m̂(1)
2,r (x0)|X = x0] = Sr (x0)�m̂2 − m̂(1)

2,r (x0),

where m̂2 is the n × 1 vector of in sample GKRLS predictions of m and m̂(1)
2,r (x0) is

the estimated GKRLS derivative prediction evaluated at point x0.
For the conditional variance, we assume that the error covariance matrix� = �(θ)

can be consistently estimated by �̂ = �̂(θ̂). Then, using a consistent estimator of the
error covariance matrix, the conditional variance of the GKRLS derivative estimator
can be estimated by

V̂ar[m̂(1)
2,r (x0)|X = x0] = Sr (x0)��̂Sr (x0) (62)
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G Proof of Theorem 7

The conditional bias of the GKRLS first difference estimator in Eq. (38) is

Bias[m̂FDb (x0)|X = x0]
= L(x(b) = 1, x0)

�m − m(x(b) = 1, x0) −
[
L(x(b) = 0, x0)

�m − m(x(b) = 0, x0)
]

=
[
L(x(b) = 1, x0) − L(x(b) = 0, x0)

]�
m −

[
m(x(b) = 1, x0) − m(x(b) = 0, x0)

]

= LFDb (x0)
�m − mFDb (x0),

where mFDb (x0) = m(x (b) = 1, x0) − m(x (b) = 0, x0) is the true first difference of
m with respect to the bth variable and LFDb (x0) = L(x (b) = 1, x0)− L(x (b) = 0, x0)
is the first difference smoother vector.

The conditional variance of the GKRLS first difference estimator in Eq. (38) is

Var[m̂FDb(x0)|X = x0]
= L(x (b) = 1, x0)��L(x (b) = 1, x0) + L(x (b) = 0, x0)��L(x (b) = 0, x0)

− L(x (b) = 1, x0)��L(x (b) = 0, x0) − L(x (b) = 0, x0)��L(x (b) = 1, x0)

=
[
L(x (b) = 1, x0) − L(x (b) = 0, x0)

]�
�

[
L(x (b) = 1, x0) − L(x (b) = 0, x0)

]

= LFDb (x0)
��LFDb (x0).

H A random effects model for airline sata used in Sect. 7

Consider the following random effects model for an airline cost function:

Yit = m(Xit ) + αi + εi t ,

Yit = logCit , Xit = (log Qit , log Pit )�, αi is the firm specific effect, and εi t is the
idiosyncratic error term. In this empirical setting, we assume

E[εi t |X] = 0

E[ε2i t |X] = σ 2
εi

E[αi |X] = 0

E[α2
i |X] = σ 2

αi

E[εi tα j |X] = 0 for all i, t, j

E[εi tε js |X] = 0 if t 
= s or i 
= j

E[αiα j |X] = 0 if i 
= j
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Consider the composite error termUit ≡ αi +εi t . Then, the model with the composite
error term is

Yit = m(Xit ) +Uit

Note that the independent variables are strictly exogenous; the regressors are mean
independent of each error term and therefore of the composite error term:

E[Uit |X] = E[αi |X] + E[εi t |X]
= 0.

In this framework, we allow for the errors to be heteroskedastic and correlated
across time. The variance of the composite error term is

E[U 2
i t |X] = E[α2

i |X] + E[ε2i t |X] + 2E[αiεi t |X]
= σ 2

αi
+ σ 2

εi
,

where E[αiεi t |X] = 0 by assumption. The covariance of the composite errors is

E[UitUis |X] = E[(αi + εi t )(αi + εis)|X]
= E[α2

i |X]
= σ 2

αi
for t 
= s

and

E[UitU js |X] = E[(αi + εi t )(α j + ε js)|X]
= 0 for all t and s if i 
= j .

Therefore, this framework allows for heteroskedasticity with respect to firms and
correlation across time and the correlation across time can be firm specific.

Define the T × 1 vector of errors for firm i as ui = (ui1, . . . , uiT )�, i = 1, . . . , n,
where we stack the errors over time for each firm. Then define the T × T error
covariance matrix for each firm, �i , as

�i = E[uiu�
i |X]

= σ 2
αi

ιT ι�T + σ 2
εi
IT

=

⎛

⎜⎜⎜⎜⎝

σ 2
αi

+ σ 2
εi

σ 2
αi

. . . σ 2
αi

σ 2
αi

σ 2
αi

+ σ 2
εi

. . .
...

...
. . .

. . . σ 2
αi

σ 2
αi

. . . σ 2
αi

σ 2
αi

+ σ 2
εi

⎞

⎟⎟⎟⎟⎠
.

Therefore, the nT × nT error covariance matrix � is block diagonal as

� = diag(�1, . . . , �n)
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=

⎛

⎜⎜⎜⎜⎝

�1 0 . . . 0

0 �2
. . .

...
...

. . .
. . . 0

0 . . . 0 �n

⎞

⎟⎟⎟⎟⎠

To estimate the random effects model of airline cost by GKRLS, first, we follow
item 1. of the two step procedure outlined in Sect. 2. To get a consistent estimate of
the error covariance matrix �, we can estimate the error variances using the residuals
from the first step as

σ̂ 2
Ui

= 1

T
û�
i ûi

σ̂ 2
αi

= 1

T (T − 1)/2

T−1∑

t=1

T∑

s=t+1

ûi t ûis

σ̂ 2
εi

= σ̂ 2
Ui

− σ̂ 2
αi

.

Since averages are used to estimate the variances and by the law of large numbers σ̂ 2
αi

and σ̂ 2
εi
are consistent estimators of σ 2

αi
and σ 2

εi
. Then, using these estimates for the

error covariance, we follow 2. of the two step procedure to get GKRLS estimates of
the cost function.

In order to apply the asymptotic results established in Sect. 4, we must have nT →
∞. Then, consistency and asymptotic normality of the GKRLS estimator under the
random effects model discussed in Sect. 7 can be applied. In addition, since time
averages are used to estimate the variances, we also must have T → ∞. T → ∞ is
needed to apply the law of large numbers to get consistent estimates of σ 2

αi
and σ 2

εi
.

Since we assume that T → ∞, it must be that nT → ∞, and applying Theorems 3
and 4, the GKRLS estimator is consistent and asymptotically normal.
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