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Abstract
Weextend theHeckman (1979) sample selectionmodel by allowing for a large number
of controls that are selected using lasso under a sparsity scenario. The standard lasso
estimation is known to under-select causing an omitted variable bias in addition to the
sample selection bias. We outline the required adjustments needed to restore consis-
tency of lasso-based estimation and inference for vector-valued parameters of interest
in such models. The adjustments include double lasso for both the selection equation
and main equation and a correction of the variance matrix. We also connect the esti-
mator with results on redundancy of moment conditions. We demonstrate the effect
of the adjustments using simulations and we investigate the determinants of female
labor market participation and earnings in the US using the new approach. The paper
comes with dsheckman, a dedicated Stata command for estimating double-selection
Heckman models.
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1 Introduction

In this paperwe consider an extension of the familiarHeckman (1979) sample selection
model, which can be written as follows:

y1i = x′
1iα + u1i , (1)

y2i = I(x′
iβ + z′

iη + u2i ≥ 0) (2)

where I(·) in the selection Eq. (2) denotes the indicator function, which takes the value
one if its argument is true and zero otherwise, (u1i , u2i ) are the error terms and the
outcome variable y1i is observed only if the selection variable y2i = 1. The main
Eq. (1) contains a k1 × 1 vector of explanatory variables x1i and we are interested
in estimating and testing the coefficient vector α. The explanatory variables of the
selection equation are separated into two parts, xi = (x1i , x2i ) and zi . In the traditional
version of the model there is no distinction between x2i and zi – both represent the
explanatory variables that are present in the selectivity model but not in the main
equation of interest. These are the well known exclusion restrictions that facilitate
identification of α. In our setting, for reasons that will become clear shortly we wish
to differentiate between x2i and zi .

Our extension is to introduce a high-dimensional vector of the explanatory variables
in the selectivity model (2) which may or may not belong to the model. The vector x is
a low-dimensional k × 1 vector of selection determinants that we wish to keep in the
model no matter what. The vector z is a high-dimensional p × 1 vector of potential
controls, where p can be as large as the (pre-selection) sample size N or larger and
where we do not know which of these controls are important, if any. The vector β is
a k × 1 vector of coefficients on x, which can be a target of inference too. The vector
η, on the contrary, is just a p × 1 nuisance parameter vector.

This extension has many empirical applications in economics where we have a
well defined list of regressors for the main equation which has roots in economic
theory (e.g., consumer and labor theory) while what determines selection into the
sample is less certain (see, e.g., Roy 1951; Heckman and Honore 1990). The classic
examples are the estimation of the female labor supply function and wage functions
(see, e.g., Heckman 1979; Arellano and Bonhomme 2017), which may be subject
to selection bias as determinants of the sample selection are confounded with the
behavioral functions of interest. We return to women’s labor force participation and
labor supply decisions in our empirical application section.

Our objective is to consistently estimate α in the outcome Eq. (1) under a potential
sample selection bias arising from the fact that in the observed sample

E(y1i |xi , zi , y2i = 1) = x′
1iα + E(u1i |xi , zi , y2i = 1) �= x′

1iα,

unless E(u1i |xi , zi , y2i = 1) = 0, which is a questionable assumption in prac-
tice. Heckman (1979) assumed joint normality of (u1i , u2i ) and showed that
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E(u1i |xi , zi , y2i = 1) = γ λ(x′
iβ + z′

iη), where λ(·) = φ(·)/�(·) is known as the
inverse Mills ratio. The two-step heckit procedure is (a) to run the maximum likeli-
hood estimation (MLE) for the probit of y2i on (xi , zi ) and use the estimates (β̂, η̂)

to obtain λ̂i ≡ λ(x′
i β̂ + z′

i η̂) and then (b) to regress y1i on x1i and λ̂i . Under correct
specification, the resulting estimators α̂ and γ̂ are consistent and the usual t-test on
γ̂ can be used to test for selection bias. If the null of no bias is rejected, the standard
errors of the second step have to be corrected for the first step estimation error which
is done via a full MLE using normality of the errors or via an analytic correction to
the variance in the second step.

The high-dimensionality of zi poses a challenge in applying the traditional two-
step procedure. First, we cannot include all the variables in zi in the first step because
there are too many variables. If p is larger than N , the probit with all xi and zi is
infeasible, and even if p is substantially smaller than N but is large then including all
these variables can cause difficulties in MLE convergence.

In order to make estimation feasible, it is common to impose a certain structure on
η, known in the literature on regularized estimation as a sparsity scenario. In particular,
we assume that only a fewelements in the coefficient vectorη are substantially different
from zero. Although we assume that η is sparse, we do not know which elements are
non-zero and a consistent model selection technique is required. A popular approach
to regularizing linear models is the least absolute shrinkage and selection operator
(lasso) developed by Tibshirani (1996). The method penalizes the objective function
with an l1-norm of the coefficients. This shrinks the irrelevant coefficients to zero and
thus serves as a model selection tool. However, even for purely linear models, this
approach has well known challenges.

First, lasso makes mistakes. Failure to account for the fact that the covariates have
been selected by lasso results in invalid inference. The reason is that lasso, like many
other model selection techniques, does not always find all the relevant covariates
especially when some coefficients are small. Model selection mistakes made by lasso
cause the distribution of this naive estimator to be biased and nonnormal. For example,
Leeb and Pötscher (2008a, b) and Pötscher and Leeb (2009) show that the normal
approximation for the naive lasso estimator will producemisleading inference. Belloni
et al. (2014b), Belloni et al. (2016b), and Chernozhukov et al. (2018) derive estimators
that are robust to the mistakes made by lasso. Such robust estimators are often referred
to as Neyman orthogonal (NO) estimators because they can be viewed as extensions
of an approach proposed by Neyman (1959).

The second challenge is choosing the lasso tuning parameter. Lasso’s ability to
select relevant covariates depends on themethod used to choose the tuning parameters.
Belloni et al. (2014b) propose a plug-in method and show that NO estimators perform
well on linear models under that method. Belloni et al. (2016b) extend the linear
lasso to logit models and show good performance using a simplified version of the
plug-in method. Drukker and Liu (2022) extend the plug-in method to cross-sectional
generalized linearmodels and provideMonteCarlo evidence that their extensionworks
well in finite samples.

In this paper, we develop NO estimation for the model in (1)–(2) which we call
double-selection Heckman procedure, or DS-HECK. The DS-HECK estimator draws
upon the classical two-step heckit estimator and the double-selection lasso for the high-
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dimensional generalized linear models proposed by Belloni et al. (2016b). We detail
the steps involved in the estimation, work out the estimator properties and derive the
variance corrections. We also provide new insights into how NO estimation is linked
to results on redundancy of knowledge in moment-based estimation considered by
Breusch et al. (1999) and Prokhorov and Schmidt (2009).

The rest of the paper is organized as follows. Section2 describes and studies the
DS-HECK estimator. In Sect. 3, we present simulation results that demonstrate an
excellent performance of DS-HECK in finite samples. In Sect. 4, we apply DS-HECK
to estimate married women’s wage using the 2013 PSIDwave, in the presence of high-
dimensional controls and potential sample selection bias. Finally, Sect. 5 concludes.

2 TheDS-HECK estimator

2.1 Settings

We maintain the standard assumption of the Heckman sample selection model.

Assumption 1 (a) (x, z, y2) are always observed, y1 is observed only when y2 = 1; (b)
(u1, u2) is independent of x and z with zero mean; (c) u2 ∼ N (0, 1); (d) E(u1|u2) =
γ u2.

Assumption 1 is in essence the same as in Wooldridge (2010, p. 803). Part (a)
describes the nature of sample selection. Part (b) assumes that x and z are exogenous.
Part (c) is restrictive but needed to derive the conditional expectation of y1 given that
it is observed. Part (d) requires linearity in the conditional expectation of u1 given u2,
and it holds when (u1, u2) is bivariate normal. However, it also holds under weaker
assumptions when u1 is not normally distributed.

Additionally, we impose a sparsity scenario on η.

Assumption 2 η is sparse; that is, most of the elements of η are zeros. Namely, ||η||0 ≤
s, where || · ||0 denotes the number of non-zero components of a vector. We require s

to be small relative to the sample size N . In particular, s2 log2(max(p,N ))
N −→ 0.

This assumption follows Belloni et al. (2016b). In the settings of generalized linear
models, it allows for the estimation of the nuisance parameter in the selection equation
at the rate o(N−1/4) (see their Condition IR). In our settings, this rate is needed to
guarantee the consistent estimation of β.

Under Assumption 1, it is easy to show that

E(y1|x, z, y2 = 1) = x′
1α + γ λ(x′β + z′η), (3)

where λ(·) = φ(·)/�(·) is the inverse Mills ratio. In essence, this is the classic
formulationofHeckman (1979)where the presenceofx2 and z in the selection equation
(but not in the main equation of interest) permits estimation of the model even when
the inverse Mills ratio is close to being linear in its argument.
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We wish to explore the behavior of this conditional expectation with respect to
potential errors in the choice of z. It is easy to see from applying the mean-value
theorem to the inverse Mills ratio evaluated at x′β, that we can rewrite (3) as follows:

E(y1|x, z, y2 = 1) = x′
1α + γ λ(x′β) + γ λ(1)(q)z′η

= x′
1α + γ λ(x′β) + z′ω, (4)

where q is a point between x′β+z′η and x′β, λ(1)(·) is the first-order derivative of λ(·),
and ω = γ λ(1)(q)η. It is well known that λ(1)(·) is monotone and bounded between
-1 and 0 (see, e.g., Sampford 1953). We note that ω depends on q, γ and η, and that
if η is sparse then ω is sparse too.

Proposition 1 The vector ω in Eq. (4) inherits the same sparsity properties as the
vector η, i.e. ||ω||0 = ||η||0.
Proof.Sketches of the proofs of all less obvious propositions are given in theAppendix.

This Proposition makes it clear that a Heckman model with sparsity in the selection
equation can be written as a heckit model with the same sparsity scenario in the main
equation of interest.

Next we derive some conditions on the linear approximation of the inverse Mills
ratio using z in the selected sample which is common for lasso-based model selection
but new in the context of the Heckman model.

Let n denote the size of the selected sample, defined as follows:

n =
N∑

i=1

I(y2i = 1).

Then, for the selected observations, we can write

y1i = x′
1iα + g(xi , zi ) + εi ,

where g(xi , zi ) = γ λ(x′
iβ + z′

iη), E(εi |xi , zi ) = 0 and V(εi |xi , zi ) = σ 2. We follow
(Belloni et al. 2014b) and write g(xi , zi ) in a linear form subject to a bound on the
approximation error:

y1i = x′
1iα + γ λ(x′

iβ) + z′
iδ + ri + εi , (5)

where ri , i = 1, . . . , n, is the approximation error such that
√

1
n

∑n
i=1 Er2i =

O
(√

s
n

)
. Additionally, we assume that the selected and pre-selection sample sizes

are of the same order.

Assumption 3 Equation (5) holds in the selected sample with n : n
N → c ∈ (0, 1)

and with
√√√√1

n

n∑

i=1

Er2i = O

(√
s

n

)
.
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The assumption on the approximation error follows (Belloni et al. 2014b). Similar to
Assumptions 2, 3 ensures that we can estimate the nuisance parameter in the selected
sample at the rate o(n−1/4) rate. In the context of the Heckman model, it implies
that ||δ||0 = ||ω||0 = ||η||0 ≤ s and that δ is also estimated at o(N−1/4) since
n and N are of the same order. Example-specific primitive conditions that ensure
Assumption 3 holds are discussed by Belloni et al. (2014b, Section 4.1) for parametric
and nonparametric cases, with the parametric example in Section 4.1.1 being most
relevant for our setting.

Next we investigate how to consistently estimate this model accounting for the
high-dimensional nuisance parameter in both equations.

2.2 Estimation of the selection equation

Clearly if we knew the true value of β, we could treat λ(x′β) as a known variable
and we could estimate α and γ , treating δ as nuisance parameters. So we start with
a consistent estimation of β in Eq. (2) using the approach of Belloni et al. (2016b)
combined with parameter tuning of Drukker and Liu (2022).

The estimation involves three steps:

Step 1 (post-lasso probit) We start by estimating a penalized probit of y2 on x and
z using the lasso penalty:

(β̂, η̂) = argmin
β,η

EN (i (β, η)) + λ1||(β, η)||1,

whereEN denotes the sample mean of N observations,i (·) is the negative log-
likelihood for the probit model, || · ||1 is the lasso (l1) norm of the parameters
and λ1 is a tuning parameter chosen using the plug-in method of Drukker and
Liu (2022). This produces a subset of the variables in z indexed by support(η̂),
where for a p-vector v, support(v) := { j ∈ {1, ..., p} : v j �= 0}. These
variables are used in the post-lasso probit:

(β̃, η̃) = argmin
β,η

EN (i (β, η)) : support(η) ⊆ support(η̂)

As a result, we obtain the sparse probit estimates (β̃, η̃) where η̃ contains only a
few non-zero elements. Belloni et al. (2016b) propose using these estimates to
construct weights f̂i = ŵi/σ̂i , where ŵi = φ(x′

i β̃ + z′
i η̃), and σ̂ 2

i = �(x′
i β̃ +

z′
i η̃)(1 − �(x′

i β̃ + z′
i η̃)), for i = 1, . . . , N .

Step 2. We use the weights from Step 1, to run a weighted lasso regression in
which for each variable x j in x, j = 1, . . . , k, we run the penalized regression
of f̂i xi j on f̂izi ,

θ̂ j = argmin
θ j

EN ( f̂ 2i (xi j − z′
iθ j )

2) + λ2||θ j ||1,
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where λ2 is chosen by the plug-in method of Drukker and Liu (2022). For
each element of x, this produces a selection from the variables in z indexed by
support(θ̂ j ), j = 1, . . . , k.

Step 3 (double-selection probit). We use the variables selected from z in Steps 1
and 2 to run the probit of y2 on x and the union of the sets of variables selected
in Steps 1 and 2:

(β̌, η̌) = argmin
β,η

EN (i (β, η) f̂i/σ̂i ),

where support(η) ⊆ support(η̂) ∪ support(θ̂1) ∪ . . . ∪ support(θ̂k).

In the setting of generalized linear models, Belloni et al. (2016b) show that the
double-selection probit corrects for the omitted variable bias introduced by a naive
application of lasso to Eq. (2). The intuition is that the double selection using weights
f̂i “neymanizes” Step 3. That is, it ensures that the estimation error from the first step
does not affect the estimated parameter vector of the last step.

It follows from Belloni et al. (2016b, Theorem1) that, under Assumption 2, β̌ is a
consistent estimator of β and its variance can be obtained from Step 3 using the well
known “sandwich” formula for probit. For example, in Stata it can be obtained using
the vce(robust) syntax. We obtain a regular

√
N -consistent estimator of β with

standard inference, even though a penalized non-
√
N estimator is being used to carry

out model selection for the high-dimensional nuisance parameter η.

2.3 Connection to redundancy of moment conditions

Belloni et al. (2016b) use the Neyman orthogonalization to obtain their result. In this
section we show how NO argument relates to the concept of moment redundancy
pioneered by Breusch et al. (1999). This offers an alternative way of arriving at the
weights derived by Belloni et al. (2016b).

The key insight of Belloni et al. (2016b) is that the weights fi ensure the validity
of the main moment condition:

Egi (β0, η0, θ0) ≡ E[y2i − �(x′
iβ0 + z′

iη0)]( fixi − fiz′
iθ0) = 0, (6)

which has to hold simultaneously with the condition

E
∂

∂η
gi (β0, η0, θ0) = 0.

It is easy to see that Eq. (6) holds due to E(y2i |xi , zi ) = �(x′
iβ0 + z′

iη0) and that for

fi = φ(x′
iβ0+z′iη0)

σ 2
i

, where σ 2
i = V(y2i |xi , zi ) = �(x′

iβ0 + z′
iη0)(1−�(x′

iβ0 + z′
iη0)),

the zero expected derivative condition holds, too. See Eq. (28) of Belloni et al. (2016b).
What has not been noted is that these conditions correspond to what Prokhorov

and Schmidt (2009) call moment and parameter redundancy (M/P-redundancy), that
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is the situation when neither the knowledge of the additional moment conditions nor
the knowledge of the parameter they identify help improve efficiency of estimation.

To see this, let xi be a scalar for notational simplicity, and write the moment con-
ditions identifying β and η as follows:

Eh1i (β0, η0) ≡ E(y2i − �(x′
iβ0 + z′

iη0)) fixi = 0 (7)

Eh2i (β0, η0) ≡ E(y2i − �(x′
iβ0 + z′

iη0)) fizi = 0 (8)

where the subscript “0” on a parameter denotes the true value. These moment con-
ditions correspond to the first order conditions of the probit and stem from the
specification P(y2i = 1|xi , zi ) = �(x′

iβ0 + z′
iη0).

This is the system of moment conditions considered by Breusch et al. (1999) in
the Generalized Method of Moments (GMM) framework. See their Eq. (6). They
show that the (optimal) GMM estimation based on Eqs. (7)–(8) is equivalent to the
estimation based on Eq. (8) and the error in the linear projection of Eq. (7) on Eq. (8).
Using their notation, we can write the equivalent moment system as follows:

E[h1i (β0, η0) − �12�
−1
22 h2i (β0, η0)] = 0 (9)

Eh2i (β0, η0) = 0 (10)

where �12 and �22 are the relevant parts of the moment variance matrix

� ≡ V

[
h1i (β0, η0)

h2i (β0, η0)

]
=

[
�11 �12
�21 �22

]
.

It is easy to see that Eq. (9) coincides with Eq. (6) subject to the additional notation
that θ ′

0 = �12�
−1
22 = Eσ 2

i f 2i xiz
′
i [Eσ 2

i f 2i ziz
′
i ]−1. It is also easy to see that the entire

estimation problem can be written in the GMM framework as follows:

Egi (β0, η0, θ0) ≡ E[y2i − �(x′
iβ0 + z′

iη0)]( fixi − fiz′
iθ0) = 0 (11)

Eh2i (β0, η0) ≡ E(y2i − �(x′
iβ0 + z′

iη0)) fizi = 0 (12)

Eh3i (θ0) ≡ Eσi fizi (σi fixi − σi fiz′
iθ0) = 0 (13)

where the first equation is Eq. (6) above, the second equation is the moment condition
that identifes η0 and the third equation is a modified (through the inclusion of the
scalar σi ) version of the OLS first-order conditions used to estimate θ0.

We note that, due to a separability result of Ahn and Schmidt (1995), we cannot
improve on the estimation of θ0 by estimating it jointly with (β0, η0) because the
additional conditions (11)–(12) only determine θ0 in terms of β0 and η0. See also
Prokhorov and Schmidt (2009, Statement 6). We further note that by Statement 7 of
Prokhorov and Schmidt (2009), joint estimation of the entire vector (β0, η0, θ0) is
equivalent to a two-step estimation where θ0 is estimated first and the second step is
adjusted for the estimation error of the first step.

More importantly, because the correlation between the moment functions in
Eqs. (11) and (12) is zero and the expected derivative of Eq. (11) with respect to η is
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zero, the condition of partial redundancy of Breusch et al. (1999, Theorem 7) holds
(in their notation G21 = 0 and �21 = 0). This means the moment condition (12) is
redundant for the estimation of β (M-redundancy). Additionally, these conditions are
sufficient to show that the knowledge of the value of η0 is redundant (P-redundancy).
See Statement 4 of Prokhorov and Schmidt (2009). So the NO condition of Belloni
et al. (2016b) corresponds to a well established situation in GMM estimation when
neither the knowledge of the parameter η0, nor the knowledge of themoment condition
(12) helps estimate β0.1

2.4 Choice of penalty parameter

The penalty parameters,λ1 andλ2 can be derived analytically but typically, data-driven
methods are used. Their theoretical validity and practical performance have been
well studied. For example, cross-validation or AIC typically under-penalize (over-
select) by including too many variables to reduce bias, compared with BIC or plug-in
methods. Additionally, when too many variables are selected, this violates the sparsity
assumption required for the double lasso to work.

Plug-in methods have been shown to perform well in a multitude of settings (see,
e.g., Drukker and Liu 2022; Belloni et al. 2014b, 2016a).

2.5 Estimation of themain equation

We can now return to the estimation of α and γ . Similar to Belloni et al. (2016b),
Belloni et al. (2014b) observe that the direct application of lasso to linear models
with a large-dimensional nuisance parameter results in a biased estimation of the
parameter of interest, which in their case is a scalar treatment effect. They propose a
double selection procedure. We follow their approach subject to a few modifications
that reflect the specifics of our main equation.

First, with a consistent estimator of β, a natural estimator of the inverse Mills ratio
in Eq. (4) is as follows:

λ̂(x′
iβ) = φ(x′

i β̌)/�(x′
i β̌).

It is also natural to account for the fact that this is a generated regressor when con-
structing the variance matrix, something we consider later.

Second, Belloni et al. (2014b) derive their results for a scalar parameter. Because the
variables of interest x form a vector, we need to extend the original double selection
lasso estimation to vectors. We provide the details of this extension using the NO
arguments in Appendix A.

1 A qualification to this observation is that z has to have fixed and moderate dimensionality so that GMM
is feasible. We thank a referee for pointing this out to us.
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We can now discuss the estimation of themain equation which combines the double
selection lasso of Belloni et al. (2014b) and parameter tuning2 by Drukker and Liu
(2022). It proceeds in three steps:

Step 1 . We run the lasso regression of y1 on z

θ̌y = argmin
θy

En

[
(y1i − z′

iθy)
2
]

+ λ1||θy ||1.

This produces a subset of z indexed by support(θ̌y).
Step 2 . For each variable x1 j in x1, j = 1, . . . , k1, we run the lasso regression of x1 j

on z:

θ̌ j = argmin
θ j

En

[
(x1i j − z′

iθ j )
2
]

+ λ2||θ j ||1.

Additionally, we run the lasso regression of λ̂(x′
iβ) on z:

θ̌λ = argmin
θλ

En

[
(λ̂(x′

iβ) − z′
iθλ)

2
]

+ λ2||θλ||1.

This step produces subsets of z indexed by support(θ̌ j ), j = 1, . . . , k1, and
support(θ̌λ).

Step 3 . We run the regression of y1i on x1i , λ̂(x′
iβ), and the union of the sets selected

in Steps 1 and 2:

(̂α, γ̂ , δ̂) = argmin
α,γ,δ

En

[
(y1i − x′

1iα − λ̂(x′
iβ)γ − z′

iδ)
2
]
,

where support(δ) ⊆ support(θ̌y) ∪ support(θ̌1) ∪ . . . ∪ support(θ̌k1) ∪
support(θ̌λ)

Proposition 2 Under Assumptions 1–3, the DS-HECK estimation in Steps 1–3 above
is consistent for α and γ and post-double-selection inference on α and γ is valid.

The DS-HECK estimator corrects the bias generated by applying the lasso directly
to Eq. (4). The simulation experiments we report in Sect. 3 illustrate the size of bias.

Following Belloni et al. (2014b), we can claim that inference about the vector
(α′, γ ) is valid but, unlike Belloni et al. (2014b), it is valid up to the variance matrix
correction reflecting the post-lasso probit estimation of β.3

2 The notation for tuning parameters λ1, λ2 is a generic notation, the same in this section as in Section
2.2, but the actual values of the tuning parameters will differ between each instance of their use. Also, this
notation is different from λ(·), which denotes the inverse Mills ratio.
3 Our implementation of Steps 1–2 follows (Belloni et al. 2014b) and includes penalty loadings which we
do not include in the notation for simplicity. See Belloni et al. (2014b, p. 615–616 and Appendix A).
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2.6 Variancematrix estimation

We start with some new notation. Let λ̂i = λ̂(x′
iβ) = λ(x′

i β̌) and define

ξi = λ̂i (λ̂i + x′
i β̌),

where β̌ is obtained by the double selection probit. Let e denote the vector of residuals
from the last step of the double selection lasso estimation, with typical element ei , i =
1, . . . , n. That is,

ei = y1i − x′
1i α̂ − λ̂i γ̂ − z′

i θ̂ ,

where support(θ) ⊆ support(θ̌y)∪support(θ̌1)∪. . .∪support(θ̌k1)∪support(θ̌λ).
Let W denote the matrix containing x1, the n × 1 vector of λ̂i ’s, and the variables in
z that survived the double selection. Let R be a n × n diagonal matrix, with diagonal
elements (1 − ρ̂2ξi ), where ρ̂ = γ̂ /σ̂ and σ̂ 2 = (e′e + γ̂ 2 ∑

i ξi )/n.

Proposition 3 Aconsistent estimator of the variancematrix of theDS-HECKestimator
(̂α′, γ̂ , θ̂ ′) is

V = σ̂ 2(W ′W )−1(W ′RW + Q)(W ′W )−1,

where

Q = ρ̂2(W ′Dx)Vb(x′DW )

and Vb is the “sandwich” variance matrix for the double selection probit estimator β̌

and D is the diagonal matrix with diagonal elements ξi .

The variance for α̂ and γ̂ is the upper (k1 + 1) × (k1 + 1) submatrix of V . The
dsheckman command implements this variance estimator.

3 Monte Carlo simulations

To evaluate the finite-sample performances of DS-HECK, we conduct a simulation
study using four estimators: (i) ordinary least squares on the selected sample (OLS), (ii)
Heckman two-step estimator based on the truemodel (Oracle), (iii) Heckman two-step
estimator using lasso to select variables in Eq. (2) (Naive), and the proposed double
selection Heckman estimator (DS). We have implemented the DS-HECK estimator
in the Stata command dsheckman, available on the authors’ web pages along with
data sets and codes for the simulations and application, and we describe its syntax in
Appendix C.

OLS is inconsistent unless there is no sample selection bias, i.e. γ = 0. Naive is
inconsistent due to error made by lasso. Moreover, Naive does not provide valid infer-
ence as it is not robust to the model selection bias. In contrast,DS is expected to retain
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consistency in the presence of sample selection biases and show robustness against
the model selection bias. Oracle is expected to behave like the standard Heckman
estimator under the true model but, in practice, Oracle is infeasible since we do not
know the true model.

3.1 Setup

Our data generating process is as follows:

y1 = 1 + x1 + x2 + u1
y2 = I(x′β0 + z′η0 + u2 ≥ 0)

where u2 ∼ N (0, 1) and where u1 = γ u2 + ε and ε ∼ N (0, 1) is independent of u2.
We vary the strength of the selection bias by setting γ to be 0.4, 0.5, 0.6, 0.7, and 0.8
and we observe y1 only when y2 = 1.

The selection equation is generated using nine non-zero variables in z of which
four have a relative large effect and five relatively small:

x′β0 + z′η0 = −1.5 + x1 − x2 + z1 − z2 + 0.046z3 + z5
− 0.046z10 − 0.046z11 + 0.046z12 − 0.046z15 + z20.

The value 0.046 is chosen so that it violates the so called “beta-min” condition and
causes lasso to make model selection mistakes (see, e.g., Liu et al. 2020; Drukker and
Liu 2022). The sample size is 2000. The number of replications is 1000.

We consider two scenarios for p, the dimension of z: (i) p = 1000, fewer variables
than observations; (ii) p = 2100, more variables than observations. The variables
are generated using a Toeplitz correlation structure with decreasing dependence. In
particular, let Z be the matrix of dimension N × p containing z. Then,

Z = ML ′

whereM is N× p and has the typical element (ζi j −15)/
√
30, where ζi j ∼ χ2(15) and

L is the Cholesky decomposition of a symmetric Toeplitz matrix V of dimension p× p
such that its elements obey the following laws: Vi, j = Vi−1, j−1 and V1, j = j−1.3.

The variables x are also correlated and they are generated as functions of z. In
particular,

x1 = z3 + z10 + z11 + z12 + z15 + εx1

x2 = 0.5(z3 + z10 + z11 + z12 + 2z15) + εx2

where εx1 and εx2 follow a Toeplitz structure similar to Z .
As a result, for the selected sample, the true model is

y1 = 1 + x1 + x2 + γ λ(x′β0 + z′η0) + u
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where λ(·) = φ(·)/�(·) and the true parameter values are β1 = β2 = 1 and γ =
0.4, 0.5, 0.6, 0.7, or 0.8. The standard deviation of λ(1)(·) is about 0.3.4

3.2 Results

For each estimator,we report the followingmeasures: (i) true value of parameter (True),
(ii) mean squared error (MSE), (iii) average of estimates across simulations (Mean)
(iv) standard deviation of estimates across simulations (SD), (v) average standard error
across simulations (SE) and (vi) rejection rate for the H0 that the parameter equals its
true value against the nominal 5% level of significance (Rej. rate).

We report the simulation results for β1, β2, and γ in Tables 1, 2 and 3, respectively.
Several observations are clear from the tables. First, OLS is badly biased and the bias
is greater when selection is stronger. Second,Naive is also biased and it fails to provide
valid inference at any value of γ and p. This demonstrates that Naive is not robust to
the model selection errors. The rejection rate and MSE increase as γ increases, which
is expected because greater γ value indicate a greater sample selection bias. Third,
Oracle shows consistency and rejection rates close to the nominal 5% significance
level. Fourth, DS performs similarly to Oracle for all values of γ and p. In particular,
its MSE is consistently smaller than for Naive and OLS, SE is close to SD, which
shows that the proposed variance adjustment works well. Finally, Rej. rate for DS is
near the 5% significance level, which supports that our estimator offers valid inference.

4 Application to female earnings estimation

4.1 Labor force participation and earnings

Estimation of the female earnings equation is a topic of long standing interest among
economists. Early investigations of the labor supply decisions including both par-
ticipation and hours by married women date back to Gronau (1974) and Heckman
(1974), who were among the first to highlight sample selection bias stemming from
the labor supply decision. Labor market decisions by women over the later decades
have been studied and documented byMroz (1987), Ahn and Powell (1993), Neumark
and Korenman (1994), Vella (1998), Devereux (2004), Blau and Kahn (2007), Mulli-
gan and Rubinstein (2008), Cavalcanti and Tavares (2008), Bar et al. (2015), among
others.

Numerous applied works have extensively scrutinized the empirical aspects of the
sample selection problem when estimating female labor market behavior. The deter-
minants of the earnings equations for married women are similar to those of men
and have been mostly agreed upon. These determinants traditionally include women’s
education, experience, age, tenure and location. The hallmark of correcting for sam-
ple selection bias is finding some appropriate exclusion restriction(s) (i.e., variable(s)
affecting selection but not the earnings) in order to ensure proper identification of

4 We ran simulations with higher variability of λ(1)(·). This did not affect the performance of dsheckman
for β1 and β2. For γ , when p = 2100, we noticed slight over-rejection with no effect on key takeaways.
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Table 1 Simulation results for β1

p = 1000 p = 2100

True MSE Mean SD SE Rej. Rate MSE Mean SD SE Rej. Rate

γ = 0.4

Oracle 1 0.0014 0.9984 0.0369 0.0374 0.0450 0.0013 0.9985 0.0362 0.0374 0.0510

DS 1 0.0025 0.9977 0.0501 0.0484 0.0540 0.0022 0.9991 0.0464 0.0486 0.0380

Naive 1 0.0049 0.9424 0.0395 0.0350 0.4200 0.0052 0.9379 0.0360 0.0349 0.4310

OLS 1 0.0046 0.9422 0.0350 0.0350 0.3890 0.0045 0.9421 0.0339 0.0350 0.3610

γ = 0.5

Oracle 1 0.0014 0.9993 0.0380 0.0387 0.0430 0.0015 0.9980 0.0389 0.0387 0.0480

DS 1 0.0025 1.0000 0.0504 0.0502 0.0570 0.0027 0.9979 0.0518 0.0502 0.0600

Naive 1 0.0067 0.9289 0.0409 0.0362 0.5240 0.0075 0.9229 0.0389 0.0361 0.5840

OLS 1 0.0063 0.9291 0.0353 0.0362 0.4930 0.0066 0.9277 0.0373 0.0363 0.5190

γ = 0.6

Oracle 1 0.0016 0.9995 0.0395 0.0401 0.0440 0.0015 0.9984 0.0393 0.0400 0.0520

DS 1 0.0025 1.0001 0.0504 0.0519 0.0460 0.0027 0.9981 0.0522 0.0521 0.0500

Naive 1 0.0089 0.9183 0.0475 0.0376 0.6110 0.0101 0.9081 0.0413 0.0373 0.6880

OLS 1 0.0087 0.9148 0.0374 0.0376 0.6190 0.0087 0.9144 0.0370 0.0376 0.6150

γ = 0.7

Oracle 1 0.0019 0.9969 0.0435 0.0416 0.0690 0.0018 1.0001 0.0419 0.0419 0.0510

DS 1 0.0032 0.9956 0.0564 0.0539 0.0570 0.0028 1.0008 0.0525 0.0543 0.0410

Naive 1 0.0126 0.8999 0.0508 0.0389 0.7400 0.0135 0.8930 0.0455 0.0390 0.7640

OLS 1 0.0118 0.8993 0.0401 0.0392 0.7170 0.0115 0.9005 0.0397 0.0393 0.7110

γ = 0.8

Oracle 1 0.0019 0.9962 0.0437 0.0434 0.0470 0.0019 0.9968 0.0438 0.0434 0.0510

DS 1 0.0031 0.9965 0.0560 0.0558 0.0470 0.0034 0.9966 0.0582 0.0562 0.0530

Naive 1 0.0165 0.8835 0.0544 0.0406 0.8020 0.0173 0.8777 0.0484 0.0404 0.8360

OLS 1 0.0152 0.8838 0.0408 0.0409 0.8150 0.0148 0.8858 0.0414 0.0408 0.7870

the model parameters. Two main competing choices of such exclusion restrictions
have been exploited for estimation of labor market earnings for married women:
non-wife/husband’s income and the existence or number of (young) children. The
underlying argument is that these two sets of variables affect the labor supply deci-
sion of married women but not their earnings. Huber and Mellace (2014) provide
an overview of the related literature on sample selection bias in the female earnings
equations.

Cavalcanti and Tavares (2008) provide an alternative view and argue that the declin-
ing price andwider availability of home appliances play a crucial role in explaining the
rise in female labor force participation. This suggests a long list of potential exclusion
restrictions. Furthermore, the exact nature and functional form of the chosen exclusion
restriction(s) in the selection equation is uncertain. For example, should labor work
experience include years of part-time employment? Should educational attainment be
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Table 2 Simulation results for β2

p = 1000 p = 2100

True MSE Mean SD SE Rej. Rate MSE Mean SD SE Rej. Rate

γ = 0.4

Oracle 1 0.0028 1.0018 0.0527 0.0524 0.0530 0.0027 1.0014 0.0518 0.0524 0.0500

DS 1 0.0033 1.0015 0.0576 0.0584 0.0390 0.0034 1.0025 0.0580 0.0587 0.0530

Naive 1 0.0145 1.1018 0.0641 0.0530 0.5210 0.0151 1.1093 0.0564 0.0532 0.5340

OLS 1 0.0057 1.0541 0.0523 0.0512 0.1820 0.0054 1.0538 0.0506 0.0512 0.1760

γ = 0.5

Oracle 1 0.0029 0.9998 0.0536 0.0542 0.0470 0.0031 1.0029 0.0558 0.0542 0.0620

DS 1 0.0036 1.0005 0.0600 0.0603 0.0380 0.0038 1.0030 0.0613 0.0606 0.0600

Naive 1 0.0200 1.1249 0.0659 0.0547 0.6420 0.0224 1.1365 0.0614 0.0548 0.7020

OLS 1 0.0070 1.0651 0.0523 0.0530 0.2460 0.0077 1.0683 0.0546 0.0530 0.2540

γ = 0.6

Oracle 1 0.0031 1.0014 0.0555 0.0562 0.0510 0.0030 1.0020 0.0548 0.0560 0.0450

DS 1 0.0038 1.0034 0.0620 0.0623 0.0450 0.0038 1.0038 0.0615 0.0628 0.0410

Naive 1 0.0271 1.1453 0.0775 0.0566 0.7150 0.0307 1.1626 0.0653 0.0567 0.8000

OLS 1 0.0095 1.0804 0.0550 0.0550 0.3100 0.0092 1.0795 0.0536 0.0549 0.2950

γ = 0.7

Oracle 1 0.0036 1.0031 0.0596 0.0583 0.0620 0.0034 0.9997 0.0582 0.0585 0.0430

DS 1 0.0042 1.0034 0.0649 0.0648 0.0590 0.0043 0.9994 0.0653 0.0657 0.0430

Naive 1 0.0377 1.1755 0.0833 0.0587 0.8170 0.0414 1.1902 0.0725 0.0591 0.8680

OLS 1 0.0121 1.0934 0.0583 0.0573 0.3740 0.0118 1.0925 0.0572 0.0575 0.3640

γ = 0.8

Oracle 1 0.0037 1.0060 0.0606 0.0607 0.0440 0.0037 1.0016 0.0611 0.0608 0.0520

DS 1 0.0049 1.0064 0.0698 0.0676 0.0630 0.0049 1.0010 0.0703 0.0683 0.0530

Naive 1 0.0505 1.2059 0.0898 0.0611 0.8690 0.0519 1.2143 0.0777 0.0613 0.8990

OLS 1 0.0158 1.1106 0.0598 0.0598 0.4510 0.0147 1.1052 0.0600 0.0598 0.4250

measured in full years of completed education or in milestones such as high school or
college, as a replacement or complement to years of education? Similarly, should age
enter the model in a linear or quadratic form?

Our goal in this section is to illustrate the performance of the DS-HECK procedure
on the following earnings equation:

log (earnings) = α0 + α1education + α2x1 + α3state dummies + u1, (14)

where log (earnings) is the natural logarithm of the individual’s total annual labor
income, education is the person’s completed years of education, state dummies is
a vector containing a full set of state dummies, and u1 is an idiosyncratic error. The
vector x1 varies across the exact specification we consider and can contain age and/or
work experience.
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To address the potential self-selection bias we employ DS-HECK as a data-driven
procedure for choosing the explanatory variables and functional form (among high-
dimensional options provided) in the following labor force participation equation:

inl f = I(x′β + z′η + u2 ≥ 0), (15)

where inl f is the dummy variable that is equal to one for those women who are in the
labor force at the time of the interview and zero otherwise, and u2 is an idiosyncratic
error. The vector x includes all the explanatory variables from Eq. (14) (both in a linear
and quadratic functional form) as well as exclusion restrictions.

In practice, x is constructed as follows. To simplify notation, denote all the
explanatory variables from Eq. (14) as x1. First, running lasso probit of inl f on
high-dimensional controls w, where w includes x1 and some other high-dimensional
controls. Denote the selected variables as x2. Second, x is union between all x1 and
x2. All the non-selected controls in w are used as z.

4.2 Sample construction

We obtain our sample from the 2013 wave of the Panel Study of Income Dynamics
(PSID) where we focus on the sub-population of white married women. The choice
of explanatory variables reflects their availability in the PSID and the traditional set
of regressors used in the existing literature on female labor force participation and
earnings. Specifically, the explanatory variables we collect from the PSID include
information on the educational attainment of the individual (both as the number of
years completed and as a set of indicators for milestone achievements in education),
a set of indicators for whether the individual obtained her education in the USA,
outside the USA, or both, as well as a set of indicators for the educational levels of the
individual’s parents, work experience of the individual, age and geographical location
of the individual (captured by a set of dummy variables for the current state where
the individual is located), a set of indicators reflecting the Beale-Ross rural–urban
continuum code for the individual’s current residence, and an indicator for whether
the individual owns a vehicle. Table 4 contains a description of the key explanatory
variables.

The set of (potential) exclusion restrictions includes the number of children in the
household under 18 years of age, an indicator for whether there are any children age 15
years old or younger in the individual’s household, annual labor incomeof the husband,
child care expenses, and household major expenditure (i.e. expenditure on household
furnishings and equipment, including household textiles, furniture, floor coverings,
major appliances, small appliances and miscellaneous housewares). While admittedly
far from ideal, this last variable is the closest information we find in the PSID to
capture household expenditure on major household appliances, which allows us to
test the argument of Cavalcanti and Tavares (2008). Finally, the dependent variables
for the earnings and selection equations are (the natural logarithm of) the individual’s
total annual labor income and the indicator for whether the individual is in the labor
force, respectively.
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Table 4 Description of key PSID variables

Variable Type Definition

Controls

Education Continuous Years of education

High school education Categorical Graduated from high school (3 categories)

Enrolled in school Categorical If currently enrolled in regular school (2
categories)

College attendance Categorical If attended college (2 categories)

Other degree or certificate Categorical If received other degree/certificate (2
categories)

US education Categorical If the individual obtained her education in
the USA, outside the USA, or both (3
categories)

Father’s education Categorical Educational level of the individual’s father (8
categories)

Mother’s education Categorical Educational level of the individual’s mother
(8 categories)

If owns a vehicle Categorical If the individual owns a vehicle (2
categories)

Current state Categorical Geographical location of the individual (46
states)

Rural–urban location Categorical Beale-Ross rural–urban continuum code for
the individual’s current residence (9
categories)

Potential exclusion restrictions

Number of kids Continuous The number of children in the household
under 18 years of age

If kids less than or equal to 15 years old Categorical If there are any children age 15 years old or
younger in the individual’s household (2
categories)

Child care expenditure Continuous Child care expenses (in thousand dollars)

Husband’s labor income Continuous Annual labor income of the individual’s
husband (in thousand dollas)

Household major expenditure Continuous Expenses on household furnishings and
equipment, including household textiles,
furniture, floor coverings, major
appliances, small appliances and
miscellaneous housewares (in thousand
dollars)

Our sample contains 1,989 white married women, of whom 1,294 are in the labor
force and 695 are not. Table 5 reports summary statistics for key variables in the dataset.
A set of dummy variables for the current state as well as a set of indicators reflecting
the Beale-Ross rural–urban continuum code are omitted to save space. A total of 46
states are present in our sample, with Delaware, District of Columbia, Hawaii, New
Mexico, and Rhode Island omitted from our sample during data cleaning. We note
that some women report being neither employed nor (temporarily) unemployed while
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also reporting non-zero labor income during that time. There are 161 such women in
the sample. We treat these individuals as not being in the labor force.

4.3 Empirical findings

We consider several specifications when estimating the earnings equation subject to
sample selection bias. Table 6 reports the key results for both equations obtained using
DS-HECK. The top panel provides coefficient estimates (as well as their standard
errors) for α1, α2 and the coefficient on the inverse Mills ratio while the bottom panel
provides estimates (and standard errors) for β. In addition to the reported estimates,
each specification contains two more sets of of estimates which we do not report in the
table to save space. First, we do not report the coefficients on the full set of state and
urban-rural dummies included in both equations. Second, for each specification there
are the selected controls in both equations; the number of such controls is reported at
the bottom of the respective panels but the coefficients themselves are not reported.

We note that following the original Heckman specification, the explanatory vari-
ables present in the earnings equation (x1) are always kept in the labor force
participation equation. Columns (1) and (2) report the estimates when work expe-
rience enters the two equations, with and without the quadratic form, while age is not
included. Columns (3) and (4) report the estimate when age is included but experience
is not. Columns (5) and (6) contain both but differ in whether experience squared is
included. Child care expenditure is always selected in the post-lasso probit step and
we view it as an important exclusion restriction (part of x not in x1), so it is reported
separately from other controls (z). The variables If kids under 15, Number of kids,
Husband’s income, Major expenses are not selected in the post-lasso probit step but
are sometimes selected in Step 2 of the selection model estimation, in which case they
are counted under selected controls.

Column (8) reports the estimates of the traditional Heckman specification with
Experience, Experience2, Age and Age2 in both equations and Child care expenditure,
If kids under 15, Number of kids, Husband’s income, Major expenses in the participa-
tion equation. No selection is used on additional controls. In column (7) we report a
specification that forces exactly the same variables as in the classical Heckman spec-
ification in column (8) to be included and additionally, permits the lasso to select any
additional controls.

As Table 6 suggests, the signs of all the reported coefficient estimates are as
expected, and they are highly significant for the most part. We note that from the
five potential exclusion restrictions of interest, the lasso selects child care expenditure
as the relevant covariate for the labor force participation equation. Finally, we note
that the results for the labor force participation equation reported in column (7) and
(8) are similar to those reported in columns (5) and (6) except that (7) and (8) use the
additional exclusion restrictions some of which turn out to be statistically significant
while (5) and (6) drop them.
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Next we focus on the estimates of the labor income equation. According to the
results reported in Table 6, we conclude that the educational level of the individual
plays a crucial role in explaining labor income for white married women in 2012.
When statistically significant, the estimated rate of return to education ranges from
5.6% to almost 9% depending on the specification. Furthermore, there is evidence that
the individual’s age is more important, both statistically and practically, than work
experience for explaining the individual’s labor income in our sample. We note that
when the individual’s age (in any functional form) is used in the labor income equation,
the rate of return to education is statistically significant.

Most importantly, Table 6 suggests that the inverse Mills ratio is highly statistically
significant in all specifications implying that the correction for the sample selection
was needed. Given the economic interpretation of the estimated coefficients, their
signs and economic as well as statistical significance, specification (5) seems most
attractive in light of the existing studies on the topic. Interestingly, the traditional
Heckman specification produces results that are close to those reported in column (5).

5 Conclusion

We have proposed an extension to the traditional Heckman sample selection model
by incorporating it into a model selection framework with many controls. A double
application of the lasso to each part of the model permits valid inference on the parts of
the model that is of interest to empirical economists. We detail the steps involved in a
consistent estimation with valid standard errors and we provide a new Stata command
to implement it. We also investigate aspects of the Neyman orthogonality that relate
it to the concept of redundancy in the GMM estimation.

Lasso and double selection in linear models have been recently subject of scrutiny
in cases when lasso under-selects controls in finite samples even under a sparsity
scenario and the double selection estimators have severe omitted variable biases (see,
e.g., Wuthrich and Zhu 2021; Lahiri 2021). This happens when the signal from the
variables lasso works on is weak and they do not get selected by either of the two
selection procedures. The solution proposed by Wuthrich and Zhu (2021) is to resort
in such cases to the regular OLS estimation using a high-dimensional variance matrix
computations which is computationally difficult and works only when p < n.

We show how large the errors committed by the naive application of lasso can be
and we provide an application to a classic problem in labor economics where using
our method leads to a few new insights. We provide a user-friendly and versatile Stata
command, which can help empirical economists use the proposed methodology. The
command as well as the simulation and application data are made available on the
authors’ web pages.
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Finally we note that the results of this paper can be extended to other consistent
methods of model selection beyond lasso, such as the Dantzig Selector proposed by
Candes and Tao (2007).
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Appendix

A Neyman orthogonal estimation for vectors

Consider an extension of the partial linear framework of Belloni et al. (2014a):

Y = D′θ0 + g0(X) +U E(U |D, X) = 0

D1 = m0,1(X) + V1 E(V1|X) = 0

...

Dk = m0,k(X) + Vk E(Vk |X) = 0

where D and θ0 are k×1-vectors, rather then scalars. The functions g0(X) andm0, j (X)

are unknown but we can use approximately sparse linear models to approximate these
functions so that the approximation errors is small enough. We know that if θ0 is
a scalar, we can apply the double selection lasso to achieve valid inference for θ0.
Here, we will show that the same arguments can be applied when when θ0 is a low-
dimensional vector.

We follow Chernozhukov et al. (2018) and show that

1. the moment condition implied by the Robinson-style “partialling-out” is Neyman
orthogonal.

2. the application of Theorem 3.1 of Chernozhukov et al. (2018) provides the asymp-
totic distribution (note that cross-fitting only permits to relax sparsity requirement,
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and the “partialling-out” approach still provides valid inference for θ even without
cross-fitting).

3. the “partialling-out’ approach is equivalent to the double selection lasso.

We start with a general definition of Neyman orthogonal moments (see, e.g., Cher-
nozhukov et al. 2018, Definition 2.1). Suppose we wish to estimate a low-dimensional
parameter θ0 using the moment conditions

E [ψ(W ; θ0, η0)] = 0, (16)

where W contains the random variables and η0 is a nuisance parameter vector, which
can be high-dimensional. Suppose we use machine learning techniques to estimate
η0. In essence, Neyman orthogonality means that small mistakes in the estimation of
η will not disturb the consistent estimation of θ0.

Formally, Neyman orthogonality depends on the concept of pathwise (Gateux)
derivative. Let Dr denote the Gateux derivative of the moment condition ψ with
respect to η in direction r . Then,

Dr [η − η0] = ∂r {E [ψ(W ; θ0, η0 + (η − η0)r)]} (17)

for all r ∈ [0, 1). When Dr is evaluated at r = 0, we denote it as D0[η − η0].
Definition 1 The moment condition E [ψ(W ; θ0, η0)] = 0 is Neyman orthogonal if

D0[η − η0] = 0.

Now we show Neyman orthogonality of the “partialing-out” approach. For nota-
tional simplicity, we group the equations for Dj ( j = 1, . . . , k).

Y = D′θ0 + g0(X) +U , E(U |D, X) = 0, (18)

D = m0(X) + V , E(V |X) = 0, (19)

where D = (D1, D2, . . . , Dk)
′, m0(X) = (m0,1(X),m0,2(X), . . . ,m0,k(X))′, and

V = (V1, V2, . . . , Vk)′. Plugging Eq. (19) into (18), we obtain the reduced form for
Y :

Y = l0(X) + B, E(B|X) = 0, (20)

where l0(X) = m0(X)θ0 + g0(X) and B = U + V ′θ0. Now we can show that
the following (Robinson 1988)-style “partialling-out” moment condition is Neyman
orthogonal.

Proposition 4 The moment condition using the function

ψ [W ; θ, η] = (Y − l(X) − (D − m(X))′θ)(D − m(X)) (21)

where W = (Y , X , D) and η = (l,m), is Neyman orthogonal.
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Proof First we show that E [ψ (W ; θ0, η0)] = 0:

E [ψ (W ; θ0, η0)] = E

[
(Y − l0(X) − (D − m0(X))′θ0)(D − m0(X))

]

= E

[
(B − V ′θ0)V

]

= E

[
(U + V ′θ0 − V ′θ0)V

]

= E [UV ]

= 0,

where the last equality holds because E(U |D, X) = 0
Next, we prove that D0 [η − η0] = 0. First note that

E [ψ(W ; θ0, η0 + (η − η0)r)]

= E [(Y − l0(X) − r(l(X) − l0(X))

−(D − m0(X) − r(m(X) − m0(X)))′θ)(D − m0(X) − r(m(X) − m0(X))
]

Thus, we can compute Dr [η − η0] as follows:

Dr [η − η0] = − E [(Y − l0(X) − r(l(X) − l0(X))

−(D − m0(X) − r(m(X) − m0(X)))′θ0)(m(X) − m0(X))
]

− E

[
(l(X) − l0(X)) − (m(X) − m0(X))′θ0)(D − m0(X) − r(m(X) − m0(X))

]

Now, set r = 0 and evaluate D0[η − η0]:

D0[η − η0] = − E

[(
Y − l0(X) − (D − m0(X))′θ0

)
(m(X) − m0(X))

]

− E

[(
(l(X) − l0(X)) − (m(X) − m0(X))′θ0)

)
(D − m0(X))

]

= − E [U (m(X) − m0(X))] − E

[
(l(X) − l0(X)) − (m(X) − m0(X))′θ0)V

]

= 0,

where the last equality holds because of the law of iterated expectation.
Therefore, the moment condition is Neyman orthogonal. �
Next,weprovide the asymptotic distribution. Let θ̂ be a solution to 1

n

∑
ψi (W ; θ, η)

= 0, given η. ByTheorem3.1 ofChernozhukov et al. (2018), θ̂ is a consistent estimator
of θ0, and it is asymptotically normal with the rate of

√
N . Its variance is

� = J−1
0 E(ψ(W ; θ0, η0)ψ(W ; θ0, η0)

′)(J−1
0 )′, (22)

where J0 = E[∂ψ/∂θ |θ=θ0 ]. We can simplify this expression to arrive at the following
formula:

� = (E(VV ′))−1
E(VV ′U 2)(E(VV ′))−1. (23)
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Equation (23) leads to the following straightforward estimator of �:

�̂ =
(
1

n

∑

i

V̂i V̂i
′
)−1 (

1

n

∑

i

V̂i V̂i
′
Ûi

2

) (
1

n

∑

i

V̂i V̂i
′
)−1

, (24)

where V̂i and Ûi are the residuals from Eqs. (18) and (19), respectively. Apparently,
the variance estimator is the classic heteroskedasticity-consistent estimator.

The last step is to show that double selection lasso is equivalent to the “partialling-
out”. We start with the equation

y = D′θ0 + g0(X) +U .

If we partial out X from both Y and D, the equation becomes

y − l0(X) = (D − m0(X))′θ0 +U (25)

It is easy to see that the solution for θ in Eq. (25) comes from the Neyman orthogonal
moment condition using the moment function in Eq. (21).

Therefore, double selection is equivalent to the Robinson-style “partialling-out”
approach.

B Sketch of Proofs of Propositions 2 and 3

Proof of Proposition 2. The proof is similar to that of Theorem 1 of Belloni et al.
(2014b) and essentially consists in verifying that the assumptions of that theorem are
fulfilled given what we assumed in Assumptions 1–3. �
Proof of Proposition 3. The construction of a variance estimator outlined in the para-
graphs immediately preceding the proposition is similar to the standard correction for
the first-step estimation error in the Heckman (1979) procedure (see, e.g., Cameron
and Trivedi 2005, Section 16.10.2). An important difference is that nowwe include the
effect of the controls selected in the last step of the double selection lasso estimation
when computing the residuals. �

C dsheckman: Stata command for DS-HECK estimator

The syntax of dsheckman is
dsheckman depvar indepvars [if] [in], selection(depvar_s = indepvars_s)

[selvars(varlist)]
where

• depvar specifies the dependent variable in the main equation, which corresponds
to y1 in Eq. (1).
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• indepvars specifies the independent variables in the main equation, which corre-
spond to x1 in Eq. (1).

• depvar_s specifies the dependent variable in the selection equation, which corre-
sponds to y2 in Eq. (2).

• indepvars_s specifies the independent variables in the selection equation, which
correspond to x and z in Eq. (2).

• selvars() specifies x in Eq. (2). If this option is not used, x is constructed in
two steps: (a) run the lasso probit of devpar_s on indepvars_s using the plugin
penalty; denote the selected variables by x2; (b) construct x as the union of x1 and
x2.
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