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Abstract
A large literature onmodelling cross-section dependence in panels has been developed
through interactive effects. However, there are areas where research has not really
caught on yet. One such area is the one concerned with whether the regressors are
correlated with factor loadings or not. This is an important issue because if the regres-
sors are uncorrelated with loadings, we can simply use the consistent two-way fixed
effects (FE) estimator without employing any more sophisticated econometric meth-
ods such as the principal component (PC) or the common correlated effects estimators.
We explore this issue, which has received surprisingly little attention and propose a
Hausman-type test to address the matter. Further, we develop two nonparametric vari-
ance estimators for the FE and PC estimators as well as their difference, that are robust
to the presence of heteroscedasticity, autocorrelation and slope heterogeneity. Under
the null hypothesis of no correlation between the regressors and loadings the proposed
test follows the χ2 distribution asymptotically. Monte Carlo simulation results con-
firm satisfactory size and power performance of the test even in small samples. Finally,
we provide extensive empirical evidence in favour of uncorrelated factor loadings. In
this situation, the FE estimator would provide a simple and robust estimation strategy
which is invariant to nontrivial computational issues associated with the PC estimator.
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1 Introduction

Panel data models have been increasingly popular in applied economics and finance,
due to their ability to model various sources of heterogeneity. A standard practice
is to impose strong restrictions on error cross-section dependence (CSD). This takes
the form of independence across individual units under the fixed effects model whilst
a common time effect severely restricts the nature of CSD under the random effects
specification.However,most recently, a large number of studies have developed econo-
metric methodologies for modelling CSD, mainly through the structure of interactive
effects (hereafter IE) introducing heterogeneous unobserved factors into the error
components and allowing for a richer cross-sectional covariance structure.

In this framework, conventional wisdom has been that the standard two-way fixed
effects (FE) estimator would be inconsistent, due to ignoring the potential endogeneity
arising from the correlation between the regressors and factors and/or factor loadings
(e.g. Bai 2009). Hence, two leading approaches have proposed in the literature, see
Chudik and Pesaran (2015) for a survey. The first, based on the principal compo-
nent (PC) estimation, estimates the factors jointly and iteratively with the main slope
parameters, see Bai (2009) and Moon and Weidner (2015), Fernandez-Val and Weid-
ner (2016) and Charbonneau (2017) for extensions. The second approach, advanced
by Pesaran (2006), treats factors as nuisance terms, and removes their effects through
proxying them by the cross-section averages of the dependent and independent vari-
ables. This is referred to as the common correlated effects (CCE) estimator. A growing
number of extensions have been developed by Kapetanios et al. (2011), Chudik and
Pesaran (2015), Westerlund and Urbain (2015) and Petrova and Westerlund (2020).

In the empiricalwork, theCCEestimator ismostly used as this is easier to implement
with respect to the PC. Indeed, a common practice is to apply the CCE estimator after
detecting the existence of strong CSD by the Pesaran (2015) CD test, seeMastromarco
et al. (2016), Holly et al. (2010), Baltagi and Li (2014), among others.

This paper contributes to this literature by raising some important issues which
might be considered relevant for practitioners. We start by highlighting a simple fact
that the FE estimator is not always inconsistent even in the presence of IE. If the
regressors are correlated with factors but uncorrelated with loadings, then the FE
estimator is shown to be consistent, which has also been noted earlier by Coakely
et al. (2006), Sarafidis and Wansbeek (2012) and Westerlund (2019a). In such a case,
we formally show that the FE estimator is consistent and asymptotically normally
distributed. But, the variance estimator provided by the standard FE estimation will
be invalid due to the presence of remaining zero-mean IE in the error components.
Hence, we provide two consistent nonparametric variance estimators that are robust
to the presence of heteroscedastic and serially-correlated disturbances as well as the
slope parameters heterogeneity. Via Monte Carlo studies, we find that FE and CCE
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estimators display a similar and satisfactory performance when the regressors are
correlated with factors but uncorrelated with loadings. Further, the coverage rate of the
FE estimator evaluated using nonparametric variance estimators reaches the nominal
95%. The performance of both CCE and FE estimators worsens significantly if the
regressors are correlated with loadings, which is in line with Westerlund and Urbain
(2013). As expected, the performance of the PC estimator is not unduly affected by
the presence of correlation between the regressors and loadings.

Furthermore, we point out that in the specification tests that have been proposed in
the literature to testing the presence of the CSD or IE, e.g. Pesaran (2015), Sarafidis
et al. (2009), Bai (2009) and Castagnetti et al. (2015), the rejection of the null hypoth-
esis does not always imply that the FE estimator is inconsistent under the alternative
model with IE. For instance, Sarafidis et al. (2009) maintain an assumption that fac-
tor loadings (between equations for the dependent variable and the regressors) are
uncorrelated even under the alternative. More importantly, we show that the Hausman
test for the null hypothesis of the two way additive fixed effects against the alternative
hypothesis of IE proposed by Bai (2009), would be inconsistent against the alternative,
especially if the regressors are uncorrelated with loadings. This suggests that the pres-
ence of no correlation between the regressors and loadings emerges as an influential
but under-appreciated feature of the panel data model with IE. For large T , in order
to avoid any potential omitted variables bias, it is natural to allow for the regressors to
be correlated with unobserved factors. But, it still remains the important issue to test
whether the regressors are correlated with loadings or not in practice.

Despite a growing number of studies on modelling CSD through IE, it is rather
surprising to find that the literature has been silent on investigating the important issue
of testing the validity of correlation between the regressors and factor loadings in
panels with IE. This is the important hypothesis to be tested because if the loadings are
uncorrelatedwith the regressors,we can just use the simple but consistent FE estimator.
In what follows we develop the Hausman-type test that determines the validity of
whether the regressors are correlated with loadings. Both the FE and PC estimators
are consistent under the null hypothesis of uncorrelated factor loadings whilst only the
latter is consistent under the alternative hypothesis. Our proposed test is different from
the Hausman test developed by Bai (2009), because our null hypothesis is subsumed
under his alternative model with IE. As a result, the FE estimator is not necessarily
more efficient than the PC estimator under the null hypothesis. Based on this idea,
we develop two nonparametric variance estimators for the difference between the FE
and PC estimators, that are shown to be robust to the presence of heteroscedasticity,
autocorrelation and slope heterogeneity. We derive that the proposed test statistic
follows the χ2 distribution asymptotically. Monte Carlo simulation results confirm
that the size and the power performance of the test is quite satisfactory even in small
samples.

Finally, our most important contribution is the provision of extensive empirical
evidence that regressors are uncorrelated with factor loadings, in many panel datasets
employed in the literature. We find that the null hypothesis of the regressors being
uncorrelated with factor loadings, is not rejected in thirteen out of fourteen datasets
considered. Next, we find that Bai’s Hausman test rejects the null of additive effects
model against the alternative of IE only once whilst the CD test by Pesaran (2015)
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strongly rejects the null of weak CSD for all the datasets. Such conflicting results
could provide an additional support for ourmain findings that the regressors are indeed
uncorrelatedwith factor loadings even in cross-sectionally correlated panelswith IE, in
which case we show that Bai’s Hausman test is inconsistent. Furthermore, the FE esti-
mator is invariant to any complex issues related to selecting the number of unobserved
factors incorrectly which would significantly affect the performance of PC estimators
(Moon and Weidner 2015), and to employing the inconsistent initial estimates which
may not guarantee the convergence of the iterative PC estimator (Hsiao 2018). In this
regard, the FE estimation combined with nonparametric variance estimators will pro-
vide the simple and robust approach, avoiding uncertainty in specifying and estimating
nuisance parameters for potential efficiency gain. This suggests that the FE estimator
can still be of considerable applicability in a wide variety of cross-sectionally corre-
lated panel data, especially if the regressors are found to be uncorrelated with factor
loadings, the validity of which can be easily verified by our proposed test.

The paper proceeds as follows. Section2 describes themodel and highlights that the
FE estimator is still consistent in panels with IE, under the condition that the regressors
are uncorrelated with factor loadings. Section3 develops the Hausman-type test for the
validity of correlated factor loadings, which is the important hypothesis to be tested.
Section4 employs a range of Monte Carlo simulations to investigate the finite sample
performance of the alternative estimators and the proposed test statistic. Section5
presents empirical evidence documenting that the null hypothesis of the regressors
uncorrelated with factor loadings, is not rejected for thirteen out of fourteen datasets.
Section6 offers some concluding remarks. Mathematical proofs, the data descriptions
and additional empirical results are relegated to Appendices. Additional simulation
results can be found in Online Supplement.

2 Themodel

Consider the following heterogeneous panel data model with IE:

yit = β ′
i xi t + γ ′

i f t + εi t (1)

where yit is the dependent variable of the i th cross-sectional unit in period t , xi t is
the k × 1 vector of covariates with β i the k × 1 vector of parameters, and εi t ’s are
idiosyncratic errors. f t is an r × 1 vector of unobserved common factors while γ i is
an r × 1 vector of random heterogeneous loadings.

We make the following assumptions:

Assumption A (i) εi t is independently distributed across i with E (εi t ) = 0, E
(
ε2i t

) =
σ 2

εi
and E

(
ε8+δ
i t

)
< ∞ for some δ > 0. Each εi t follows a linear process with abso-

lutely summable autocovariances such that limT→∞ T−1∑T
s=1

∑T
t=1 |E (εisεi t )|1+δ <

∞, E
∣∣∣N−1/2∑N

i=1 [εisεi t − E (εisεi t )]
∣∣∣
4

< ∞ for all t, s, and limT ,N→∞ T−2N−1

∑N
i=1

∑T
s=1

∑T
t=1

∑T
r=1

∑T
w=1 |Cov (εisεi t , εirεiw)| < ∞. The largest eigenvalue of
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E
(
εiε

′
i

)
is bounded uniformly in every i and t , where εi = (εi1, . . . , εiT )′. εi t is

independent of x js , γ j and f s for all i, j, s and t .

(ii) f t is covariance stationarywithfinitemeanandvariance,� f with E
(∥
∥ f t

∥
∥4

)
<

∞ where � f is an r × r positive definite matrix.
(iii) γ i is iid across i with finite mean and variance, �γ , where �γ is an r × r

positive definite matrix. γ i are independent of ε j t and f t for all i, j and t .
(iv) The k × 1 vector of β i are generated as β i = β + ηi . ηi is independent across

i with E
(
ηi

) = 0 and E
(
ηiη

′
i

) = �ηη,i , where �ηη,i is a positive definite matrix

uniformly for every i . E
∥
∥ηi

∥
∥4 ≤ 	 < ∞ and ‖β‖ < ∞. ηi is independent of εi t and

γ i .

Assumption A is standard in the literature, see Bai (2009), Karabiyik et al. (2017)
and Cui et al. (2019) (CHNY, hereafter).

For a consistent estimation of the parameters in (1), we need to first account for
unobserved factors, and then estimateβ by applying panel estimators to (1) with defac-
tored variables. On the basis of this idea, two popular approaches have been proposed.
The common correlated effects (CCE) estimator advanced by Pesaran (2006), imposes
that xi t share the same factors, f t

xi t = �′
i f t + vi t (2)

where �i an r × k matrix of random heterogeneous loadings and vi t are idiosyncratic
errors, and proposes to approximate f t by the cross-section averages of the dependent
and independent variables. Next, Bai (2009) allows xi t to be arbitrarily correlated
with both γ i and f t , and proposes the iterative principal component (PC) approach
that estimates the factors jointly and iteratively with the slope parameters. The validity
of the CCE approach depends crucially upon whether an appropriate rank condition,
that has to be assumed, holds. Westerlund and Urbain (2015) argue that the issue of
correctly selecting the number of factors, r in the PC estimation, is essentially the
same as the issue of satisfying the condition, r ≤ k + 1 in CCE estimation. Further,
it is shown that both estimators involve bias terms, which do not disappear unless
N/T → 0. The finite sample performance of the two approaches has been intensively
investigated. The earlier studies by Kapetanios and Pesaran (2005) and Chudik et al.
(2011), provide Monte Carlo evidence in favour of the CCE estimator, which is partly
due to uncertainty associated with estimating the true number of unobserved factors in
the PC estimation. Further, Westerlund and Urbain (2015) show that the performance
of the PC estimator is sensitive to the value of β. For β = 0, the PC estimator
outperforms CCE, while for β �= 0, the CCE estimator tends to outperform.

However, we find that the performance of the two-way fixed effect (FE) estimator
has not been widely investigated. Exceptions include the studies by Coakely et al.
(2006), Sarafidis and Wansbeek (2012) and Westerlund (2019a). This simply reflects
the conventional view that the FE estimator would be inconsistent in the presence of
IE, due to ignoring endogeneity stemming from the correlation between regressors
and factors/loadings. We aim to challenge this maintained view. For large T , suppose
that f t may represent the unobserved common policy or globalisation trend, and γ i
are the heterogeneous individual responses (parameters).
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In practice, it is important to test the validity of whether xi t are correlated with γ i
or not. Formally, we set the null and alternative hypothesis as follows:

H0 : xi t uncorrelated with γ i (3)

H1 : xi t correlated with γ i (4)

Under Assumptions A(ii) and (iii), we can express γ ′
i f t in (1) by

1

γ ′
i f t = μ + αi + θt + γ̊

′
i ḟ t (5)

where μ = γ̄ ′ f̄ , αi = γ ′
i f̄ , θt = γ̄ ′ f t , γ̊ i = γ i − γ̄ and ḟ t = f t − f̄ with

γ̄ = N−1 ∑N
i=1 γ i and f̄ = T−1 ∑T

t=1 f t . Using (5) in (1), we have:

yit = β ′
i xi t + μ + αi + θt + γ̊

′
i ḟ t + εi t (6)

This transformation clearly shows that the panel data model with nonzero-mean IE,
γ ′
i f t in (1) can be equally expressed as the 2-way fixed effects panel data model with

zero-mean IE, γ̊ ′
i ḟ t in (6).

2 Next, applying the 2-way within transformation to (6) to
obtain3

ÿi t = β ′
i ẍi t + üi t , üi t = γ̊

′
i ḟ t + ε̈i t (7)

where ÿi t = yit − ȳi . − ȳ.t + ȳ.. with yi . = T−1 ∑T
t=1 yit , y.t = N−1 ∑N

i=1 yit ,
ȳ.. = (NT )−1 ∑N

i=1
∑T

t=1 yit , and similarly for ẍi t and ε̈i t .
Under Assumption A and (3), it is easily seen by the independence of γ i from

all other random quantities in the model and E
(
γ̊ i

) = E
(
γ i − γ̄

) = 0 that ẍi t is
uncorrelated with the composite error, üi t = γ̊

′
i ḟ t + ε̈i t in (7), provided xi t are strictly

1 Hsiao (2018) argues that the assumption of zeromean for γ i or f t often used as normalization conditions,
is not innocuous. With the mean zero assumption for γ i , the cross-sectional mean equation of (1)

ȳt = β ′ x̄t + ε̄t , t = 1, . . . , T

no longer involves γ ′
i f t , where ȳt = N−1 ∑N

i=1 yit , and similarly for x̄t and ε̄t . Thus the least squares
regression of ȳt on x̄t is consistent and asymptotically normally distributed as T → ∞. Similarly, under
the mean zero assumption for f t , the individual time series mean equation

ȳi = x̄′
iβ + ε̄i , i = 1, . . . , N ,

does not involve γ ′
i f t , where ȳi = T−1 ∑T

t=1 yit , and similarly for x̄i and ε̄i . The least squares regression
of ȳi on x̄i can yield consistent and asymptotically normally distributed estimator of β if N is large. In this
regard, we consider the general case with E

(
γ i

) �= 0 and E
(
f t

) �= 0.
2 This may suggest that the additive case with γ i = (αi , 1)

′ and f t = (1, θt + μ)′ may not always be the
special case of the interactive effects, γ ′

i f t , as argued by Bai (2009), because we have both 2-way effects,

αi + θt and zero-mean interactive effects, γ̊ ′
i ḟ t in (6).

3 More precisely, we obtain: ÿ :i t= β ′
i ẍi t + üi t + ζ̈i t where ζ̈i t = (1− 1

N )
∑N

i=1 η′
i (xi t − x̄i .). Under the

assumption that ηi and xi t are uncorrelated, it follows that ζ̈i t →p 0. When evaluating ζ̈i t numerically for
the different combinations of (N , T ), say (N , T ) = {(25, 25), (50, 50), (100, 100)}, we find that its value
is almost zero in all cases.
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exogenous with respect to εi t because

E
(
ẍ′
i t γ̊

′
i ḟ t

)
= E

{
ẍ′
i t ḟ

′
t E

(
γ̊ i |ẍi t , ḟ t

)}
= 0. (8)

See also Section 5 in Hsiao (2018). Therefore, under the null hypothesis, (3), we can
apply the two-way FE estimation to (1) and obtain a consistent estimator of β from
(7). Conversely, if xi t and γ i are correlated, it is clear that E (üi t xi t ) �= 0 so that the
FE estimator is inconsistent. Notice that the consistency of the FE estimator requires
only γ i to be uncorrelated with xi t , but this is implicitly a maintained assumption in
the CCE literature.4 A further possibility that we do not entertain is that xi t contains
a different set of factors to that entering yit directly and that the two sets of factors are
uncorrelated. This points out the symmetry of the role of loadings and factors in the
IE setting. Then, (8) may hold even if (3) does not. However, we view this setting as
too unlikely to be of interest.

The two-way FE estimator of β is given by

β̂FE =
(

N∑

i=1

Ẍ
′
i Ẍ i

)−1 N∑

i=1

Ẍ
′
i ÿi (9)

where Ẍ i = (
ẍi1, . . . , ẍiT

)′ and ÿi = (ÿi1, . . . , ÿiT )′. As üi t in (7) still contains

zero-mean IE, γ̊
′
i ḟ t , the standard variance estimator for β̂FE will be invalid. Thus,

we propose the two consistent variance estimators, which are also robust to the het-
eroscedasticity and the serial-correlation as well as the slope heterogeneities. The first
is the nonparametric variance estimator, similarly applied in deriving the variance of
the CCE estimator by Pesaran (2006):

V̂
NON

(
β̂FE

)

=
(

N∑

i=1

Ẍ
′
i Ẍ i

)−1 (
N∑

i=1

(
Ẍ

′
i Ẍ i

) (
β̂FE,i − β̄FE

) (
β̂FE,i − β̄FE

)′ (
Ẍ

′
i Ẍ i

)
)(

N∑

i=1

Ẍ
′
i Ẍ i

)−1

(10)

where β̂FE,i =
(
Ẍ

′
i Ẍ

)−1
Ẍ

′
i ÿi and β̄FE = 1

N

∑N
i=1 β̂FE,i . Next, we consider

the following heteroscedasticity and autocorrelation robust variance estimator (see
CHNY):

4 Pesaran (2006) implicitly assumes that the factor loadings γ i in (1) and �i in (2), are uncorrelated. Bai
(2009) discusses this implication in detail, and shows via simulations that the CCE estimator is biased
when xi t is correlated with both λi and f t . See also Westerlund and Urbain (2013) for the simulation
evidence showing that the CCE estimator performs poorly when factor loadings are correlated. Remark 2 in
Westerlund and Urbain (2013) also questions the uncorrelated factor loadings assumption by arguing that a
common shock that has a positive effect on savings, should have negative effects on interest rates. However,
their discussion relates to the sign of the average effect of common shocks or the sign of the cross-section
mean of loadings. Since the independence assumption does not restrict the sign of thesemeans, the relevance
of such a relaxation would be somewhat questionable.
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V̂
H AC

(
β̂FE

)
=

(
N∑

i=1

Ẍ
′
i Ẍ i

)−1 (
N∑

i=1

Ẍ
′
i ûFE,i û

′
FE,i Ẍ i

) (
N∑

i=1

Ẍ
′
i Ẍ i

)−1

(11)

where ûFE,i = ÿi − Ẍ i β̂FE .
We show that β̂FE is consistent and follows the normal distribution asymptotically

under the null, (3). The result holds for both homogeneous and heterogeneous β.

Theorem 1 Under Assumption A and under (3), as N , T → ∞,

√
N

(
β̂FE − β

)
→d N

(
0k×1,	

−1
FE RFE	−1

FE

)
(12)

where 	FE = limN ,T→∞ 1
N

∑N
i=1 E

(
Ẍ

′
i Ẍ i
T

)
. Considering β i = β + ηi , RFE =

R1,FE + R2,FE where

R1,FE = lim
N ,T→∞

1

N

N∑

i=1

E

(
Ẍ

′
i Ḟ
T

γ̊ i γ̊
′
i
Ḟ

′
Ẍ i

T

)

(13)

R2,FE = lim
N ,T→∞

1

N

N∑

i=1

E

(
Ẍ

′
i Ẍ i

T
ηiη

′
i
Ẍ

′
i Ẍ i

T

)

, (14)

and Ḟ =
(
ḟ 1, . . . , ḟ T

)′
. Furthermore,

V̂
NON

(
β̂FE

)−1/2 (
β̂FE − β

)
→d N (0, Ik) and V̂

H AC
(
β̂FE

)−1/2

(
β̂FE − β

)
→d N (0, Ik) . (15)

If ηi = 0, ∀i , then (12) and (15) continue to hold with RFE = R1,FE .

3 The Hausman-type test

A number of specification tests have been proposed to test the presence of the CSD or
the multiplicative IE in panels. The most popular test is the cross-section dependence
(CD) test statistic proposed by Pesaran (2015), that is increasingly applied to the
residuals of regression models for use as an ex-post diagnostic tool. However, the
CD test fails to reject the null hypothesis of no error CSD when the factor loadings
have zero means, implying that the CD test will display very poor power when it is
applied to cross-sectionally demeaned data. Furthermore, the residual-based CD test
has been shown to often reject the null hypothesis of no remaining CSD in the case
of the CCE estimator (e.g. Mastromarco et al. 2016). Juodis and Reese (2018) show
that the application of the CD test to regression residuals obtained from IE models
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introduces a bias term of order
√
T , rendering an erroneous rejection of the null.5

Sarafidis et al. (2009) propose an alternative testing procedure for the null hypothesis
of homogeneous factor loadings against the alternative of heterogeneous loadings after
estimating a linear dynamic panel data model by GMM. This approach is valid only
when N is large relative to T , but it can be applied to testing for any remaining error
CSD after including time dummies. But, theymaintain an assumption that the loadings
between equations for y and x are uncorrelated (see their Assumption 5(b)).

The PC estimator is consistent both under models with two-way additive (fixed)
effects and under models with IE, but less efficient than the FE estimator under the
null model with additive effects only. But, the FE estimator is inconsistent under the
alternative model with IE. Following this idea, Bai (2009, Section 9) advances the
following Hausman test for testing the null of additive effects, i.e. γ ′

i f t = αi + θt

against the alternative of IE6:

HB =
(
β̂FE − β̂PCB

)′
(V B)−1

(
β̂FE − β̂PCB

)
, (16)

where β̂PCB
is the iterative PC estimator proposed by Bai (2009), V B =

˜Var
(
β̂PCB

)
− ˜Var

(
β̂FE

)
, ˜Var

(
β̂FE

)
is the the standard variance estimator pro-

vided by the two-wayFE estimation, and˜Var
(
β̂PCB

)
is the analytic (sandwich-form)

variance estimator, which takes into account unknown form of heteroscedastic and
autocorrelated errors. Bai (2009) derives that HB →d χ2

k under the null.7 Westerlund
(2019b) proposes the alternative Hausman test statistic obtained by replacing the PC
estimator with the CCE estimator, HW .

The conventional wisdom is that if the null hypothesis of no error CSD is rejected,
the FE estimator would be biased due to the potential endogeneity arising from the
correlation between the regressors and unobserved factors and/or loadings.

In empirical applicationswe apply theCD test andBai’sHausman test to the number
of datasets that have been employed in the literature, and find that the CD test strongly
rejects the null hypothesis of weak error CSD while the HB test rarely rejects the null
of additive-effects. The results of the CD test confirm the presence of strong CSD
while the latter indicates the absence of IE. This suggests that the FE estimator is
consistent (and potentially efficient). However, if the regressors are uncorrelated with
loadings, the HB test is inconsistent against the alternative model.

The results of theMonte Carlo simulation (in Section S1 in the Online Supplement)
clearly demonstrate the limitation of applying the HB in practice because it cannot

5 Nonetheless, the CD test may be used as a model-selection tool, with a reduction in the absolute value of
the CD test statistic typically being interpreted as an indication of an improved model specification.
6 Focusing on the special cases, Castagnetti et al. (2015) propose two tests for the null of no factor structure:
one for the null that factor loadings are cross sectionally homogeneous, and another for the null that common
factors are homogeneous over time. Using extremes of the estimated loadings and common factors, they
show that their statistics follow an asymptotic Gumbel distribution under the null. Furthermore, they show
that the average-type statistics diverge under the null while the Hausman test is inconsistent.
7 See Sections 3.2 and 9 in Bai (2009) for details.
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distinguish between panels with the 2-way additive fixed effects and panels with IE
where the regressors are uncorrelated with loadings.8

The above discussion suggests that the null hypothesis of the absence of correlation
between the regressors and factor loadings emerges as an influential but underappre-
ciated feature of the panel data model with IE.

We have shown that the presence of IE does not always imply that the FE estimator
is inconsistent. In particular, the FE estimator is still consistent under the null (3),
even though the regressors are correlated with factors. In this case we may prefer
to use the simple FE estimator, which is invariant to any complex issues related to
selecting the number of unobserved factors incorrectly which would significantly
affect the performance of PC estimators (Moon andWeidner 2015), and to employing
the inconsistent initial estimates which may not guarantee the convergence of the
interactive PC estimator (Hsiao 2018).

In this regard, it is surprising to find that the literature has been silent on investigating
the important issue of testing if the regressors are correlated with loadings or not in
panels with IE. For large T context, it is natural to allow for xi t to be correlated
with f t to avoid any omitted variables bias. It still remains the important issue to test
whether xi t are correlated with γ i . Given the pervasive evidence of cross sectionally
dependent errors in panels (Pesaran 2015), as the main contribution, we proceed to
develop a novel Hausman-type test that investigates the validity of the null hypothesis,
(3). In the model (1), recall that the PC estimator is consistent under the null, (3) and
under the alternative, (4) whereas the FE estimator is consistent only under the null,
(3). Following this idea, we propose the Hausman-type test based on the difference
between the FE and PC estimators as follows:

H =
(
β̂FE − β̂PC

)′
V−1

(
β̂FE − β̂PC

)
(17)

where β̂PC is the bias corrected PC estimator to be defined in (18) below, and

V = Var
(
β̂FE − β̂PC

)
= Var

(
β̂FE

)
+ Var

(
β̂PC

)
− Cov

(
β̂FE , β̂PC

)
−

Cov
(
β̂PC , β̂FE

)
. Notice that the FE estimator is not necessarily more efficient than

the PC estimator under the null, which implies that

Var
(
β̂FE − β̂PC

)
�= Var

(
β̂FE

)
− Var

(
β̂PC

)

8 We investigate this issue by examining the the finite sample performance of the CD and the HB tests
for the heterogeneous panel data with the multiplicative IE. We allow the regressors to be uncorrelated
with loadings under Experiment 1 while they are correlated under Experiment 2. In both experiments we
maintain that the regressors are correlated with factors. As expected, the CD test results display that the null
of weak residual CSD is strongly rejected for all the data generating process (DGP), correctly indicating
the presence of IE under both Experiments. However, we find that the HB test is consistent only under
Experiment 2. Surprisingly, the HB test does not display any power against the DGP under Experiment
1, where its rejection probability is close to, and sometimes lower than, the nominal size, especially in
the presence of serially correlated errors. This is mainly because the FE estimator is still consistent under
Experiment 1.
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in contrast to the well-established finding in Hausman (1978). Hence, our proposed
test is not exactly the Hausman test. We interpret the Hausman-type test in (17) as a
test for the null hypothesis, (3) in heterogeneous panels with IE, (1).

Before developing the asymptotic theory for theHausman-type statistic,wedescribe
the asymptotic distribution of the bias-corrected PC estimator given by

β̂PC = β̃PC − 1

N
B̂NT − 1

T
ĈNT (18)

where the β̃PC is the PC estimator obtained by iteratively solving the set of nonlinear
equations:

β̃PC =
(

N∑

i=1

X ′
iM F̂X i

)−1 N∑

i=1

X ′
iM F̂ yi and

[
1

NT

N∑

i=1

(
yi − X i β̃PC

) (
yi − X i β̃PC

)′
]

F̂ = F̂V NT

where M F̂ = IT − F̂
(
F̂

′
F̂

)−1
F̂

′
, V NT is the diagonal matrix that consists of the r

largest eigenvalues of the above matrix in the brackets arranged in a decreasing order,
F̂ is

√
T times the corresponding eigenvectors, and 1

N B̂NT and 1
T ĈNT are the bias

correction terms derived in CHNY (see Appendix 9 for details).
Next, similar to the nonparametric and HAC variance estimators developed for the

FE estimator, we propose two versions of the robust variance estimator for the PC
estimator as follows9

V̂
NON

(
β̂PC

)

=
(

N∑

i=1

X ′
iM F̂X i

)−1 (
N∑

i=1

(
X ′
iM F̂X i

) (
β̃PC,i − β̃PC

) (
β̃PC,i − β̃PC

)′ (
X ′
iM F̂X i

)
)

(
N∑

i=1

X ′
iM F̂X i

)−1

(19)

where β̃PC,i = (
X ′
iM F̂X i

)−1 X ′
iM F̂ yi , and

V̂
H AC

(
β̂PC

)
=

(
N∑

i=1

X ′
iM F̂X i

)−1 (
N∑

i=1

X̂
′
i ûPC,i û

′
PC,i X̂ i

)(
N∑

i=1

X ′
iM F̂X i

)−1

(20)

9 The asymptotic validity of these estimators is verified in Theorem 2. Through the stochastic simulations
(see Sect. 4), we find that the finite sample performance of both estimators is satisfactory and close to each
other. Given the popularity of the HAC variance estimator, we propose to apply it in practice (see Sect. 5).
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where ûPC,i = yi − X̂ i β̂PC .
We provide the asymptotic distribution of the β̂PC estimator in Theorem 2.

Theorem 2 Suppose that Assumption A holds. Considering, β i = β + ηi , as N , T →
∞, √

N
(
β̂PC − β

)
→d N

(
0k×1,	

−1
PC R1,PC	−1

PC

)
(21)

where 	PC = limN ,T→∞ 1
N

∑N
i=1 E

(
V ′
iV i
T

)
with V i = (vi1, . . . , viT )′ defined in

(33) in Appendix 7, and

R1,PC = lim
N ,T→∞ N−1

N∑

i=1

E

(
V ′

iV i

T
ηiη

′
i
V ′

iV i

T

)
(22)

Furthermore,

V̂
NON

(
β̂PC

)−1/2 (
β̂PC − β

)
→d N (0, Ik) and

V̂
H AC

(
β̂PC

)−1/2 (
β̂PC − β

)
→d N (0, Ik) . (23)

It is worth noting in the homogeneous case with β i = β for all i that while the FE
estimator is

√
N -consistent, the PC estimator can achieve a faster rate of convergence

as it completely removes the effect of the unobserved factors, asymptotically. Further,
the rate of convergence of the FE estimator is also shared by the CCE estimator, if the
rank condition in Pesaran (2006) does not hold. Such condition cannot be ascertained
but needs to be assumed, in which case the FE and CCE estimators have compara-
ble theoretical properties. Nevertheless, the superiority of the PC estimator does not
necessarily extend to its small sample properties as we examine in Monte Carlo study
below.

Having established that the two versions of the robust estimator can consistently

standardise the estimator, we propose to estimate Cov
(
β̂FE , β̂PC

)
by10

Ĉ
NON

(
β̂FE , β̂PC

)

=
(

N∑

i=1

Ẍ
′
i Ẍ i

)−1 (
N∑

i=1

(
Ẍ

′
i Ẍ i

) (
β̂FE,i − β̂FE

) (
β̃PC,i − β̃PC

)′ (
X ′
iM F̂X i

)
)

(
N∑

i=1

X ′
iM F̂X i

)−1

Ĉ
H AC

(
β̂FE , β̂PC

)
=

(
N∑

i=1

Ẍ
′
i Ẍ i

)−1 (
N∑

i=1

Ẍ
′
i ûFE,i û

′
PC,i X̂ i

) (
N∑

i=1

X ′
iM F̂X i

)−1

.

10 Following Bai (2009), we have also employed the analytic (sandwich-form) variance estimator of V ,
taking into account unknown form of heteroscedastic and autocorrelated errors. After conducting the pre-
liminary simulations, we find that the two robust estimators perform more satisfactory.
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Accordingly, we define two operating versions of the Hausman-type statistic by

HNON =
(
β̂FE − β̂PC

)′ (
V̂

NON
)−1 (

β̂FE − β̂PC

)
(24)

HHAC =
(
β̂FE − β̂PC

)′ (
V̂

H AC
)−1 (

β̂FE − β̂PC

)
(25)

where

V̂
NON = V̂

NON
(
β̂FE

)
+ V̂

NON
(
β̂PC

)
− 2Ĉ

NON
(
β̂FE , β̂PC

)
(26)

V̂
H AC = V̂

H AC
(
β̂FE

)
+ V̂

H AC
(
β̂PC

)
− 2Ĉ

H AC
(
β̂FE , β̂PC

)
(27)

We provide the main result in the following Theorem.

Theorem 3 Under Assumption A, as N , T → ∞,

H j →d χ2
k for j = NON , H AC

H j follows the χ2
k distribution even though the rate of convergence of the PC

estimator is
√
NT while the FE estimator is

√
N -consistent. This follows from the

use of the robust covariance estimators that properly normalise the test statistic as
shown in Appendix 7.

Next, notice that our proposed test, (17), is fundamentally different from Bai’s
Hausman test, (16), because our null hypothesis, (3) is subsumed under his alterna-
tive model with IE, as is clearly demonstrated in (6). Furthermore, Bai’s test will be
consistent only if the regressors are correlated with both factors and loadings. Impor-
tantly, Bai’s Hausman test will be inconsistent if xi t are uncorrelated with γi in (1),
which is mainly because the FE estimator is still consistent under (3). This suggests
that the non-rejection of the null by the Bai’s test is not informative because it cannot
distinguish between the panel data model with the 2-way additive fixed effects only
and the model with IE where the regressors are uncorrelated with loadings. See the
Online Supplement for the simulation evidence. In the empirical applications below
we find that Bai’s Hausman test rarely rejects the null of additive effects model against
the alternative of IE even though the CD test strongly rejects the null of weak CSD
for all the datasets. Such conflicting results may suggest that the regressors are indeed
uncorrelated with factor loadings even in the panels with IE, which could provide the
support for the usefulness of our proposed test.

4 Monte Carlo simulations

4.1 Review of previous studies

Westerlund and Urbain (2013) find that the CCE estimator does not perform well
in the presence of correlated factor loadings, especially if the full rank condition is
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not satisfied. Karabiyik et al. (2017) discuss the role of the rank condition in the
CCE estimation, and show that the second moment matrix of the estimated factors
becomes asymptotically singular if the number of factors is strictly less than the number
of dependent and independent variables, invalidating the key arguments commonly
applied to establish the asymptotic theory. Westerlund and Urbain (2015) provide
a formal comparison between the CCE and PC estimators by employing the same
data generating process (DGP)11 and show that the two estimators are asymptotically
equivalent only if N/T → 0 whereas their asymptotic distributions are no longer
equivalent if N/T → τ > 0, especially in terms of asymptotic biases.

Though a number of papers have examined the small sample performance of the
CCE and PC estimators, we find that only two studies by Sarafidis and Wansbeek
(2012) and Westerlund (2019a), have explicitly analysed the performance of the FE
estimator in the presence of CSD. Assuming the homogeneous parameters with N =
100 and T = 50, Sarafidis and Wansbeek (2012) compare the performance of the
FE, CCE and PC estimators. If the factor loadings between the equations for y and x
are uncorrelated and the rank condition is satisfied, they find that all three estimators
performwell in terms of bias and RMSE. If the factor loadings are correlated, however,
the FE estimator is severely biased. The CCE estimator is substantially biased if the
rank condition is violated. As expected, the performance of the PC estimator is not
significantly affected by the presence of correlated factor loadings.

Recently, Westerlund (2019a) shows that the FE estimator can be consistent even in
the presence of IE, because both FE and CCE estimators belong to a class of estimators
that satisfy a zero sum restriction. But, hemaintains the assumption that factor loadings
are uncorrelated in which case he demonstrates that the performance of the FE and
CCE estimators is satisfactory.

4.2 Monte Carlo design

We generate the data as follows:

yit = βi xi t + γ1i f1t + γ2i f2t + εi t , (28)

xit = �1i f1t + �2i f2t + uit , (29)

where ( f1t , f2t , εi t , uit )′ are drawn from the multivariate normal distribution with

zero means and covariance matrix, �i = diag
(
σ 2
f 1, σ

2
f 2, σ

2
εi
, σ 2

ui

)
= I4. We follow

Pesaran (2006) and Westerlund and Urbain (2013), and generate the factor loadings,
(γ1i , γ2i ) and (�1i , �2i ) as follows:

• Experiment 1 with uncorrelated factor loadings and the full rank in which case
γ1i ∼ i idN (1, 1), γ2i ∼ i idN (0, 1), �1i ∼ i idN (0, 1), �2i ∼ i idN (1, 1) such

that E

(
γ1i γ2i
�1i �2i

)
=

(
1 0
0 1

)
.

11 The DGP and the estimators are not identical to what have proposed by Pesaran (2006) and Bai (2009).

123



Testing for correlation between the regressors and… 2625

• Experiment 2 with uncorrelated factor loadings and the rank deficiency in which
case γ1i ∼ i idN (1, 1), γ2i ∼ i idN (0, 1), �1i ∼ i idN (1, 1), �2i ∼ i idN (0, 1),

such that E

(
γ1i γ2i
�1i �2i

)
=

(
1 0
1 0

)
.

• Experiment 3 with correlated factor loadings and the full rank in which case:
γ1i = γ1 + υ1i , γ2i = γ2 + υ2i , �1i = �1 + υ1i , and �2i = �2 + υ2i with
γ1 = 1, γ2 = 0, �1 = 2, �2 = 1 and (υ1i , υ2i ) ∼ i idN (0, I2), such that

E

(
γ1i γ12
�1i �12

)
=

(
1 0
2 1

)

• Experiment 4 with correlated factor loadings and the rank deficiency in which
case γ1i ∼ i idN (1, 1), γ2i ∼ i idN (0, 1), γ1i = �1i and γ2i = �2i such that

E

(
γ1i γ2i
�1i �2i

)
=

(
1 0
1 0

)
.

We specify the main slope parameter as βi = 1 + ηi , ηi ∼ i idN (0, 0.04) and
consider the following combination of (N , T ) = 20, 30, 50, 100, 200, setting the
number of replications at R = 1, 000.12

4.3 The small sample performance of FE, CCE and PC estimators

We examine the finite sample performance of the following estimators: the two-way
fixed effect (FE) estimator, β̂FE , the CCE estimator by Pesaran (2006), β̂CCE , and
the bias corrected PC estimators proposed by CHNY, β̂PC . We consider both pooled
and mean group estimator except for β̂PC (see Appendix 7 for details). Notice that
consistency of the PC estimator depends crucially upon correctly selecting the number
of unobserved factors (Moon andWeidner 2015). In this regard, to address uncertainty
associated with the selection criteria, we initially consider the two information criteria,
denoted ICp1 and AIC1, proposed by Bai and Ng (2002). Overall, we find that the
PC estimator using ICp1 outperforms that with AIC1, and we only report the results
based on ICp1.

We report the following summary statistics:

• Bias: β̂R − β0, where β0 is a true parameter value and β̂R = R−1 ∑R
r=1 β̂r is the

mean coefficient across R replications.

• RMSE: the root mean square error estimated by

√

R−1
∑R

r=1

(
β̂r − β0

)2
.

Table 1 shows the simulation results for Experiment 1 with the full rank and uncor-
related factor loadings. The biases of all estimators are mostly negligible even in small
samples with the FE performing slightly worse than other estimators when N = 20.
The results for RMSEs display qualitatively similar patterns. RMSEs of CCE and
PC estimators are lower than those of the FE and decline as N or T grows. On the
other hand, the RMSE of the FE estimator improves only with N . Finally, biases and

12 We have considered the cases with homogeneous β’s and obtained qualitatively similar results, which
are reported in the Online Supplement. We have also explored the experiments under the stronger param-
eter heterogeneity by generating ηik ∼ i idN (0, 0.25) as wells as ηik ∼ i idN (0, 1), and still obtained
qualitatively similar results (unreported to save space). Finally, we obtained qualitatively similar results for
serially correlated factors. These results are available upon request.
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RMSEs of the pooled and mean group estimators display almost identical patterns.
The relative performance of FE, CCE and PC estimators is generally in line with the
simulation results reported in Chudik et al. (2011), Sarafidis and Wansbeek (2012)
and CHNY.

The important exception is the poor performance of the PC estimator using AIC1.13

In this case the biases are substantial in small samples. They decline only if both N
and T become large. Further, their RMSEs are much larger than those of the other
estimators and decrease only if N and T are large. This demonstrates the influence of
the estimated number of factors for the PC estimator. Given that information criteria
have very variable performance, this is a problematic issue for PC estimators in which
case the FE estimator can make an operational alternative.

Table 2 presents simulation results for Experiment 2 where factor loadings are
uncorrelated but the rank condition is violated. The performance of theCCE estimators
tends to slightly deteriorate, both bias and RMSE of the CCE estimator are higher than
in the case with the full rank. The performance of the CCE estimator improves slowly
with N only, suggesting that the rank deficiency may slow down its performance. On
the other hand, the bias and the RMSE of the PC and FE estimators do not appear
to be affected by the rank deficiency. Finally, we find that the mean group estimator
performs slightly better than the pooled estimator in small samples.

Table 3 shows the results for Experiment 3 with correlated loadings and full rank.
Now, only the FE estimator is severely biased.Next, the biases of theCCEestimator are
not negligible for small N , but its performance improves sharply with N , a consistent
findingwithWesterlund andUrbain (2013), who note that ’the problemwith correlated
loadings goes away if the rank condition is satisfied’. The overall performance of the
PC estimator is qualitatively similar to the previous cases, confirming that it is still
consistent with both N and T .

Table 4 presents the simulation results for Experiment 4 with correlated loadings
and the rank deficiency. Both CCE and FE estimators are severely biased, confirm-
ing our theoretical prediction that both estimators are inconsistent in the presence
of correlated factors loadings as also discussed in Sarafidis and Wansbeek (2012)
and Westerlund and Urbain (2013). On the other hand, the performance of the PC
estimators is qualitatively similar to those presented in Table 2.

Overall, our results show that, when the factor loadings are uncorrelated, all the
estimators show a similar and satisfactory performance, suggesting that the FE esti-
mator can produce reliable results even in the presence of IE. When factor loadings
are correlated, however, the FE estimator becomes severely biased and the perfor-
mance of the CCE estimator tends to worsen. Only under the full rank condition, the
performance of the CCE improves with N . The performance of the bias-corrected PC
estimator is qualitatively similar across all four experiments.

4.4 The performance of the Hausman-type test statistic

We examine the small sample performance of the H test statistics, under the
above four experiments, considering the following combination of (N , T ) =
13 For a complete comparison we report the simulation results based on AIC1 in the Online Supplement.
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Table 5 Size and power of the HNON statistic and coverage rates at 95% level for heterogeneous βs,
βi = 1 + ηi , ηi ∼ i idN (0, 0.04) and no serial correlation

T/N Experiment 1 T/N Experiment 3

50 100 150 200 500 50 100 150 200 500

Size Power

50 0.061 0.053 0.050 0.058 0.057 50 1 1 1 1 1

100 0.054 0.063 0.047 0.054 0.049 100 1 1 1 1 1

150 0.079 0.067 0.062 0.064 0.045 150 1 1 1 1 1

200 0.065 0.062 0.058 0.057 0.047 200 1 1 1 1 1

500 0.058 0.053 0.066 0.051 0.057 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.942 0.948 0.942 0.940 0.946 50 0 0 0 0 0

100 0.951 0.938 0.950 0.943 0.955 100 0 0 0 0 0

150 0.939 0.941 0.950 0.938 0.954 150 0 0 0 0 0

200 0.936 0.946 0.949 0.945 0.945 200 0 0 0 0 0

500 0.944 0.946 0.935 0.944 0.947 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC

50 0.918 0.923 0.940 0.948 0.935 50 0.924 0.930 0.938 0.946 0.943

100 0.913 0.937 0.945 0.949 0.952 100 0.834 0.936 0.943 0.946 0.952

150 0.926 0.933 0.945 0.936 0.948 150 0.809 0.777 0.938 0.944 0.947

200 0.899 0.930 0.934 0.942 0.948 200 0.884 0.856 0.815 0.947 0.942

500 0.928 0.928 0.936 0.944 0.947 500 0.896 0.913 0.901 0.907 0.952

T/N Experiment 2 T/N Experiment 4

50 100 150 200 500 50 100 150 200 500

Size Power

50 0.061 0.054 0.047 0.046 0.046 50 1 1 1 1 1

100 0.063 0.057 0.056 0.066 0.043 100 1 1 1 1 1

150 0.069 0.069 0.045 0.050 0.047 150 1 1 1 1 1

200 0.064 0.062 0.061 0.060 0.057 200 1 1 1 1 1

500 0.073 0.049 0.074 0.051 0.042 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.931 0.951 0.950 0.953 0.952 50 0 0 0 0 0

100 0.928 0.943 0.937 0.939 0.941 100 0 0 0 0 0

150 0.940 0.928 0.954 0.952 0.948 150 0 0 0 0 0

200 0.927 0.948 0.945 0.945 0.944 200 0 0 0 0 0

500 0.930 0.948 0.936 0.954 0.956 500 0 0 0 0 0
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Table 5 continued

T/N Experiment 2 T/N Experiment 4

50 100 150 200 500 50 100 150 200 500

Coverage rates βPC Coverage rates βPC

50 0.906 0.927 0.942 0.955 0.955 50 0.919 0.946 0.939 0.946 0.944

100 0.915 0.938 0.937 0.932 0.941 100 0.865 0.935 0.946 0.945 0.950

150 0.909 0.926 0.933 0.954 0.939 150 0.889 0.875 0.935 0.942 0.949

200 0.921 0.934 0.936 0.946 0.945 200 0.910 0.906 0.911 0.942 0.935

500 0.931 0.932 0.935 0.935 0.947 500 0.910 0.924 0.932 0.935 0.951

FE denotes the two-way fixed effect estimators; PC is the iterative bias corrected principal component
estimator in CHNY. The PC estimator is evaluated using the ICp1 criterion by Bai and Ng (2002). HNON

is the H-statistic defined in (24)

50, 100, 150, 200, 500. To construct the H statistic, we consider the difference
between the FE estimator, βFE and the bias corrected PC estimator, βPC standard-
ised respectively by both versions of robust variance estimator, denoted NON and
H AC .14 We examine size and power of the H statistic, but we also report the coverage
rates for the three estimators. We consider slope heterogeneity such as βi = β + ηi ,
ηi ∼ N (0, 0.04) and serially correlated errors given by

εi t = ρεεi,t−1 + vεi t and uit = ρuui,t−1 + vuit with ρε = ρu = 0 or 0.5,

where
(
vεi t , vuit

)′ are drawn from the bivariate normal distribution with zero means
and covariance matrix, diag

(
σ 2

vεi
, σ 2

vui

)
= I2. Hence, we examine the following two

cases:
Case 1: Heterogeneous βs and no serial correlation; see Tables 5 and 6.
Case 2: Heterogeneous βs and serial correlation; see Tables 7 and 8.
Overall, the test performance of the H statistics reported in Tables 5, 6, 7 and

8, is satisfactory and qualitatively similar in terms of the empirical size and power.
This confirms that all the estimators are consistent under the null with and without
serial correlation. Furthermore, the satisfactory coverage rates revealed by the three
estimators demonstrate that both nonparametric and HAC variance estimators are also
robust to serial correlation.

In Experiments 1 and 2, the sizes of both HNON and HHAC tests approach the
nominal level (0.05) in most cases as the sample size rises. The power of the H
test is always one under Experiments 3 and 4. In particular, when the regressors are
uncorrelated with factor loadings, βFE is shown to be consistent and its coverage rate
reaches the nominal 95% in Experiments 1 and 2, irrespective of the rank condition. In
Experiments 3 and 4 when loadings are correlated with the regressor, however, βFE

14 In what follows, we apply the bias corrected PC estimators using ICp1. We have also investigated the
performance of the H statistics using the uncorrected PC estimators, and obtained qualitatively similar
results.
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Table 6 Size and power of the HHAC statistic and coverage rates at 95% level for heterogeneous βs,
βi = 1 + ηi , ηi ∼ i idN (0, 0.04) and no serial correlation

T/N Experiment 1 T/N Experiment 3

50 100 150 200 500 50 100 150 200 500

Size Power

50 0.076 0.057 0.052 0.064 0.044 50 1 1 1 1 1

100 0.070 0.068 0.044 0.049 0.040 100 1 1 1 1 1

150 0.069 0.054 0.046 0.054 0.053 150 1 1 1 1 1

200 0.076 0.071 0.053 0.055 0.044 200 1 1 1 1 1

500 0.064 0.078 0.061 0.067 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.931 0.933 0.941 0.928 0.949 50 0 0 0 0 0

100 0.926 0.936 0.943 0.955 0.954 100 0 0 0 0 0

150 0.932 0.940 0.952 0.940 0.949 150 0 0 0 0 0

200 0.931 0.951 0.940 0.947 0.957 200 0 0 0 0 0

500 0.929 0.939 0.943 0.940 0.951 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC

50 0.907 0.931 0.944 0.946 0.949 50 0.922 0.932 0.940 0.940 0.960

100 0.927 0.928 0.928 0.950 0.950 100 0.616 0.928 0.950 0.944 0.952

150 0.916 0.935 0.957 0.940 0.945 150 0.828 0.746 0.960 0.944 0.960

200 0.918 0.931 0.939 0.954 0.936 200 0.850 0.880 0.828 0.938 0.948

500 0.923 0.925 0.932 0.945 0.951 500 0.922 0.918 0.914 0.890 0.964

T/N Experiment 2 T/N Experiment 4

50 100 150 200 500 50 100 150 200 500

Size Power

50 0.074 0.074 0.066 0.066 0.050 50 1 1 1 1 1

100 0.064 0.052 0.042 0.052 0.040 100 1 1 1 1 1

150 0.062 0.042 0.058 0.058 0.040 150 1 1 1 1 1

200 0.086 0.066 0.072 0.046 0.048 200 1 1 1 1 1

500 0.062 0.074 0.078 0.052 0.046 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.944 0.934 0.934 0.936 0.940 50 0 0 0 0 0

100 0.944 0.942 0.942 0.942 0.952 100 0 0 0 0 0

150 0.936 0.952 0.942 0.940 0.948 150 0 0 0 0 0

200 0.916 0.940 0.942 0.948 0.948 200 0 0 0 0 0

500 0.944 0.930 0.920 0.930 0.952 500 0 0 0 0 0
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Table 6 continued

T/N Experiment 2 T/N Experiment 4

50 100 150 200 500 50 100 150 200 500

Coverage rates βPC Coverage rates βPC

50 0.916 0.956 0.952 0.936 0.944 50 0.932 0.936 0.957 0.941 0.948

100 0.928 0.946 0.944 0.934 0.966 100 0.880 0.944 0.943 0.942 0.954

150 0.900 0.932 0.946 0.952 0.948 150 0.897 0.901 0.944 0.943 0.940

200 0.908 0.936 0.940 0.928 0.936 200 0.877 0.901 0.926 0.948 0.956

500 0.914 0.948 0.940 0.952 0.926 500 0.926 0.935 0.939 0.931 0.946

See notes to Table 5. HHAC is the H-statistic defined in (25)

is significantly biased and displays a zero coverage rate. The coverage rates of the
bias-corrected PC estimator tend to 95% under all four experiments.15

We have also considered the caseswith homogeneousβ’s and obtained qualitatively
similar results, which are reported in the Online Supplement.

4.5 The pretest estimator

The estimated number of factors can influence the performance of the PC estimator
considerably, and this issue needs to be handled carefully. The previous literature
has not provided clear evidence on what is the best course of action to choose the
number of factors. In this regard, we propose a pretest estimator which is constructed
as follows. The pretest estimator, denoted β̂pretest , selects either the FE or the PC
estimator depending on the Hausman-type test results. To be more specific, we first
evaluate the HNON and HHAC statistics. If the null hypothesis, (3) is not rejected,
then we select β̂pretest = β̂FE while, if the null is rejected, we set β̂pretest = β̂PC .

In the Online Supplement we have examined the finite sample performance of
this pretest estimator under the same four experiments considered above. Its overall
performance is satisfactory in terms of bias and RMSE, irrespective of whether factor
loadings are correlated or not. This suggests that such an estimator has considerable
potential as it alleviates the issue of selecting the number of factors, especially in the
case where the regressors are found to be uncorrelated with factor loadings in practice.

5 Empirical applications

We investigate the empirical relevance of the null hypothesis of no correlation between
the regressors and factor loadings by applying our proposed statistics HHAC defined

15 We have also examined the coverage rates for estimators using the analytic variance estimator derived
in Bai (2009, Section 9). We find that, when errors are serially correlated and conditionally heteroscedastic
and/or βs are heterogeneous, coverage rates of the PC estimators are mostly well below the nominal level.
Similar findings are reported in Chudik et al. (2011) and Sarafidis andWansbeek (2012). This demonstrates
an importance of using the robust variance estimators for a reliable inference.
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in (25) to fourteen datasets.16 The details of the data and the empirical specifications
are provided in Appendix 8.
The Cobb–Douglas production function The first application comprises five different
cases—the OECD members (N = 26, T = 41, Mastromarco et al. 2016), the 20
Italian regions (N = 20, T = 21), the 48 U.S. States (N = 48, T = 17) and the
aggregate sectorial data for manufacturing from developed and developing countries
(N = 25, T = 25). Following the economic growth literature, we estimate the Cobb–
Douglas production function by the FE and PC estimators and then apply our proposed
Hausman-type test. For OECD, the output is measured by the per capita GDP while
the regressor is the capital-labour ratio. For the Italian regions, output is the per capita
value added while for the U.S. application, the output is the per capita gross State
product, with the same regressor. In the fourth application, the output is measured as
the aggregated manufacturing sector value-added of OECD countries, see Eberhardt
and Teal (2019). In the fifth application, the production function is augmented by
the R&D stock expenditure, and the output is the aggregate sectorial value added for
manufacturing, see Eberhardt et al. (2013).
The gravity model of bilateral trade flowsNext, we consider the estimation of a gravity
model of the bilateral trade flows for the EU14 countries, counting N = 91 pairs from
1960 to 2008 (T = 49). Here, we follow Serlenga and Shin (2007) and estimate the
gravity panel data regression, in which the bilateral trade flow is set as a function of
GDP, countries’ similarity, relative factor endowment, the real exchange rate as well
as the trade union and common currency dummies.
The gasoline demand functionThis application aims at estimating the price and income
elasticity of gasoline demand. In particular, we focus on estimating the demand func-
tion for gasoline using the data from Liu (2014), which contains quarterly data for the
50 States in the U.S. over the period 1994–2008 (N = 50, T = 60).
Housing prices We estimate the income elasticity of real housing prices from 1975
to 2010. We consider two datasets; the first data from Holly et al. (2010) covers the
49 U.S. States (N = 49, T = 36) while the second covers the 384 Metropolitan
Statistical Areas (N = 384, T = 36) obtained from Baltagi and Li (2014).
Technological spillovers on productivityWe consider two applications. First, we esti-
mate the effects of domestic and foreign R&D on TFP controlling for the human
capital. We use a balanced panel of 24 OECD countries over the period 1971–2004
(N = 24 and T = 34), see Coe et al. (2009) and Ertur and Musolesi (2017). In
the second application we explore the channels through which technological invest-
ments affect the productivity performance of industrialised economies by estimating
the productivity effects of R&D and Information and Communication Technologies
(ICT), controlling for the inputs accumulation as labour and (non-ICT) capital for
OECD industries. We use a balanced panel of 49 high-tech industries over the period
1977–2006 (N = 53 and T = 30) from Pieri et al. (2018).
Health care expenditure and income We estimate the relationship between health-
care expenditure and income after controlling for public expenditure over total health
expenditure. We consider a panel of 167 countries covering the period 1995–2012
(N = 167 and T = 18), see Baltagi et al. (2017).

16 The evidence provided by HNON is qualitatively similar, as shown in Appendix 10.
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Table 7 Size and power of the HNON statistic and coverage rates at 95% level for heterogeneous βs,
βi = 1 + ηi , ηi ∼ i idN (0, 0.04) and serial correlation, εi t = ρεεi t + vεi t , uit = ρuuit + vuit ,
ρε = ρu = 0.5

T/N Experiment 1 T/N Experiment 3

50 100 150 200 500 50 100 150 200 500

Size Power

50 0.068 0.057 0.054 0.043 0.054 50 1 1 1 1 1

100 0.061 0.049 0.065 0.062 0.046 100 1 1 1 1 1

150 0.073 0.057 0.052 0.049 0.042 150 1 1 1 1 1

200 0.059 0.055 0.066 0.048 0.051 200 1 1 1 1 1

500 0.060 0.062 0.054 0.061 0.057 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.944 0.948 0.945 0.951 0.948 50 0 0 0 0 0

100 0.942 0.952 0.938 0.949 0.955 100 0 0 0 0 0

150 0.932 0.943 0.945 0.957 0.949 150 0 0 0 0 0

200 0.941 0.941 0.931 0.947 0.952 200 0 0 0 0 0

500 0.926 0.937 0.952 0.934 0.939 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC

50 0.926 0.914 0.942 0.941 0.941 50 0.933 0.933 0.946 0.948 0.936

100 0.922 0.948 0.951 0.943 0.937 100 0.925 0.948 0.936 0.934 0.944

150 0.919 0.924 0.936 0.945 0.941 150 0.924 0.943 0.937 0.947 0.957

200 0.919 0.929 0.944 0.945 0.935 200 0.927 0.937 0.934 0.942 0.954

500 0.916 0.945 0.938 0.914 0.952 500 0.915 0.926 0.949 0.958 0.943

T/N Experiment 2 T/N Experiment 4

50 100 150 200 500 50 100 150 200 500

Size Power

50 0.064 0.054 0.062 0.057 0.055 50 1 1 1 1 1

100 0.056 0.068 0.055 0.05 0.044 100 1 1 1 1 1

150 0.061 0.053 0.051 0.052 0.051 150 1 1 1 1 1

200 0.067 0.05 0.064 0.048 0.054 200 1 1 1 1 1

500 0.072 0.062 0.065 0.062 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.938 0.933 0.942 0.946 0.953 50 0 0 0 0 0

100 0.943 0.943 0.933 0.937 0.955 100 0 0 0 0 0

150 0.943 0.945 0.956 0.949 0.946 150 0 0 0 0 0

200 0.941 0.951 0.935 0.957 0.943 200 0 0 0 0 0

500 0.924 0.944 0.949 0.938 0.950 500 0 0 0 0 0
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Table 7 continued

T/N Experiment 2 T/N Experiment 4

50 100 150 200 500 50 100 150 200 500

Coverage rates βPC Coverage rates βPC

50 0.915 0.931 0.945 0.950 0.938 50 0.934 0.940 0.923 0.936 0.952

100 0.918 0.938 0.935 0.933 0.960 100 0.904 0.936 0.946 0.933 0.955

150 0.916 0.945 0.943 0.930 0.935 150 0.920 0.946 0.945 0.959 0.953

200 0.903 0.931 0.936 0.945 0.957 200 0.920 0.943 0.939 0.948 0.953

500 0.927 0.950 0.954 0.944 0.952 500 0.913 0.944 0.940 0.937 0.951

See notes to Table 5

Demographic and business cycle volatility. We estimate the impact of the age com-
position of the labor force on business cycle volatility. We employ a balanced panel
dataset for 51 countries over the period 1957–2000 (N = 51 and T = 44) provided
by Everaert and Vierke (2016).
Carbon emissions and tradeWeexplore the nexus between carbon emissions and trade
using a balanced panel of 32 OECD countries over the period 1990–2013 (N = 32
and T = 24), see Liddle (2018).

In Table 9, we present the estimation and test results. First of all, the test results
by HHAC provide a surprisingly convincing evidence that the null hypothesis of the
regressors being uncorrelated with factor loadings, is not rejected (even at 1% signifi-
cance level) in thirteen out of fourteen datasets considered.17 We also report the results
for the CD test proposed by Pesaran (2015), which tests the null of no (weak) CSD
against the alternative of strong CSD, and the Hausman test proposed by Bai (2009),
HB in (16) and the Hausman test proposed byWesterlund (2019b), HW , which test the
null of additive-effects against the alternative of IE. The CD test strongly rejects the
null hypothesis for all the datasets whilst both HB rejects only once the null hypothesis
of additive-effects model, at 10% significance level, and the HW test reject three times.
These test results are rather in conflict, since the former suggests the presence of CSD
while the latter suggests no IE. As highlighted in Sect. 2, however, the rejection of CD
test does not always imply that the FE estimator is biased in panels with IE. Further,
in Sect. 3, we show that the HB test has no power against the alternative model with
IE, especially if the regressors are uncorrelated with factor loadings. Indeed, such
conflicting results can provide support for our main test results that the regressors are
indeed uncorrelated with factor loadings in the panels with IE.

Next, we turn to the slope estimates provided by both FE and PC estimators, and
find that they are mostly significant. Their magnitudes and signs are relatively similar
to each other, and consistent with theoretical predictions. There is only an exception
reported in the gravity model of international trade.18

17 The results of HNON are shown in Appendix 10 and Table 10.
18 Notice that the FE estimation tends to produce substantially large coefficient on GDP, which has been
widely reported in the literature.
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Table 8 Size and power of the HHAC statistic and coverage rates at 95% for heterogeneous βs, βi = 1+ηi ,
ηi ∼ i idN (0, 0.04) and serial correlation, εi t = ρεεi t + vεi t , uit = ρuuit + vuit , ρε = ρu = 0.5

T/N Experiment 1 T/N Experiment 3
50 100 150 200 500 50 100 150 200 500

Size Power

50 0.068 0.074 0.045 0.054 0.053 50 1 1 1 1 1

100 0.068 0.053 0.054 0.052 0.045 100 1 1 1 1 1

150 0.070 0.064 0.056 0.053 0.047 150 1 1 1 1 1

200 0.053 0.060 0.058 0.059 0.043 200 1 1 1 1 1

500 0.068 0.055 0.062 0.059 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.937 0.941 0.940 0.947 0.950 50 0 0 0 0 0

100 0.929 0.938 0.947 0.943 0.950 100 0 0 0 0 0

150 0.924 0.933 0.940 0.947 0.954 150 0 0 0 0 0

200 0.943 0.943 0.943 0.928 0.956 200 0 0 0 0 0

500 0.924 0.944 0.952 0.931 0.946 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC

50 0.923 0.941 0.951 0.938 0.939 50 0.900 0.932 0.947 0.942 0.959

100 0.909 0.937 0.939 0.944 0.960 100 0.928 0.939 0.931 0.954 0.941

150 0.916 0.911 0.936 0.937 0.953 150 0.916 0.925 0.945 0.938 0.945

200 0.911 0.931 0.938 0.950 0.959 200 0.930 0.939 0.946 0.949 0.938

500 0.906 0.937 0.937 0.941 0.932 500 0.926 0.952 0.926 0.938 0.937

T/N Experiment 2 T/N Experiment 4
50 100 150 200 500 50 100 150 200 500

Size Power

50 0.078 0.054 0.057 0.051 0.050 50 1 1 1 1 1

100 0.075 0.051 0.052 0.059 0.063 100 1 1 1 1 1

150 0.064 0.064 0.042 0.054 0.053 150 1 1 1 1 1

200 0.091 0.044 0.060 0.051 0.036 200 1 1 1 1 1

500 0.086 0.055 0.066 0.040 0.049 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE

50 0.929 0.948 0.937 0.936 0.952 50 0 0 0 0 0

100 0.918 0.942 0.951 0.942 0.925 100 0 0 0 0 0

150 0.943 0.942 0.959 0.937 0.952 150 0 0 0 0 0

200 0.914 0.954 0.942 0.946 0.957 200 0 0 0 0 0

500 0.925 0.941 0.938 0.954 0.952 500 0 0 0 0 0

Coverage rates βPC Coverage rates βPC

50 0.918 0.942 0.937 0.928 0.934 50 0.929 0.917 0.935 0.942 0.940

100 0.910 0.936 0.925 0.936 0.941 100 0.937 0.929 0.938 0.952 0.947

150 0.920 0.930 0.938 0.942 0.947 150 0.926 0.940 0.943 0.945 0.936

200 0.907 0.929 0.949 0.945 0.940 200 0.918 0.925 0.944 0.946 0.945

500 0.922 0.932 0.941 0.944 0.952 500 0.930 0.940 0.945 0.944 0.948

See notes to Table 6
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Combining all the above test and estimation results, we come to a conclusion that the
regressors are uncorrelated with factor loadings in many cross-sectionally correlated
panels with IE in practice. In this situation, the FE estimation can produce consistent
estimator.We emphasise that the FE estimator is invariant to any complex issues related
to selecting the number of unobserved factors incorrectly which would significantly
affect the performance of PC estimators (Moon andWeidner 2015), and to employing
the inconsistent initial estimates which may not guarantee the convergence of the
iterative PC estimator (Hsiao 2018). This suggests that the FE estimator can still be of
considerable applicability in a wide variety of cross-sectionally correlated panel data
with IE, especially if the regressors are found to be uncorrelated with factor loadings,
the validity of which can be easily verified by our proposed test.

6 Conclusions

A large strand of the literature on panel data has focused on analysing CSD, based
on the error components model with IE, which is implicitly understood to bias the
conventional two-way FE estimator, due to the potential endogeneity arising from the
correlation between regressors and factors/loadings. Two main approaches have been
advocated to deal with this issue: the CCE estimator by Pesaran (2006) and the PC
estimator by Bai (2009).

In this paper we have shown that the panel data model with IE can be encompassed
by the standard two-way error components model if the regressors are correlated with
factors but uncorrelated with the loadings. This suggests that the null hypothesis of no
correlation between the regressors and factor loadings emerges as an influential but
under-appreciated feature of the panel data model with IE. We propose the Hausman-
type test, which follows the χ2 distribution asymptotically under the null hypothesis.
Monte Carlo simulation results confirm that the size and the power of the proposed
test is quite satisfactory even in small samples.

Finally, we apply the proposed tests to a number of existing panel datasets, and find
strong evidence in favor of the regressors uncorrelated with factor loadings in nine
of ten datasets. In this situation, the FE estimator would provide a simple and robust
estimation strategy in practice by avoiding nontrivial computational issues associated
with the PC estimator, the performance of which relies crucially upon applying the
complex bias-corrections and using reliable information criteria correctly selecting
the number of unobserved factors.

We conclude by noting a couple of avenues for future research. A natural but
challenging extension is to develop the LM-type test which does not require us to
estimate the PC estimator at all. Next, it is worthwhile to develop the Hausman-type
test in the dynamic heterogeneous panel data model with IE.
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7 Appendix: Proofs

7.1 Preliminary lemmas

We first provide two Lemmas that extend the Law of Large Numbers and Central
Limit Theorem to cover the martingale difference sequence for the panel data. We
define the concept of spatial martingale difference arrays as follows: Let Wi,T for
i = 1, . . . , N and T = 1, . . . , T , be arrays of matrices of random variables. Define
the σ -field generated byWj,T for j = 1, . . . , N , j �= i , asF−i . Then,Wi,T is a spatial
martingale difference array if E

(
Wi,T |F−i

) = 0, i = 1, . . . , N . It is clear that the
resulting sequence is a martingale difference array sequence for any ordering of the
random matrices Wi,T .

Lemma 4 LetWi,T andμi,T for i = 1, . . . , N and T = 1, . . . ,be arrays ofmatrices of
randomvariables and constants such thatWi,T−μi,T is a spatialmartingale difference

array where supi,T E
∥∥Wi,T

∥∥1+δ
< ∞ for some δ > 0. Then, as (N , T ) → j ∞,

N−1
N∑

i=1

(
Wi,T − μi,T

) →p 0.

Proof By Theorem 12.11 of Davidson (1994), if supi,T E
∥∥Wi,T

∥∥1+δ
< ∞, then

lim
M→∞ sup

i,T
E

(∥
∥Wi,T − μi,T

∥
∥ I{‖Wi,T −μi,T‖>M}

)
= 0,

which is a generalisation of uniform integrability to arrays. Then, the result follows
immediately by Corollary 19.9 of Davidson (1994). ��
Lemma 5 Letwi,T andμi,T , for i = 1, . . . , N and T = 1, . . . , be arrays of vectors of
randomvariables and constants such thatwi,T −μi,T is a spatialmartingale difference
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array where E
[(

wi,T − μi,T
) (

wi,T − μi,T
)′] = �i,T , and supi,T E ‖wiT ‖2+δ <

∞ for some δ > 0. Assume that � = limN ,T→∞ N−1 ∑N
i=1 �i,T is positive definite

and supN ,T N−1 ∑N
i=1 �i,T < ∞. Then, as (N , T ) → j ∞,

N−1
N∑

i=1

(wiT − μiT ) →d N (0, �). (30)

Proof By Theorem 12.11 of Davidson (1994), if supi,T E
∥∥wi,T

∥∥2+δ
< ∞, we obtain

the uniform integrability condition,

lim
M→∞ sup

i,T
E

(∥∥Wi,T − μi,T
∥∥ I{‖Wi,T −μi,T‖>M}

)
= 0.

Together with supN ,T N−1 ∑N
i=1 �i,T < ∞, this implies that the Lindeberg condition

holds by Theorem 23.18 of Davidson (1994). Then, by Theorem 23.16 of Davidson
(1994), it follows that

max
i,T

N−1 (wiT − μiT ) →p 0. (31)

Together with supi,T E
∥∥wi,T

∥∥2+δ
< ∞, (31) implies (30) by Theorem 24.3 of David-

son (1994). ��

7.2 Proof of Theorem 1

Considering β i = β + ηi , we have

β̂FE − β =
(

N∑

i=1

Ẍ
′
i Ẍ i

)−1 N∑

i=1

Ẍ
′
i

(
Ẍ iηi + Ḟγ̊ i + ε̈i

)

=
(

N∑

i=1

Ẍ
′
i Ẍ i

)−1 N∑

i=1

Ẍ
′
i

(
Ẍ iηi + Ḟγ̊ i + εi

)
+ op (1) . (32)

Using Lemma 4, it is easily seen that as (N , T ) → j ∞,

1

N

N∑

i=1

Ẍ
′
i Ẍ i

T
→p lim

N ,T→∞
1

N

N∑

i=1

E

(
Ẍ

′
i Ẍ i

T

)

= 	FE

Next, by the independence of γ i and ηi each other and from X i and F across i , and

using the fact that E
(
γ̊ i

) = E(ηi ) = 0, it follows that Ẍ
′
i

(
Ḟγ̊ i + ε̈i

)
is a spatial

martingale difference but also amartingale difference sequence for any ordering across
i . To see this, for any ordering over i , we have:

E
[
Ẍ

′
i

(
Ẍ iηi + Ḟγ̊ i + εi

)
|Ẍ j , Ḟ, γ̊ j , η j

]

123



2648 G. Kapetanios et al.

= E
[
Ẍ

′
i Ẍ iηi |Ẍ j , Ḟ, γ̊ j , η j

]
+ E

[
Ẍ

′
i Ḟγ̊ i |Ẍ j , Ḟ, γ̊ j , η j

]
+ E

[
Ẍ

′
iεi |Ẍ j , Ḟ, γ̊ j , η j

]

= E
[
Ẍ

′
i Ẍ i |Ẍ j , Ḟ, γ̊ j , η j

]
E

[
ηi |Ẍ j , Ḟ, γ̊ j , η j

]

+ E
[
Ẍ

′
i Ḟ|Ẍ j , Ḟ, γ̊ j , η j

]
E

[
γ̊ i |Ẍ j , Ḟ, γ̊ j , η j

]

+ E
[
Ẋ i |Ẍ j , Ḟ, γ̊ j , η j

]
E

[
εi |Ẍ j , Ḟ, γ̊ j , η j

]
for j �= i

Since

E
[
ηi |Ẍ j , Ḟ, γ̊ j , η j

]
= E

[
γ̊ i |Ẍ j , Ḟ, γ̊ j , η j

]
= E

[
εi |Ẍ j , Ḟ, γ̊ j , η j

]
= 0 for j �= i

hence

E
[
Ẍ

′
i

(
Ẍ iηi + Ḟγ̊ i + εi

)
|Ẍ j , Ḟ, γ̊ j , η j

]
= 0 for j �= i

which proves themartingale difference property. Notice that we repeatedly use the fact
that the product of a stochastic process with a second process, that is independent over
its index aswell as of the first process, is amartingale difference process. Next, we note

that

{
Ẍ

′
iεi√
T

}N

i=1
,

{
Ẍ

′
i Ḟγ̊ i
T

}N

i=1
and

{
Ẍ

′
i Ẍ iηi
T

}N

i=1
are spatialmartingale difference series.

Notice that
(∑N

i=1 Ẍ
′
i Ẍ i

)−1 ∑N
i=1 Ẍ

′
iεi = Op

(
1√
NT

)
, is of the smaller probability

order of magnitude than the other two terms in the RHS of (32). Therefore, it follows
that as (N , T ) → j ∞,

1√
N

N∑

i=1

Ẍ
′
i Ḟγ̊ i

T
→d N

(
0, R1,FE

)

1√
N

N∑

i=1

Ẍ
′
i

(
Ẍ iηi + Ḟγ̊ i

)
Ẋ

′
i

T
→d N

(
0, R1,FE + R2,FE

)
.

where R1,FE are R2,FE defined in (13) and (14). This proves (12) in Theorem 1. We
will prove (15) in the proof of Theorem 3.

The results for the case of η = 0, ∀i , follows straightforwardly from the above
analysis.

7.3 Proof of Theorem 2

Let RNT denote terms of the lower order of probability than the leading terms. By
Theorem 6 in CHNY, considering β i = β + ηi , we have:

β̂PC− β =
(

N∑

i=1

V ′
iV i

)−1 N∑

i=1

V ′
iV iηi + RNT
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CHNY assume that xi t follows a linear factor structure, (2), which can be expressed
as

X i = F�i + V i , (33)

where X i = (xi1, . . . , xiT )′, F = ( f 1, . . . , f T )′ and V i = (vi1, . . . , viT )′. See also
Assumptions B1-B5 in CHNY.

Note that
∑N

i=1 V
′
iV iηi = Op

(√
NT

)
and

∑N
i=1 V

′
iεi = Op

(√
NT

)
. Using

Lemmas 4 and 5, it follows that as (N , T ) → j ∞,

(
1

N

N∑

i=1

V ′
iV i

T

)−1

→p lim
N ,T→∞

1

N

N∑

i=1

E

(
V ′

iV i

T

)
= 	PC

1√
N

N∑

i=1

V ′
iV iηi

T
→d N

(
0, R1,PC

)

where R1,PC is defined in (22). This proves (21). (23) follows by the proof of Theo-
rem 3.

7.4 Proof of Theorem 3

Given Theorems 1 and 2, it suffices to derive the equivalence and consistency of the
two robust covariance estimators for β̂FE and β̂PC , which are given by (10), (11),
(19) and (20), respectively. Rewrite them compactly as

V NON
(
β̂FE

)
= 	̂

−1
FE R̂

NON
FE 	̂

−1
FE ; V H AC

(
β̂FE

)
= 	̂

−1
FE R̂

H AC
FE 	̂

−1
FE

V NON
(
β̂PC

)
= 	̂

−1
PC R̂

NON
PC 	̂

−1
PC ; V H AC

(
β̂PC

)
= 	̂

−1
PC R̂

H AC
PC 	̂

−1
PC

where X̂ i = M F̂X i ,

	̂FE =
N∑

i=1

Ẍ
′
i Ẍ i , 	̂PC =

N∑

i=1

X̂
′
i X̂ i =

N∑

i=1

X ′
iM F̂X i ,

R̂
NON
FE =

N∑

i

(
Ẍ

′
i Ẍ i

) (
β̂FE,i − β̂FE

) (
β̂FE,i − β̂FE

)′ (
Ẍ

′
i Ẍ i

)
,

R̂
NON
PC =

N∑

i

X ′
iM F̂X i

(
β̃PC,i − β̃PC

) (
β̃PC,i − β̃PC

)′
X ′
iM F̂X i ,

R̂
H AC
FE =

N∑

i

Ẍ
′
i ûFE,i û

′
FE,i Ẍ i , R̂

H AC
PC =

N∑

i

X̂
′
i ûPC,i û

′
PC,i X̂ i .
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Finally, we define:

Ĉ
NON

(
β̂FE , β̂PC

)
= 	̂

−1
FE R̂

NON
FE,PC 	̂

−1
PC ; Ĉ

H AC
(
β̂FE , β̂PC

)
= 	̂

−1
FE R̂

H AC
FE,PC 	̂

−1
PC

where

R̂
NON
FE,PC =

N∑

i

Ẍ
′
i Ẍ i

(
β̂FE,i − β̂FE

) (
β̃PC,i − β̃PC

)′
X̂

′
i X̂ i ,

R̂
H AC
FE,PC =

N∑

i

Ẍ
′
i ûFE,i û

′
PC,i X̂ i

To establish that the two covariance estimators are (asymptotically) equivalent, we
need to show:

R̂
NON
FE = R̂

H AC
FE + RNT (34)

R̂
NON
PC = R̂

H AC
PC + RNT (35)

R̂
NON
FE,PC = R̂

H AC
FE,PC + RNT (36)

where RNT denotes terms of the lower order of probability than the leading terms. We

focus on the PC estimator in (35). First, consider R̂
H AC
PC and notice that

X̂
′
i ûPC,i = X̂

′
i

(
ûPC,i + X̂ i

(
β̂PC − β

))
.

By Theorem 11 in CHNY, it follows that as (N , T ) → ∞ and T
N → c ∈ (0,	] with

	 < ∞,

N∑

i=1

X̂
′
i ûPC,i û

′
PC,i X̂ i =

N∑

i=1

V ′
iuPC,iu′

PC,iV i + RNT

where uPC,i = X iηi + εi . Then, we have

R̂
H AC
PC =

N∑

i=1

V ′
iV iηiη

′
iV

′
iV i +

N∑

i=1

V ′
iεiε

′
iV i + RNT . (37)

Next, it is easily seen that

β̃PC,i − β =
(
X̂

′
i X̂ i

)−1
X̂

′
iεi + ηi

β̃PC − β = 1

N

N∑

i=1

[(
X̂

′
i X̂ i

)−1
X̂

′
iεi + ηi

]
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Then,

X̂
′
i X̂ i

(
β̃PC,i − β̃PC

)
= X̂

′
i X̂ i

(
β̃PC,i − β i + β i − β + β − β̃PC

)

= X̂
′
i X̂ i

(
β̃PC,i − β i

)
+ X̂

′
i X̂ iηi + X̂

′
i X̂ i

(
β − β̃PC

)

= X̂
′
iεi + X̂

′
i X̂ iηi + X̂

′
i X̂ i

(
β − β̃PC

)
(38)

By Theorem 11 in CHNY, we then obtain:

R̂
NON
PC =

N∑

i=1

V ′
iV iηiη

′
iV

′
iV i +

N∑

i=1

V ′
iεiε

′
iV i + RN ,T . (39)

This proves (35).

Noticing that both
V ′
iεiε

′
iV i

T −E
(
V ′
iεiε

′
iV i

T

)
and

V ′
iV i
T ηiη

′
i
V ′
iV i
T −E

(
V ′
iV i
T ηiη

′
i
V ′
iV i
T

)

are i id and martingale difference processes over i and by Lemma 4, we have:

1

N

N∑

i=1

V ′
iV i

T
ηiη

′
i
V ′

iV i

T
→p lim

NT ,→∞
1

N

N∑

i=1

E

(
V ′

iV i

T
ηiη

′
i
V ′

iV i

T

)

1

N

N∑

i=1

V ′
iεiε

′
iV i

T
→p lim

N ,T→∞
1

N

N∑

i=1

E

(
V ′

iεiε
′
iV i

T

)

This provides consistency of both variance estimators.
Along similar lines to (38), it is straightforward to prove (34) and (36) because

(
Ẍ

′
i Ẍ i

) (
β̂FE,i − β̂FE

)
= Ẍ

′
i iεi + Ẍ

′
i Ẍ iηi + Ẍ

′
i Ḟγ̊ i + Ẍ

′
i Ẍ i

(
β − β̂FE

)
,

and the term Ẍ
′
i Ḟγ̊ i can be analysed similarly to Ẍ

′
i Ẍ iηi . Using these results, it

readily follows that

(
β̂FE − β̂PC

)′ (
V̂

NON
)−1 (

β̂FE − β̂PC

)
∼ χ2

k

(
β̂FE − β̂PC

)′ (
V̂

H AC
)−1 (

β̂FE − β̂PC

)
∼ χ2

k

where V̂
NON

and V̂
H AC

are defined in (26) and (27), respectively.
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8 Appendix: The data and empirical specifications

We describe the empirical specifications and the data in details. For the production
function, we estimate the following panel data regression:

ln

(
Y

L

)

i t
= β ln

(
K

L

)

i t
+ eit , eit = γ ′

i f t + εi t (40)

The first group consists of 26 OECD countries; Australia, Austria, Belgium, Canada,
Chile, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy,
Japan, Korea, Mexico, the Netherlands, New Zealand, Norway, Portugal, Spain, Swe-
den, Turkey, the U.K. and the U.S. The data is collected from PWT 7.0 and covers
the period 1970–2010. Y is GDP measured in million U.S. $ at the 2005 price, K
the capital measured in millions U.S. $, constructed using the perpetual inventory
method (PIM), and L the labour measured as the total employment in thousands.
The second group contains the EU27 countries; Austria, Belgium, Bulgaria, Cyprus,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ire-
land, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden and the U.K. The data are extracted from
PWT 9.0 over the period 1990–2015 and the definition of the variables, Y , K and L is
the same as above. The third group includes 20 Italian regions over the period 1995–
2016; Piemonte, Valle d’Aosta, Liguria, Lombardia, Trentino Alto Adige, Veneto,
Friuli-Venezia Giulia, Emilia-Romagna, Toscana, Umbria, Marche, Lazio, Abruzzo,
Molise, Campania, Puglia, Basilicata, Calabria, Sicilia and Sardegna. Due to the data
availability, we construct Y by the value added measured in million Euros at the 2010
price, L by the total employment in thousands, and K by Gross Fixed Capital For-
mation in millions Euros. The data, gathered from ISTAT, covers the period 1995 to
2000. The fourth data taken from Munnell (1990), comprises the 48 U.S. states and
covers the period, 1970–1986. Y is the per capita gross state product, K is the pri-
vate capital computed by apportioning Bureau of Economic Analysis (BEA) national
stock estimates, and L is the number of employers in thousands in non-agricultural
payrolls. The fifth application employs the aggregate sectorial data for manufacturing
from developed and developing countries for the period 1970–2002, collected from
UNIDO by Eberhardt and Teal (2019). We extract a balanced panel of 25 countries
with 25 time periods from 1970 to 1995, where we cover Australia, Belgium, Brazil,
Colombia, Cyprus, Ecuador, Egypt, Spain, Finland, Fiji, France, Hungary, Indonesia,
India, Italy, Korea, Malta, Norway, Panama, Philippines, Poland, Portugal, Singapore,
the USA and Zimbabwe.

The production function is augmented with R&D in the sixth application. From the
data provided by Eberhardt et al. (2013), we extract a balanced panel of 82 country-
industry units representing manufacturing industries across ten OECD economies
(Denmark, Finland, Germany, Italy, Japan, Netherlands, Portugal, Sweden, the United
Kingdom, and the US) from 1980 to 2005. We consider an augmented Cobb-Douglas
production function:
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ln Yit = βl ln Lit + βk ln Kit + βrd ln RDit + eit , eit = γ ′
i f t + εi t (41)

where Y measured as deflated value added, L is the total number of hours worked by
persons engaged, K is the total tangible assets by book value and RD is the R&D
stock expenditure. See Eberhardt et al. (2013) for details.

Next, we consider the gravitymodel specifications for the bilateral trade flows given
by

ln (tradeit ) = βgdp ln (gdpit ) + βrer ln (rerit ) + βsim ln (simit ) + βrl f ln (rl fi t )

+βceeceeit + βeuroeuroit + eit , eit = γ ′
i f t + εi t (42)

Here, tradeit is the sum of bilateral import flows (importodt ) and export flows
(exportodt )measured inmillionU.S. dollars at the 2000 pricewith o and d denoting the
origin and the destination country, gdpit is the sum of gdpot and gdpdt both of which
are measured as the gross domestic product at the 2000 dollar price, rerit = nerodt ×
xpiUS is the real exchange rate measured in the 2000 dollar price, where nerh f t is the
bilateral nominal exchange rate normalised in terms of the U.S. $, sim is a measure of

similarity in size constructed by simit =
[
1 −

(
gdpot

gdpot+gdpdt

)2 −
(

gdpdt
gdpot+gdpdt

)2]
,

and rl fi t = |pgdpot − pgdpdt | measures countries’ difference in relative factor
endowment where pgdp is per capita GDP. cee and euro represent dummies equal to
one when countries of origin and destination both belong to the European Economic
Community and share the euro as common currency, respectively. The data are col-
lected from the IMF Direction of Trade Statistics, and covers the period, 1960–2008.
We consider a sample of 91 country-pairs amongst the EU14 member countries (Aus-
tria, Belgium-Luxembourg, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Netherlands, Portugal, Spain, Sweden and the U.K.).

Further, we estimate the gasoline demand function by

ln (qit ) = βp ln (pit ) + βinc ln (incit ) + eit , eit = αi + γ ′
i f t + εi t (43)

where gasoline consumption, qit , is approximated as monthly sales volumes of motor
gasoline, per capita per day; pit is the after tax gasoline prices computed by adding the
state/federal tax rates to the motor gasoline sales to end user price and incit represent
the quarterly personal disposable income. Prices, income, and tax rates are converted
to constant 2005 dollars using GDP implicit price deflators. The source of data is Liu
(2014).

Finally, we estimate the income elasticity of real house price using the specification:

ln (pit ) = βinc ln (incit ) + eit , eit = γ ′
i f t + εi t , (44)

where pit is the housing price index and incit is the real per capital income. We
consider two annual datasets. The first sample from Holly et al. (2010) consists of
the panel data for 48 U.S. States (excluding Alaska and Hawaii) plus the District
of Columbia (N = 49) over the period 1975–2010. The second sample taken from
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Baltagi and Li (2014), contains a panel data of 384Metropolitan Statistical Areas over
the period 1975–2010.
Technological knowledge spilloversWeestimate the effect of technological knowledge
spillovers on total factor productivity (TFP). Following Coe et al. (2009), we estimate
the effect of domestic and foreign R&D capital stocks on TFP, controlling for the
impact of human capital, using the following regression:

t f pit = βsds
d
it + βs f s

f
i t + βhchcit + eit , eit = γ ′

i f t + εi t

where t f pit is the TFP, sdit is domestic R&D capital stocks, s f
i t is foreign R&D cap-

ital stocks and hcit is human capital. TFP is defined as the log of output minus
a weighted average of labor and capital inputs; domestic and foreign R&D capital
stocks are measured in U.S. $ at 2000 prices and PPP exchange rates. We use a bal-
anced panel of 24 OECD countries (Australia, Austria, Belgium, Canada, Denmark,
Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Japan, Korea, the
Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the U.K.
and the U.S.) observed over the period 1971–2004. The measures of TFP and R&D
capital stock come from Coe et al. (2009) (source: OECD Economic Outlook) while
the average number of years of schooling used to measure human capital is taken from
(Ertur and Musolesi 2017).

Next, we explore the channels through which technological investment affects
the productivity performance of industrialized economies using industry-level data,
extracted from the EUKLEMS database and the OECDANBERD database. The sam-
ple includes fourteen OECD countries (Austria, Belgium, Denmark, Germany, Spain,
Finland, France, Ireland, Italy, Japan, Netherlands, Sweden, the UK and the US). In
particular, we estimate the productivity effects of R&D and ICT identifying three
channels of transmission: input accumulation, technological change and spillovers by
the following specification

ln(vait ) = βl ln(li t ) + βnitc ln(nonI TCit ) + βi tc ln(I TCit ) + βrd ln(rdit )

+eit , eit = γ ′
i f t + εi t

where vait is value added; li t is the labour input measured as the number of hours
worked; rdit is the R&D input measured as the cumulative value of industry research
expenses; ICT (I TCit ) and non-ICT (nonI TCit ) assets are built from annual invest-
ment flows by means of the perpetual inventory method and adopting an asset-specific
rate of geometric depreciation. We extract a balanced panel of 49 high-tech industries,
from 1977 to 2006, from the dataset provided by Pieri et al. (2018).
Health care expenditure and incomeWe estimate the relationship between healthcare
expenditure and income using data on 167 countries over the period 1995–2012 by

ln(hit ) = βgdp ln(gdpit ) + βpe ln(peit ) + eit , eit = γ ′
i f t + εi t

where hit is per-capita health spending and gdpit is per capita GDP and peit is public-
health expenditure rate. The data on per-capita health expenditure and per-capita GDP
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are expressed at constant 2005PPPprices. Thepublic-health expenditure rate is defined
as the percentage of public expenditure over total health expenditure. The source is
the World Bank and the dataset is taken from Baltagi et al. (2017).
Demographic and business cycle volatilityWe estimate the impact of the age compo-
sition of the labor force on business cycle volatility. Jaimovich and Siu (2009) argue
that a significant fraction of the run-up of US volatility in the mid-1960s and of the
marked decline since the mid-1980s, known as the Great Moderation, is accounted
for by long swings in the age composition of the US population induced by the baby
boom and subsequent baby bust. Jaimovich and Siu (2009) define the volatile-age
labor force share, sit as the fraction of the 15- to 64-year-old labor force accounted for
by those aged 15–29 and 60–64 and linked it to the time-varying standard deviation
of output σi t in the following benchmark regression:

σi t = βssi t + εi t .

They show that shifts in the volatile-age share variable sit have a large and significant
effect on cyclical volatility in the G7 countries from 1963 to 1999. By using a different
dataset and allowing for cross-sectional dependence Everaert and Vierke (2016) find
a much lower effect. Here, we use the balanced panel dataset for 51 countries over the
period 1957–2000 taken from Everaert and Vierke (2016) where the GDP data (taken
from the Penn World Table) are used to calculate output volatility, which is defined
as the 9-year rolling standard deviation of logged annual GDP. The demographic data
are taken from the United Nations World Population Prospects.
Trade and carbon emissionsWeexplore the nexus between carbon emissions and trade
in the 32 OECD countries (Australia, Austria, Belgium, Canada, Chile, Czech Repub-
lic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel,
Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway,
Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, the UK and
the US). Following Liddle (2018), we estimate the following regression:

coit = βgdpgdpit + βtsh tshit + βishishit + β f sh f shit + eit , eit = γ ′
i f t + εi t

where coit is the consumption-based per capita carbon emissions, gdpit the real GDP
per capita, tshit the trade (import plus export) expressed as a percentage of the GDP,
ishit the industry value added expressed as a percentage of the GDP and f shit the
fossil fuel energy consumption as a share of total energy consumption. Data sources
are the World Bank’s World Development Indicators and the Global Carbon Project.
We extract a balanced panel of 32OECD countries from 1990 to 2013, from the dataset
in Liddle (2018).

9 Appendix: The bias corrected PC estimator

The bias corrected estimator proposed by Cui et al. (2019) is given by
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β̂PC = β̃PC − 1

N
B̂NT − 1

T
ĈNT

where the estimator for (βPC ,F) denoted as (β̃PC ,F̂) is the solution of the set of
nonlinear equations

β̃PC =
(

N∑

i=1

X ′
iM F̂X i

)−1 N∑

i=1

X ′
iM F̂ yi and

[
1

NT

N∑

i=1

(
yi − X i β̃PC

) (
yi − X i β̃PC

)′
]

F̂ = F̂V NT

where M F̂ = IT − F̂
(
F̂

′
F̂

)−1
F̂

′
, V NT is the diagonal matrix that consists r largest

eigenvalues of the above matrix in the brackets arranged in a decreasing order and F̂
is

√
T times the corresponding eigenvectors. The bias correction term is given by

B̂NT = −
(

1

NT

N∑

i=1

ẐiM F̂ Ẑ
′
i

)−1
1

NT 2

N∑

i=1

T∑

t=1

Ẑi F̂ϒ̂
−1
γ γ̂i û

2
i t

where Ẑi = X i − 1
N

∑N
j=1 âi jX j with âi j = γ̂ ′

i ϒ̂
−1
γ γ̂ j , ϒ̂γ = (�̂′�̂/N ), �̂ =

(
γ̂ 1, γ̂ 2, . . . γ̂ N

)′ and

ĈNT = −
(

1

NT

N∑

i=1

ẐiM F̂ Ẑ
′
i

)−1
1

NT

N∑

i=1

X̂ iM F̂ �̂F̂ϒ̂
−1
γ γ̂i

where �̂ = diag
(

1
N

∑N
j=1 û

2
j1, . . . ,

1
N

∑N
j=1 û

2
jT

)
.

10 Appendix: Further empirical results

See Table10.

Table 10 Empirical applications to fourteen different datasets

βFE seNON βPC seNON HNON

Production function

OECD β k
l

0.589 0.015 0.633 0.012 0.499
(0.479)

ITA β k
l

0.537 0.042 0.343 0.016 0.671
(0.413)
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Table 10 continued

βFE seNON βPC seNON HNON

US β k
l

0.165 0.011 0.106 0.042 0.647
(0.421)

UNIDO β k
l

0.637 0.028 0.563 0.036 0.193
(0.659)

Production and R&D βl 0.603 0.018 0.487 0.008

k = 3 βk 0.490 0.025 0.462 0.014 0.183

βrd 0.068 0.007 0.097 0.006 (0.980)

Gravity model βgdp 3.299 0.050 1.808 0.010

k = 6 βrer 0.037 0.006 − 0.041 0.006

βsim 1.362 0.036 1.231 0.041

βrl f 0.033 0.006 0.014 0.005

βcee 0.291 0.006 0.369 0.006 19.20

βemu 0.254 0.008 0.179 0.006 (0.003)

Gasoline demand βp − 0.161 0.008 − 0.101 0.002 1.404

k = 2 βinc 0.436 0.022 0.392 0.011 (0.495)

Income elasticity

US States βinc 0.832 0.032 0.634 0.011 1.404

(0.495)

US MSAs βinc 0.595 0.003 0.568 0.002 0.172

(0.677)

Technological spillovers

OECD countries βsd 0.057 0.007 0.087 0.006

k = 3 βs f 0.139 0.041 0.133 0.057 0.981

βhc 0.112 0.063 0.013 0.074 (0.805)

OECD industries βl 0.154 0.033 0.185 0.025

k = 4 βnitc 0.491 0.041 0.512 0.034

βi tc 0.024 0.008 0.084 0.007 0.694

βrd 0.027 0.004 0.031 0.011 (0.951)

Health βgdp 0.721 0.008 0.732 0.0073 0.017

k = 2 βpe 0.019 0.009 0.021 0.0107 (0.991)

Volatility βs − 0.617 0.373 − 0.683 0.391 0.001

(0.967)

Carbon emission βgdp 0.429 0.023 0.427 0.020

k = 4 βtsh − 0.106 0.016 − 0.096 0.014

βish − 0.123 0.045 − 0.125 0.066 0.227

β f sh 0.866 0.039 0.987 0.058 (0.994)

HNON are the H-statistic defined in (24) with the p-values inside (.). seNON are the standard errors
evaluated by the non parametric NON variance-covariance estimators, see notes to Table 9
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