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Abstract
Stochastic frontier models and methods as pioneered by Peter Schmidt in Aigner et al.
(J Econom 6:21–37, 1977), Horrace and Schmidt (J Product Anal 7:257–282, 1996),
Amsler et al. (J Econom 190:280–288, 2016) constitute a rare departure from the usual
econometric obsessionwithmodels for conditionalmeans. They also provided an early
stimulus for the development of quantile regression methods. After a brief tutorial on
Hotelling tube methods for constructing confidence bands for nonparametric quantile
regression, strengthened performance guarantees for such bands are described based
on recent developments in conformal inference. These methods may be considered
to be a rather idiosyncratic new approach to nonparametric inference for stochastic
frontier models.

Keywords Confidence bands · Quantile regression · Conformal inference

1 Introduction

One of my indelible memories of Peter Schmidt was a conversation we had in my
kitchen at a party for Midwest Econometrics Group participants in 1993 about the
uneasy relationship between statistics and econometrics. “If a statistical tree falls in
the forest, but no econometrician sees it,” Peter said matter-of-factly, “then it never
happened.” In 1939 Harold Hotelling, arguably one of the most eminent statisticians
and econometricians of the twentieth century witnessed such an event and wrote about
in Hotelling (1939). The paper inspired Hermann Weyl to write a highly influential
paper, Weyl (1939) generalizing it. Hotelling’s idea has attracted a small coterie of
admirers in statistics, but it is fair to say that it remains almost unknown in economet-
rics.
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2758 R. Koenker

My quixotic aim in this paper is to rescue Hotelling’s idea from econometric obscu-
rity. I will begin by describing a simple setting in which the idea can be employed
to construct a confidence interval for a scalar parameter that enters awkwardly in a
standard regression problem. Then, I will describe how it can be used to construct
uniform confidence bands for nonparametric regression using penalty methods, and
finally I will compare performance with confidence bands constructed with recently
developed methods of conformal inference.

2 Hotelling’s regression problem

Consider the nonlinear regression model

Yi = x�
i α + λi (τ )β + εi

where α, β, τ are unknown parameters, λi (·) are known functions and εi ∼ N (0, σ 2).
For the sake of concreteness, we might interpret λi (τ ) as a Box-Cox transformation
of another covariate, say (zτ

i − 1)/τ . We would like to test H0 : β = 0. Under the
null, the Box-Cox parameter τ is not identified, so we need to consider strategies that
properly account for this.1

By the familiar (Frisch and Waugh 1933) trickery, we can eliminate the α effect.2

Redefining the notation and assuming for convenience that σ 2 = 1, we are left with
the likelihood ratio statistic

L = inf
τ

∑
(Yi − β̂τ λi (τ ))2/

∑
Y 2

i

Now, denoting the n-vectors, Y = (Yi ), λ = (λi ), and the Euclidean norm by ‖ · ‖,
β̂τ = Y �λ(τ)/‖λ(τ)‖2 so we can rewrite,

L = inf
τ

‖Y‖−2(‖Y‖2 − 2(Y �λ)2/‖λ‖2 + (Y �λ)2/‖λ‖2)

= 1 − sup
τ

(
Y �λ(τ)

‖λ(τ)‖‖Y‖
)2

≡ 1 − sup
τ

(γ (τ )�U )2

Now U = Y/‖Y‖ is uniformly distributed on the sphere Sn−1 and γ (τ) =
λ(τ)/‖λ(τ)‖ is a curve in Sn−1. Thus, the test rejects when W = supτ γ (τ )�U
exceeds some value w = cos θ which is equivalent to

1 There is of course a large literature on such problems, notably: Davies (1977, 1987); Andrews and
Ploberger (1994); Hansen (1996), none of whommention Hotelling. An exception that justifies the qualified
“almost unknown” above is Kim et al. (1998). I do not claim that the Hotelling approach is “best” in any
sense, only that it is worthy of further consideration. To this end, software to compute the confidence bands
described below is available in the R package quantreg, Koenker (1999) for a general class of total
variation penalized, additive, nonparametric quantile regression models.
2 Hotelling obviously knew all about how to do this, and one doubts that he learned it from Frisch, but this
would probably be hard to establish.
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Hotelling tubes, confidence bands and conformal inference 2759

Fig. 1 Angular distance from
γ (t) to u = (1, 0)

U ∈ γ θ = {u ∈ Sn−1 : sup
t

u�γ (t) ≥ cos θ}
= {u ∈ Sn−1 : d(u, γ ) ≤ (2(1 − w))1/2}.

Note that the original definition of L is such that we reject for small values, so L < c,
implies we reject for supτ γ (τ )�U > w = cos θ for some critical value of θ . This is
illustrated in Fig. 1 of Johansen and Johnstone (1990), reproduced here as Fig. 1. They
call this the “angular or geodesic radius θ about γ :”

d2(u, γ ) = sin2(θ) + (1 − cos(θ))2

= 1 − 2 cos θ + cos2 θ + sin2 θ

= 2(1 − cos θ).

So when the distance d(u, γ ) is small, U falls inside tube, and we reject. This may
seem a bit counter-intuitive, but is nonetheless correct. There are probably many ways
to it sound more intuitive. Here is one possibility. Since it all boils down to a cosine,
that is the simple correlation between λ(τ) and Y , we want to reject H0 : β = 0 if
this correlation/cosine is too large, but Y ’s that make it too large are the Y ′s that fall
inside the tube.

So how do we compute the critical w or equivalently the critical θ? Since W >

w ≡ cos θ is equivalent to U being in the tube, we need the volume of the tube. Let
|γ | denote the length of the arc γ (τ) on the sphere. This can be approximated by the
finite difference formula,

|γ | =
∫

‖γ̇ (τ )‖dτ ≈
m∑

i=2

‖(γ (τi ) − γ (τi−1))‖,

and the τ ’s are chosen on some relatively fine grid of m points. Note that in the finite
difference approximation the τi −τi−1 that would normally appear in the denominator
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2760 R. Koenker

Fig. 2 A Hotelling tube on a
2-sphere

of the difference quotient inside the norm expression cancels with the contribution of
the dτ .

Theorem 1 If γ is a non-closed regular curve in Sd−1 then for w near 1,

P(W ≥ w) = |γ |
2π

(1 − w2)
d−2
2 + 1

2
P(B

(
1

2
,

d − 1

2

)
≥ w2) (1)

where B(1/2, (d − 1)/2) is a beta random variable. If γ is closed, i.e., forms a closed
loop without end points, then the second “cap” term is omitted.

We ignore pathological complications involving self-intersections of the curve, γ .
This follows from a result of Hotelling (1939), as does the next theorem.

Theorem 2 Let γ be a regular closed curve in Sd−1 with length |γ |. And

γ θ = {u ∈ Sd−1
∣∣ sup

t
u�γ (t) ≥ θ}

= {u ∈ Sd−1
∣∣d(u, γ ) ≤ (2(1 − w))1/2}

where w = cos θ . If θ is sufficiently small, then the volume of the tube V (γ θ ) is given
by

V (γ θ ) = |γ |�d−2 sin
d−2 θ (2)

where �d−2 = π(d−2)/2�(d/2) is the volume of the unit ball in Rd−2.

Heuristically, the formula is,

V (γ θ ) = (length of tube) · (Volume of unit ball) · radiusd−2

Recall that the volume of the unit ball in dimension d is V = πd/2/�((d + 2)/2).
When θ is larger, or γ is twisty, then the tubemay intersect itself and the formulawould
need some refinement. Figure2 is a crude attempt to depict tube on the 2-sphere, those
with enhanced geometric imagination may try to visualize a three dimensional tube
on the 3-sphere embedded in 4-space.
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Hotelling tubes, confidence bands and conformal inference 2761

When the curve is not closed, then it needs “caps” on each end. These caps are
given by

wd−2

∫ 1

cos θ

(1 − z2)(d−3)/2dz

where wd−2 = 2π(d−1)/2/�((d − 1)/2) is the (d − 2)-volume of Sd−2. Note that
the volume of the sphere, V (Sd−1) = 2πd/2/�(d/2), is not the same as the volume
of the ball. Note also that (1 − z2)1/2 is again the radius and integrating out the rd−3

yields a d − 2 dimensional volume. A useful reference for this sort of geometry is
Kendall (1961).

How do we get from (2) to (1)? Recall that U is uniform on the (d − 1) sphere so
we need to divide by the volume of that sphere to evaluate the probability of being in
the tube, so for closed curves,

V (tube)

V (sphere)
= |γ |�d−2 sind−2 θ

2πd/2/�(d/2)

= |γ |(π(d−2)/2/�(d/2)) sind−2 θ

2π(π(d−2)/2/�(d/2))

= |γ |
2π

(1 − w2)(d−2)/2.

To include caps, we also need to divide by the volume of the sphere. Note that

P(B1/2, d−1
2

≥ w2) =
∫ 1

w2

[
x1/2−1(1 − x)

d−1
2 −1/B(1/2,

d − 1

2
)

]
dx

=
∫ 1

w2

[
x−1/2(1 − x)

d−3
2 /B

]
dx .

Changing variables x → y2, we have

=
∫ 1

y0

[
y−1(1 − y2)

d−3
2 /B

]
2ydy

= 2
∫ 1

y0
B−1(1 − y2)

d−3
2 dy.

It remains to show that B−1 = wd−2/V(sphere), which follows after a little simplifi-
cation and recalling that �(1/2) = √

π .
To check how the Hotelling tube procedure performs in moderate sample sizes,

Table 1 reports results of a small simulation experiment. Data are generated with iid
xi standard log-normal and

yi = βn(xτ
i − 1)/τ + εi , u ∼ N (0, 1).
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2762 R. Koenker

Table 1 Rejection frequencies for the Hotelling likelihood ratio test for a simple Box-Cox example

β0 = 0 β0 = 1 β0 =2
τ = −0.5 τ = 0 τ = 0.5 τ = −0.5 τ = 0 τ = 0.5 τ = −0.5 τ = 0 τ = 0.5

n = 20 0.056 0.058 0.049 0.313 0.193 0.182 0.781 0.459 0.380

n = 50 0.049 0.051 0.057 0.275 0.225 0.342 0.639 0.577 0.782

n = 100 0.063 0.048 0.056 0.350 0.261 0.281 0.840 0.637 0.704

n = 500 0.048 0.052 0.055 0.298 0.243 0.288 0.747 0.612 0.735

n = 1000 0.063 0.046 0.047 0.299 0.218 0.250 0.724 0.549 0.667

Tests are nominal level α = 0.05. Local alternatives are employed of the form: βn = β0/
√

n

Three values of τ are considered τ ∈ {−0.5, 0, 0.5}. Local alternatives, βn = β0/
√

n,
are considered with β0 ∈ {0, 1, 2}. The nominal level of the Hotelling test is taken to
be 0.05. and 1000 replications of the experiment are made for each parametric setting.
When β = 0 so the null is true, the test delivers quite accurate size for all of the sample
sizes considered, and power is respectable when β deviates from zero.

3 Uniform confidence bands for nonparametric regression

Consider the series expansion model

Yi =
d∑

j=1

β j a j (ti ) + εi

with εi ∼ N (0, σ 2) as before and t ∈ I ⊂ R. Our objective is to find a positive c
such that

Pβ,σ,�(|β�a(t) − β̂�a(t)| ≤ cσ(a(t)��a(t))1/2 ∀ t ∈ I ) ≈ 1 − α,

uniformly in β, σ. Johansen and Johnstone (1990) write this as, Pβ,σ,�(T < cσ)

where

T = sup
a∈C

a�(β̂ − β)√
a��a

Now consider X ∼ N (ξ,�), so X plays the role of β̂ and ξ of β. We’d like to
make a confidence statement about {a�ξ |a ∈ C} and C is some sort of “curve.” So
now we write,

T = T (X , ξ) = sup
a∈C

a�(X − ξ)√
a��a

.
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Hotelling tubes, confidence bands and conformal inference 2763

We want the distribution of T , so we can obtain the confidence set

Rx = {{a�ξ}a∈C |T (X , ξ) < c1−ε}

where Pξ,�(T < c1−ε) = 1 − ε. Write T = RW where,

R2 = (X − ξ)��−1(X − ξ) ∼ χ2
d ,

and

W = sup
a∈C

a�(X − ξ)√
a��a

√
(X − ξ)�−1(X − ξ)

= sup
a∈C

(�1/2a)��−1/2(X − ξ)

|�1/2a||�−1/2(X − ξ)| .

Now to put things back into the earlier framework of γ and U we set,

γ (a) = �1/2a

|�1/2a|
U = �−1/2(X − ξ)/|�−1/2(X − ξ)|.

So as before, γ = γ (C) ⊂ Sd−1, and U is uniform on Sd−1. R and W do not
depend on ξ,� or they do, but only via γ . R2 is independent of W and R2 ∼ χ2

d so,

P(T > c) =
∫ ∞

c
P(W > c/r)P(R ∈ dr).

The random variable W has the same form as in the simple example so,

P(W > w) = |γ |
2π

(1 − w2)(d−2)/2 + 1

2
P(B ≥ w2) ≡ bγ (w).

(Naiman 1986) bounds this probability by,

P(T > c) ≤
∫ ∞

c
min{bγ (c/r), 1}P(R ∈ dr),

and Knowles (1987) suggests ignoring the bγ < 1 constraint and then integrates the
bound to obtain,

P(T > c) ≤ |γ |
2π

e−c2/2 + 1 − �(c).

This integration may appear somewhat miraculous, but does actually work out
provided that one carefully observes the P(R ∈ dr) term. Since R2 ∼ χ2

d , letting F
denote the distribution function of χ2

d , we have,

P(R ≤ r) = P(R2 ≤ r2) = F(r2)
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so the corresponding density of R is

fR(r) = 2r F ′(r2) = 2r fR2(r
2).

Once one has this bound then various other things fall into place. For example,

P(|T | > c) ≤ 2P(T > c).

(Johansen and Johnstone 1990) give further details on the accuracy of the bounds and
applications.

4 Additive models for total variation penalized nonparametric
quantile regression

In Koenker (2011), I have described a general approach to estimation and inference
for additive nonparametric quantile regression models of the form,

QY i |xi ,zi (τ |xi , zi ) = x�
i θ0 +

J∑

j=1

g j (zi j ).

The components g = (g1, · · · , gJ ) can be univariate or bivariate. Their smoothness
can be controlled by penalizing total variation of the functions themselves or their
gradients. Estimation is carried out by solving the linear program,

min
(θ0,g)

∑
ρτ (yi − x�

i θ0 −
∑

g j (zi j )) + λ0‖θ0‖1 +
J∑

j=1

λ j

∨
(∇g j ) (2)

where ρτ (u) = u(τ − 1(u < 0)) is the usual quantile objective function, ‖θ0‖1 =∑K
k=1 |θ0k | and ∨

(∇g j ) denotes the total variation of the derivative or gradient of the
function g. Recall that for g with absolutely continuous derivative g′ we can express
the total variation of g′ : R → R as

∨
(g′(z)) =

∫
|g′′(z)|dz

while for g : R2 → R with absolutely continuous gradient,

∨
(∇g) =

∫
‖∇2g(z)‖dz

where ∇2g(z) denotes the Hessian of g and ‖ · ‖ denotes the Hilbert–Schmidt norm
for matrices. In contrast, total variation penalization of the component functions them-
selves yields piecewise constant solutions.
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Adapting the Hotelling tube idea to construct uniform confidence bands for these
components is also described in Koenker (2011), as is selection of the smoothing
parameters λ j , j = 0, 1, · · · J . It should be stressed that all of this machinery relies
on the validity of Gaussian approximations for the fitted parameters and estimated
functions and is conditional on selected tuningparameters. This is in accordwith a large
strand of earlier literature including (Wahba 1983; Nychka 1983), and Krivobokova
et al. (2010); however, there are inevitable questions that can be raised about both
aspects. To explore this, we consider some recent proposals for strengthening coverage
guarantees based on conformal inference in the next section.

5 Conformal quantile regression

Conformal prediction, and conformal inferencemore generally, has grown out of work
by Vladimir Volk and colleagues, see, e.g., Shafer and Vovk (2008) for an overview.
It has emerged as an essential tool in uncertainty quantification throughout statistics
and machine learning. An essential feature of the conformal inference approach in
regression is a sample splitting device that allows one to adjust a confidence band con-
structed with training data based on its performance on a validation sample. Strong
finite sample performance guarantees can be proven based on seemingly rather weak
exchangeability assumptions. In regression settings, early work presumed conven-
tional iid error structure when constructing the initial bands from the training data;
however, (Romano et al. 2019) noted that in more heterogeneous settings narrower
bands could be constructed using quantile regressionmethods. This approach has been
further developed in Lei and Candès (2022). In high-dimensional regression, this typ-
ically would involve some form of random forest or neural network model for the
initial bands, but the same methods can be used in simpler models like the additive
models described above.

Construction of conformal prediction bands for additive quantile regression models
can be described briefly as follows:

Algorithm 1 Split Conformal Quantile Regression (CQR)
1: procedure CQR(x, y, τ )
2: Split the sample into training, T , and validation, V , samples.
3: Compute initial lower, q̂0(x) = QY |X (τ0|x) and upper, q̂1(x) = QY |X (τ1|x) confidence band limits

on training sample.
4: Predict response quantiles yi0 and yi1 at τ0 and τ1 for each of the validation sample observations.
5: Compute conformal scores, Ei = max{ŷi0 − yi , yi − ŷi1}.
6: Compute Q, the τ1 − τ0 quantile of the conformal scores.
7: Return the augmented prediction band C(x) = [q̂0(x) − Q, q̂1(x) + Q].

Note that the conformal adjustment of the initial band canmake it wider or narrower.
When Q < 0, it indicates that the validation sample fell well inside the initial band
indicating that it is safe to shrink the width of the initial band.

There are several potential difficulties with the foregoing recipe.

123



2766 R. Koenker

0 1 2 3 4 5

−2
0

2
4

6

x

y

Fig. 3 Example 1 of Romano, Patterson and Candès: As described in the text the response is concentrated
in bands determined by a Poisson component with some quite extreme outliers that are (mostly) invisible in
this plot. The Poisson rate is periodic accounting for the obvious heteroscedasticity. The red curves depict
the predicted 0.05 and 0.95 conditional quantile estimates based on the training data, using penalization of
the derivative of the fitted function, while the blue curves depict the conformally modified estimates. In this
example, the conformity scores Ei are quite small and the conformal modification is almost negligible

• Predictions based on the training sample typically are not equipped to extrapolate
beyond the empirical support of the training data, so if the validation data, or new
data requiring a conformal interval, lie outside that support some accommodation
must be made.

• Performance guarantees are based on marginal coverage of the band, so it may
happen that in certain regions of design space there may be failures of coverage
that are compensated by satisfactory coverage elsewhere. As shown by Foygel
Barber et al. (2020), conditional coverage is not achievable in any generality.

• All of the familiar challenges of penalty methods for regression smoothing persist,
so choice of smoothing parameters, in particular, can cause headaches, even though
poor λ selection can in principle be ameliorated by the conformal adjustment.

We conclude this section by illustrating the use of the conformal method in an
artificial data example taken from Romano et al. (2019). Simulated data are generated
as,

X ∼ U [0, 5]
Y |X ∼ Pois(sin2(X) + 0.10) + V

V ∼ 0.03X Z0 + 251(U < 0.01)Z1

U ∼ U [0, 1]
(Z0 ⊥⊥ Z1) ∼ N (0, 1)

There are 7000 observations plotted in grey. The Poisson contribution to the response
produces a banded structure to the scatterplot with pronounced heteroscedasticity.
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Fig. 4 Example 1 of Romano,
Patterson and Candès: In
contrast to the earlier piecewise
linear fit obtained by total
variation penalization of the first
derivative of g, in this figure total
variation of the fitted function
itself is penalized resulting in a
piecewise constant fit. Clearly
this penalty is better suited to the
example and mimics quite well
the fit depicted in that paper.
Again, the conformal adjustment
is only barely visible

0 1 2 3 4 5
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0

2
4

6

x

y

Fig. 5 Pointwise and uniform
confidence bands for RPC
Example: In contrast to the
conformal prediction band,
pointwise and uniform bands for
the 0.05 and 0.95 conditional
quantile functions are
considerably wider. The uniform
band is based on the Hotelling
tube construction described in
Koenker (2011) and is depicted
as the light grey shaded band
enclosing the darker grey
pointwise band

0 1 2 3 4 5

−2
0

2
4

6

x

y

There are a small number of extreme outliers many of which lie outside the frame
of the figure; such outliers are harmless since we are estimating conditional quantile
functions. Penalizing total variation of g′ yields a piecewise linear fit that does not fit
the scatter as well as the piecewise constant estimate obtained by penalizing the total
variation of g itself. It is striking here that the conformal adjustment in both figures is
almost imperceptible. Thus, if interest focuses on prediction intervals for the response,
the initial estimates provided by the penalized quantile regression estimates are fine,
even though they are based on only half the original sample.

Prediction bands for Y are fine as far as they go, but what if we wanted confidence
bands for the conditional quantile functions? Some might argue, e.g., Geiser (1993);
Clarke and Clarke (2018), that it is pointless to predict quantities that can never be
observed, but I subscribe to the principle: every decent estimate deserves a standard
error. Figure5 illustrates confidence bands for the lower, τ = 0.05 and upper, τ = 0.95
conditional quantile functions as estimated using penalization of g′. The dark grey
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2768 R. Koenker

bands are the pointwise bands, while the lighter grey bands are those based on the
Hotelling tube approach. Note that the bands for the 0.05 estimate are extremely
narrow since the data are very concentrated in this region, so the τ = 0.05 conditional
quantile is very precisely estimated.

6 Discussion

The large literature in econometrics about stochastic frontier models is mostly con-
cernedwith parametricmodels of the tail behavior of the response “near the production
frontier.” Nonparametric quantile regression offers yet another perspective on esti-
mating such models. It would be extremely foolish to make any claims for alternative
methodology described here on the basis of the flimsy evidence offered, let me con-
clude simply by saying that it might be worthy of further consideration.
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