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Abstract
Cointegrating polynomial regressions (CPRs), i.e., regressions that include determin-
istic terms, integrated processes and powers of integrated processes as explanatory
variables and stationary errors, have become prominent in several fields of applica-
tions, e.g., in the analysis of environmental Kuznets curves. A key issue, as always in
cointegration analysis, is testing for the presence or absence of a cointegrating rela-
tionship. This paper discusses two complementary tests: one with the null hypothesis
of cointegration and one with the null hypothesis of the absence of cointegration. It is
shown that (inter alia) for the empirically most relevant case, in which only one of the
integrated regressors occurs as regressor also with higher powers, critical values can
be simulated and are provided for a variety of specifications. Finally, the usage of the
tests is illustrated for the environmental Kuznets curve for carbon and sulfur dioxide
emissions. The illustration also investigates the sensitivity of the test decisions with
respect to kernel and bandwidth choices, sample size and data vintage.

Keywords Cointegrating polynomial regression · Cointegration · Unit root · Testing ·
Environmental Kuznets curve · Material Kuznets curve · Exchange rate target-zone

JEL Classification C12 · C13 · Q20

1 Introduction

Recent years have seen growing theoretical and empirical interest in estimating and
testing for nonlinear cointegrating relationships. A very voluminous body of applied
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2 M. Wagner

literature in this respect has been and continues to be generated within the envi-
ronmental economics literature. The so-called environmental Kuznets curve (EKC)
hypothesis, which postulates an inverted U-shaped relationship between the level of
economic development, typically measured by (the logarithm of) GDP per capita, and
(the logarithm of) pollution or emissions per capita is one of the most widely studied
empirical relationships in environmental economics. Early survey papers like Stern
(2004) andYandle et al. (2004) already countmore than one-hundred refereed publica-
tions. The term EKC refers by analogy to the inverted U-shaped relationship between
the level of economic development and the degree of income inequality postulated by
Kuznets (1955) in his 1954 presidential address to the American Economic Associ-
ation. Estimation of an EKC entails, in its simplest parametric form, a regression of
emissions on GDP and its square to allow for a U or inverted U shape. Given that the
logarithm of GDP per capita is often found to be unit root non-stationary, this is thus a
regression where as regressors a unit root process and its square are present.1 In doing
so, the empirical EKC literature in large parts fails to acknowledge the fact that if the
logarithm of GDP per capita is a unit root process, the square of the logarithm of GDP
per capita cannot be a unit root process and continues to use “standard” unit root and
cointegration techniques. This means that a large part of the empirical EKC literature
(see, e.g., Friedl and Getzner 2003, Perman and Stern 2003 or Galeotti et al. 2009
from a large and still growing list of such contributions) simply treats GDP and its
square as two integrated processes and uses standard unit root and cointegration test
and estimation methods.2 This is, notwithstanding its popularity, a problematic prac-
tice since tailor-mademethods designed for regressions involving integrated processes
and nonlinear transformations thereof are available.3

Wagner and Hong (2016) develop estimation and inference theory for the special
case of nonlinear cointegrating relationships including deterministic components as
well as unit root processes and their powers as explanatory variables. They refer to such
relationships as cointegrating polynomial regressions (CPRs).More precisely,Wagner
and Hong (2016) extend the FM-OLS estimator of Phillips and Hansen (1990) from
cointegrating linear to cointegrating polynomial regressions.4 In addition to hypothesis

1 The seminal empirical study of Grossman and Krueger (1993) uses a third-order polynomial in GDP,
whereas the more popular quadratic specification has been initiated by Holtz-Eakin and Selden (1995).
2 Another literature where this type of relationship occurs is the so-called intensity-of-use or material
Kuznets curve (MKC) literature that investigates the potentially inverted U-shaped relationship between
GDP and energy or metals use (see, e.g., Labson and Crompton 1993 or Grabarczyk et al. 2018). Almost
by definition, the study of inequality, put to the center of attention again by Piketty (2014), when performed
with time series data can make use of methods for cointegrating polynomial regressions. The same holds
true for the exchange rate target-zone literature, see, e.g., Darvas (2008) or Svensson (1992).
3 Bradford et al. (2005) andWagner (2008, 2015) contain critical assessments of this practice. Stypka et al.
(2019) derive and discuss the asymptotic properties of using methods, in particular FM-OLS, developed for
cointegrating linear regressions in a cointegrating polynomial regression setting. The results of that paper
show that “standard” cointegration and non-cointegration tests lead to asymptotically invalid inference,
not least because of wrong critical values being used. This problem is overcome with the tests and proper
critical values provided in this paper.
4 Also, e.g., Chang et al. (2001), provide extensions of FM-OLS to nonlinear cointegration settings. While
these authors consider more general functions thanWagner and Hong (2016), they assume serially uncorre-
lated errors. Wagner and Hong (2016) allow for serially correlated errors that are allowed to be dynamically
correlated with the regressors, thereby considering the same setting as commonly used in linear cointegra-
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Residual-based cointegration and non-cointegration tests for CPRs 3

testing with respect to the estimated parameters, they furthermore also investigate
specification tests based on augmented or auxiliary regressions in detail. One important
aspect that is not treated exhaustively in that paper is testing for cointegration and
for the absence of cointegration, respectively. To be precise, only testing the null
hypothesis of cointegration is considered in Wagner and Hong (2016, Propositions 5
and 6), whereas testing the null hypothesis of no cointegration is not considered.
Furthermore, Wagner and Hong (2016) do not provide critical values. The present
paper considers tests for both null hypotheses in detail and also provides critical
values. We (re-)consider, with this test already discussed in Wagner and Hong (2016),
in detail an extension of the Shin (1994) cointegration test, itself an extension of
the KPSS stationarity test of Kwiatkowski et al. (1992), from cointegrating linear
to cointegrating polynomial regressions. Furthermore, we consider an extension of a
variance ratio test for the absence of cointegration of Phillips and Ouliaris (1990). The
null hypothesis of the latter test is that the relationship is not cointegrating but spurious.
It turns out that in the general case of several integrated regressors entering the CPR
with powers higher than one, neither of the two tests has a nuisance-parameter-free
limiting distribution that could be tabulated. This has already been observed for the
KPSS-type test inWagner andHong (2016). Consequently, for the Shin- or KPSS-type
test Wagner and Hong (2016) and, based on D-OLS estimation rather than FM-OLS
estimation, Choi and Saikkonen (2010) consider sub-sampling versions of the KPSS-
type test statistic that results in nuisance-parameter-free limiting null distributions,
at the expense of a drastically reduced sample size due to sub-sampling. For the
relatively small samples available for typical macroeconomic applications, a sub-
sampling based test is potentially only of limited practical value. For the extension of
the test of Phillips and Ouliaris (1990), this sub-sampling approach does not lead to
asymptotically nuisance-parameter-free limiting distribution.

However, using the terminology of Vogelsang and Wagner (2016), in case of a full
design CPR relationship it can be shown that the limiting distributions of both tests
can be tabulated. Full design refers to a situation in which the limiting distribution
of the FM-OLS estimator—and a fortiori the limiting partial sum processes of the
residuals—can be expressed as a functional of standard Brownian motions rather than
of non-standard Brownian motions. The empirically most relevant case, with only
one of the integrated processes entering the CPR with powers higher than one is
straightforwardly seen to be of full design. “Appendix B” of the paper provides tables
with critical values for this case, for up to four integrated regressors, up to power four of
the one integrated regressor entering with higher powers for the usual specifications of
the deterministic component (no deterministic component, intercept only, intercept and
linear trend). Thus, the results of the paper allow to perform non-/cointegration testing
in typical applications like EKCs, MKCs or exchange rate target-zone relationships.5

tion analysis.
A basic observation that is not always sufficiently acknowledged is the fact that nonlinear transformations
change the properties of integrated processes fundamentally, depending upon the type of transformation.
It is a basic mathematical property that only linear transformations “commute” with summation. Wagner
(2012) or Stypka and Wagner (2019) exemplify this issue for polynomial transformations.
5 For further discussion concerning full design and FM-OLS type estimation for cointegrating multivariate
polynomial regressions (CMPRs), that potentially include arbitrary cross-products of powers of integrated
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4 M. Wagner

The tests discussed are illustrated with annual carbon dioxide (CO2) and sulfur
dioxide (SO2) emissions data for 18 early industrialized countries over the period
1870–2016, with New Zealand data starting only in 1878. For CO2 emissions an EKC
relationship is found for six of the 18 countries, Austria, Belgium, Finland, Germany,
Switzerland and the UK. For all countries but Germany a quadratic specification suf-
fices, whereas for Germany a cubic specification is required. For SO2 emissions an
EKC relationship is found for none of the countries. In this respect note that the loga-
rithm of GDP per capita and its powers are the only regressors included in the simple
“reduced-form” equation and the absence of an EKC for SO2 emissions could partly
be driven by important explanatory variables and legislative changes not entirely cap-
tured by GDP. A more structural investigation of the EKC relationship is beyond the
scope of this paper that is merely devoted to discussing the (non-)cointegration tests
rather than to a fully fledged empirical analysis. A second observation that emerges
from the illustration is that the usage of appropriate (non-)cointegration tests, designed
for testing in a CPR context, reduces the evidence for a cointegrating EKC relationship
compared to using (non-)cointegration tests designed for linear cointegrating relation-
ships. By means of robustness checks we also illustrate that the results obtained with
the two nonparametric tests are quite insensitive to kernel and bandwidth choices, in
particular with respect to the evidence for the prevalence of an EKC. Changing the
sample size and, in particular, using different data vintages lead to more variation in
the test results.

The paper is organized as follows: The following section discusses and presents the
tests, Sect. 3 briefly illustrates the tests with CO2 and SO2 emissions data, and Sect. 4
briefly summarizes and concludes. Two appendices follow themain text: “AppendixA”
contains the proofs, and “Appendix B” contains the tables with the critical values.
“Supplementary Appendix C” contains the detailed test results for the robustness
checks.

2 The tests

Following Wagner and Hong (2016), we consider a cointegrating polynomial regres-
sion (CPR), i.e., an equation including a constant and polynomial time trends up to
power q, integer powers of integrated regressors x jt , j = 1, . . . , m up to degrees p j

and a stationary error term ut :

yt = D′
tθD +

m∑

j=1

X ′
j tθX j + ut , for t = 1, . . . , T , (1)

with Dt := [1, t, t2, . . . , tq ]′, X jt := [x jt , x2j t , . . . , x
p j
j t ]′ and the parameter vectors

θD ∈ R
q+1 and θX j ∈ R

p j .
The following assumption on the regressors and the errors is put in place:

processes as explanatory variables, see Stypka andWagner (2020). Vogelsang andWagner (2016) effectively
consider IM-OLS estimation for CMPRs.
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Residual-based cointegration and non-cointegration tests for CPRs 5

Assumption 1 The process {ηt }t∈Z := {[ut , v
′
t ]′
}

t∈Z with {vt }t∈Z := {�xt }t∈Z, with
xt := [x1t , . . . , xmt ]′, is generated as:

ηt := C(L)η0t =∑∞
j=0 C jη

0
t− j ,

with
∑∞

j=0 j ||C j || < ∞ and det(C(1)) �= 0. Furthermore, we assume that the

process
{
η0t
}

t∈Z is a stationary and ergodic martingale difference sequence with

natural filtration Ft = σ
({

η0s
}t
−∞
)
, positive definite covariance matrix �η0η0 and

supt≥1 E(‖η0t ‖r |Ft−1) < ∞ a.s. for some r > 4.

Assumption 1 is analogous to the corresponding assumption in Wagner and Hong
(2016). Quite similar assumptions have been used in several places in the literature,
e.g., Chang et al. (2001), Park andPhillips (1999, 2001) andHong andPhillips (2010).6

The key result that this type of assumption is required for is an invariance principle for

terms of the form T − k+1
2
∑T

t=1 xk
jt ut . Alternative sets of assumptions that could be

used instead are formulated in Ibragimov and Phillips (2008) in a martingale frame-
work or in de Jong (2002,Assumptions 1 and 2)who combines near-epoch dependence
and appropriate moment assumptions. For the present paper any such set of assump-
tions leading to the required invariance principle can be put in place. The assumption
det(C(1)) �= 0 together with positive definiteness of �η0η0 implies that {xt } is an
integrated but not cointegrated process. Assumption 1 implies an invariance principle
for {ηt }t∈Z:

1√
T

	T r
∑

t=1

ηt ⇒ B(r) =
[

Bu(r)

Bv(r)

]
, (2)

with Bv(r) := [Bv1(r), . . . , Bvm (r)]′. It holds that B(r) = �1/2W (r) with the
long-run covariance matrix � := ∑∞

h=−∞ E
(
η00η

0′
h

)
and where W (r) is an m + 1-

dimensional vector of standard Brownianmotions. For later usage define the one-sided
long-run covariance � := ∑∞

h=0 E
(
η00η

0′
h

)
and partition both matrices according to

the partitioning of ηt :

� =
[

�uu �uv

�vu �vv

]
, � =

[
�uu �uv

�vu �vv

]
.

Similarly to the linear case (compare Phillips and Hansen 1990), the OLS esti-
mator of the parameter vector in (1) is consistent but its limiting distribution is
contaminated by second-order bias terms, the presence of which renders standard
asymptotic inference based on the OLS estimator invalid. Consequently, Wagner and
Hong (2016, Proposition 1) extend the FM-OLS estimation principle from the cointe-
grating linear to the cointegrating polynomial case. The FM-OLS estimator is based

6 The key difference between the assumption used here—and in Wagner and Hong (2016)—and those in
the other papers mentioned is that the other papers assume that the errors {ut } are serially uncorrelated, as
mentioned already in Footnote 4.
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6 M. Wagner

on two modifications of the OLS estimator. First, the dependent variable yt is replaced
by y+

t := yt − �x ′
t �̂

−1
vv �̂vu , y+ := [y+

1 , . . . , y+
T ]′ and, second, a correction term is

subtracted. The modified dependent variable y+
t is exactly as in Phillips and Hansen

(1990), but the correction terms are different in the CPR case and given by:

M∗ :=
⎡

⎢⎣
M∗

1
...

M∗
m

⎤

⎥⎦ , M∗
j := �̂+

v j u

⎡

⎢⎢⎢⎣

T
2
∑

x jt
...

p j
∑

x
p j −1
j t

⎤

⎥⎥⎥⎦ . (3)

Throughout, we rely upon consistent estimators of the required long-run variances
�̂vv , �̂vu , �̂v j u and �̂+

v j u := �̂v j u − �̂uv�̂
−1
vv �̂vv j . In this respect, OLS consistency

is important since it allows for consistent long-run variance estimation based on the
OLS residuals (it is straightforward to verify that the necessary assumptions of Jansson
2002, Corollary 3 are fulfilled).

To (re-)state the asymptotic distribution of the FM-OLS estimator developed
in Wagner and Hong 2016, Proposition 1), we need to define a few more
quantities: D(r) := [1, . . . , rq ]′, Bv j (r) := [Bv j (r), . . . , B

p j
v j (r)]′, Bv(r) :=

[Bv1(r)′, . . . ,Bvm (r)′]′, D := [D1, . . . , DT ]′, Xt := [X ′
1t , . . . , X ′

mt ]′, X :=
[X1, . . . , XT ]′, Z := [D, X ], G D := diag(T −1/2, . . . , T −(q+1/2)), G X j :=
diag(T −1, . . . , T − p j +1

2 ), G X := diag(G X1 , . . . , G Xm ), G := diag(G D, G X ), and
θ := [θ ′

D, θ ′
X ]′ with θX := [θ ′

X1
, . . . , θ ′

Xm
]′.

Proposition 1 Let {yt } be generated by (1) with the regressors {xt } and errors {ut }
satisfying Assumption 1. Define the FM-OLS estimator of θ as:

θ̂+ := (Z ′Z)−1 (Z ′y+ − A∗) ,

with:

A∗ :=
[
0(q+1)×1
M∗

]

and M∗ as given in (3) with consistent estimators of the required long-run
(co)variances. Then, θ̂+ is consistent and has a zero mean Gaussian mixture asymp-
totic distribution given by:

G−1
(
θ̂+ − θ

)
⇒
(∫ 1

0
J (r)J (r)′dr

)−1 ∫ 1

0
J (r)d Bu·v(r), (4)

with J (r) := [D(r)′, Bv(r)′
]′

and Bu·v(r) := Bu(r) − Bv(r)′�−1
vv �vu.

The limiting distribution given in (4) provides the basis for asymptotic standard,
i.e., standard normal or chi-squared, inference on the coefficients in case the error term
{ut } is stationary, i.e., in case of prevalence of a CPR relationship. Thus, testing for the
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Residual-based cointegration and non-cointegration tests for CPRs 7

presence of a CPR relationship is of prime importance and as always in cointegration
testing two null hypotheses are conceivable: the null hypothesis of cointegration, i.e.,
the null hypothesis of stationarity of {ut }, or the null hypothesis of no cointegration,
i.e., testing whether (1) is in fact a spurious regression. The first null hypothesis can
be tested by an extension of the Shin (1994) test, which itself is an extension of the
stationarity test ofKwiatkowski et al. (1992), fromcointegrating linear to cointegrating
polynomial regressions. Since, of course, the errors ut are not observed, the test statistic
has to be based on observable residuals, in particular the FM-OLS residuals, û+

t say,
can be used. The KPSS-type test statistic for the null hypothesis of cointegration is
defined as:

CT := 1

T �̂u·v

T∑

t=1

⎛

⎝ 1√
T

t∑

j=1

û+
j

⎞

⎠
2

, (5)

with �̂u·v a consistent estimator of the long-run variance �u·v := �uu −�uv�
−1
vv �vu

of {û+
t }.

For testing the null hypothesis of no cointegration, we consider an extension of a
variance ratio test statistic of Phillips and Ouliaris (1990), their P̂u statistic, and we
continue to use this name for the extension. Denoting the OLS residuals of (1) as
ût , the denominator of the test statistic is the properly scaled estimated “variance”
of {ût }, which is an integrated process under the null hypothesis. Under the null
hypothesis of a spurious regression, with {yt } being an I(1) process, the stacked vector
{mt } := {[yt , x ′

t ]′} is a non-cointegrated I(1) vector and for later use we denote its first
difference as {�mt } := {[wt , v

′
t ]′}. The second element of P̂u is a long-run variance

estimate based on the OLS residuals of a vector autoregression (VAR) of order one
for {mt }, taking into account the deterministic components Dt considered:

mt = �0Dt + �1mt−1 + ξt . (6)

The required conditional long-run variance is computed using VAR(1) OLS residuals
from (6) rather than from the vector of first differences �mt . Both versions lead
to the same asymptotic behavior of the test statistic under the null hypothesis, but
the asymptotic behavior differs under the alternative, compare Phillips and Ouliaris
(1990, Theorems 5.2 and 5.3). Denoting the long-run variance estimated from {ξ̂t }
as �̃ =

[
�̃ww �̃wv

�̃vw �̃vv

]
, the estimated conditional long-run variance corresponding to

the first component (the conditional long-run variance of {wt } given {vt }) is given by
�̃w·v := �̃ww − �̃wv�̃

−1
vv �̃vw.

The test statistic for the null hypothesis of no cointegration is defined as:

P̂u := �̃w·v
1

T 2

∑T
t=1 û2

t

. (7)
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8 M. Wagner

The following proposition characterizes the asymptotic behavior of the two test
statistics, with the CT test already discussed in Wagner and Hong (2016, Proposi-
tion 5).

Proposition 2 (i) Let {yt } be generated by (1)with the regressors {xt } and errors {ut }
satisfying Assumption 1 and let �̂u·v be a consistent estimator of �u·v , then the
asymptotic distribution of the test statistic (5) defined above is:

CT ⇒
∫ 1

0
(W J

u·v(r))2dr , (8)

with:

W J
u·v(r) := Wu·v(r) −

∫ r

0
J (s)′ds

(∫ 1

0
J (s)J (s)′ds

)−1 ∫ 1

0
J (s)dWu·v(s).(9)

(ii) Let (1) be a spurious regression, i.e., let {yt } be an integrated process not related to
{Xt } in a cointegrating polynomial relationship, then the asymptotic distribution
of the test statistic (7) defined above is:

P̂u ⇒ �w·v
τ ′ ∫ 1

0 J ∗(r)J ∗(r)′drτ
, (10)

with τ :=
(

1
−(
∫ 1
0 J (r)J (r)′dr)−1

∫ 1
0 J (r)Bw(r)dr

)
, J ∗(r) := [Bw(r), J (r)′]′

and �̃w·v as defined above.

The asymptotic distributions of the CT and P̂u test statistics cannot—in general—
be tabulated due to their nuisance parameter dependency related to the correlation
structure between the variables. Wagner and Hong (2016, Proposition 6), following
Choi and Saikkonen (2010), consider a sub-sample version of the CT test statistic
that has a nuisance-parameter-free limiting distribution. They show, in particular, that
the limiting distribution of the sub-sample CT test statistics is

∫ 1
0 Wu·v(r)2dr , if the

sub-samples of size b are chosen such that b → ∞ and b/T → 0, i.e., sub-sampling
achieves that the second term in (9) vanishes asymptotically.Wagner andHong (2016),
in addition, discuss how the set of sub-sample test statistics can be used in conjunction
withmodifiedBonferroni bounds to improve the performance of the sub-sample-based
test. An inspection of the proof of Proposition 1 reveals that sub-sampling does not
lead to similar simplifications for the P̂u test, with this “unfortunate difference” caused
by the too slow convergence rate of τ̂ in the spurious regression case. Thus, for the
general case only the CT test, when used in a sub-sampling fashion, is available.7

The problem with the nuisance parameter dependency of the limiting distributions
of the test statistics originates in J (r) as defined in Proposition 1. In case it is possible

7 An alternative route may be to develop bootstrap inference.
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Residual-based cointegration and non-cointegration tests for CPRs 9

to write:

J (r) =
[

D(r)

Bv(r)

]
=
[

I 0
0 �

] [
D(r)

Wv(r)

]
, (11)

with a regular matrix � and Wv(r) a functional of standard Brownian motions one
can rewrite both test statistics as functions of standard Brownian motions and a scalar
(long-run) variance that can be scaled out. If a transformation as just described exists,
the CPR is said to exhibit full design, a terminology coined by Vogelsang and Wagner
(2016). CPRs with only one of the integrated processes present as regressor also with
higher powers are straightforwardly seen to be of full design, other cases include,
e.g., Translog-type relationships (see the discussion in Stypka and Wagner 2020). For
brevity,weprovide the corresponding result below for theone integrated regressor with
higher power only case,which—asmentioned before—allows to test in the empirically
most relevant case covering EKCs, MKCs, intensity-of-use and exchange rate target-
zone relationships. As before in Proposition 2, the result for the CT test has already
been discussed in Wagner and Hong (2016).

Proposition 3 Consider the special case of (1) when p1 = · · · = pm−1 = 1 and let
otherwise the assumptions of Proposition 2 be fulfilled.

(i) Under the null hypothesis of cointegration in (1) the limiting distribution of the
CT statistic is given by:

CT ⇒
∫ 1

0
(W J W

u·v (r))2dr , (12)

with:

W J W

u·v (r) := Wu·v(r) −
∫ r

0
J W (s)′ds

(∫ 1

0
J W (s)J W (s)′ds

)−1 ∫ 1

0
J W (s)dWu·v(s)

(13)

and J W (r) := [D(r)′,W(r)′, Wm(r)2, . . . , Wm(r)pm ]′, whereW(r) := [W1(r)′,
. . . , Wm(r)′]′ is a vector of standard Brownian motions independent of Wu·v(r).

(ii) Under the null hypothesis of (1) being a spurious regression, the limiting distri-
bution of the P̂u statistic is given by:

P̂u ⇒ 1
∫ 1
0 W 2

w·v(r)dr − ∫ 10 Ww·v(r)J W (r)′dr
(∫ 1

0 J W (r)J W (r)′dr
)−1 ∫ 1

0 J W (r)Ww·v(r)dr
,

(14)

with Ww·v(r) independent of W(r).

The limitingdistributions (12) and (14) canbe tabulatedbecause they are functionals
of standard Brownian motions. The corresponding critical values depend upon the
deterministic component, the number of integrated regressors and the included powers
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10 M. Wagner

Table 1 List of countries included in the empirical analysis

Australia Austria Belgium Canada Denmark Finland

France Germany Italy Japan New Zealand Norway

Portugal Spain Sweden Switzerland UK USA

The sample range is 1870–2016 with the exception of New Zealand with sample range 1878–2016

of the single integrated regressor that enters the CPR with higher powers. Critical
values for the CT statistic are given in Table 6 and for the P̂u statistic in Table 7 in
“Appendix B.” These tables extend the corresponding tables provided in Shin (1994)
and Phillips and Ouliaris (1990) for linear cointegrating relationships to the CPR
case. The tables contain critical values for up to four integrated regressors, up to
power four of the integrated regressor entering with powers for the usual deterministic
components, i.e., no deterministic component, an intercept only and intercept and
linear trend.8

3 An illustration with the environmental Kuznets curve

We illustrate the tests discussed with annual data for real GDP per capita, carbon
dioxide (CO2) inmetric tons per capita and sulfur dioxide (SO2) emissions in kilograms
per capita for 18 early industrialized countries, listed in Table 1, over the period 1870–
2016; with the exception of New Zealand where the sample range is 1878–2016. Real
GDP is measured in 2011US dollars and calculated from the GDP and population data
in the 2018 version of the Maddison Project Database (see Bolt et al. 2018). The CO2
per capita emissions are calculated from total CO2 emissions from fossil fuel usage,
downloaded from the webpage of the Carbon Dioxide Information Analysis Center
(CDIAC) at the Appalachian State University (see Boden et al. 2018). The SO2 per
capita emissions are calculated from combining total SO2 emissions taken from the
NASA Socioeconomic Data and Applications Center (see Smith et al. 2011), which
provides data for 1870–2005, with OECD (2020) data for the period 2006–2016.9

We use the data described in logarithmic specifications and test for cointegration
and non-cointegration in both the quadratic and the cubic EKC relationship including
an intercept and a linear trend:

et = c + δt + β1yt + β2y2t + ut , (15)

et = c + δt + β1yt + β2y2t + β3y3t + ut , (16)

with et denoting the logarithm of emissions (CO2 or SO2) per capita and yt the
logarithm of GDP per capita.

8 MATLAB code to generate (additional) critical values as well as to perform the tests is available upon
request.
9 To be precise, the OECD provides data for SOx emissions. The National Research Council (1975)
estimates the share of SO2 in SOx emissions at about 98% and this is the factor we also use to transform
OECD SOx to SO2 data.
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Residual-based cointegration and non-cointegration tests for CPRs 11

Performing the usual battery of unit root tests on the logarithm of GDP per capita
does not lead to a rejection of the null hypothesis for any of the 18 countries. Thus, a
“necessary condition” for embarking on CPR analysis, that of an integrated regressor,
appears to be fulfilled. The CT test is performed using the FM-OLS residuals (i.e., is
based on using the estimator of Wagner and Hong 2016) with the Bartlett kernel and
the Newey and West (1994) bandwidth rule.10

Tables 2 and 3 contain the test results for CO2 and SO2 emissions, respectively. We
use the following (quite obvious) “decision rule”: If CT does not lead to a rejection,
but P̂u does, this is evidence for the presence of a cointegrating polynomial EKC
relationship. If CT does lead to a rejection, but P̂u does not, this is evidence against
the presence of an EKC. If either both or none of the tests lead to a rejection, this
is regarded as conflicting evidence.11 Given this decision rule, let us now turn to
the results, first for CO2 emissions given in Table 2. For six of the 18 countries,
Austria, Belgium, Finland, Germany, Switzerland, and the UK we find evidence for
an EKC relationship. For Germany, only for the cubic specification, for the other
five countries for both the quadratic and the nesting cubic specification (which is,
of course, a necessary theoretical implication of the prevalence of a quadratic CPR).
The test decisions are also consistent between the cubic and quadratic specifications
in the sense that evidence against the presence of a cubic EKC for a certain country
comes along with evidence also against a quadratic EKC for that country. The one
exception here is Sweden for which there is evidence against an EKC for the cubic
specification and “only” conflicting evidence for the quadratic specification. Also note
that conflicting evidence for the cubic specificationoccurs typically in conjunctionwith
evidence against a quadratic EKC. The results for SO2 emissions given in Table 3 are
quite clear: There is no evidence for a quadratic or cubic EKC for any of the 18
countries considered. For 16 of the 18 countries, however, the evidence is conflicting
for the cubic specification.

The limited evidence for the prevalence of an EKC is akin to an observation made
earlier in Wagner (2015), i.e., that the usage of adequate (non-)cointegration tests
reduces the evidence for an EKC compared to using (non-)cointegration tests (critical
values) developed for linear cointegrating relationships. This is exemplified here by
including also the asymptotically invalid test results obtained by applying the residual-
based augmented Dickey–Fuller non-cointegration t-type test of Phillips and Ouliaris
(1990) developed for cointegrating linear relationships, labeled P Ot . Using this test,
for CO2 emissions the null hypothesis of non-cointegration is rejected for twelve of
the 18 countries at the 5% significance level compared to only five rejections obtained
with the asymptotically valid P̂u test. For SO2 emissions, the differences between
the P̂u and P Ot results are less pronounced, but point in the same direction. These
findings illustrate the importance of using (non-)cointegration tests—ormore precisely

10 The following subsection investigates inter alia the impact of kernel and bandwidth choices on the test
results.
11 In those cases where one of the tests rejects at the 5% significance level, but the other only at the 10%
significance level, we put higher weight on the “stronger” 5% rejection. Considering also such cases as
conflicting evidence does not lead to substantial differences in the overall picture. In Tables 4 and 5 that
summarize the results from the robustness checks, evidence for an EKC is labeled with “y,” evidence against
an EKC with “n“ and conflicting evidence with “o.”
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12 M. Wagner

Table 2 Cointegration (CT ) and non-cointegration (P̂u ) test results for CO2 emissions for the sample range
1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.107 11.294 −2.623 0.106 11.306 −2.530

Austria 0.055 57.186 −3.816 0.042 57.988 −3.822

Belgium 0.061 51.074 −5.710 0.057 55.199 −5.667

Canada 0.144 11.882 −3.355 0.056 25.542 −4.878

Denmark 0.047 36.027 −4.673 0.049 36.029 −4.670

Finland 0.048 75.487 −5.719 0.033 83.542 −6.136

France 0.066 27.859 −4.929 0.062 28.041 −4.863

Germany 0.108 69.262 −8.001 0.090 69.349 −8.089

Italy 0.138 34.120 −4.174 0.088 50.661 −5.520

Japan 0.149 8.718 −5.889 0.065 12.995 −6.009

New Zealand 0.112 13.698 −5.422 0.098 14.203 −5.809

Norway 0.116 20.583 −3.334 0.092 26.063 −3.617

Portugal 0.108 20.919 −9.181 0.111 21.327 −9.412

Spain 0.091 42.031 −3.315 0.089 42.112 −3.384

Sweden 0.084 29.150 −4.312 0.084 29.988 −4.323

Switzerland 0.097 86.476 −6.291 0.056 107.442 −6.763

UK 0.070 91.459 −6.894 0.067 91.704 −6.848

USA 0.148 12.620 −2.337 0.077 23.531 −3.558

The columns P Ot display the test results of the residual-based augmented Dickey–Fuller non-cointegration
t-type test of Phillips and Ouliaris (1990) developed for cointegrating linear relationships. Italic entries
indicate rejection of the null hypothesis at the 10% level and bold entries rejection at the 5% level. The left
panel displays the results for the quadratic specification and the right panel for the cubic specification. For
both polynomial degrees intercept and linear trend are included. The results are based on the Bartlett kernel
with bandwidth according to Newey and West (1994)

appropriate critical values—constructed for the CPR setting. For theCT test, this issue
has already been illustrated in Wagner (2015) and is discussed more thoroughly from
a theoretical perspective in Stypka et al. (2019).

3.1 Robustness checks

Both tests, being nonparametric, depend upon kernel and bandwidth choices. Con-
sequently, the results might be sensitive to these choices. To gauge the extent of this
potential sensitivity, we consider four combinations of bandwidths and kernels. The
Bartlett kernel and the Newey and West (1994) bandwidth (the baseline, used above),
labeled I, the Bartlett kernel and the Andrews (1991) bandwidth, labeled II, and the
Quadratic Spectral kernelwith these two bandwidth rules, labeled III and IV inTables 4
for CO2 emissions and 5 for SO2 emissions. It turns out that the results are in fact
highly robust with respect to these choices, most importantly the evidence for the
prevalence of an EKC for CO2 emissions. For the five countries with evidence for a
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Table 3 Cointegration (CT ) and non-cointegration P̂u test results for SO2 emissions for the sample range
1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.051 38.885 −3.402 0.048 40.506 −3.521

Austria 0.080 28.695 −3.776 0.055 39.188 −3.695

Belgium 0.100 17.752 −3.738 0.043 27.436 −3.556

Canada 0.055 22.976 −3.865 0.053 23.118 −3.888

Denmark 0.101 10.010 −3.160 0.057 20.890 −4.006

Finland 0.078 25.292 −4.082 0.077 25.701 −3.905

France 0.112 5.524 −2.353 0.067 11.725 −2.455

Germany 0.098 6.057 −2.584 0.062 11.524 −2.782

Italy 0.089 3.835 −2.296 0.090 4.090 −1.729

Japan 0.113 15.237 −3.219 0.036 19.190 −4.447

New Zealand 0.090 11.831 −4.849 0.054 16.130 −6.941

Norway 0.069 22.719 −3.216 0.067 22.931 −3.283

Portugal 0.100 11.880 −3.175 0.102 11.933 −3.271

Spain 0.074 12.060 −1.799 0.080 13.046 −1.761

Sweden 0.066 11.155 −3.709 0.067 12.278 −2.908

Switzerland 0.203 6.766 −1.703 0.060 37.684 −5.067

UK 0.075 0.841 −1.510 0.066 1.731 −2.647

USA 0.085 10.517 −1.230 0.074 10.574 −1.200

For further explanations see caption of Table 2

quadratic (and cubic) EKC, this evidence is present for all four combinations of kernel
and bandwidth. For Germany, with evidence for the cubic specification only andmixed
evidence for the quadratic specification in the baseline combination I, the evidence is
scattered a bit between “y” and “o” across kernel and bandwidth choices. Looking at
columns I to IV in Table 4 indicates some limited variation between “n” and “o” across
combinations for some of the countries. For SO2 emissions, there is—similarly to CO2
emissions—some variability for some countries between “n“ and “o” decisions. How-
ever, for Switzerland using the Andrews (1991) bandwidth rule leads to evidence for
an EKC in the cubic specification, whereas the evidence is conflicting when using the
Newey and West (1994) bandwidth rule. The differences in conclusions are driven by
P̂u rejecting with the Andrews (1991) bandwidth. Altogether, however, the test results
are quite insensitive—most importantly with respect to evidence for the prevalence of
an EKC—to kernel and bandwidth choices.

Columns N0 and O0 of Tables 4 and 5 shed light on two other empirical dimensions
of robustness of the test results: N0 with respect to the sample size, using the data used
so far but only until 2000 andO0 using the same data as used inWagner (2015). Sample
size and data vintage robustness do not directly relate to robustness of the tests, but it
may still be informative to see their impact on the test results for our EKC illustration.
The results in columns N0 and O0 are based on using the Bartlett kernel and the Newey
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14 M. Wagner

Table 4 Test decisions, as explained above, for CO2 emissions, with “y” indicating evidence for the
presence of an EKC, “n” evidence against and “o” indicating conflicting evidence

Quadratic Cubic

I II III IV N0 O0 I II III IV N0 O0

Australia n o n o n n n o n n n n

Austria y y y y y y y y y y y y

Belgium y y o y y y y y o y y y

Canada n n n o n n o o o o o n

Denmark o o o o o o o o o o o o

Finland y y y y y y y y y y y y

France o o o o o n o o o o o n

Germany o o y o o o y o y y y o

Italy n n n o n n o o n o o n

Japan n n n o n n o o o o o n

New Zealand n o n o n n n o n o n n

Norway n o n o n n n o n o n n

Portugal n n n n n n n n n n n n

Spain n o n o n n n o n o n n

Sweden o o o o o n n o n o n n

Switzerland y y y y y n y y y y y n

UK y y y y y o y y y y y o

USA n o n o n n o o o o o n

I, II, III and IV indicate test results based on different combinations of kernels and bandwidths as detailed
in the main text. N0 indicates results based on the data used in this paper until 2000 only and O0 indicates
test results using an earlier data vintage until 2000. All test results using data until 2000 are based on the
Bartlett kernel and the Newey and West (1994) bandwidth rule

andWest (1994) bandwidth. Comparing columns N0 with columns I leads to only one
difference, for SO2 emissions of Canada in the quadratic specification. Using the full
data range the evidence points against the prevalence of an EKC, whereas the reduced
sample leads to conflicting evidence. Thus, it appears that the additional 16 years of
data help to sharpen inference.We close the robustness check by comparing the results
for the sample period until 2000 with the results obtained using the data of Wagner
(2015) that also rangeuntil 2000, i.e.,we compare the results in columnsN0 andO0. For
CO2 emissions, using the new data vintage leads to evidence for the prevalence of an
EKC for threemore countries than for the old data vintage, for Switzerland and the UK
for both specifications and for Germany for the cubic specification. Additionally, the
evidence for four countries is changed from negative to conflicting, with these changes
occurring primarily in the cubic specification. For SO2 emissions the evidence changes
from negative to conflicting for a number of countries in both the quadratic and the
cubic specification. Additionally, the evidence changes for the UK from positive to
conflicting for the cubic specification.12 Whether these changes relate to some form

12 The UK was the sole country for which Wagner (2015) finds an EKC for SO2 emissions.
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Table 5 Test decisions for SO2 emissions,emissions, with “y” indicating evidence for the presence of an
EKC, “n” evidence against and “o” indicating conflicting evidence

Quadratic Cubic

I II III IV N0 O0 I II III IV N0 O0

Australia o o o o o n o o o o o n

Austria o o o o o n o o o o o n

Belgium n o n o n n o o o o o n

Canada n o o o o o o o o o o o

Denmark n o n o n n o o o o o n

Finland o o o o o n o o o o o n

France n n n n n n o n o n o n

Germany n o n n n n o o o n o n

Italy n n o n n n n n n n n n

Japan n o n o n n o o o o o n

New Zealand n o n n n n o o o o o n

Norway o o o o o n o o o o o n

Portugal n o n o n n n o n n n n

Spain o n o n o n o n o n o n

Sweden o o o o o n o o o o o n

Switzerland n n n n n n o y o y o n

UK o n o n o n o o o o o y

USA o n o n o n o n o n o n

For further explanations see caption of Table 4

of sensitivity of the tests to data with unchanged CPR characteristics or because the
data revision truly changes the nature of the data is, of course, not clear. What we can,
however, take home from our robustness checks is that the tests are not very sensitive
to kernel and bandwidth choices.

4 Summary and conclusions

This paper discusses two nonparametric tests: one for the null hypothesis of a coin-
tegrating polynomial regression and one for the null hypothesis of the absence of
cointegration. Both tests are extensions from tests developed for cointegrating linear
regressions to the cointegrating polynomial regression setting. Specifically, they are
extensions of the Shin (1994) test and of a variance ratio test of Phillips and Ouliaris
(1990).13 The word extension hereby refers to deriving the null limiting distributions
of the test statistics in the CPR setting. It turns out that, in the general case, neither
of the two tests has a nuisance-parameter-free limiting distribution. However, in case

13 Note again that the CT test has already been discussed in Wagner and Hong (2016) and used in Wagner
(2015). Both, the CT and the P̂u test have already been used in an analysis of the material Kuznets Curve
hypothesis in Grabarczyk et al. (2018).
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16 M. Wagner

of full design of the regression model, both tests’ limiting distributions are nuisance
parameter free and can hence be tabulated. The empirically most relevant case with
only one of the integrated regressors appearing also with higher powers is easily seen
to be of full design. For this case, “Appendix B” provides tables with critical values
for up to four integrated regressors, up to power four of the single integrated regressor
entering with higher powers and the usual deterministic specifications.

The tests are briefly illustrated—which is by no means a fully fledged EKC
analysis—for the environmental Kuznets curve for both CO2 and SO2 emissions for
18 early industrialized countries over, with the exception of New Zealand, the period
1870–2016. For CO2 emissions an EKC relationship appears to be present for six of
the 18 countries, i.e., Austria, Belgium, Finland, Germany, Switzerland and the UK.
For SO2 emissions there is no evidence for the prevalence of a quadratic or cubic coin-
tegrating EKC relationship. Little or reduced evidence for an EKC is a typical finding
when using adequate tests compared to using tests designed for linear cointegrating
relationships, as is discussed in this paper and already earlier in Wagner (2015). The
illustration also indicates that the test results are not (really) sensitive with respect to
kernel and bandwidth choices, most importantly the results for the prevalence of an
EKC. Our illustration also shows that the findings are more sensitive with respect to
sample size and in particular data vintage used.

The tests discussed are important inputs for developing (non-)cointegration tests in
panel (see, e.g., de Jong and Wagner 2022; Wagner and Reichold 2022) or seemingly
unrelated CPR settings (see, e.g., Wagner et al. 2020).
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Appendix A: Proofs

Proof of Proposition 2 The proof of item (i) is contained in Wagner and Hong
(2016, Proposition 5) and it thus only remains to show the second item. By definition,
it holds that:

ût = ( yt , Z ′
t

) ( 1
−θ̂

)
=: Z̃ ′

t τ̂ , (17)

Table 6 Critical values for the CT test for the case of only one regressor entering the CPR with powers

0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990

m = 1, p = 1

0.0283 0.0354 0.0438 0.0576 0.2016 0.8575 1.2087 1.6005 2.1413

c 0.0206 0.0247 0.0292 0.0357 0.0832 0.2325 0.3164 0.4084 0.5495

c,t 0.0155 0.0180 0.0206 0.0243 0.0467 0.0977 0.1212 0.1450 0.1786

m = 1, p = 2

0.0247 0.0311 0.0379 0.0492 0.1591 0.6639 0.9465 1.2649 1.7119

c 0.0188 0.0224 0.0263 0.0321 0.0742 0.2133 0.2927 0.3786 0.5044

c,t 0.0144 0.0165 0.0189 0.0221 0.0416 0.0858 0.1063 0.1280 0.1568

m = 1, p = 3

0.0229 0.0282 0.0346 0.0442 0.1382 0.5605 0.8039 1.0792 1.4731

c 0.0177 0.0210 0.0246 0.0299 0.0699 0.2044 0.2807 0.3651 0.4904

c,t 0.0137 0.0157 0.0179 0.0209 0.0391 0.0812 0.1010 0.1221 0.1501

m = 1, p = 4

0.0216 0.0266 0.0322 0.0413 0.1262 0.4962 0.7079 0.9386 1.2753

c 0.0169 0.0200 0.0234 0.0286 0.0673 0.1987 0.2743 0.3571 0.4767

c,t 0.0131 0.0151 0.0172 0.0201 0.0376 0.0784 0.0977 0.1180 0.1455

m = 2, p = 1

0.0239 0.0296 0.0361 0.0465 0.1496 0.6257 0.8939 1.1890 1.6157

c 0.0179 0.0211 0.0247 0.0297 0.0633 0.1615 0.2194 0.2853 0.3844

c,t 0.0140 0.0162 0.0185 0.0216 0.0401 0.0819 0.1014 0.1215 0.1495

m = 2, p = 2

0.0217 0.0265 0.0318 0.0405 0.1232 0.5046 0.7253 0.9711 1.3463

c 0.0165 0.0194 0.0224 0.0269 0.0570 0.1479 0.2006 0.2631 0.3586

c,t 0.0131 0.0151 0.0171 0.0198 0.0362 0.0726 0.0900 0.1080 0.1334

m = 2, p = 3

0.0202 0.0244 0.0292 0.0370 0.1085 0.4422 0.6384 0.8546 1.1769

c 0.0155 0.0182 0.0211 0.0253 0.0535 0.1408 0.1914 0.2532 0.3484

c,t 0.0125 0.0143 0.0162 0.0188 0.0341 0.0687 0.0852 0.1029 0.1278

m = 2, p = 4

0.0189 0.0231 0.0276 0.0349 0.0995 0.4002 0.5725 0.7652 1.0554
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18 M. Wagner

Table 6 continued

0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990

c 0.0149 0.0174 0.0202 0.0243 0.0515 0.1366 0.1864 0.2476 0.3391

c,t 0.0120 0.0138 0.0155 0.0181 0.0328 0.0663 0.0822 0.0997 0.1244

m = 3, p = 1

0.0208 0.0254 0.0305 0.0386 0.1174 0.4722 0.6780 0.9003 1.2361

c 0.0158 0.0184 0.0213 0.0252 0.0508 0.1204 0.1588 0.2062 0.2770

c,t 0.0129 0.0147 0.0167 0.0193 0.0348 0.0689 0.0851 0.1022 0.1270

m = 3, p = 2

0.0190 0.0230 0.0275 0.0345 0.0989 0.3920 0.5617 0.7589 1.0433

c 0.0146 0.0170 0.0197 0.0232 0.0459 0.1095 0.1457 0.1906 0.2593

c,t 0.0121 0.0138 0.0155 0.0179 0.0317 0.0615 0.0754 0.0905 0.1123

m = 3, p = 3

0.0178 0.0214 0.0255 0.0317 0.0885 0.3499 0.5039 0.6809 0.9435

c 0.0140 0.0162 0.0186 0.0220 0.0433 0.1041 0.1391 0.1819 0.2477

c,t 0.0115 0.0132 0.0148 0.0170 0.0300 0.0583 0.0718 0.0864 0.1068

m = 3, p = 4

0.0170 0.0204 0.0242 0.0300 0.0823 0.3207 0.4613 0.6185 0.8738

c 0.0134 0.0156 0.0179 0.0211 0.0417 0.1012 0.1357 0.1774 0.2425

c,t 0.0112 0.0127 0.0143 0.0164 0.0288 0.0564 0.0696 0.0838 0.1039

m = 4, p = 1

0.0184 0.0222 0.0265 0.0333 0.0960 0.3754 0.5327 0.7093 0.9688

c 0.0143 0.0165 0.0189 0.0222 0.0422 0.0945 0.1221 0.1537 0.2027

c,t 0.0119 0.0136 0.0153 0.0176 0.0308 0.0591 0.0727 0.0877 0.1088

m = 4, p = 2

0.0170 0.0204 0.0243 0.0302 0.0829 0.3173 0.4483 0.6050 0.8326

c 0.0133 0.0155 0.0175 0.0205 0.0386 0.0858 0.1108 0.1400 0.1876

c,t 0.0113 0.0128 0.0143 0.0164 0.0282 0.0534 0.0653 0.0785 0.0969

m = 4, p = 3

0.0161 0.0193 0.0228 0.0280 0.0748 0.2844 0.4089 0.5494 0.7540

c 0.0128 0.0147 0.0167 0.0195 0.0365 0.0815 0.1058 0.1341 0.1802

c,t 0.0109 0.0122 0.0137 0.0157 0.0268 0.0508 0.0623 0.0745 0.0925

m = 4, p = 4

0.0154 0.0183 0.0216 0.0265 0.0698 0.2636 0.3788 0.5055 0.6930

c 0.0123 0.0142 0.0161 0.0188 0.0352 0.0787 0.1028 0.1316 0.1762

c,t 0.0105 0.0118 0.0132 0.0151 0.0258 0.0490 0.0600 0.0718 0.0887

The symbols in the first column indicate the deterministic component: none (empty), intercept only (c) and
intercept and linear trend (c.t), m indicates the number of integrated regressors, and p indicates the highest
included power of the regressor entering with powers
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Table 7 Critical values for the P̂u test for the null hypothesis of no cointegration for the case of only one
regressor entering the CPR with powers

0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990

m = 1, p = 1

0.5845 0.8326 1.1653 1.7665 7.2292 20.5040 26.1196 31.6526 39.0403

c 1.8825 2.4752 3.1790 4.3116 11.9696 27.7789 34.0970 40.1474 48.0348

c,t 5.5163 6.8023 8.1928 10.1515 21.4332 41.1315 48.5640 55.3291 64.4630

m = 1, p = 2

0.8033 1.1261 1.5465 2.2889 8.9577 24.5044 30.8754 36.9862 44.8619

c 2.0263 2.6460 3.4311 4.6944 13.4370 30.9825 37.8748 44.4325 52.9478

c,t 6.2801 7.7521 9.3365 11.5826 24.0819 45.2373 52.9518 60.3206 69.4706

m = 1, p = 3

0.9509 1.3362 1.8350 2.6904 10.0724 27.0794 33.8596 40.5755 48.9771

c 2.0991 2.7549 3.5724 4.8907 14.2797 33.1538 40.4370 47.4776 56.1230

c,t 6.5576 8.1182 9.8120 12.2592 25.5527 47.9252 55.9264 63.5980 73.3074

m = 1, p = 4

1.0791 1.5079 2.0546 3.0064 10.8663 28.8801 36.1806 43.2061 51.8041

c 2.1442 2.8181 3.6672 5.0256 14.8495 34.7177 42.4254 49.7957 58.7888

c,t 6.7354 8.3833 10.1501 12.7102 26.6210 50.0143 58.2791 66.0470 76.1264

m = 2, p = 1

1.0623 1.6048 2.2985 3.4434 11.2203 27.2499 33.5122 39.8156 47.7341

c 2.5816 3.4984 4.5844 6.1575 15.7656 33.8495 40.9039 47.6771 55.7996

c,t 6.5444 8.1968 9.8377 12.1579 25.0446 46.3967 54.2696 61.8035 71.4986

m = 2, p = 2

1.3404 1.9743 2.7902 4.1475 13.2952 31.1699 38.0363 44.8716 53.2264

c 2.7868 3.7925 5.0189 6.7601 17.6129 37.2768 44.7916 51.8411 60.6054

c,t 7.4636 9.2463 11.1600 13.7506 27.8002 50.4242 58.6673 66.3847 76.3675

m = 2, p = 3

1.5755 2.2928 3.1753 4.6412 14.5958 33.8226 41.2216 48.3740 57.0102

c 2.8737 3.9536 5.2410 7.0984 18.7054 39.6763 47.7021 54.9207 63.8283

c,t 7.7986 9.7012 11.6899 14.4939 29.4515 53.3632 61.8438 69.8548 79.9388

m = 2, p = 4

1.7339 2.4981 3.4703 5.0159 15.5252 35.8240 43.6428 51.0464 59.9510

c 2.9467 4.0430 5.3852 7.3096 19.4543 41.4571 49.6628 57.2963 66.6961

c,t 8.0506 10.0551 12.0966 15.0368 30.6521 55.3904 64.3841 72.5786 82.6272

m = 3, p = 1

1.8991 2.8087 3.9073 5.4788 15.2663 33.3544 40.3213 47.0390 55.6948

c 3.6828 4.9143 6.2923 8.2622 19.6794 39.5247 46.8920 53.8427 63.1706

c,t 7.8556 9.7839 11.7727 14.5467 28.8012 51.7162 59.8743 67.5852 77.2638
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Table 7 continued

0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990

m = 3, p = 2

2.2619 3.3407 4.5744 6.3891 17.5405 37.3604 44.7409 51.6503 60.9317

c 3.9874 5.3412 6.8811 9.1055 21.7137 43.0863 50.9164 58.1100 67.8342

c,t 8.8561 11.0187 13.1809 16.2311 31.6690 55.6368 64.2565 72.2536 82.4774

m = 3, p = 3

2.5320 3.7201 5.0262 6.9525 18.9865 40.0945 47.8203 55.2260 64.8798

c 4.1438 5.5758 7.1904 9.5542 23.0131 45.5700 53.6396 61.3098 71.1478

c,t 9.2529 11.5671 13.9194 17.1643 33.4200 58.4419 67.3272 75.5342 86.6035

m = 3, p = 4

2.7677 4.0083 5.3600 7.3944 20.0353 42.1077 50.3066 57.8614 67.7364

c 4.2703 5.7288 7.3922 9.8555 23.9210 47.4662 55.8692 63.8357 73.9377

c,t 9.5352 11.9249 14.4225 17.7965 34.7057 60.6408 69.7676 78.1590 89.6387

m = 4, p = 1

3.0653 4.3193 5.7271 7.8107 19.1964 39.0550 46.5991 53.6258 62.5284

c 4.9186 6.4937 8.2245 10.6248 23.5729 45.1669 52.9950 60.2570 69.9523

c,t 9.1915 11.4011 13.7004 16.8383 32.4819 56.8046 65.3240 73.2446 83.5502

m = 4, p = 2

3.5018 4.9869 6.6427 8.9719 21.6929 43.1144 51.0096 58.7039 68.0398

c 5.3188 7.1237 9.0606 11.6876 25.8405 48.7391 56.9244 64.9450 74.3894

c,t 10.3519 12.7393 15.2253 18.6448 35.3487 60.8919 69.8928 78.2459 89.0233

m = 4, p = 3

3.8165 5.4458 7.1799 9.6354 23.3204 45.9577 54.1944 61.9963 71.7996

c 5.5579 7.4697 9.4988 12.2695 27.3318 51.3781 59.9915 68.0369 78.3567

c,t 10.8577 13.4067 16.0711 19.6715 37.2752 63.9113 73.0392 81.6191 92.4438

m = 4, p = 4

4.1029 5.7503 7.5856 10.1474 24.4741 48.0333 56.6295 64.6451 74.7573

c 5.6837 7.6545 9.7979 12.6560 28.3573 53.3702 62.1743 70.4037 81.1153

c,t 11.2134 13.8634 16.6048 20.3738 38.6532 66.1506 75.5562 84.4401 95.6502

See caption of Table 6 for further explanations

with the equation defining Z̃t and τ̂ and with θ̂ denoting the OLS coefficient estimate
in (1), which is now a spurious regression with an integrated error process {ut }. The
fact that we are in the spurious regression case implies that:

T −1G−1θ̂ =
(

T∑

t=1

G Zt Z ′
t G

)−1 (
1

T

T∑

t=1

T 1/2G Zt
yt√
T

)
(18)

⇒
(∫ 1

0
J (r)J (r)′dr

)−1 ∫ 1

0
J (r)Bw(r)dr , (19)
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using again the notation �yt = wt and 1√
T

y[rT ] = 1√
T

∑[rT ]
t=1 wt ⇒ Bw(r). This

implies that 1
T 2

∑T
t=1 û2

t = 1
T 2 τ̂

′ Z̃t Z̃ ′
t τ̂ =

(1, −θ̂ ′)
(
1 0
0 T −1G−1

){ T∑

t=1

(
T −1 0
0 G

)
Z̃t Z̃ ′

t

(
T −1 0
0 G

)}(
1 0
0 T −1G−1

)(
1

−θ̂

)

(20)

converges to:

τ ′
∫ 1

0
J ∗(r)J ∗(r)′drτ, (21)

with τ and J ∗(r) as defined in the main text. Consistency of the numerator, i.e., of
�̃w·v follows as in the proof of Phillips and Ouliaris (1990, Theorem 4.1), which relies
upon the consistency of ξ̂t → ξt and thus of �̃ → � under usual assumptions on
kernel and bandwidth. ��

Proof of Proposition 3 The main issue is the existence of a bijective transformation
between Bv(r) and a vector of functions of standard Brownian motions. Denote with
B̃v(r) = [B1(r), . . . , Bm(r)]′ and let �

1/2
vv be an upper triangular matrix such that

B̃v(r) = �
1/2
vv W(r), withW(r) a vector of standard Brownian motions. Furthermore,

denote the (m, m) element of �vv by �vv(m, m). This yields:

Bv(r) =

⎛

⎜⎜⎜⎝

B̃v(r)

B2
m(r)
...

B pm
m (r)

⎞

⎟⎟⎟⎠ =

⎡

⎢⎢⎢⎢⎣

�
1/2
vv 0 . . . 0

0 �vv(m, m)
. . .

...
...

. . .
. . . 0

0 . . . 0 �vv(m, m)pm/2

⎤

⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎝

W(r)

W 2
m(r)
...

W pm
m (r)

⎞

⎟⎟⎟⎠ .

Inserting this expression into (9) and multiplying the terms then leads to (13) and thus
to the result for the CT test.

The argument for the P̂u also rests upon the above transformation with two differ-
ences: First, the considered vector is J ∗(r), i.e., also the first component corresponding
to yt is considered. Second, the block structure of τ , with the first element equal to
one, is used to simplify the limit of P̂u from (10) to the expression (14) involving only
(functions) of standard Brownian motions. The calculations are analogous, with the
difference being the terms with powers (and also the deterministic components), to
the calculations in the proofs of Phillips and Ouliaris 1990, Lemma 2.2 and Theorem
4.1). ��
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Table 8 Test results for CO2 emissions for the sample range 1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.068 15.079 −2.670 0.068 15.095 −2.606

Austria 0.058 69.253 −4.740 0.049 70.224 −4.828

Belgium 0.048 96.424 −6.085 0.047 104.213 −6.677

Canada 0.090 13.250 −3.340 0.050 28.482 −4.682

Denmark 0.045 38.912 −4.740 0.047 38.915 −4.736

Finland 0.041 96.490 −5.805 0.033 106.786 −6.493

France 0.055 45.066 −4.931 0.053 45.361 −4.863

Germany 0.123 67.160 −7.285 0.104 67.244 −7.365

Italy 0.095 30.320 −4.445 0.078 45.018 −5.523

Japan 0.094 9.590 −5.987 0.057 14.294 −5.994

New Zealand 0.074 12.087 −5.588 0.071 12.533 −5.965

Norway 0.074 28.158 −3.381 0.073 35.655 −3.612

Portugal 0.122 18.278 −9.863 0.127 18.635 −10.279

Spain 0.072 38.083 −3.448 0.068 38.156 −3.496

Sweden 0.069 35.247 −4.180 0.071 36.260 −4.262

Switzerland 0.097 85.899 −6.242 0.057 106.725 −6.769

UK 0.072 83.345 −6.449 0.069 83.569 −6.387

USA 0.077 8.302 −2.456 0.059 15.479 −3.428

For further explanations see caption of Table 2 with the difference that the results in this table are based on
the Bartlett kernel with bandwidth according to Andrews (1991)

Appendix B: Tables with critical values

Supplementary Appendix C: Robustness of results

Robustness: Kernel and bandwidth
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Table 9 Test results for CO2 emissions for the sample range 1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.108 10.022 −2.634 0.108 10.033 −2.546

Austria 0.050 50.805 −3.797 0.037 51.517 −3.800

Belgium 0.059 36.581 −5.758 0.056 39.536 −6.020

Canada 0.144 9.496 −3.404 0.053 20.413 −4.962

Denmark 0.043 26.667 −4.667 0.045 26.669 −4.661

Finland 0.046 64.688 −5.618 0.030 71.591 −6.090

France 0.066 22.267 −4.911 0.060 22.412 −4.798

Germany 0.105 57.400 −8.129 0.087 57.472 −8.218

Italy 0.137 31.127 −4.004 0.085 46.217 −5.245

Japan 0.148 8.742 −5.828 0.062 13.031 −5.999

New Zealand 0.111 14.237 −5.419 0.097 14.762 −5.814

Norway 0.116 19.163 −3.285 0.090 24.266 −3.646

Portugal 0.106 20.157 −9.129 0.110 20.550 −9.364

Spain 0.088 35.162 −3.380 0.087 35.229 −3.466

Sweden 0.082 25.377 −4.403 0.082 26.106 −4.469

Switzerland 0.091 86.834 −6.078 0.050 107.887 −6.657

UK 0.066 92.738 −7.055 0.063 92.987 −7.004

USA 0.152 6.582 −2.395 0.075 12.272 −3.659

For further explanations see caption of Table 2 with the difference that the results in this table are based on
the Quadratic Spectral kernel with bandwidth according to Newey and West (1994)
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Table 10 Test results for CO2 emissions for the sample range 1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.083 14.723 −2.670 0.086 14.739 −2.609

Austria 0.058 75.487 −4.846 0.050 76.545 −4.933

Belgium 0.040 98.242 −6.135 0.044 106.178 −6.718

Canada 0.076 10.237 −3.339 0.043 22.005 −4.614

Denmark 0.038 38.968 −4.726 0.041 38.971 −4.721

Finland 0.035 95.854 −5.874 0.030 106.083 −6.558

France 0.047 39.043 −4.929 0.045 39.298 −4.865

Germany 0.116 58.498 −7.247 0.097 58.571 −7.328

Italy 0.081 25.955 −4.484 0.067 38.537 −5.603

Japan 0.078 8.913 −5.960 0.050 13.286 −5.997

New Zealand 0.073 11.792 −5.549 0.069 12.227 −5.932

Norway 0.060 26.703 −3.383 0.062 33.813 −3.609

Portugal 0.113 16.698 −9.870 0.119 17.024 −10.277

Spain 0.063 35.456 −3.445 0.058 35.524 −3.499

Sweden 0.060 35.546 −4.150 0.062 36.568 −4.220

Switzerland 0.090 87.613 −6.213 0.051 108.855 −6.751

UK 0.064 73.503 −6.377 0.061 73.700 −6.316

USA 0.062 7.072 −2.266 0.051 13.187 −3.108

For further explanations see caption of Table 2 with the difference that the results in this table are based on
the Quadratic Spectral kernel with bandwidth according to Andrews (1991)
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Table 11 Test results for SO2 emissions for the sample range 1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.050 38.851 −3.275 0.047 40.471 −3.384

Austria 0.072 28.834 −4.191 0.051 39.378 −4.073

Belgium 0.081 19.571 −4.037 0.043 30.249 −3.776

Canada 0.055 25.583 −3.599 0.053 25.741 −3.649

Denmark 0.061 11.836 −3.244 0.045 24.701 −4.009

Finland 0.063 28.260 −4.100 0.065 28.717 −3.910

France 0.095 6.345 −2.346 0.096 13.468 −2.255

Germany 0.082 5.941 −2.665 0.074 11.303 −2.590

Italy 0.109 3.572 −2.276 0.209 3.810 −1.559

Japan 0.084 15.155 −2.957 0.049 19.087 −4.118

New Zealand 0.072 9.859 −4.862 0.049 13.441 −7.054

Norway 0.064 26.826 −3.155 0.066 27.077 −3.231

Portugal 0.074 13.692 −2.968 0.076 13.752 −3.073

Spain 0.117 12.100 −1.699 0.163 13.089 −1.487

Sweden 0.053 13.118 −3.436 0.058 14.438 −2.967

Switzerland 0.105 9.960 −2.217 0.060 55.467 −5.056

UK 0.087 10.208 −1.629 0.063 21.014 −2.703

USA 0.218 9.985 −0.826 0.219 10.039 −0.811

For further explanations see caption of Table 2 with the difference that the results in this table are based on
the Bartlett kernel with bandwidth according to Andrews (1991)

Table 12 Test results for SO2 emissions for the sample range 1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.049 37.798 −3.399 0.045 39.374 −3.519

Austria 0.075 25.453 −3.633 0.052 34.759 −3.608

Belgium 0.096 15.796 −3.701 0.040 24.414 −3.872

Canada 0.051 21.662 −3.994 0.048 21.796 −4.018

Denmark 0.098 9.939 −3.203 0.054 20.743 −4.036

Finland 0.076 23.523 −3.977 0.073 23.903 −3.905

France 0.107 5.214 −2.342 0.063 11.069 −2.566

Germany 0.096 5.821 −2.534 0.060 11.075 −2.861

Italy 0.085 6.081 −2.299 0.086 6.486 −1.809

Japan 0.111 15.898 −3.284 0.031 20.022 −4.534

New Zealand 0.089 12.421 −4.867 0.051 16.934 −6.968
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Table 12 continued

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Norway 0.066 21.564 −3.220 0.064 21.766 −3.276

Portugal 0.099 11.272 −3.207 0.100 11.322 −3.303

Spain 0.071 11.803 −1.865 0.077 12.768 −1.857

Sweden 0.063 10.275 −3.364 0.065 11.310 −2.907

Switzerland 0.207 5.453 −1.655 0.055 30.369 −5.156

UK 0.072 2.175 −1.723 0.060 4.477 −2.747

USA 0.081 7.554 −1.351 0.071 7.595 −1.324

For further explanations see caption of Table 2 with the difference that the results in this table are based on
the Quadratic Spectral kernel with bandwidth according to Newey and West (1994)

Table 13 Test results for SO2 emissions for the sample range 1870–2016 (for New Zealand 1878–2016)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.056 38.767 −3.276 0.054 40.383 −3.385

Austria 0.065 31.234 −4.260 0.047 42.655 −4.135

Belgium 0.072 17.997 −4.085 0.046 27.816 −3.757

Canada 0.050 21.331 −3.567 0.049 21.463 −3.606

Denmark 0.050 11.538 −3.240 0.040 24.078 −4.055

Finland 0.056 28.437 −4.168 0.059 28.897 −3.972

France 0.100 5.998 −2.370 0.266 12.732 −2.364

Germany 0.087 5.983 −2.650 0.110 11.383 −2.611

Italy 0.176 2.954 −2.309 0.953 3.151 −1.554

Japan 0.073 15.490 −2.907 0.057 19.508 −4.048

New Zealand 0.090 9.577 −4.853 0.048 13.056 −7.041

Norway 0.066 27.005 −3.185 0.068 27.257 −3.242

Portugal 0.078 13.992 −2.962 0.081 14.053 −3.075

Spain 0.339 12.107 −1.733 0.768 13.097 −1.551

Sweden 0.046 11.847 −3.292 0.059 13.040 −2.848

Switzerland 0.097 10.241 −2.176 0.058 57.034 −5.106

UK 0.161 10.714 −1.758 0.066 22.056 −2.660

USA 6.276 8.172 −0.801 8.516 8.216 −0.766

For further explanations see caption of Table 2 with the difference that the results in this table are based on
the Quadratic Spectral kernel with bandwidth according to Andrews (1991)
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Robustness: Sample range until 2000

Table 14 Test results for CO2 emissions for the sample range 1870–2000 (for New Zealand 1878–2000)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.107 11.294 −2.623 0.106 11.306 −2.530

Austria 0.055 57.186 −3.816 0.042 57.988 −3.822

Belgium 0.061 51.074 −5.710 0.057 55.199 −5.667

Canada 0.144 11.882 −3.355 0.056 25.542 −4.878

Denmark 0.047 36.027 −4.673 0.049 36.029 −4.670

Finland 0.048 75.487 −5.719 0.033 83.542 −6.136

France 0.066 27.859 −4.929 0.062 28.041 −4.863

Germany 0.108 69.262 −8.001 0.090 69.349 −8.089

Italy 0.138 34.120 −4.174 0.088 50.661 −5.520

Japan 0.149 8.718 −5.889 0.065 12.995 −6.009

New Zealand 0.112 13.698 −5.422 0.098 14.203 −5.809

Norway 0.116 20.583 −3.334 0.092 26.063 −3.617

Portugal 0.108 20.919 −9.181 0.111 21.327 −9.412

Spain 0.091 42.031 −3.315 0.089 42.112 −3.384

Sweden 0.084 29.150 −4.312 0.084 29.988 −4.323

Switzerland 0.097 86.476 −6.291 0.056 107.442 −6.763

UK 0.070 91.459 −6.894 0.067 91.704 −6.848

USA 0.148 12.620 −2.337 0.077 23.531 −3.558

For further explanations see caption of Table 2

Table 15 Test results for SO2 emissions for the sample range 1870–2000 (for New Zealand 1878–2000)

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.051 38.885 −3.402 0.048 40.506 −3.521

Austria 0.080 28.695 −3.776 0.055 39.188 −3.695

Belgium 0.100 17.752 −3.738 0.043 27.436 −3.556

Canada 0.055 22.976 −3.865 0.053 23.118 −3.888

Denmark 0.101 10.010 −3.160 0.057 20.890 −4.006

Finland 0.078 25.292 −4.082 0.077 25.701 −3.905

France 0.112 5.524 −2.353 0.067 11.725 −2.455

Germany 0.098 6.057 −2.584 0.062 11.524 −2.782
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Table 15 continued

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Italy 0.089 3.835 −2.296 0.090 4.090 −1.729

Japan 0.113 15.237 −3.219 0.036 19.190 −4.447

New Zealand 0.090 11.831 −4.849 0.054 16.130 −6.941

Norway 0.069 22.719 −3.216 0.067 22.931 −3.283

Portugal 0.100 11.880 −3.175 0.102 11.933 −3.271

Spain 0.074 12.060 −1.799 0.080 13.046 −1.761

Sweden 0.066 11.155 −3.709 0.067 12.278 −2.908

Switzerland 0.203 6.766 −1.703 0.060 37.684 −5.067

UK 0.075 0.841 −1.510 0.066 1.731 −2.647

USA 0.085 10.517 −1.230 0.074 10.574 −1.200

For further explanations see caption of Table 2

Robustness: Old data vintage (sample range until 2000)

Table 16 Test results for CO2 emissions for the sample range 1870–2000 (for New Zealand 1878–2000)
using the earlier data vintage

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.296 11.560 −2.886 0.259 12.868 −2.498

Austria 0.083 63.516 −4.504 0.083 64.114 −4.547

Belgium 0.095 66.359 −5.661 0.069 68.694 −5.994

Canada 0.286 11.110 −3.231 0.098 25.475 −4.776

Denmark 0.119 49.891 −4.901 0.100 51.498 −4.943

Finland 0.075 73.254 −5.390 0.042 79.318 −5.906

France 0.107 36.151 −4.822 0.113 36.193 −4.857

Germany 0.257 61.717 −6.699 0.212 66.902 −7.610

Italy 0.158 39.011 −3.952 0.164 39.024 −3.952

Japan 0.293 6.635 −5.629 0.130 10.144 −5.650

New Zealand 0.270 11.111 −5.198 0.132 13.851 −7.175

Norway 0.191 25.439 −4.080 0.164 29.202 −3.516

Portugal 0.222 18.394 −9.126 0.207 18.922 −9.537
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Table 16 continued

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Spain 0.183 36.268 −3.449 0.169 36.768 −3.604

Sweden 0.170 29.349 −3.604 0.131 32.206 −3.666

Switzerland 0.268 31.297 −3.764 0.105 46.214 −5.357

UK 0.125 130.958 −8.997 0.111 136.550 −9.118

USA 0.357 12.448 −2.151 0.152 25.426 −3.869

For further explanations see caption of Table 2

Table 17 Test results for SO2 emissions for the sample range 1870–2000 (for New Zealand 1878–2000)
using the earlier data vintage

Quadratic Cubic

CT P̂u P Ot CT P̂u P Ot

Australia 0.215 20.375 −2.746 0.214 20.404 −2.708

Austria 0.165 15.311 −3.478 0.175 20.231 −3.645

Belgium 0.188 26.919 −4.068 0.088 42.594 −4.129

Canada 0.074 21.233 −4.879 0.068 21.362 −4.949

Denmark 0.266 24.030 −1.577 0.153 44.356 −3.758

Finland 0.120 17.851 −2.967 0.131 19.342 −2.982

France 0.159 11.392 −2.410 0.107 18.982 −3.186

Germany 0.131 17.167 −2.237 0.121 21.299 −2.672

Italy 0.129 23.783 −2.554 0.147 31.723 −3.065

Japan 0.255 5.853 −3.538 0.150 7.442 −3.919

New Zealand 0.226 20.312 −2.785 0.166 22.332 −3.322

Norway 0.151 22.654 −3.680 0.153 22.990 −3.765

Portugal 0.217 46.728 −4.589 0.206 47.775 −4.611

Spain 0.180 13.689 −2.559 0.221 14.580 −2.349

Sweden 0.130 16.067 −3.128 0.146 17.231 −3.100

Switzerland 0.119 46.846 −5.564 0.112 49.448 −5.559

UK 0.236 28.799 −2.899 0.075 58.572 −5.817

USA 0.315 12.041 −2.369 0.142 18.025 −3.226

For further explanations see caption of Table 2
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