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Abstract
We investigate whether the use of statistical learning techniques and big data can
enhance the accuracy of inflation forecasts. We make use of a large dataset for the dis-
aggregated prices of consumption goods and services, which we partially reconstruct,
and a large suite of different statistical learning and traditional time-series models.
The results suggest that the statistical learning models are able to compete with most
benchmarks over medium to longer horizons, despite the fact that we only have a
relatively small sample of available data. This may imply that the ability of statis-
tical learning models to explain nonlinear relationships, or as an alternative, restrict
the set of predictors to relevant information, is of importance. These characteristics
of the statistical learning models may be particularly useful during periods of crisis,
when deviations from the steady state are more persistent. We find that the accuracy
of the central bank’s near-term inflation forecasts compares favourably with those of
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other models, while the inclusion of off-model information, such as electricity tariff
adjustments and other sources of within-month data, provides these models with a
competitive advantage. Lastly, we also investigate the relative performance of the dif-
ferent models as we experienced the effects of the recent pandemic and identify the
most important contributors to future inflationary pressure.

Keywords Micro-data · Inflation · High-dimensional regression · Penalised
likelihood · Bayesian methods · Statistical learning

JEL Classification C10 · C11 · C52 · C55 · E31

1 Introduction

Accurate near-term inflation forecasts are important to most central banks as they
contribute towards a more precise assessment of the economic outlook and an appro-
priate policy stance. This variable would also usually have a significant influence over
the evolution of the short-term interest rate, which would potentially affect the activ-
ity of a diverse set of economic agents. In addition, such forecasts anchor inflation
expectations, which may improve policy efficacy and economic stability, to provide
an improved foundation for higher levels of economic growth. For this reason, it is
important that central banks continue to assess the relative performance of different
forecasting approaches and the use of different information sets. More recently, such
investigations have considered the use of statistical learning methodologies that utilise
different types of big data to inform policy decisions.1 In addition, studies that make
use of these methodologies have also influenced those policy decisions that consider
the impact of the COVID-19 pandemic on economic activity.2

1 Agrawal et al. (2019), Athey (2017, 2018), Athey and Imbens (2019), Mullainathan and Spiess (2017)
and Varian (2014) contain overviews of selected research and discussions relating to the potential use of
statistical learning methods within the field of economics. In a recent survey, Doerr et al. (2021) note that
± 80% of central banks discuss the topic of big data formally, where 70% of these monetary authorities use
it for economic research, while 40% use it to inform policy decisions. Around two-thirds of respondents
indicated that they wanted to start new big data projects in 2020/2021. The results from the study also
suggest that the number of central bank speeches that mention the use of big data has increased significantly
over recent periods of time and that most do so in a positive light. For an earlier discussion on the use of
statistical learning methods within central banks and other policymaking institutions, see Wibisono et al.
(2019), Tissot (2019), Mehrhoff (2017), Hammer et al. (2017), Baldacci et al. (2016), Florescu et al. (2014)
and World Bank (2014) and United Nations Global Pulse (2012).
2 For example, Blumenstock (2020) describes a few practical cases where the use of these techniques may
be applied in developing countries, while the Organisation for Economic Co-operation and Development
include mention of ways in which these techniques may be used to identify potential responses that may
ease the effects of the pandemic (OECD 2020). In addition, Buckman et al. (2020) make use of the method
that is employed in Shapiro et al. (2017) to report on changes in consumer sentiment following the onset of
the pandemic, while Chetty et al. (2020) construct daily indices on consumer spending and other indicators,
disaggregated by zip code, industry and income to show that high-income households reduced spending
by more than low-income households, which has contributed towards job losses among the low-income
households that provide services to high-income households. Similar changes in consumption behaviour
have been noted in Baker et al. (2020), who make use of transaction-level financial data to explore how
household consumption responded to the onset of the pandemic, while Baker et al. (2020) report on the
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The relative accuracy of inflation forecasts has been considered in a number of
important studies, where in an early investigation, Stock and Watson (2007) suggest
that relatively simple univariate models provide good comparative forecasts of infla-
tion in the USA, where a model that incorporates both unobserved components and
stochastic volatility provides a reasonably good forecast of inflation.3 Similarly, Faust
and Wright (2013) also advocate for the use of a relatively straightforward approach
and suggest that judgement forecasts, such as those from the Federal Reserve or infla-
tion expectation surveys, tend to be more accurate than various forecasting model
predictions. These findings, which largely relate to a period of stable economic activ-
ity for a developed economy, should not be too surprising as the conditional mean of
inflation was highly persistent (Fuhrer 2010; Wolters and Tillmann 2015). However,
over periods where economic activity is not particularly stable, a forecast that is close
to the previously observedmeanmay not be terribly accurate and themodels may need
to allow for sustained departures from steady-state values. Hence, it may be necessary
to make a number of amendments to traditional forecasting models during a period of
economic crisis, or where the rate of inflation is relatively variable, as in the case of
several low- and middle-income countries.

To address some of the challenges that may arise when looking to forecast macroe-
conomic variables, following a significant structural change or large departure from
steady-state values, Galvao (2021) summarises a number of developments from the
international literature, while Castle et al. (2021) and Coulombe et al. (2021) note that
statistical learning models that are able to adapt to various changes may perform better
than well-specified structural models.4 In addition, the use of statistical learning mod-
els that incorporate nonparametric nonlinear features have gained significant attention
over recent periods of time, partially due to the fact that they may be applied to large
datasets to yield impressive results. For example, Medeiros et al. (2021) make use of
nonlinear statistical learning models that are able to learn complex unknown func-
tional forms, which may be useful when there are potential structural changes in both
the mean and trend, to forecast inflation. Their results suggest that these techniques
may provide superior forecasts over medium to longer horizons, when making use of
the large macroeconomic dataset for the USA (the construction of which is described

Footnote 2 continued
changes in uncertainty relating to consumption spending. Other research by Chakrabarti et al. (2020a, b)
make use of large datasets to investigate changes in consumer spending and business revenue in response
to state re-openings, while Carvalho et al. (2020) note that in Spain, the consumption baskets converge
towards the goods basket of low-income households. Similar changes in the consumption basket over this
period of time have also been observed in Cavallo (2020) for a number of countries.
3 In addition, for the period that incorporates the financial crisis, Stock and Watson (2010) suggest that
this model should incorporate a stochastic trend that reacts to the unemployment recession gap, where the
short-term response of inflation is consistent with an increase in this gap, while the long-term response
is dependent upon the persistence in trend inflation. As is the case with most low- and middle-income
countries, South Africa does not have a reliable measure for the unemployment recession gap that could be
applied in an investigation that makes use of monthly observations of time-series variables.
4 In particular, Coulombe et al. (2021) advocate for the use of nonlinear statistical learning models, while
in a similar investigation, Koop et al. (2021) suggest that modelling specifications that accommodate time
variation in forecasting uncertainty may also provide improved results.
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in McCracken and Ng (2016)).5 Coulombe et al. (2022) confirm these results and
suggest that the statistical learning models that are able to incorporate nonparametric
nonlinear features are responsible for the most significant performance gains, when
comparing the predictions of a large suit of different forecasting approaches.

In addition to the above, there are also a number of similar studies that consider the
relative merits of employing statistical learning approaches that seek to summarise
all the available information (which is contained in the set of potential predictors),
as opposed to only selecting those variables from a set of potential predictors that
provide useful predictive power (i.e. the density versus sparsity debate). Giannone
et al. (2021) have suggested that when making use of various macroeconomic and
financial data sets for the USA, the forecasts of dense models are more accurate than
the sparse counterparts. Similar arguments are made in Coulombe et al. (2022), who
note that the use of sparse techniques would usually contribute towards to a substantial
decline in forecasting accuracy. However, the results that are contained in Joseph et al.
(2021) note that when restricting the subset of potential predictors, which incorporate
disaggregated consumption price indices for the UK, the sparse models provide more
impressive results.6

In this paper, we make use of four broad categories of models to predict future
measures of inflation. The first of these relate to the benchmark models, which include
traditional random walk, autoregressive and Bayesian vector autoregressive (BVAR)
specifications. In addition, we also include the forecasts from the South African
Reserve Bank (SARB) disaggregated inflation model (DIM), which is largely respon-
sible for influencing the monthly near-term inflation forecasts, along with the actual
monthly inflation forecasts that are presented to the monthly Monetary Policy Com-
mittee (MPC) meetings. The second group of models make use of dimensionality
reduction techniques that seek to summarise all of the data from the potential predic-
tors and would include those frameworks based upon principal component analysis.
The third group of models make use of variable selection techniques and would
include methods that make use of shrinkage estimators, penalised likelihood func-
tions or Bayesian model selection techniques. And then finally, the fourth group of
models include the use of nonlinear statistical learning forecasting models, such as
the random forest and neural network, which may also incorporate nonparametric
features.

These models are applied to data that is measured at different levels of aggregation
for consumer prices, which is collected by Statistics South Africa (StatsSA) to con-

5 There are several important differences between the setup that has been used in this paper and the one
that was used in Medeiros et al. (2021). For example, their sample period is much longer and extends back
to January 1960. It also does not include any data that arose over the period of the COVID-19 pandemic, as
the final observation pertains to December 2015. Furthermore, their set of predictors incorporates a number
of different measures of economic activity and is not limited to information about prices. The maximum
forecasting horizon in their paper is also different, as it extends over twelve months, and they also make
use of a rolling-window forecasting scheme, which is usually preferable when the sample extends over a
lengthy period, as is the case in their study.
6 Joseph et al. (2021) also find that after incorporating additional measures of macroeconomic activity, the
dense models then provide more accurate forecasts, which support the findings of Giannone et al. (2021).
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struct the South African Consumer Price Index (CPI).7 The raw dataset incorporates
prices for 34,075 unique goods and services, whichwere collected by fieldworkers that
are dispersed across the country. Through various methods of aggregation and with the
assistance of StatsSA, we were then able to reconstruct the set of 216 disaggregated
predictors for the period between January 2009 and March 2021. In addition, we also
make use of the publically available dataset for CPI that ismeasured at a slightly higher
level of aggregation (and includes data for 46 different items). Hence, these datasets
also incorporate a period of 12 months, over which various lockdown measures were
imposed.Whenmeasured at higher levels of disaggregation, it has been suggested that
such a dataset contains information that relates to the idiosyncratic behaviour of con-
sumer prices, where the frequency and dispersion of price adjustments can vary across
items and over time (Chu et al. 2018; Petrella et al. 2019; Stock and Watson 2020;
Chetty et al. 2020; Carvalho et al. 2020; Cavallo 2020). Given these characteristics of
the data, we could conceive that when the price indices are subjected to various forms
of aggregation, their predictive power may decline. For example, if the disaggregated
price index for brown bread has impressive predictive power, while the other prod-
ucts in the category for breads and cereals are poor predictors, then the signal that is
provided by brown bread may be obscured if we were to restrict the analysis to use
the aggregate data for the category rather than the individual goods. Previous findings
in Hubrich and Hendry (2005) suggest that the use of disaggregated CPI components
for the USA does not result in a meaningful improvement in forecasting accuracy,
while studies that were conducted for Mexico and Portugal suggest that the use of
disaggregated components could provide notable improvements (Ibarra 2012; Duarte
and Rua 2007).

Our results suggest that despite the limitations of the data, which largely pertain
to the number of available observations, the combined use of big data and statistical
learning methods provide results that are potentially able to compete with most bench-
marks over medium to longer horizons. However, many of the traditional benchmarks
are superior over shorter horizons. In addition, after making use of data that is mea-
sured at different levels of aggregation, we note that the use of more disaggregated
data results in an improved forecasting performance over all horizons. The results
also suggest that the forecasts of several sparse models are superior to those of dense
models, when making use of more disaggregated data. For example, both the least
absolute shrinkage and selection operator (LASSO) and the ridge regression provide
results that are superior to the dynamic factor models, over most horizons, when using
data for headline inflation. Hence, there would appear to be advantages to identifying
those variables that contribute towards the underlying predictive signal in the data,
by restricting the information that is used in the construction of the forecast to those
variables that have substantive predictive power. Furthermore, we also note that the
relative performance of the statistical learning methods is more impressive when the

7 Previous studies that have used the disaggregated consumer price survey data for assessing pricing
behaviour in South Africa include Creamer and Rankin (2008) ,Creamer et al. (2012), Ruch et al. (2016),
and Ruch et al. (2016). Restricting this analysis to the use of consumer prices is of importance to the SARB,
as the forecasts from the current DIMmodel make use of CPI data that is measured at a relatively high level
of aggregation.
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rate of inflation deviates from its steady state during the period that incorporated a
number of economic lockdowns.8

The remaining sections of this paper are organised as follows: Section 2 contains
a review of the inflation forecasting models that have been applied to South Africa
data, while Sect. 3 describes the methodology of the various models that have been
specified in this study. Details relating to the data are discussed in Sect. 4 and the
results from the different forecasting models are presented in Sect. 5. Then finally,
Sect. 6 concludes.

2 Review of inflation forecasting in South Africa

A number of studies have considered the relative performance of inflation forecasting
models in South Africa. These include those that emphasise the structural features of
an economy, where in an early study, Woglom (2005) notes that inflation forecasts
that are generated from a simple Phillips curve are not particularly accurate. However,
when making use of a more expansive variant of a structural model, Smal et al. (2007)
suggest that such models are capable of producing quarterly forecasts for CPIX9

inflation that are more accurate than either the DIM or autoregressive integrated mov-
ing average model. In addition, these forecasts were also shown to be more accurate
than the Reuters consensus forecast over their particular sample. Subsequent struc-
tural models, which include Liu et al. (2009), suggest that the forecasts from a small
closed-economy New Keynesian dynamic stochastic general equilibrium (NKDSGE)
model outperform those that are generated by classical vector autoregressive (VAR)
and BVAR models for the South African GDP deflator. However, these authors also
note that the difference in root-mean-squared error (RMSE)was not significant inmost
cases. Thereafter, Steinbach et al. (2009) extended the NKDSGEmodel to incorporate
small open-economy features and found that the model’s forecasts for CPIX inflation
provided a lower RMSE, when compared to the Reuters consensus forecast, over
a horizon that extends between four- and seven-quarters ahead. Similarly, Alpanda
et al. (2011) built upon the small open-economy NKDSGE model that is discussed
in Alpanda et al. (2010) and Alpanda et al. (2010), to show that their model provides
better forecasts for consumer price inflation over shorter horizons. Furthermore, they
also show that the difference in performance relative to classical VAR, BVAR and
random-walk models is significantly different from zero.

This literature has subsequently been extended to consider the performance of a
small open-economy NKDSGE-VAR model in Gupta and Steinbach (2013), which
generates CPIX inflation forecasts that are superior to classical VAR and most BVAR
models (with the exception of a BVAR model that incorporates a stochastic search
variable selection prior) over a one-quarter ahead horizon. Other researchers have con-
sidered the role of nonlinearities within structural models, where Balcilar et al. (2015)
make use of a nonlinear NKDSGE model, which employs the second-order solution

8 In addition, we find that the accuracy of SARB’s near-term inflation forecasts compare favourably to
those of the other models that we have utilised in this study, reflecting the importance of the inclusion of
off-model information, such as electricity tariff adjustments and the availability of within-month data.
9 A measure of consumer price inflation that excludes the effects of interest rates on mortgage bonds.
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method of Schmitt-Grohé and Uribe (2004) and a particle filter to evaluate the likeli-
hood function, to provide forecasts for consumer inflation that have a lower RMSE,
when compared to a large variety of BVAR models (including those that employ
variable selection priors). Furthermore they found that the difference in forecasting
performance is usually statistically significant, when compared to a random-walk and
linear NKDSGE model (particularly over longer horizons). However, when consid-
ering the use of regime-switching nonlinearities, Balcilar et al. (2017) note that the
out-of-sample forecasts for South African inflation that are generated by different
forms of Markov-switching NKDSGEmodels are largely inferior to the single regime
counterpart.

There are also a number of papers that focus on the application of different non-
structural statistical techniques to forecast South African inflation, to which this paper
contributes. For example, in an attempt to reduce the potential effects of an omitted
variable bias, Gupta and Kabundi (2011) make use of the Stock and Watson (2002b)
and Forni et al. (2000) large factor models to forecast the percentage change in the
implicit GDP deflator, along with the percentage change in real per capita GDP and
the 91-day Treasury Bill rate in South Africa, over a one- to four-quarter ahead period
from 2001Q1 to 2006Q4. They make use of 267 quarterly macroeconomic series to
show that the factor models tend to outperform the unrestricted VAR, BVAR and
small closed-economy NKDSGE models. Similar results are provided in Gupta and
Kabundi (2010), where it is noted that large-scale data-rich models are better suited
to forecasting key macroeconomic variables, relative to small-scale models. As an
alternative, Kanda et al. (2016) is one of the few studies that make use of monthly data
to focus on evaluating the performance of a suite of univariate nonlinearmodels, which
include a locally linear model tree, neuro-fuzzy, multilayered perceptron, artificial
neural network, nonlinear autoregressive, and genetic algorithm-based forecasting
model. Their findings suggest that the locally linear model tree provides forecasts that
can compete with the linear autoregressive model and is generally superior over longer
horizons. In addition, Ruch et al. (2020) derive forecasts for quarterlymeasures of core
inflation in South Africa with the aid of time-varying parameter vector autoregressive
models (TVP-VARs), factor-augmented VARs, and structural break models to show
that small TVP-VARs outperform all their other models, where additional information
on the growth rate of the economy and the interest rate is sufficient to forecast core
inflation accurately.

3 Methodology

To describe the methodology that has been employed by the various models, it is nec-
essary to introduce some notation. In all that follows, we assume that y = {y1, . . . , yn}
is a vector of data for the measure of inflation, where the observations that arise over
time are denoted, i ∈ {1, . . . , n}. The matrix for the set of predictors that include the
price indices for the different products or categories that are sampled to construct the
CPI are contained in X = {x1,1, . . . , xn,p}′, which is of dimension (n × p), while
j ∈ {1, . . . , p} is used to denote each of the different predictors in the matrix. We
made use of four lags for the predictors in each of the models. To consider the relative
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forecasting accuracy of the different models, we employ a recursive out-of-sample
scheme that extends over a horizon of between one and twenty-four months ahead,
where the data that is used to test the predictions extends over a four-year period.

The motivation for making use of a recursive forecasting scheme, as opposed to a
rolling-window scheme, is that the number of available observations that have been
measured over time is relatively small and the forecasts over more recent periods of
time may have benefited from the use of the maximum available number of obser-
vations. For example, if we were to make use of a rolling-window scheme, then we
would have been limited to making use of a constant in-sample period for the pre-
dictors of just over five years to generate a twenty-four month-ahead forecast, when
using most of the statistical learning models. Since we have a large number of poten-
tial predictors, we have assumed that by making use of a slightly larger in-sample
dataset, we could possibly generate more accurate forecasts for the observations that
arise over more recent periods of time. Furthermore, as the structural change that is
attributed to the pandemic arose relatively suddenly, and very close towards the end
of the sample, there are probably few (if any) gains that could be made by making use
of a rolling-window scheme for the forecasts over this period.

The statistics that are used to evaluate the out-of-sample performance of the
respective models include the root-mean-squared error (RMSE), the mean absolute
percentage error (MAPE), and the Diebold and Mariano (1995) statistics.10 When
reporting on the results, we consider the year-on-year forecasts of headline and core
inflation.

3.1 Benchmarksmodels

To evaluate the relative forecasting performance of the statistical learning models, we
consider the use of a number of benchmarks, which are provided by autoregressive,
large-scale Bayesian vector autoregressive, stochastic volatility, and random-walk
models. Additional benchmarks include the model that is currently used by the central
bank in South Africa to generate short-termmonthly inflation forecasts, and the actual
forecasts that are presented to the MPC. The latter incorporate off-model information
such as electricity tariff adjustments and within-month data releases. Where there are
relatively few predictors, we also include the results from a linear regression model.
Further details relating to the specification of the benchmark models are included in
section A of the online appendix.

3.2 Dynamic factor models

To compare the results of competing models against various dense models, that make
use of principal components to summarise linear combinations of the original predic-

10 Although there will be cases where these models will be nested, which would imply that the use of the
statistics that are discussed in Clark and West (2007) and McCracken (2007) would be preferred to the
Diebold and Mariano (1995) statistic, these models are not always nested within one another. Therefore,
for the sake of consistency, we make use of the Diebold and Mariano (1995) statistic to evaluate all of the
models. This would suggest that the results may favour the more parsimonious model in those cases where
the models are nested.
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tors, we utilise two different variants of the dynamic factor model (DFM). The first
of these builds upon the framework of the traditional DFM, which largely follows the
seminal work of Forni et al. (2000), Stock and Watson (2002a, b) and Bai (2003). In
addition, it also makes use of the target factor approach that follows the work of Bai
and Ng (2008), while the second approach utilises the three-pass regression filter of
Kelly and Pruitt (2013, 2015). Section B of the online appendix contains additional
details that pertain to the specification of these models, which seek to summarise the
information that is contained in a large set of predictors, or explanatory variables.

3.3 Variable selectionmodels

The literature on the development of statistical learning models that employ different
variable selection methods, which are particularly useful when working with a large
set of sparse predictors, is extensive. In this paper, we make use of a number of alter-
native methods that utilise a penalised likelihood function, where the parameters are
estimated with frequentist techniques, as well as some of the Bayesian model selec-
tion counterparts. In particular, we employ the least absolute shrinkage and selection
operator (LASSO), which was initially proposed by Tibshirani (1996), where the size
of the penalty is determined by cross-validation. Furthermore, we also make use of the
adaptive LASSO of Zou (2006), which may reduce the potential over-selection prob-
lem that has been encounteredwith the traditional LASSO.As an alternative tomaking
use of the adaptive LASSO, we also make use of post-selection inference, to exclude
those predictors that may not be able to make a significant contribution towards the
explanation of future inflationary pressure. This exercise involves the application of
methods that are discussed in Lee et al. (2016). The econometrics literature also makes
extensive reference to the Post-LASSO estimation methods that are discussed in Bel-
loni et al. (2011, 2013, 2014, 2017), which, in this particular setting, would motivate
for the use of the methods in Belloni et al. (2013), to reduce the set of predictors to
those that may be relevant.

As an alternative to imposing L1 penalties, we also make use of methods that seek
to implement L0 penalties, which in general have improved properties, but require the
use ofmethods that are not as efficient froma computational perspective. To implement
these models, we follow the work of Rossell (2021). In addition, we also make use
of models that impose L2 penalties, such as the case of ridge regressions that were
first discussed in Hoerl and Kennard (1970a, b), which seek to adjust the coefficient
estimates to values of zero when they are deemed to be insignificantly different from
zero. Models that make use of combinations of both L1 and L2 penalties are also
implemented, which include the elastic net and smoothly clipped absolute deviation
model of Fan and Li (2001).

As an alternative to making use of frequentist techniques, we also employ Bayesian
model selection methods that consider the use of models that contain different sets
of regressors, following Johnson and Rossell (2010, 2012) and Rossell and Telesca
(2017). The results for the single specification that is most likely to contain the most
useful predictors are reported along with the specifications that are summarised with
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Bayesian model averaging techniques. Additional details relating to the use of each of
the variable selection methods have been included in section C of the online appendix.

3.4 Nonlinear statistical learningmodels

The suite of nonlinear statistical learningmodels, whichmay also contain nonparamet-
ric features, include ensemble methods, random forests, gradient boosting and neural
networks. Further details relating to each of these methods are contained in section D
of the online appendix.

3.4.1 Ensemble methods

For comparative purposes, we have alsomade use of an ensemble method, which takes
the form of the complete subset regression (CSR) framework of Elliott et al. (2013,
2015). This procedure makes use of the results from independent models that are
then combined with a deterministic calculation. In many respects, it is similar to the
bagging procedure of Breiman (1996) and provides an intuitive method for generating
forecasts from many variables. To apply this methodology, we fit a linear regression
model that seeks to explain yi using each of the individual regressors in xi−h . To
identify the best predictors, we would then rank the absolute value of the t-statistics
from the initial coefficient estimates. These predictors are then used to generate a
number of individual forecasts, which are combined to provide the CSR forecast.

3.4.2 Random forests

The random forest model of Breiman (2001) reduces the variance of regression trees,
which are nonparametricmodels that approximate an unknownnonlinear functionwith
local predictions using recursive partitioning of the parameter space. They are based
on bootstrap aggregation (bagging)methods for randomly constructed regression trees
that take the form of nonparametric models that approximate an unknown nonlinear
functionwith local predictions, using recursive partitioning of the parameter space that
pertains to the covariates. Hence, to implement these methods, the parameter space is
split successively to minimise the sum of squared errors in the regression.

3.4.3 Gradient boosting

As an alternative to random forests, gradient boosting seeks to build a model by
repeatedly fitting a regression tree to the residuals. After each tree has grown to model
the residuals, it is shrunk down by a factor before it is added to the current model.
This would allow us to explain certain elements (including nonlinear relationships)
that may have been discarded in the residual. A general gradient descent boosting
paradigm has been developed for additive expansions based on any fitting criterion.
It utilises developments discussed in Friedman et al. (2000) and Friedman (2001),
where special enhancements are derived for the particular case where the individual
additive components are regression trees. In general, it has been suggested that gradient
boosting of regression trees produces competitive, highly robust results.
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3.4.4 Deep learning (neural networks)

Neural network models usually take the form of highly parameterised nonparametric
specifications that are able to potentially explain any nonlinear function. Thesemodels
would often make use of a large number of parameter weights that transform the data
that is contained in the set of predictors to fit the target variable. These parameter
weights are learnt through repeated exposure to different subsets of the data. Deep
learning methods make use of layered representations of neural network models that
are stacked on top of each other to provide a mathematical framework for learning
the rules that would allow for the mapping of the characteristics of the predictors to
the target variable. Such models could potentially explain behaviour that is extremely
complex, although there is also a significant possibility that the model may be prone to
over-fitting errors. In our case, we have utilised a relatively simple model structure that
will hopefully circumvent such concerns, where we have incorporated three hidden
layers and a relatively parsimonious combination of 32, 16, and 8 nodes.

4 Data

The South African Consumer Price Index (CPI) measures changes in the general level
of prices of consumer goods and services. It is a fixed-basket price index, in that it
represents the cost of purchasing a fixed basket of consumer goods and services of
constant quality and similar characteristics (Statistics South Africa 2017a). The items
that are included in the basket seek to represent average household expenditure, using
information from the Income and Expenditure Survey (IES) and more recently from
the Living Conditions Survey (LCS), which was last conducted in 2014/15.11 Note
that the index only incorporates data on those products that contribute at least 0.1%
of total household expenditure. Additional data sources such as regulatory reports,
excise tax receipts, industry association reports and summarised transaction data from
retailers are then used to align the data from the respective surveys with the data that
goes into the household final consumption expenditure in the national accounts. The
last update to the items that are included in the CPI basket was in January 2017, and
the next update is expected to take place during 2021 (Statistics South Africa 2017b).

Since 2006, StatsSAhasmade use of fieldworkerswho are responsible for collecting
the relevant prices from the retail outlets directly. Each province has its own basket
and every product that appears in at least one provincial basket is included in the
national basket. The current CPI contains 412 products, which is slightly more than
the previous basket, which included 393 products (Statistics South Africa 2017b),
and its composition follows the United Nations Statistical Division (UNSD) standard
for classifying household expenditure on goods and services. This standard is termed
the Classification of Individual Consumption by Purpose (COICOP) and it currently
incorporates 14 high-level (or 2-digit) categories (e.g. 01-Food and non-alcoholic
beverages). Table 1, which is taken from Statistics South Africa (2017a), shows how

11 Household expenditure in the LCS is surveyed in the same way as in the IES. However, the LCS also
includes measures on a range of additional poverty indicators.
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Table 1 Convention for COICOP classification

COICOP Level Name Example

01 2-digit Category Food and non-alcoholic beverages

011 3-digit Class Food

0111 4-digit Group Bread and cereals

01112 5-digit Product Bread

01112001 8-digit Commodity Loaf of white bread

01112001wxyz 12-digit Sampled product Loaf of white bread for specific

Brand, size, outlet (within an area)

the naming convention of the COICOP has been applied to the different levels of
products and categories in South Africa.

In the subsequent analysis, wemake use of themonthly four-digit data on consumer
prices between January 2008 to March 2021, since a slightly different methodology
was used to collect and classify the data for prior periods of time.12 This dataset
includes a total of 46 different predictors. In addition, we have also made use of
a new dataset that contains more disaggregated data on the prices of goods in the
consumption basket. This dataset includes information on 216 products or categories,
where food products are measured at the 8-digit level and all other goods and services
are measured at the 5-digit level. Unfortunately, the first observation in this dataset
relates to January 2017, which would make for an extremely small in-sample training
period in our case. Therefore, with the help of StatsSA we have now extended this
dataset, going back to January 2009, by making use of the fieldworker data, which
has been collected for 34,075 different products, across 5,505 outlets, that arise in 85
different areas.

To obtain a measure for the changes in prices over time, we calculate the price
relative indices for the available fieldworker data, utilising the method that is used in
the compilation of the respective CPI indices. This procedure involves the construction
of a Jevon’s index, which is defined as the unweighted geometric mean of the price
ratios that utilise data for the current and previous survey periods for a particular
commodity (i.e. at the 8-digit level). Such a Jevon’s index may be constructed as
follows:

I
J
i =

n∏

i=1

(
Pθ,i

Pθ,i−1

)1/ξ

(1)

where IJt denotes the Jevon’s index, while Pθ,t is the price of commodity θ in period
i , and ξ refers to the total number of items that are included in this calculation. In this
study, we calculate a number of different variants of price relative indices to obtain
information about price movements. This is then used to construct individual indices
for each of the components at different levels of aggregation. After completing this

12 These changes are discussed in Statistics South Africa (2007).
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Fig. 1 Inflation over initial in-sample and out-of-sample period (year-on-year)

process, we are left with 216 predictors for the eight/five digit data, over the sample
period from January 2009 to March 2021.

Figure 1 displays the measures of headline inflation and core inflation over the
entire sample, where the shaded area relates to the entire out-of-sample period, where
we assume that we do not have future information relating to the outcome variable
and predictors, when estimating the parameters in the different models. The initial
observation in the out-of-sample period is April 2017. Note that the trend in both
measures of inflation has declined over the out-of-sample period, whichwould suggest
that most mean reverting models will produce a negative forecast bias. In addition,
as would be expected, headline inflation is certainly much more volatile than core
inflation, where over the out-of-sample period, core inflation has a variance of 0.61%,
while the variance of headline inflation is 1.04%.

5 Results

To evaluate the relative performance of the different models, we make use of a recur-
sive out-of-sample forecasting exercise and a forecasting horizon of between one and
twenty-four months ahead. The statistics that are used to evaluate the out-of-sample
performance of the respective models include the root-mean-squared error (RMSE),
the mean absolute percentage error (MAPE) and the Diebold and Mariano (1995)
statistics.13 When reporting on the results, we compare the year-on-year inflation
forecasts against the official CPI release for headline and core inflation.14 To gener-

13 Although there will be cases where these models will be nested, which would imply that the use of the
statistics that are discussed in Clark and West (2007) and McCracken (2007) would be preferred to the
Diebold and Mariano (1995) statistic, these models are not always nested within one another. Therefore,
for the sake of consistency, we make use of the Diebold and Mariano (1995) statistic to evaluate all of the
models. This would suggest that the results may favour the more parsimonious model in those cases where
the models are nested.
14 Over the sample period, core inflation is derived from the prices of goods and services in the consumption
basket, excluding food and non-alcoholic beverages, fuel and energy.
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Table 2 Root-mean-squared error

1-step 2-step 3-step 4-step 6-step 12-step 18-step 24-step

Headline inflation

SARB 0.15 0.25 0.37 0.57 0.84 1.42 1.59 1.63

4 XG-BOOST 0.45 0.64 0.78 0.95 1.1 1.28 1.33 1.48

8/5 NEURAL 0.5 0.66 0.8 0.99 1.06 1.48 1.5 1.45

Core inflation

SARB 0.13 0.24 0.35 0.46 0.63 1.19 1.25 1.32

4 RAND-FOREST 0.27 0.41 0.52 0.63 0.8 0.71 0.85 1.17

8/5 NEURAL 0.25 0.39 0.39 0.42 0.55 0.86 0.91 1.09

Boldface indicates that the RMSE is lower, when measured relative to the SARB forecast
Model acronyms: “SARB”—official SARB forecast reported to MPC, “4”—Four-digit data, “8/5”—
Eight/five-digit data, “NEURAL”—neural network, “RAND-FOREST”—random forest, “XG-BOOST”—
boosting

ate forecasts, we mostly make use of the direct forecasting approach, where the only
exceptions pertain to the random walk, DIM, autoregressive, and vector autoregres-
sive models.15 To apply the direct forecast approach over the forecasting horizon of
h = {1, . . . , 24}, we estimate the model yi = ∑p

j=1 xi−h, jβ j + εi and use the coeffi-

cients to find Ei
[
yi+h |xi, j

] = ∑p
j=1 xi, j β̂ j , where the predictors may include lagged

values of the target variable.
Table 2 summarises the main results, where we compare the RMSE for the official

SARB forecasts, which were reported to the MPC, to the best-performing statistical
learningmodel.We note that over shorter horizons, the official SARB forecasts, which
have benefited from the use of off-model information and within-month data updates,
are generally superior. However, over longer horizons, the nonlinear statistical learning
models provide more impressive results. When considering the results for headline
inflation, the boosting model that is applied to the four-digit data provides the most
attractive results,when the horizon is twelvemonths or greater. Similarly,when applied
to the eight-/five-digit data, the neural network model also appears to be responsible
for lower RMSE statistics over longer horizons, when compared to the official SARB
forecasts. However, they are not superior to the results of the boosting model that is
applied to four-digit data.

For core inflation, the results are similar, as the official SARB forecasts are superior
over a horizon of between one and three months. However, from four-steps-ahead to
longer horizons, the neural network model is able to generate a lower RMSE, when
applied to eight/five-digit data. Furthermore, the random forestmodel,which is applied
to four-digit data, is also responsible for a smaller forecasting error (compared to the
other predictions in the table), when the horizon is greater than a year and less than
two years ahead.

In addition to these results, we also report on the Shapley values for a selected
statistical learning model that appears to provide attractive out-of-sample results, to

15 Explicit forecast functions for these models have been included in the above description of the respective
models.
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identify the important drivers of future inflationary pressure. This work follows Lund-
berg and Lee (2017) and Joseph et al. (2020), and the results are contained in section
H of the online appendix.

5.1 Four-digit data: headline inflation

Headline inflation ismade upof forty-six different price indices that aremeasured at the
four-digit level of aggregation. These indices are used to generate the DIM forecast,
which has a significant influence over the official central bank near-term monthly
inflation forecast. Given the relatively small number of predictors, there are sufficient
degrees-of-freedom to be able to include the forecasts from a linear regression model
in this case.

Table 3 contains the out-of-sample RMSE statistics. When comparing the relative
performance of all the benchmark models, we note that with the exception of the
linear regression model, the errors are all fairly similar, where the DIM and official
SARB forecasts are superior over the short term, while the randomwalk and stochastic
volatility models are superior over longer horizons. Note also that over the first three
months, the official SARB forecasts provide a RMSE that is about half the size of the
DIM,which suggests that the use of off-model information has reduced the forecasting
error by a relatively large amount over these horizons.

Turning our attention to the relative forecasting performance of the linear regression
model, we note that it provides results that are indicative of a model that is prone to the
over-fitting problem, since the models that make use of variable selection techniques
often provide more impressive results. This would also suggest that the matrix that
contains the predictors may be sparse, although we do not make use of a specific
definition for statistical sparsity, as in McCullagh and Polson (2018). Further support
for this finding is included in section E of the online appendix, where the in-sample
estimation results for the full sample suggest that a model that makes use of twelve
explanatory variables is able to provide a near-perfect explanation of the behaviour
that is measured by headline inflation.

When we compare the accuracy of the forecasts from the dense models relative
to the sparse models, we note that the results are somewhat mixed, where although
there are a number of cases where the variable selection techniques provide more
impressive results, the DFMs are at least competitive in all cases and superior over
longer horizons. In the case of the twenty-four-month-ahead forecast, this would imply
that the observed values of the predictors from twenty-four months ago, which provide
the best explanation of current headline inflation, are not necessarily going to be the
same, as the ones that provide the best twenty-four-month-ahead forecast, from the
current point in time. Furthermore, we also note that in this case, the variable selection
techniques would in most cases appear to be inferior to the benchmarks, which include
the autoregressive, stochastic volatility and random walk models. Note also that the
results for the nonlinear statistical learningmodels are in most cases similar to those of
the DFMs models, however, over horizons that are longer than six months, the model
that makes use of boosting methods provides forecasts that are more accurate than
both dense and sparse models.
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Table 4 contains the Diebold and Mariano (1995) statistics for the forecasts of
the different models, relative to what is produced by the random-walk model. In this
case, we note that the only forecasts that are significantly superior to the random-walk
forecast are provided by the DIM over a one-month horizon and by the official SARB
forecast over a one- and two-month horizon. Furthermore, the forecasting performance
of the DFMs, relative to the random-walk forecast, is not significantly different from
zero over all horizons, while the random-walk forecast provides a significant improve-
ment in forecasting performance over several horizons, relative to most of the models
that employ variable selection techniques.

5.2 Eight/five-digit data: headline inflation

When using data that is measured at the eight-digit level of aggregation for food items
and at the five-digit level for most other goods, we have a total of two-hundred-and-
ten different price indices for headline inflation. Given the relatively large number of
predictors, we do not have sufficient degrees of freedom to estimate a linear regression
model. Table 5 contains the out-of-sampleRMSEs for the differentmodels,wheremost
of the results that pertain to the benchmarks are similar to what was provided when
using four-digit data, with the exception of the BVAR, which has experienced a slight
deterioration in performance.

Note that the RMSEs for sparse models are lower when using the more disaggre-
gated data, which would suggest that the combined use of more disaggregated data
and variable selection techniques allows for an improved forecasting performance, as
it would discard some of the noise that may be included in the variables when they
are subject to greater degrees of aggregation. This is in contrast to the results of the
densemodels, which provide forecasts that are slightly more inaccurate than those that
were derived from the four-digit data. And then finally, the results for the nonlinear
statistical learning models are in most cases comparable to those that make use of the
four-digit data.

Table 6 contains the Diebold and Mariano (1995) statistics, which are measured
relative to the forecasts from the random-walk model. Once again, the only forecasts
that are significantly superior to the random walk are provide by the DIM over a one-
month horizon and by the official SARB forecast over a one- and two-month horizon.
Furthermore, the forecasting performance of the LASSO at the three-month horizon
is significantly more accurate than what is provided by the random-walk model, while
most of the other variable selection forecasts are either positive (which is due to their
lower RMSE) or not significantly different from zero.

5.3 Four-digit data: core inflation

In what follows, we repeat the above analysis, but in this case, the target variable is
core inflation, which is derived from the measure of CPI that excludes the effects of
changes in the prices of food, non-alcoholic beverages, fuel and energy. When using
the four-digit data, we are able to make use of thirty-three different predictors for core
inflation. After applying this data to the respective models, we calculate the RMSEs,
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which are displayed in Table 7. Note that in this case, the SARB forecasts are superior
over a one- and two-month horizon, while the random-walk model provides superior
forecasts for between three and six months ahead. Thereafter, the lowest RMSEs
are provided by the ridge and random forest models. Once again, some of the worst
results are provided by the linear regression model and after generating the in-sample
summary statistics for the models that make use of variable selection techniques, we
observe that the matrix that contains the predictors displays sparse characteristics.

Table 8 contains the Diebold andMariano (1995) statistics, which suggest that there
is no occasion where the difference in forecasting performance, relative to the random-
walk, is significantly different from zero, in favour of the competing model (even in
the case of the short-term SARB forecasts). In addition, there are also a number of
occasions where the random-walk model provides results that are significantly more
accurate than any of the competing models.

5.4 Eight/five-digit data: core inflation

After excluding those items that are not included in the definition of core inflation,
we are left with eighty-three price indices, which are measured at a five-digit level,
since this measure does not include any food items. Table 9 contains the out-of-sample
RMSEs for the different models, where we note that the results are fairly similar to
the case where we made use of less disaggregated data. In this case, there is only one
occasion where the random-walk model does not generate the lowest RMSE over the
medium- to long-term horizon.

TheDiebold andMariano (1995) statistics that are contained inTable 10 suggest that
there is no occasion where there is a significant difference in forecasting performance,
in favour of the models that are competing with the random-walk.

5.5 Change in the inflationary level or trend

Following the onset of the COVID-19 pandemic, South Africa initially went into
lockdown on 27 March 2020. The use of these regulations resulted in what could be
described as a level-shift in the rate of inflation, where between April 2019 andMarch
2020, year-on-year headline inflation averaged 4.2%, while between April 2020 and
March 2021, it only averaged 2.9% (which is below the lower bound of the inflation
target). In what follows, we discuss the relative performance of the different models
following this change in the data-generating process, given the limitation that we only
have twelve observations that arise after the onset of the pandemic.

In what is similar to Table 2, we compare the RMSE results for the official SARB
forecasts to the best-performing dynamic factor, variable selection and nonlinear sta-
tistical learning models for the out-of-sample period that extends between April 2020
andMarch 2021. The full results for all the models over this out-of-sample period have
been included in section G of the online appendix. Note that for the twelve-step-ahead
forecast, we are only able to calculate the RMSE for a single realisation, and as such
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Table 11 Root-mean-squared error

Step-1 Step-2 Step-3 Step-4 Step-6 Step-8 Step-10 Step-12

Headline inflation

SARB 1.06 1.08 0.86 0.63 0.64 1.13 1.37 1.7

4 DFM-3PRF 0.64 0.97 0.92 0.81 1.16 1.79 1.75 1.7

4 LASSO 0.47 0.72 0.58 0.51 1.82 0.9 2.8 1.94

4 CSR 0.52 0.8 0.7 0.53 0.7 1.21 1.88 2.32

8/5 DFM-TF 0.6 0.92 0.93 0.96 1.44 2.05 2.56 2.51

8/5 ELASTIC 0.47 0.7 0.67 0.6 1.32 1.02 1.29 2.32

8/5 CSR 0.52 0.81 0.8 0.76 0.79 1.08 1.32 1.88

Core inflation

SARB 0.47 0.51 0.51 0.51 0.56 0.87 1.16 1.42

4 DFM-TF 0.28 0.42 0.45 0.45 0.37 0.38 0.84 1.67

4 LASSO 0.35 0.43 0.38 0.41 0.51 0.47 1.26 1.94

4 NEURAL 0.37 0.43 0.34 0.49 0.48 0.61 0.74 1.74

8/5 DFM-TF 0.25 0.35 0.39 0.44 0.43 0.27 0.45 1.15

8/5 POST-LA 0.27 0.42 0.42 0.35 0.34 0.62 0.67 0.99

8/5 NEURAL 0.3 0.42 0.35 0.39 0.45 0.56 0.14 0.77

Boldface indicates the lowest RMSE at a particular horizon and dataset
Data acronyms: “4”—Four-digit data, “8/5”—Eight/five-digit data. Model acronyms: “SARB"—official
SARB forecast reported to MPC, “DFM-TF"—dynamic factor model with target factors, “DFM-3PRF"—
dynamic factor model with three pas filter, “LASSO"—least absolute shrinkage and selection operator,
“POST-LA"—post-OLS LASSO, “CSR"—complete subset regression, “NEURAL"—neural network

it is difficult to read too much into this result, while the RMSE for the one-step ahead
forecast is computed over the average of twelve successive forecasts.16

These results suggest that if we were to impose a limit on the forecasting horizon at
eight-steps ahead (or where we have at least 5 successive forecasts to evaluate), then
there is always a statistical learning model that provides a lower RMSE, relative to the
official SARB forecasts that may benefit from the use of off-model and within-month
information. In addition,we also note that in general, for headline inflation, the variable
selectionmodels perform reasonablywell,whichmay suggest that the removal of those
variables that are unable to make a significant contribution towards the predictive
ability of the model provide more accurate forecasts (where one would presume that
the variables that are removed are unable to contribute towards the explanation of the
level shift). Similarly, for core inflation, where the number of available predictors is
somewhat limited, combining all the available information within a DFM would in
most cases provide the most desirable forecast.

Figure 2 contains the results of the recursive one-step ahead forecasts that were
generated for headline and core inflation, by theLASSOandDFM(with target factors),
between April 2020 and March 2021. In both cases, the statistical learning models
appear to have done a reasonable job of detecting the relative change in the inflationary

16 To identify the best model within each class, we take themean of the RMSE for the one-to-six-step-ahead
forecasts.
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Fig. 2 Forecasts from benchmark and statistical learning models—headline inflation

level or trend.17 While these results are of interest, particularly to those who are
concerned with the relative performance of various models over the pandemic, one
should be cautious of reading too much into them as they have been generated from a
very small sample.

6 Conclusion

We assess the potential predictive power of a number of different forecasting models
that may be applied to large datasets that are used to measure inflation. We find that
the models that employ variable selection techniques and nonlinear statistical learning
techniques provide impressive results, despite the fact that the number of observations
in the dataset is limited. We also note that when comparing the use of models that
seek to exploit any potential sparsity in the set of predictors, relative to those that
seek to summarise all of the available information, the results are somewhat mixed,
over the entire out-of-sample period. Over horizons that are longer than three months,
the statistical learning models would also appear to provide results that are even more
accurate than the sparsemodels,where the neural network andboostingmodels provide
the most accurate results. However, the results of simple forecasting models continue
to produce results that are in many cases superior to those of the statistical learning
models. Hence, one would conclude that from a practical perspective, the use of
statistical learning models in this particular setting may not provide forecasts that are
consistently superior to what is provided by a simple random-walk model, although
they are certainly competitive.

Furthermore, the results suggest that for headline inflation the official central bank
forecast that is presented to theMPC, which incorporates various sources of off-model
and within-month information, is more accurate than any of the other models, over

17 Previously, Stock and Watson (2010) suggested that to account for the change in the inflationary trend
one could augment the previous specification that was utilised in Stock andWatson (2007), with a stochastic
trend that reacts to the unemployment recession gap. However, as is the case with most low- and middle-
income countries, South Africa does not have a reliable measure for the unemployment recession gap.
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the first three months. Similarly, over a one-month horizon the central bank forecast
for core inflation is more accurate than any of the other models. Hence, the use of
judgement has systematically improved the SARB forecasts over a short-term horizon.
Another important finding relates to the use of more disaggregated data, where the
results from the eight/five-digit data are generally more accurate than when we report
on the use of the four-digit data, which suggests that the use ofmore disaggregated data
provides more desirable results. In particular, those models that are able to distinguish
between information that may or may not be of potential use are able to provide
more accurate forecasts when they are applied to more disaggregated data. As has
been shown, we can also use the output from the models to generate Shapley values,
which provide policymakers with information that pertains to the drivers of future
inflationary pressure. In addition, when we consider the relative performance of the
benchmark models, which include a number of mean-reverting specifications, for the
period that includes the effects of economic lockdowns over the pandemic, we note
that the statistical learning models are able to detect the decrease in the trend of the
respective measures of inflation reasonably quickly, to provide short-term forecasts
that are more accurate than what was provided to the MPC.

Subsequent research into the use of alternative sources of big data, as well as the
potential use of alternative statistical learning model specifications, may provide more
promising forecasting results in the future. As has been noted, the number of avail-
able observations over time for this dataset is relatively limited, and as it is generally
acknowledged that to provide impressive results in such a setting, statistical learning
models, and in particular the nonlinear variants of these models, would usually require
a relatively large number of observations that have been measured over time. Never-
theless, the fact that the forecasts from many of these models are competitive, despite
the limitation of the data, may provide encouraging signs for researchers in this field
of study.
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