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Abstract
We introduce a new quadratic asymmetric error correction model that comprehen-
sively accounts for both sign and size asymmetries. We also propose a test protocol
that allows to rigorously identify different sources of long-run nonlinearity, namely
quadratic nonlinearity, size asymmetry and sign asymmetry. We use a nonparametric
residual recursive bootstrap technique to report p-values for the long-run tests. Sim-
ulation results confirm the consistency of our proposed estimator in finite samples
and show that the bootstrapped tests have reasonably good size and power properties.
Although our estimation of the Okun’s Law for the USA confirms previous findings
on the direction of the sign asymmetry, its reveals that the magnitude of the impact of
economic downturns on unemployment decreases faster than the impact of upturns.
Forecasting results show that our new model performs better than NARDL.

Keywords Error correction model · Quadratic nonlinearity · Asymmetry ·
Bootstrap · Okun’s law · Monte Carlo simulations · Forecast

JEL Classification C12 · C13 · C15 · C53 · J64 · E37

1 Introduction

It is well established that macroeconomic variables are likely to have a nonlinear and
asymmetric behavior. This means that their fluctuations are dissimilar during different
periods of the business cycle. Keynes (1936) suggested that negative economic shocks
have, usually, sharper impact on the economy compared to positive shocks. Indeed,
there is several empirical evidence supporting that nonlinearity and asymmetry are
key features of macroeconomics dynamics (e.g.; (Neftçi 1984; Holly and Stannett
1995; Ramsey and Rothman 1996; Andreano and Savio 2002; Webber 2000; Lee
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2000; Virén 2001; Granger and Yoon 2002; Schorderet 2001, 2003; Shin et al. 2014).
For instance, it is commonly argued in the exchange rate literature that pass-through
(ERPT) into import prices (or on domestic inflation) is asymmetric. In particular,
the impact of exchange rate appreciation on prices is significantly different from the
impact of depreciation (Shintani et al. 2013; Yanamandra 2015; Brun-Aguerre et al.
2012, 2017; Baharumshah et al. 2017). Based on these facts, we can conclude that the
symmetric and linear assumptions used to derive classical economic models can be
relatively restrictive and may lead to biased inferences and poor forecasts.

Besides non-linearity, macroeconomic data are generally non-stationary. In other
words, variables do not usually exhibit mean reversion behavior in the long run,
and have explosive variance processes (Rapach 2002). Obviously, this would cre-
ate severe statistical issues regarding the asymptotic distribution of the coefficient
estimates. To tackle this problem, the seminal work of Granger (1981) introduced
the concept of cointegration, which is an estimation procedure that investigates the
long-run relationship that may exist between two and more non-stationary time series.
Later, Granger (1983) proved that two cointegrated series could be specified with a
linear error correction model (ECM). Subsequently, a body of work has attempted
to develop nonlinear cointegration models based on extended nonlinear versions of
error correction model (ECM). One attractive form of the nonlinear error correction
model (NLECM) is the threshold error correction model (TECM) that was introduced
by Balke and Fomby (1997). The TECM has been extended by Lo and Zivot (2001)
by focusing on multivariate threshold cointegration model and improved by Hansen
and Seo (2002) by examining the case of unknown cointegrating vector in a complete
multivariate thresholdmodel. Onemajor drawback of the TECM is the finite number of
possible cointegrating regimes. To address this issue, many researchers have proposed
generalized versions of TECM. For instance, Choi and Saikkonen (2004) provided
an estimation and a testing procedure for smooth transition regression error correc-
tion model (STECM). Psaradakis et al. (2004) developed a Markov-switching error
correction model (MSECM) in which deviations from the long-run equilibrium are
characterized by different rates of adjustment. This class of ECM has the advantage to
bemore suitable in situations where the change in regime is induced by a sudden shock
to the economy. To obtain a more general nonlinear cointegration framework, Park
and Phillips (1999, 2001) started from a nonlinearly transformed version of a vector
AR and developed an asymptotic theory for stochastic processes generated from non-
linear transformations of integrated time series. They showed that convergence rate
of the sample function may be faster or slower than the linear cointegrated regression
depending on the nonlinear transformation function. The pioneer work of Park and
Phillips (1999, 2001) has triggered the researchers’ interest in nonlinear cointegration
analysis. In particular, several parametric, nonparametric and semiparametric cointe-
gration models have been proposed to estimate nonlinear, nonstationary relationships
(Karlsen et al. 2007; Cai et al. 2009; Wang and Phillips 2009a, b; Chan and Wang
2015; Linton and Wang 2008, 2016; Phillips et al. 2017; Wang et al. 2018; Dong and
Gao 2018; Hu et al. 2019).

Other studies have considered asymmetric cointegration by decomposing the vari-
ables into positive and negative partial sums (see, for example, Schorderet 2001). For
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instance, Webber (2000) adopted the partial sum decomposition technique to investi-
gate the long-run exchange rate pass-through rate into import prices. Moreover, Lee
(2000) and Virén (2001) provided interesting analyses of asymmetries in Okun’s Law.
Recently, Shin et al. (2014) developed a new framework by decomposing the time
series into positive and negative partial sums to model the long-run and short-run
asymmetries as a single cointegration vector. The main advantage of the proposed
nonlinear ARDL (NARDL) consists in providing a flexible and simple econometric
framework that accounts for both long- and short-run asymmetries. Although NARDL
has been widely and successfully applied to different macroeconomics topics, it is still
based on relatively restrictive assumptions of non-linearity. In fact, NARDL models
implicitly assume that any potential nonlinearity in the impact of the explanatory vari-
able, x , on the dependent variable, y, is exclusively explained by the sign asymmetry.
However, it is rational to think that the magnitude of these impacts might vary over
time, as they could depend on the level of x (long run) and/or on the size of the shock:
�x (short run). To illustrate this, we can refer to the exchange rate pass-through litera-
ture, where many studies report solid evidence showing that the pass-through depends
on the size of the exchange rate shock (small vs large) as well as on the sign of the
shock (depreciation vs appreciation).

To bridge this gap, we propose a new quadratic asymmetric error correction model
(QAECM) that comprehensively accounts for different types of asymmetry: size and
sign. To do so, we extend the model of Shin et al. (2014) by including the quadratic
terms of the partial sum processes of both positive and negative shocks in the standard
ECM model. The proposed model would account for sign and size asymmetries in
both short and long runs. To the best of our knowledge, we are the first to adopt such
a methodology.

It is true that TECM, MSECM and STECM can, to some extent, account for some
forms of non-linearity; however, these models have some limitations. First, most of
these models ignore the sign asymmetry and continue to assume symmetric impacts
of positive and negative changes. Second, in the TECM and the MSECM, the size
impact is modeled in a discrete manner, where the number of times the impact of the
explanatory variables can vary is restricted to the number of regimes or thresholds.
Hence, our QAECM can be considered as a continuous version of these models, where
the number of thresholds or regimes is infinite. Third, although the QAECM is less
restrictive than the abovementioned models, it requires the estimation of significantly
fewer coefficients. It is true that the STECM allows for nonlinear smooth transitions
in the cointegration relationship, but it does not account for any non-linearity related
to the size effect.

The QAECM could potentially provide an explanation for the mixed empirical
results on the direction of the sign asymmetry usually reported in the macroeconomic
literature.1 In fact, the direction of the sign asymmetry could simply depend on the
size of the economic shock and/or the level of the explanatory variable.

We also propose a test protocol that allows us to rigorously identify and assess differ-
ent sources of long-run nonlinearity, namely quadratic non-linearity, size asymmetry

1 For instance, the empirical literature on exchange rate pass-through has produced mixed results. While
Brun-Aguerre et al. (2017) find that exchange rate depreciations are passed through into prices at a higher
rate than are appreciations, Campa et al. (2008) find the opposite.
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and sign asymmetry. The econometric test protocol consists, first, of testing for the
presence of any nonlinear quadratic impact of the explanatory variable (the long-run
quadratic impact (LQI) test). Secondly, we run the long-run quadratic decomposi-
tion (LQD) test in order to investigate whether this quadratic effect is transmitted
exclusively through the overall level of x or through x−, x+, or any combination of
these. Thirdly, based on the previous test, we run a size asymmetry test (the long-run
quadratic asymmetry test (LQA test)) to check whether the quadratic impact of the
positive partial sum ((x+)2) is statistically different from the quadratic impact of the
negative partial sum ((x−)2).

Finally, we run the long-run sign symmetry (LSA) test to investigate whether or not
the overall long-run impact of x+ is different from the impact of x−. It is important to
mention that we need to run multiple LSA tests, given that the overall long-run impact
of x+ (or x−) is not stable across time and could depend on the levels of x+ and x−.
In other words, because of the potential quadratic effect, the direction of the long-run
sign asymmetry in the context of QAECM may change depending on the levels of
both x+ and x−.

Given the potential non-stationarity of the regressors as well as the complex depen-

dence structure between positive and negative partial sums (x+t , x−
t and

(
x+t

)2
,
(
x−
t

)2
),

it is not trivial to derive asymptotic distributions of those tests, and hence, no formal
proof could be provided to validate their consistency.

Another contribution of this paper is that it provides a nonparametric residual recur-
sive bootstrap technique to report consistent p-values for different long-run tests.2

Given that the variables in the error correction term are usually non-stationary, it
would be inconsistent to rely on conventional asymptotic theory (McNown et al.
2018). Our methodology is significantly different from the standard pairwise boot-
strap technique used by Shin et al. (2014) in many aspects. First, whereas Shin et al.
(2014) used the residuals of the unrestricted model to generate the bootstrap samples,
we used the residuals of model under the null hypothesis. This seems to bemore in line
with the basic principles of bootstrapping. Second, instead of using a fixed regressor
bootstrapping procedure as in Shin et al. (2014), where lagged dependent variable in
the regressors is treated as exogenous, we follow an iterative bootstrapping technique
where the lagged dependent variable is generated recursively. One major drawback of
the fixed regressor bootstrap technique is that bootstrap samples are generated in a way
that is not perfectly consistent with the null hypothesis. In fact, the bootstrapped yt
vector is obtained from the observed yt−1 vector (actual data), yet, the corresponding
bootstrap test statistic is derived through estimation of a different regressor matrix that
includes the bootstrapped yt−1. It is true that the recursive bootstrap technique could
be inefficient in finite samples when dealing with non-stationary regressors in the stan-
dard AR equation (Mackinnon, 2009), since, in this case, the empirical distribution
of the test statistic would depend on the non-exogenous and non-stationary regressor

2 It is well known that when the test statistic is not an exact pivot (asymptotically pivotal or even nonpivotal),
the bootstrap p-values are still asymptotically consistent (Davidson and Mackinnon (1999)). The bootstrap
technique allows estimating the unknown true DGP under the null hypothesis by the resampling technique
and then obtaining asymptotically consistent p-values.
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matrix. However, in the context of ECM, all regressors are stationary when the cointe-
gration test is not rejected.3 Hence, recursive bootstrapping becomes obviously more
appealing than fixed regressor bootstrapping.

In order to assess the finite-sample power and size of the bootstrapping tests, we
conductMonteCarlo simulations. Indeed, theMonteCarlo exercise seems to be crucial
in our case since our nonlinear transformation function is nonhomogeneous, non-
integrable and non-smooth, and obviously does not fall within any of the functions
considered in Park and Phillips (1999, 2001), Chan and Wang (2015) and Hu et al.
(2019). The results show that our estimator is consistent with relatively low bias even
for small sample size.We also consider a novel data generator process parametrization
that allows to generate unbalanced samples where, for instance, simulated data exhibit
more positive changes than negative ones. We find that in this case, the power of tests
sharply falls in particular when the sample size is small. Since many macroeconomic
time series are indeed unbalanced in terms of positive versus negative changes, we
should take the failing to reject the null hypothesis of the long run tests with some
cautious, in particular when the sample size is small. This may also be true for other
NLECMs.

To validate our proposed estimation technique, we use the QAECM to estimate
Okun’s Law using US data over the period February1982–November 2003. Overall,
our results are consistent with previous empirical findings suggesting that the response
of unemployment to a decrease in output is stronger than the impact of an increase
in output (Rothman 1998; Lee 2000; Virén 2001; Palley 1993; Cuaresma 2003; Sil-
vapulle et al. 2004; Holmes and Silverstone 2006; Owyang and Sekhposyan 2012).
However, our estimation results reveal several new interesting findings related to the
presence of quadratic effects in the long-run relationship between unemployment and
output gaps. According to our results, the negative impact of economic upturns on
unemployment would decrease in magnitude when the cumulative economic upturns
increase. Similarly, the positive effect of economicdownturns onunemploymentwould
also decrease as the cumulative economic downturns increases. Furthermore, we find
that the magnitude of the impact of economic downturns on unemployment decreases
faster than the impact of economic upturns.

In particular, the LSA test results suggest that the positive impact of economic
downturns on unemployment is larger in magnitude than the negative impact of eco-
nomic upturns for similarly low levels of x+t−1 and x−

t−1. However, as the cumulative
economic shocks increase, these effects are attenuated by the size impact (LQI test).
The LQA test shows that the decrease in the magnitude of the impact of economic
downturns is more pronounced than the impact of economic upturns.

It is, however, worth noting that since the cumulative economic upturns in the
USA are generally much higher than the cumulative economic downturns, the effects
of negative economic shocks on unemployment would be typically steeper than the
effect of economic upturns, unless theUS economygoes into a long-lasting depression.

Finally, to validate our proposed methodology, we compare our model forecast
performance with those of NARDL and ARDL models. The results show that the

3 The right-hand side of a typical ECM includes first differenced variables and an error correction term,
which are stationary.
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QAECM performs better in predicting the impact of negative economic shocks on
unemployment during an economic depression. This confirms that the impact of neg-
ative economic shocks on employment is usually underestimated in the context of
classical econometric techniques that do not account for size non-linearity (i.e., stan-
dard NARDL models).

The paper is organized as follows. Section 2 presents the basic nonlinear ECM
advanced by Shin et al. (2014). Section 3 introduces the QAECMmodel and develops
the associated testing procedure in both the short and long runs (including the boot-
strappingmethodology). In Sect. 4, we conductMonte Carlo simulations to investigate
the finite sample proprieties of our new estimator. In Sect. 5, we report the results of
our model estimation and we validate our model by comparing its forecasting per-
formance with the standard NARDL and the classical ARDL models. Finally, Sect. 6
offers some concluding remarks.

2 The nonlinear ECM

The linear ECMdeveloped by Pesaran et al. (2001) is widely used by empirical studies
to examine the cointegration relationships among variables. The ECM proposed has
the following form:

�yt � α0 + ρ(yt−1 − θxt−1) +
p−1∑

i�1

ϕ1,i�yt−i +
q−1∑

i�0

δ2,i�xt−i + μt , (1)

where α0 is an intercept, μt is an independently and identically distributed stochastic
process, ρ and θ are the long-run coefficients, ϕ1,i and δ2,i are the short-run coeffi-
cients, and p and q are the optimal lags on the first-differenced variables selected by an
information criterion, such as the Schwarz Information Criterion or Akaike Informa-
tion Criterion. The null hypothesis that will be tested in order to check the existence of
cointegration among the variables in Eq. (1) is H0 : ρ� θ � 0. However, several facts
reveal that this relationship is nonlinear and asymmetric. In this case, the estimation of
Eq. (1) will lead to a misleading result of short-run and/or long-run impacts. Several
econometric approaches have been introduced to assess the existence of nonlinear
relationships among variables, for instance, the STECM (Kapetanios et al. 2006), the
MSECM (Psaradakis et al. 2004) and the TECM (Balke and Fomby 1997).

Recently, Shin et al. (2014) advanced a modified version of the ECM by assum-
ing that xt has asymmetric impacts on yt . The asymmetry impact is introduced by
decomposing xt into its positive and negative partial sums. Therefore, the nonlinear
asymmetric long-run regression can be expressed as:

yt � θ+x+t + θ−x−
t + εt , (2)

where θ+ is the long-run coefficient associated with the positive change in xt and θ−
is the long-run coefficient associated with the negative change in xt . It follows that xt
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can be decomposed as:

xt � x0 + x+t + x−
t , (3)

where x0 is the initial value, and x+t and x−
t are the partial sum processes of positive

and negative changes in xt , defined as:

x+t �
t∑

i�1

�x+i �
t∑

i�1

max(�xi , 0), (4)

and

x−
t �

t∑

i�1

�x−
i �

t∑

i�1

min(�xi , 0). (5)

Shin et al. (2014) showed that by substituting Eq. 3 in the ECM presented in Eq. 1,
we obtain the following nonlinear asymmetric ECM:

�yt � α0 + ρyt−1 +β+x+t−1 +β−x−
t−1 +

p−1∑

i�1

ϕi�yt−i +
q−1∑

i�0

(δ+i �x+t−i + δ−
i �x−

t−i ) +μt

(6)

where θ+ � −β+

ρ
and θ− � −β−

ρ
.

3 The quadratic asymmetric error correctionmodel

3.1 The theoretical model

Our model starts from the ECM of Eq. (6) by adding the quadratic terms of (xt )2 and
(�xt )2. Given that x is decomposed into positive and negative cumulative changes,
Eq. (6) can be extended to a more general ECM that considers the sign asymmetry,
the quadratic effect and the quadratic asymmetry for both long and short runs. The
QAECM can be written as4:

4 Wecan also derive the sameECMby starting froma standardARDLequation including (xt−1)2.However,

we need to drop all the interactive short-run terms: �x+t−i .�x−
t− j , for i �� j, and x+(−)

t−1 .�x+−
t−i for all i .

123



40 Ayman Mnasri et al.

(7)

�yt � c + ρyt−1 + β+x+t−1 + β−x−
t−1 + γ +(x+t−1

)2 + γ −(
x−
t−1

)2

+ τ x+t−1x
−
t−1 +

p−1∑

i�1

ϕi�yt−i +
q−1∑

i�0

(δ+i �x+t−i + δ−
i �x−

t−i )

+
q−1∑

i�0

(π+
i

(
�x+t−i

)2 + π−
i

(
�x−

t−i

)2
+ αi�x−

t−i�x+t−i ) + εt .

One could think that the potential quadratic impacts of x+t−1 and x−
t−1 could

be captured by simply including
(
x+t−1

)2 and
(
x−
t−1

)2
. However, since(xt−1)

2 �
(
x+t−1 + x−

t−1

)2 � (
x+t−1

)2 +
(
x−
t−1

)2
+ 2x+t−1x

−
t−1, it is important to include the cross-

interactive termx+t−1x
−
t−1.

5 For instance, if τ � 0, thismeans that the potential quadratic
impact of xt−1 is exclusively transmitted through x+t−1 andx

−
t−1. In this case, the poten-

tial quadratic impact of x+t−1

(
x−
t−1

)
does not depend the overall level of xt−1 but on

the level of x−
t−1

(
x+t−1

)
.

Given that �x−
t−i � 0 or �x+t−i� 0, for all t , Eq. (7) simplifies to:

�yt � c + ρyt−1 + β+x+t−1 + β−x−
t−1 + γ +(x+t−1

)2 + γ −(
x−
t−1

)2
+ τ x+t−1x

−
t−1

+
p−1∑

i�1

ϕi�yt−i +
q−1∑

i�0

(δ+i �x+t−i +δ−
i �x−

t−i )+
q−1∑

i�0

(π+
i

(
�x+t−i

)2+π−
i

(
�x−

t−i

)2
)+εt

� c + ρωt−1 +
p−1∑

i�1

ϕi�yt−i +
q−1∑

i�0

(δ+i �x+t−i + δ−
i �x−

t−i )

+
q−1∑

i�0

(π+
i

(
�x+t−i

)2 + π−
i

(
�x−

t−i

)2
) + εt (8)

where ρ is the adjustment coefficient and ωt � yt − θ+x+t − θ−x−
t − σ +

(
x+t

)2 −
σ−(

x−
t

)2 − ϑx+t x
−
t is the nonlinear error correction term, where θ+ � −β+

ρ
, θ− �

−β−
ρ
, σ + � − γ +

ρ
, σ− � − γ −

ρ
, ϑ � − τ

ρ
are the long-run asymmetric coefficients.

3.2 The bootstrapping technique

Given that regressors in error correction terms are usually non-stationary, any statistical
inference could be asymptotically inconsistent. To overcome this issue, we can use
stochastic simulations to generate critical values or bootstrapping techniques (Li and
Maddala 1997; Chang and Park 2003; Singh 1981; Beran 1988; Palm et al. 2010;

5 Given that x+t−1x
−
t−1 � 1

2

[(
xt−1

)2 −
(
x+t−1

)2 −
(
x−
t−1

)2]
, we could have equivalently included x2t−1

instead of x+t−1x
−
t−1. Ultimately, the quadratic effect could be transmitted through x2t−1, x

+
t−1

2 and/or x−
t−1

2

or any combination of these.
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McNown et al. 2018). Given that the former methodology can suffer from test mis-
sizing issues as well as lack of practicality (see Shin et al. (2014)), we compute the
tests’ p-values based on a recursive residual bootstrapping technique.

In order to compute bootstrap p-value, we run the following algorithm:

1. Estimate the unrestricted model (H1) and calculate the test coefficient (tc).
2. Estimate the restricted model (H0) and store the estimated coefficients, denoted

with a hat (e.g., ρ̂, β̂+, β̂−), and the residuals û.
3. Rescale the residuals of the H0 model by following Davidson and MacKinnon

(1999) in order to have the correct variance:ü �
(

T
T−k

)1/2
û, where k is the

number of regressors.
4. Run the following loop B times (B is the number of bootstrap samples)6:

4.1 Resample the rescaled residuals u∗ ∼ EDF (ü), where EDF is the the empir-
ical distribution function that assigns probability 1/T to each element of the
vector u∗.

4.2 Using the resampled residuals,u∗, we generate the bth bootstrap sample in a
recursive manner as follows (for illustration, H0:τ � 0):

•

�ŷt � ρ̂ ŷt−1 + β̂+x+t−1 + β̂−x−
t−1 + γ +(x+t−1

)2 + γ −(
x−
t−1

)2
+

p−1∑

i�1

ϕ̂i �̂yt−i

+
q−1∑

i�0

(̂δ+i �x+t−i + δ̂−
i �x−

t−i ) +
q−1∑

i�0

(π̂+
i

(
�x+t−i

)2 + π̂−
i

(
�x−

t−i

)2
) + u∗

t ;

•

ŷt �
{
ŷt−1 + �ŷt , i f t ≥ m

yt , i f t < m,
, for t � 1 . . . T ,where m � max(p, q) + 1

We believe that it would be inconsistent to simply use the same fitted values of
the restricted model H0 for all bootstrap samples, as it has been widely used in the
literature on NARDL (fixed regressor bootstrapping). In fact, �yt−i and yt−i should
not be treated as standard exogenous explanatory variables (as �xt−i and xt−i ) when
generating the bootstrap samples. Indeed, the values of �yt−i (and yt−i ) are not
constant and should be updated (�ŷt−i and ŷt−i ) each time a new bootstrap sample
is generated.

4.3 Compute the bootstrap test coefficient (tc_b).

5. Compute the bootstrap p-value as follows: S
B , where S is the number of bootstrap

samples for which tc_b > tc, in the case of Wald tests.7

6 We chose B � 9999 so that κ(B + 1) would be an integer, where κ is the level of the test (Davidson and
MacKinnon 1999).
7 For two-sided tests (t-test), p � 2 ∗ Min

(
S
B , 1 − S

B

)
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3.3 Cointegration and nonlinearity tests

3.3.1 Cointegration tests

To test for the existence of a nonlinear long-run relationship between variables, we
use two types of tests: the tBDM test and the Fpss tests. The tBDM test has the null
hypothesis ρ � 0, whereas the Fpss test consists of testing the joint null hypothesis
ρ � θ+� θ− � σ + � σ− � ϑ � 0. Both null hypotheses would indicate the absence

of any long-run relationship among yt , x+t , x−
t ,

(
x+t

)2
,
(
x−
t

)2
and(x+t x

−
t ).

3.3.2 Long-run nonlinearity (size) tests

The nonlinear size effect can be potentially transmitted through different interrelated
channels. In order to identify and investigate those channels, we propose the following
test protocol8:

i. The LQI Test:

At this stage, we want to test for the presence of any long-run quadratic effect of x ,
with H0: σ + � σ− � ϑ� 0, (Wald test):

Under H0, the restricted model is:

(9)

�yt � c + ρyt−1 + β+x+t−1 + β−x−
t−1 +

p−1∑

i�1

ϕi�yt−i

+
q−1∑

i�0

(δ+i �x+t−i + δ−
i �x−

t−i ) +
q−1∑

i�0

(π+
i

(
�x+t−i

)2 + π−
i

(
�x−

t−i

)2
) + εt

If we do not reject H0, no further long-run size test is required, given the absence
of any long-run quadratic effect. However, if we reject H0, we run the next test.

ii. The LQD Test

We test whether the quadratic impact confirmed by the LQI test is exclusively trans-
mitted via the overall level of x or via x−, x+ or any combination of these, where H0:
σ + � σ− � 1

2 ϑ,9 (Wald test).
Under H0, the restricted model is:

(10)

�yt � c + ρyt−1 + β+x+t−1 + β−x−
t−1 + γ x2t−1 +

p−1∑

i�1

ϕi�yt−i

+
q−1∑

i�0

(δ+i �x+t−i + δ−
i �x−

t−i ) +
q−1∑

i�0

(π+
i

(
�x+t−i

)2 + π−
i

(
�x−

t−i

)2
) + εt .

8 The p-values of these tests are obtained via bootstrapping.
9 Under H0,ωt � yt − θ+x+t − θ−x−

t − σ
(
x+t

)2 − σ
(
x−
t

)2 − 2σ x+t x
−
t .
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If H0 is not rejected, we conclude that the size effect is exclusively transmitted
through the overall level ofxt .10 Otherwise, we can confirm that the levels of x+ and
x− matter for the size effect.

iii. The LQA test

We only run this test if the H0 of the previous LQD test was rejected, since it would be
unnecessary to test for quadratic asymmetry if this impact is transmitted exclusively
through the overall level of x . Here, H0: σ + � −σ− (Wald test).

It is worth mentioning that we have to add a negative sign on σ− for the test to be
consistent. In fact, when x− increases, (x−)2 decreases, unlike x+ and (x+)2. We will
explain this further below.

Under H0, the restricted model is:

�yt � c+ρyt−1 +β+x+t−1 +β−x−
t−1 +γ (

(
x+t−1

)2−(
x−
t−1

)2
)+τ x+t−1x

−
t−1 +

p−1∑

i�1

ϕi�yt−i

+
q−1∑

i�0

(δ+i �x+t−i + δ−
i �x−

t−i ) +
q−1∑

i�0

(π+
i

(
�x+t−i

)2 + π−
i

(
�x−

t−i

)2
) + εt .

(11)

If H0 is not rejected, we can conclude that the impact of the size is symmetric. This
means that when x+ and x− have the same magnitude, the quadratic effect is identical.
For instance, if the size effect is positive (amplificatory impact), the impact of x+ on y
increases when x+ goes up, and the impact of x− increases when x− goes down (i.e.,
the magnitude of x− increases). For this effect to be symmetric, the rate of increase
in both cases should be also the same (σ + � −σ−).

3.3.3 The LSA test

Unlike the classical NARDL model, where the impact of x+ (or x−) on y is constant
and equal to θ+ (θ−), in our nonlinear ECM, this impact is variable and can potentially
depend on the level of x+ and x−. Indeed, the derivative of y with respect to x+ or x−
is:

dyt
dx+t

� θ+ + 2σ +x+t + ϑx−
t ; (12)

dyt
dx−

t
� θ− + 2σ−x−

t + ϑx+t . (13)

Thus, the LSA test is:
H0: θ+ + 2σ +x+t + ϑx−

t � θ− + 2σ−x−
t + ϑx+t (Wald test)

10 These coefficientsmust individually be significant. Otherwise,we should drop the insignificant variables.
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Under H0, the restricted model is estimated via the Constrained Least Squares.11

Obviously, wewill have to runmultiple tests for different levels of x+t and x
−
t . Depend-

ing on how we define the sign symmetry effect, we can run two different sets of tests.
We can use the real data values of x+t and x−

t to test the sign asymmetry for each obser-
vation. We can also test for the sign asymmetry assuming that x+t and x−

t have the
same magnitude. The latter test procedure is consistent with defining sign symmetry
as follows: when x+ and x− have the same magnitude, the impact of an increase in x+

on y is equal to impact of an increase in x− on y.
In this case, H0 simplifies to:

θ+ + 2σ +x − ϑx � θ− − 2σ−x + ϑx,where x � x+t � −x−
t .

We need to run multiple LSA tests for each value of x . The range of x values should
be consistent with the empirical data.

3.3.4 The short-run nonlinearity (size) asymmetry test12

Since �x+ and �x− cannot be simultaneously different from zero, any potential
quadratic effect must be transmitted through (�x+)2 and/or (�x−)2. Hence, we do
not need to go through the same test protocol as for the long-run quadratic component,
with H0: π+

i � −π−
i , fori � 0, . . . , q.

3.3.5 Short-run sign asymmetry tests

Following Shin et al. (2014), the short-run sign symmetry restrictions can take either
of two forms:

• Single test: H0: δ+i + 2π+
i �x+t−i � δ−

i + 2π−
i �x−

t−i , for i � 0, . . . , q;

• Additive test H0:
∑q−1

i�0 (δ+i + 2π+
i �x+t−i ) � ∑q−1

i�0 (δ−
i + 2π−

i �x−
t−i ), for i �

0, . . . , q.

In line with the sign asymmetry definition adopted for LSA tests, the short-run sign
asymmetry tests simplify to:

• Single test: H0: δ+i + 2π+
i �x � δ−

i − 2π−
i �x , for i � 0, . . . , q;

• Additive test H0:
∑q−1

i�0 (δ+i + 2π+
i �x) � ∑q−1

i�0 (δ−
i − 2π−

i �x), for i � 0, . . . , q,

where �x � �x+t−i � −�x−
t−i . The range of �x should be consistent with the

empirical data.

4 Finite sample performance: Monte Carlo simulations

In this section, we perform a simulation study to examine the finite-sample size and
power of the bootstrap tests, where we generate data under the alternative hypotheses
(unrestricted model).

11 To estimate the Constrained Least Squares, we used the MATLAB function “fmincon.”.
12 For short-run tests, we use the theoretical p-values and hence we do not write down the corresponding
restricted models.
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We then report the average bias and the standards errors of each estimate. We also
calculate the power of different bootstrap tests. To do so, we adopt the following
sample data generating process (DGP):

(14)

�yt � c+ρ
[
yt−1−θ+x+t−1−θ−x−

t−1−σ +(x+t−1

)2−σ−(
x−
t−1

)2−ϑx+t−1x
−
t−1

]

+ δ+�x+t + δ−�x−
t + π+(�x+t

)2 + π−(
�x−

t

)2
+ εt , fort � 1...T

With �xt � �t , and where (εt , �t ) follow a bivariate normal distribution N((
0
a

)
,

(
1 w

w 1

))
. Unlike Shin and al. (2015), we allow for �xt to have nonzero

mean, a, which will eventually affect the variability of x+ relative to x−. For instance,
if a > 0, positive changes in x will be much more frequent than negative changes.
This would allow us to investigate the impact of unbalanced (positive Vs negative)
dataset on the finite sample properties of our estimator.13 We should also take into
account the systematic bias in δ+ and δ− introduced by w, since the estimates of the
coefficients of �x+t and �x−

t would be equal to δ+ + w and δ− + w, respectively.
In order to experiment wide variety of parametrization combinations, we choose

arbitrary parameters c � 0, θ+ � δ+ � 0.5, σ + � π+ � 1 and we denote θ− �
θ+ + �θ , δ− � δ+ + �δ , σ− � −σ + − �σ ,14 π− � −π+ − �π , and ϑ � �ϑ. After
trying several parametrization combinations, we came to the conclusion that that the
estimates bias, standard errors and test powers are mainly affected by �σ , a, and T.15

Without loss of generality, we set �θ and �δ to 0.5, �π to 1, w � 0.5 and �ϑ to 0.
In Table 1, we report the bias and standard errors for different combinations of

�σ (0.5, 1, 9), a(0, 1) and T (100, 200, 500), using 3000 replications. We can clearly
notice that the bias for all estimated parameters is relatively small and not significantly
affected by parameters. As expected, when the sample size, T, increases, the standard
errors of the estimates decrease. Interestingly, when a � 1, the standard errors of
θ−, δ−, σ− and π− become considerably larger than their counterparts of θ+, δ+, σ +

and π+. This is explained by the higher variability in �x+t and x+t compared to �x−
t

and x−
t , when a > 0.

In Table 2, we report the power of the six cointegration and long run nonlinearity
tests described in 3.3.16 We use the bootstrap technique (Sect. 3.2) to compute the

13 For instance, economic growth indicators usually exhibit more positive than negative changes.
14 As we earlier explained, the symmetry of the quadratic effect implies that σ− � −σ+.

15 Obviously, the test power is expected to be positively correlated with the distance between the true
parameters and their counterparts under the null hypotheses. However, our sensitivity analysis of the sim-
ulations outcomes reveals that �σ seems to be the most influential difference measure affecting the test
powers.
16 The size of all tests (not reported here) is very close to 5% regardless of the parameterization of the DGP
under null hypotheses, which is consistent with Shin and al. (2014). In fact, the bootstrap test rejects the null
hypothesis when the test statistic falls outside the 95% interval of its empirical distribution under H0. This
empirical distribution is approximated using the bootstrap samples generated under the null hypothesis.
Hence, when the simulated samples are also generated under the same null hypothesis, it is not surprising
that the probability of rejecting the null hypothesis will be asymptotically equivalent to the significance
level of the bootstrap test (5%).
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Table 2 Monte Carlo simulation results: power tests

�σ T � 100 T � 200 T � 500

0.5 1 9 0.5 1 9 0.5 1 9

Panel A:a � 0

TDS 1 1 1 1 1 1 1 1 1

FPSS 1 1 1 1 1 1 1 1 1

LQI 1 1 1 1 1 1 1 1 1

LQD 1 1 1 1 1 1 1 1 1

LQA 0.761 0.968 1 0.995 1 1 1 1 1

LSA 0.732 0.844 0.973 0.856 0.932 0.989 0.959 0.984 0.999

Panel B:a � 1

TDS 1 1 1 1 1 1 1 1 1

FPSS 1 1 1 1 1 1 1 1 1

LQI 1 1 1 1 1 1 1 1 1

LQD 1 1 1 1 1 1 1 1 1

LQA 0.10 0.25 0.96 0.40 0.72 1 0.967 0.991 1

LSA 0.14 0.31 0.97 0.49 0.81 1 0.980 0.99 1

power of tBDM, Fpss, LQI, LQD, LQA and LSA.17 Noticeably, the power of the
cointegration tests tBDM, Fpss and the long run Wald tests LQI and LQD are always 1
regardless of the sample size T and the values of�σ and a. However, the powers of the
quadratic asymmetry test (LQA) and the sign asymmetry test (LSA) are significantly
lower, in particular for small sample sizes, small values of �σ and for a �� 0. For
instance, the powers of LQA and LSA are as low as 0.095 and 0.137, respectively,
when �σ � 0.5, T � 100 and a � 1. In fact, it is rational to expect the powers of the
long asymmetry tests (LQA and LSA) to be positively correlated with�σ , as the latter
determines the difference between the null and the alternative hypotheses of the size
and sign asymmetry tests. Interestingly, a seems to be the most influential parameter
affecting the powers of LQA and LSA. Indeed, when simulated samples are balanced
with almost same proportions of positive and negative �x (a � 0), the lowest power
we report is 0.73, which is relatively reasonable when compared to the case where
a � 1. Hence, we should take the bootstrap failing to reject the null hypothesis for
LQA and LSAwith some cautious when estimating unbalanced dataset with relatively
small sample size, in particular when the difference between the estimated coefficients
σ̂ + and σ̂− is not considerably large.

17 Without loss of generality, we report the power of the LSA test for x � 1
T

∑t
1 xt .
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5 Empirical application: Okun’s law

Okun’s Law describes the inverse relationship between unemployment and output. It is
considered as one of the most important macroeconomic concepts at both the theoret-
ical and empirical levels. Referring to the estimation of Okun (1962), an extra 1% of
real gross national product results in a 0.3% point reduction in the unemployment
rate, which suggests the existence of a negative relationship between unemploy-
ment and output. This relationship has attracted the attention of researchers, given
its robust empirical regularity and complementarity with other macroeconomic theo-
retical models. Indeed, the aggregate supply function can be straightforwardly derived
by including Okun’s Law in the standard Philips curve (Mankiw 2015).

Many empirical studies have been conducted to provide evidence on the linkage
between output and unemployment as predicted by Okun’s Law (e.g., Harris and
Silverstone 2001; Zanin and Marra 2012; Zanin 2014; Fernald et al. 2017; Daly et al.
2018).

Although most of these studies confirm the negative relationship between unem-
ployment and output, the results reveal significant variation inOkun coefficients across
countries and over time.

Most of these studies assume that the impact of output on unemployment is symmet-
ric, ignoring the potential asymmetry that can characterize the relationship between
output and unemployment (Virén 2001; Cuaresma 2003; Silvapulle et al. 2004; Huang
and Chang 2005; Shin et al. 2014; Koutroulis et al. 2016). The argument that Okun’s
Law can exhibit an asymmetric behavior is strongly related to the business cycle. In
fact, output has a different impact on unemployment during economic upturns than
during economic downturns. In the case of the US case, several empirical studies have
shown that the impacts of downturns are stronger than the impacts of upturns. For
instance, Neftçi (1984) provides evidence suggesting that the unemployment rate in
the USA increases much more strongly during economic recessions than it declines
during economic expansion. Using US data, Rothman (1991) and Brunner (1997)
confirmed the same behavior in unemployment’s response to output. In the same vein,
Palley (1993), Cuaresma (2003) and Silvapulle et al. (2004) demonstrated that the
Okun coefficient is higher during recessions than during expansions. More recently,
Cazes et al. (2013) showed that the impact of output on unemployment is not stable
and is larger during downswings than during upswings. Likewise, Pereira (2013) pro-
vided evidence indicating that the Okun relationship is asymmetric, with a stronger
relationship during periods of recession. Belaire-Franch and Peiró (2015) also found
evidence in favor of asymmetric behavior between the unemployment rate and changes
in the output gap.

There is no doubt that understanding different roots of the asymmetric behavior in
the relationship between unemployment and output is fundamental for policy makers.
However, the abovementioned studies ignored the potential nonlinearity in the impact
of output on the unemployment rate related to the size of the economic shock or/and to
the overall level of the output gap. Thus, estimating the equation of Okun’s Law with
our new QAECM that takes both sign and size asymmetry into account can shed new
light on the interpretation of the Okun coefficients and allow for better forecasts of
unemployment rates. In the next section, wewill try to answer the following questions:
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Q1 Does the size of a change in the output gap matter for the impact on unemploy-
ment (short run)?

Q2 Does the level of the output gap matter (long run)?
Q3 If so, are these effects symmetric (positive vs negative)?

5.1 Nonlinear ARDL estimation

We use the following NARDL estimation:

�ut � α0 + ρut−1 + β+y+t−1 + β−y−
t−1 +

p−1∑

i�1

ϕi�ut−i +
q−1∑

i�0

(δ+i �y+t−i + δ−
i �y−

t−i) + εt,

(15)

where u is the US unemployment rate and y is the industrial output index in the USA.
The data span over the period from February1982 to November 2003 (collected from
the OECD’s Main Economic Indicators).

Table 3 reports the NARDL estimation results of Eq. (15). This estimation can
serve as a benchmark for the next estimation (QAECM). Both tests (tBDM and FPSS
statistics) reject the null hypothesis, which confirms the existence of a long-run rela-
tionship between unemployment and the output gap. Moreover, the Wald tests reject
the null hypothesis of long-run symmetry. In line with Shin et al. (2014), our results
show that economic downturns have a larger impact on output than economic upturns.

5.2 Quadratic asymmetric ECM estimation

The corresponding QAECM for estimating Okun’s Law is:

�ut � α0 + ρut−1 + β+y+t−1 + β−y−
t−1 + γ +(y+t−1

)2 + γ −(
y−
t−1

)2
+ τ y+t−1y

−
t−1

+
p−1∑

i�1

ϕi�ut−i +
q−1∑

i�0

(δ+i �y+t−i + δ−
i �y−

t−i )+
q−1∑

i�0

(π+
i

(
�y+t−i

)2+π−
i

(
�y−

t−i

)2
)+εt

� α0 + ρξt−1 +
p−1∑

i�1

ϕi�ut−i +
q−1∑

i�0

(δ+i �y+t−i + δ−
i �y−

t−i )

+
q−1∑

i�0

(π+
i

(
�y+t−i

)2 + π−
i

(
�y−

t−i

)2
) + εt

where ξt � ut − θ+y+t − θ−y−
t −σ +

(
y+t

)2 −σ−(
y−
t

)2 −ϑy+t y
−
t is the nonlinear error

correction term.
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Table 3 NARDL estimation
Variables Coeff.

ut−1 − 0.054***
(0.01)

y+t−1 − 0.62***
(0.17)

y−
t−1 − 1.94***

(0.49)

�ut−1 − 0.19***
(0.05)

�y+t − 8.39***
(2.24)

�y+t−2 − 5.31***
(2.006)

�y−
t − 10.32**

(4.30)

Constant 0.35***
(0.09)

Observations 250

Long-run impacts

L y+ − 11.45***

L y− 35.79***

Long-run asymmetry test 23.05 (p-value � 0.000)

Short-run asymmetry test 0.31 (p-value � 0.57)

Cointegration test

tBDM − 3.92

FPSS 7.92

Ly+ and Ly− designate the long-run coefficients associated with pos-

itive changes in output and negative changes in output, respectively

Following Shin et al. (2014), we use the generalized-to-specific approach to select
the final QAECM lags.18

The estimation of the selected QAECM is reported in Table 4. The cointegration
test results are reported in the bottom rows of Table 4. Both tBDS and the FPSS statis-
tics reject the hypothesis of no cointegration between variables at the 5% level of
significance. The LQI test (28.22) confirms that the size effect is significant. Hence,
the impact of yt−1 on �ut is not constant and depends on the size of yt (y+ and y−).
Based on the LQD test, one could think that the quadratic effect might be transmit-
ted exclusively through the overall size of yt−1. However, this could be a statistical
consequence of the very large variance of the last two coefficients (

(
y−)2 and y+y−).

Indeed, if we run individual t-tests on these three coefficients with bootstrap p-values,

18 In the first step, we drop all the insignificant variables. However, we keep dy2t−i if dyt−i is significant.
In the second step, we run the nonlinear ECM, then drop all the insignificant variables.
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Table 4 QAECM estimation of the unemployment–output relationship (the selected model)

Coeff. ST.DV t

Constant 1.34 0.23 5.92

ut−1 − 0.17 0.03 − 6.48

y+t−1 − 3.70 0.75 − 4.94

y−
t−1 − 7.47 1.98 − 3.78

(y+t )
2 2.73 1.19 2.29

(y−
t )

2
9.58 16.93 0.57

y+t ∗y−
t 8.56 8.63 0.99

�ut−1 − 0.17 0.06 − 2.97

�y+t − 9.26 2.23 − 4.16

�y+t−3 8.68 4.57 1.90

�(y+t )
2 − 446.02 271.35 − 1.64

�y−
t − 8.74 4.37 − 2.00

Long-run estimation

L y+ − 21.99*** − 7.73

L y− − 44.09*** − 4.39

L
( y+)2

16.13** 2.48

L
( y−)2

56.57 0.57

L y+ y− 0.57 1.01

Long-run tests Bootstrap p-value

FPSS 9.29*** 0.00

tBDM − 6.47*** 0.00

LQI test 28.23*** 0.00

LQD test 0.22 0.805

LQA test 0.47 0.503

Ly+ ,Ly− , L
(y+)2

, L
(y−)2

and Ly+ y− designate the long-run coefficients associated with positive changes

in output, negative changes in output, quadratic positive changes in output, quadratic negative changes and
the interaction of positive and negative change in output, respectively

we can conclude that σ + is significant, whereas σ− and ϑ are not (Table 4). However,
we cannot drop these last two coefficients simultaneously, as aWald test for H0: σ− �
ϑ � 0 is rejected at the 2% level.Without loss of generality, we decide to drop y+y−.19
Table 5 presents the results estimation of the final selected QAECM.

As expected, the LQI test confirms the significance of the size effect in the impact
of output on unemployment (Wald � 39.4, p-value � 0).20

19 y− and y+y− are highly correlated (0.98).
20 Obviously, the quadratic decomposition test in this case is equivalent to the quadratic impact test (H0:
σ+ � σ− � 0), given that θ is assumed to be equal to zero.
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Table 5 QAECM estimation of the unemployment–output relationship (the selected model without the

interaction term y+t y
−
t )

Coeff. ST.DV T

Constant 1.29 0.22 5.85

ut−1 − 0.16 0.03 − 6.40

y+t−1 − 3.93 0.71 − 5.50

y−
t−1 − 8.54 1.66 − 5.14

(y+t )
2 1.61 0.36 4.42

(y−
t )

2 − 7.01 2.71 − 2.58

�ut−1 − 0.17 0.06 − 2.95

�y+t − 9.55 2.21 − 4.32

�y+t−3 8.58 4.57 1.88

�(y+t )
2 − 457.39 271.10 − 1.69

�y−
t − 8.29 4.34 − 1.91

Long-run estimation

Ly+ 23.97*** − 11.37

Ly− 52.06*** − 7.55

L
(y+)2

− 9.79*** 6.58

L
(y−)2

42.74** − 2.79

Long-run tests Bootstrap p-value

FPSS 10.94*** 0.00

tBDM − 6.40*** 0.00

LQI test 39.39*** 0.00

LQD test 39.39*** 0.00

LQA test 5.48** 0.042

Short-run asymmetry

Size wald test 2.84* 0.09

Sign wald test 3.52*** 0.00

Ly+ ,Ly− , L
(y+)2

and L
(y−)2

designate the long-run coefficients associated with positive changes in output,

negative changes in output, quadratic positive changes in output and quadratic negative changes, respectively

The fact that σ+(1.61) is positive means that negative impact of economic upturns
on unemployment, as predicted by Okun’s Law, would decrease in magnitude when
the cumulative economic upturns increases. Similarly, σ−(−7.01) also implies that
the positive effect of economic downturns on unemployment would decrease as the
cumulative economic downturns go up.21

21 The impact of an increase in economic downturns on unemployment is: du
d(−y) � −β− − 2σ−y−

t−1.
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Hence, for both economic cumulative shocks (upturns and downturns), the size
has an attenuating effect on the overall impact of the output gap on unemployment.
These findings are consistent with basic economic theory. In fact, unemployment
cannot decrease at the same rate after successive economic upturns, particularly when
it approaches the natural rate of unemployment. Similarly, the unemployment rate
cannot keep increasing at the same speed after successive negative economic shocks.
In fact, governments (the Federal Reserve in our case) would adopt different policies
to boost the economy in the case of persistent recessions (i.e., expansionary monetary
policies, labor market restructuring, increased spending on government projects such
as the 2009 Economic Stimulus Program).

The LQA test reveals significant asymmetry in the long-run quadratic impact of
positive and negative output gaps on unemployment (Wald � 5.49, p-value � 0.04).
Thismeans that themagnitude of the impact of economic downturns on unemployment
decreases faster than the impact of economic upturns. We will return to this finding
later when we discuss the results of the sign asymmetry tests.

Given that in our final selected QAECM, the potential quadratic impact of yt is
exclusively transmitted to ut through y+t and y−

t , (ϑ � 0), the LSA test simplifies
to H0: θ+ + 2σ +y � θ− − 2σ−y. In Fig. 1, we report the bootstrap p-values of
the LSA tests for different y levels, which are chosen to be consistent with their
empirical counterparts. In fact, y in our simulated tests ranges from 0 to 0.6.22 We
can see that for relatively low values of y, the overall impact of positive cumulative
economic shocks is significantly different from the overall impact of negative shocks.
However, as y increases, the impact of economic upturns converges to the impact of
economic downturns. To help us investigate the long-run sign asymmetry in depth and
identify its direction, Fig. 2 shows the simulated overall impacts of economic upturns
and downturns based on our estimation results. We can see that for low cumulative
economic shock levels, the magnitude of the impact of an economic downturn on
unemployment is significantly larger than the magnitude of the impact of an economic
upturn. However, this asymmetry starts to vanish as the cumulative economic shock
levels increase and, hence, the two impacts converge to relatively similar magnitudes.

To summarize all these findings, we can conclude that for similar low magnitudes
of y+t−1 and y−

t−1, the positive impact of cyclical downturns on unemployment is larger
in magnitude than the negative impact of cyclical upturns. However, as the cumulative
economic shocks increase, these impacts are attenuated by the quadratic (size) effect.
Given that the decrease in the magnitude of the economic downturns’ impact is more
pronounced than that of the economic upturns (size effect asymmetry), the asymmetry
in the impact of y+t−1 and y

−
t−1 on unemployment gradually vanishes as the magnitudes

of cumulative economic upturns and downturns increase.
In this regard, it is worth mentioning that successive economic upturns in the USA

are generallymuch higher than the successive economic downturns. Therefore, we can
expect the impact of recessions on unemployment to be typically larger than the impact
of cyclical upturns unless theUS economy goes into successive severe recessions. This

22 For instance, if y� 0.1, the test would consist of testing whether the magnitude of the impact of an
economic upturn on unemployment when y+t−1 � 0.1 is significantly different from the magnitude of the

impact of an economic downturn when y−
t−1 � −0.1.
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Fig. 1 LSA tests: Bootstrap p-values for different y levels

is perfectly in line with the empirical findings of previous studies (Schorderet 2003;
Mackay and Reis 2008; Shin et al. 2014).

According to the short-run estimation results, both positive and negative economic
shocks have significant effects on unemployment (δ+0 � −9.55; δ−

0 � −8.29). This
can be explained by the high job mobility characterizing the short-run dynamics of
the US labor market. In fact, most US private sector workers are “employed at will,”
which means that both employers and employees are free to terminate the contract
at any time and for almost any reason. Overall, the US labor market is less regulated
than labor markets in other countries (Europe), with lower union density and weaker
employment protection legislation (Delacroix 2003). It is thus rational to expect these
short-run coefficients to be lower in case of European countries.

The short-run asymmetry tests consist of both size and sign asymmetry tests (single
and additive). The Wald test (2.85) for the short-run size asymmetry (H0: π+

0 � 0)
rejects the null hypothesis at the 10% significance level. Thus, as the magnitude of
the contemporaneous positive economic shock increases, its impact on unemployment
is amplified. In fact, large economic shocks are more likely to have an impact that is
more significant on firms’ expectations of future economic growth rates than relatively
small shocks.23

The bootstrap p-values of the single (H0: δ+0 + 2π+
0 �x � δ−

0 ) and additive short-
run sign asymmetry tests are reported in Figs. 3 and 4. Overall, the null hypothesis
cannot be rejected at up to the 10% significance level.24 It is however, important to
note that for exceptionally large economic shocks, the bootstrap p-values decreased
to around 10–11%, implying a relatively weak short-run sign asymmetry in favor of
larger positive economic shocks impacts (due to the positive shock’s size impact).

23 It is important to note that the absence of a short-run size impact of negative economic shocks could
be due the limited number of observations with negative economic shocks, particularly those of large
magnitude.
24 Our single short-run test result is consistent with Shin et al. (2014). However, the additive test of Shin
et al. (2014) rejects the null hypothesis in favor of the higher cumulative impact of negative economic
shocks.
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Fig. 2 Magnitude of the impact of negative and positive output shocks on unemployment
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Fig. 3 Single short-run asymmetry tests

In general, regardless of labor market regulations, firms usually make decisions
about firing and hiring workers based on their expectations of future economic per-
formance. Hence, following a negative economic shock, massive layoffs are unlikely
in the short run unless the shock was preceded by successive economic downturns.
This may explain the absence of the short-run asymmetry of economic cyclical shocks
impacts, compared to the long-run case.

5.3 Forecasting validation

To validate the credibility of our model and its adequacy, we compare its forecasting
performance with those of the standard NARDL and the classical ARDL models. We
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Fig. 4 Additive short-run asymmetry tests

chose an estimation period from February 1982 to September 2001 and a forecast
window spanning from October 2001 to February 2003.25 Our choice of the forecast
window is motivated by several reasons. First, according to our main finding, negative
economic shocks are expected to have a significant larger impact on unemployment
than what is usually implied by NARDL and ARDL models. To validate this claim,
we choose a forecast window during one of most severe economic downturns in the
history of USA, namely the 2001 recession. Second, as stated by Montogomery et al.
(1998), forecasting unemployment in contractionary periods seems to be more valued
than during expansionary periods, given its social and political implications. One could
think that the forecast window should start at the beginning of the US 2001 recession,
namely in March 2001. However, given the relative limited number of observations of
economic downturns (compared with data on economic upturns), we decide to include
6 months of the US recession in our estimation period (March to September) in order
to havemore balanced estimation data. Moreover, choosing a forecast window starting
just after the 9/11 attacks (amajor negative economic shock) would be very convenient
to test whether the standard NARDL actually underestimates the impact of negative
economic shocks, as we are claiming.

Our forecasting test consists in generating three series of predicted unemployment
rates from ARDL, NARDL and QAECM. For instance, we generate the predicted
values from the QAECM in a recursive manner as follows:

�ût∗+s � ρ̂ût∗+s−1 + β̂+y+t∗+s−1 + β̂−y−
t∗+s−1 + γ̂ +

(
y+t∗+s−1

)2 + γ̂ −(
y−
t∗+s−1

)2
+

∑p−1
i�1 ϕ̂i �̂ut∗+s−i +

∑q−1
i�0 (̂δ

+
i �y+t∗+s−i + δ̂−

i �y−
t∗+s−i ) +

∑q−1
i�0 (π̂

+
i

(
�y+t∗+s−i

)2 +

π̂−
i

(
�y−

t∗+s−i

)2
),

ût∗+s � ût∗+s−1 + �ût∗+s ; for s � 1 . . . T ,

25 The unemployment rate started to decrease in March 2003.
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Table 6 Accuracy measures of the forecasted series

MSE RMSE MAE MdAE MAPE

QNARL 0.034 0.187 0.166 0.161 0.029

NARDL 0.170 0.412 0.402 0.396 0.069

ARDL 0.309 0.556 0.547 0.535 0.094

where T is the end date of the forecast window, t∗ is the end date of the estimation
period; s is the s-steps ahead out-sample forecast, the coefficientswith a hat correspond
to the estimates of the QAECM from the estimation period data, and ût∗+s(�ût∗+s)
are the forecasted values of the unemployment rates in levels (in first differences).

Then,we calculate the deviations of these predicted series from the actual data. From
the prediction errors, we report five accuracymeasures, namely, theMean Square Error
(MSE), the Root-Mean-Square Error (RMSE), the Mean Absolute Error (MAE), the
Median Absolute Error (MdAE) and the Mean Absolute Percentage Error (MAPE):

MSE � 1

T

T∑

i�t∗+1
(ui − ûi )

2,

RMSE �
√√√√ 1

T

T∑

i�t∗+1
(ui − ûi )2

MAE � 1

T

T∑

i�t∗+1
|ui − ûi |,

MdAE � median(|u1 − û2|, . . . , |uT − ûT |),

MAPE � 100%

T

T∑

i�t∗+1

∣∣∣∣
ui − ûi

ui

∣∣∣∣.

Aswe can see fromTable 6, all of the five accuracymeasures of the forecasted series
from QAECM are clearly lower than those of NARDL and ARDL models. In order
to determine whether the difference in accuracy measures between the competing
models is statistically significant, we report, in Table 7, the Diebold and Mariano
(1995) test statistics.26 The results confirm that the QAECMhas a superior forecasting
performance over both NARDL and ARDL.

We can see from Fig. 5 that, as we expect, the NARDL underestimates the mag-
nitude of the impact of major economic shocks on unemployment rates, whereas our
QAECM seems to be more successful in predicting these effects. Hence, we can con-
firm that the relative impact of an economic downturn in theUS economy ismuchmore

26 All reported p-values are equal to 0.

123



60 Ayman Mnasri et al.

Table 7 Diebold and Mariano
(1995) (DM) test statisticsa MSE MAE MAPE

QNARDL vs NARDL − 7.771* − 9.646* − 9.737*

QNARDL vs ARDL − 6.592* − 5.931* − 6.112*

aThe null hypothesis of theDM test is that the expected loss differential
between two competing forecasts is equal to zero
*p-value � 0.000
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Actual unemployment rates

Fig. 5 Forecast Performance: QAECM vs NARDL/ARDL

important than what is usually implied by empirical studies where the size asymmetry
(nonlinearity) is completely ignored.

6 Conclusion

Although many macroeconomic variables exhibit size-dependent relationships, most
of econometric models restrict nonlinearity to sign asymmetry (e.g., NARDL) and
continue to assume a combination of linear (stable) relationships. To bridge this gap,
we propose a new QAECM that comprehensively accounts for sign and size asym-
metries, in both the long and short terms. Since our QAECM can be derived from a
standard NARDL, it could be considered an extended version of NARDL, where the
size impact is captured by the square of the positive and negative partial sums.We also
introduce a battery of long-run tests (testing protocols) that allows to investigate and
identify different sources of nonlinearity. To obtain consistent statistical inferences of
long-run tests, we propose a nonparametric residual recursive bootstrap algorithm. In
fact, we believe that in ECM context, our proposed bootstrapping technique is more
appealing than the fixed regressors bootstrapping method, which is widely used in
empirical studies involving NARDL. The Okun’s Law estimation results confirm that
unemployment’s response to a decrease in output is usually stronger than the impact
of an increase in output, as is commonly reported in the empirical literature on Okun’s
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Law. However, we found evidence of a size effect in the relationship between the
output gap and employment. In fact, according to our findings, the long-run impact of
economic upturns (downturns) on unemployment is attenuated when the cumulative
economic upturns (downturns) increase. Moreover, our long-run size asymmetry test
reveals that the size impact is more pronounced in the case of economic slowdowns.
Finally, to validate the credibility of the QAECM, we compare its forecasting perfor-
mance with those of NARDL and ARDL models. The forecasting results show that
the QAECM provides significantly better predictions of the impact of output gaps
on unemployment, particularly during recessions. Given its flexibility, our proposed
QAECM can be applied for a wide range of other macroeconomic topics.
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