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Abstract
We propose a multiple-step procedure to compute average partial effects (APEs) for
fixed-effects static and dynamic logit models estimated by (pseudo) conditional max-
imum likelihood. As individual effects are eliminated by conditioning on suitable
sufficient statistics, we propose evaluating the APEs at the maximum likelihood esti-
mates for the unobserved heterogeneity, along with the fixed-T consistent estimator
of the slope parameters, and then reducing the induced bias in the APEs by an analyt-
ical correction. The proposed estimator has bias of order O(T−2), it performs well in
finite samples and, when the dynamic logit model is considered, better than alternative
plug-in strategies based on bias-corrected estimates for the slopes, especially in panels
with short T . We provide a real data application based on labour supply of married
women.
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1 Introduction

Static and dynamic binary choice models are largely employed in microeconometric
applications.1 For these models, the fixed-effects approach is often advocated, as it
allows for the estimation of partial effects of covariates that may be correlated with
the individual specific unobserved heterogeneity in a nonparametric manner. How-
ever, unless the number of time occasions T goes to infinity, the maximum likelihood
(ML) estimator of fixed-effects binary choice models is inconsistent due to the inci-
dental parameters problem, that is, the presence of nuisance parameters whose number
increases with the sample size (Lancaster 2000; Neyman and Scott 1948).

A popular method to overcome the incidental parameters problem is based on
the conditional inference approach for the fixed-effects logit model (Andersen 1970;
Chamberlain 1980), which admits sufficient statistics for the individual intercepts. The
conditional ML (CML) method produces a fixed-T consistent estimator of the slope
parameters, whichmakes it a particularly attractive strategy given the large availability
of data sets, such as those produced by national household and workforce surveys, that
are based on a rotating sampling scheme. However, a drawback of the CML approach
is that plug-in estimates of the average partial effects (APEs) are not directly available,
as the parameters for the individual effects are eliminated.

An alternative way to deal with the incidental parameters problem is to correct the
bias of the ML estimator of the slope parameters. While the resulting estimator will
not be fixed-T consistent, this approach is general and can be applied to any nonlinear
model, as opposed to the CML strategy that is specific for the logit model. Several
procedures have been proposed to reduce the order of the bias of the ML estimator
from O(T−1) to O(T−2). Analytical bias corrections are provided by Fernández-Val
(2009), whose derivations are based on general results for static (Hahn and Newey
2004) and dynamic (Hahn and Kuersteiner 2011) nonlinear panel data models. In
the same vein, a modified log-likelihood function and score equation are proposed
by Bester and Hansen (2009) and Carro (2007), respectively, to achieve the same
bias reduction. An alternative bias correction method relies on the panel jackknife.
A general procedure for nonlinear static panel data models is proposed by Hahn and
Newey (2004), whereas a split-panel jackknife estimator is developed by Dhaene and
Jochmans (2015) for dynamic models.

The advantage of relying on ML estimates is that plug-in estimators of the APEs
are readily available. The estimators of the APEs share the same order of bias as
the ML estimator, and the related corrections can be operated in a similar manner.
However, especially in the case of dynamic binary choice models, the ML estimator
is known to be severely biased (Heckman 1981) and the bias-corrected ML estimator
exhibits a greater distortion compared to fixed-T consistent ones with short T (Carro

1 Estimators of (dynamic) discrete choice models have been employed in seminal papers related to labour
market participation (Heckman and Borjas 1980), and specifically to female labour supply and fertility
choices (Hyslop 1999), self-reported health status (Contoyannis et al. 2004), poverty traps (Cappellari and
Jenkins 2004), household finance (Alessie et al. 2004), and unionization of workers (Wooldridge 2005).
More recently their application has been extended to the fields of firms’ access to credit (Pigini et al. 2016),
migrants’ remitting behaviour (Bettin et al. 2018), energy consumption (Drescher and Janzen 2021), and
innovation (Arroyabe and Schumann 2022).
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2007; Bartolucci and Nigro 2012). Practitioners are also usually more familiar with
the CML approach, as it has become prominent in the applied literature perhaps due to
its long-standing presence in graduate textbooks (Cameron and Trivedi 2005; Hsiao
2005;Wooldridge 2010) and its built-in implementation in popularmicroeconometrics
software.

In this paper, we propose a multiple-step procedure to estimate the APEs in the
fixed-effects logit model that combines the conditional inference approach with a bias
reduction method. The APEs are evaluated at the fixed-T consistent CML estimator
of the slope parameters and at the ML estimator for the unobserved heterogeneity,
obtained by maximizing the log-likelihood evaluated at the CML estimate. Plugging
in the estimated fixed effects produces an additional source of bias in the APEs; we
reduce the order of this bias from O(T−1) to O(T−2) by applying the analytical
correction proposed by Fernández-Val (2009). In this respect, our approach extends
the work of Stammann et al. (2016), who study the same plug-in estimator without
the bias correction.

The proposed procedure cannot be directly extended to the dynamic logit model
(Hsiao 2005), for which CML inference for the slope parameters is not viable in
a simple form. This is overcome by Bartolucci and Nigro (2010), who propose a
quadratic exponential (QE) formulation (Cox 1972) for dynamic binary panel data
models, which has the advantage of admitting sufficient statistics for the individual
intercepts. Furthermore, Bartolucci and Nigro (2012) propose a QEmodel that closely
approximates the dynamic logitmodel, the parameters ofwhich can easily be estimated
by pseudo CML (PCML). The resulting PCML estimator is consistent in the absence
of state dependence, because in this case the QE model corresponds to the dynamic
logit model and, as shown by Bartolucci and Nigro (2012) by simulation, it otherwise
exhibits amoderate bias.We therefore extend the proposed procedure to includePCML
estimates in the APEs when a dynamic logit is specified.

As it happenswith theAPEestimators based on analytical and jackknife corrections,
the proposedmethod reduces the order of the bias from O(T−1) to O(T−2). However,
such a bias is asymptotically negligible under rectangular array asymptotics as plug-
in average-effect estimators converge at the rate n−1/2 (Dhaene and Jochmans 2015),
where n is the sample size. Yet in spite of the asymptotic equivalence of bias-corrected
and ML plug-in APE estimators, the simulation evidence provided by Dhaene and
Jochmans (2015) suggests that operating some bias reduction entails a non-negligible
improvement in small samples, especially with small values of T .

The proposed combination of the conditional inference approach with bias reduc-
tion provides a way to readily obtain APE estimates for the fixed-effects static and
dynamic logit models. By means of an extensive simulation study, we show that the
proposed approach has finite sample performance comparable to the ML and bias-
corrected estimators with the static logit model, while it outperforms them when the
dynamic logit is considered, especially when n and T are small. This is the result of
plugging a fixed-T consistent estimator of the slope and state dependence parameters
of the QE model into the APEs.

It is worth clarifying that while the CML and PCML estimators are fixed-T con-
sistent, the asymptotic theory for the APE estimator here proposed is based on both
n, T → ∞, due to the presence of the ML estimates of the individual intercepts and,
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consequently, of the bias correction,which is derived bymeans of a large-T asymptotic
expansion.2 This means that a few typical drawbacks of this setting theoretically apply
here as well, namely time effects are ruled out, as they also are incidental parameters
when T → ∞, and the rest of the covariates are required to be stationary (Dhaene and
Jochmans 2015; Fernández-Val 2009). However, by means of dedicated simulation
exercises, we show that the proposed approach is able to handle the presence of time
dummies in the model specification and that violations of the stationarity assumption
does not seem to affect in practice the finite-sample performance of all the approaches
considered.

The rest of the paper is organized as follows: In Sect. 2, we briefly discuss how
the incidental parameters problem affects the APEs estimator; in Sect. 3, we recall
the bias correction strategies for APE estimators, and then, we illustrate the proposed
methodology and its extension to accommodate the dynamic logit model; in Sect. 4,
we investigate by simulation the finite sample performance of the proposed estima-
tor, compare it with the panel jackknife and analytical bias correction strategies, and
illustrate the results of some robustness exercises; in Sect. 5, we provide a real data
application based on labour supply of married women; finally, Sect. 6 provides the
main conclusions.

2 Average partial effects and the incidental parameters problem

We consider n units, indexed with i = 1, . . . , n, observed at time occasions t =
1, . . . , T . Let yit be the binary response variable for unit i at occasion t and xi t the
corresponding vector of K strictly exogenous covariates. Under the static model, we
assume that the yit are conditionally independent, given αi and xi t , across i and t .
Consider the logit formulation

p(yit |xi t ;αi ,β) = exp
[
yit (αi + x′

i tβ)
]

1 + exp(αi + x′
i tβ)

, (1)

where αi is the individual specific intercept and the vector β collects the regression
parameters.

The fixed-effects estimator is obtained by ML, treating each individual effect αi as
a parameter to be estimated. The ML estimator of β is obtained by concentrating out
the αi as the solution to

β̂ = argmax
β

n∑

i=1

T∑

t=1

log p(yit |xi t ; α̂i (β),β),

α̂i (β) = argmax
αi

T∑

t=1

log p(yit |xi t ;αi ,β).

2 In any case, the focus on the large n and large T perspective is necessary as APEs are often not point
identified with fixed T (Chernozhukov et al. 2013).
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Notice that α̂i (β) is estimated using only the data for subject i and it is therefore not
consistent for αi0 unless T → ∞. As a consequence, with T fixed and only n → ∞,
the ML estimator of β̂ will be plagued by the estimation noise in α̂i (β) and will not
be consistent for β0, with plim

n→∞
β̂ ≡ βT �= β0. This is the well-known incidental

parameters problem (Lancaster 2000; Neyman and Scott 1948). In particular, Hahn
andNewey (2004) show thatβT = β0+B/T+O(T−2), which clarifies thatβT → β0

if T → ∞ and n is fixed. Moreover, if both n, T → ∞, β̂ will be asymptotically
normal. However, Hahn and Newey (2004) show that the asymptotic distribution of
the ML estimator will not be centred at its probability limit if n grows proportionally
to T .

The incidental parameters problem affects the estimation of APEs as well; these
effects are usually of interest to practitioners who want to quantify the influence of
some regressor x on the response probability, other things being equal. For the logit
model in (1), the partial effect of covariate xitk for i at time t on the probability of
yit = 1 can be written, depending on the typology of the covariate, as

mitk(αi ,β, xi t ) =

⎧
⎪⎪⎨

⎪⎪⎩

p(yit = 1|xi t ; αi ,β) [1 − p(yit = 1|xi t ;αi ,β)]βk , xitk continuous,

p(yit = 1|xi t,−k , xitk = 1 ; αi ,β)−
p(yit = 1|xi t,−k , xitk = 0 ; αi ,β), xitk binary,

where xi t,−k denotes the subvector of all covariates but xitk . The true APE of the kth
covariate can then be obtained by simply taking the expected value ofmitk(αi ,β, xi t )
with respect to xi t and αi0,

μk0 =
∫

mitk(αi0,β0, xi t )dG(αi0, xi t ),

where G(αi0, xi t ) denotes the joint distribution of αi0 and xi t . An estimator of μk0

can be obtained by plugging in the ML estimators β̂ and α̂i (β̂), so that

μ̂k = 1

nT

n∑

i=1

T∑

t=1

mitk(α̂i (β̂), β̂, xi t ). (2)

It is now clear that, with small T , this estimator is plagued by two sources of bias:
the first stems from the estimation error introduced by α̂i (β); the second is a result of
using the asymptotically biased estimator β̂.

In order to better understand how these components will affect the bias of the APE,
it is useful to introduce an expansion of α̂i (β) as T → ∞:

α̂i (β) = αi0 + ξi

T
+ 1

T

T∑

t=1

τi t + op

(
1

T

)
, (3)
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where 1√
T

∑T
t=1 τi t

d→ N (0, σ 2
i ), which follows from higher-order asymptotics for

time series data (Bao and Ullah 2007). Dhaene and Jochmans (2015) then show that
the combined asymptotic bias is

plim
n→∞

μ̂k = μk0 + D + E

T
+ O(T−2), (4)

where, specifically,

D =
∞∑

j=0

ET

[
∂mitk(αi0,β0)

∂αi
τi,t− j

]
+ ET

[
∂mitk(αi0,β0)

∂αi
ξi

]

+1

2
ET

[
∂2mitk(αi0,β0)

∂α2
i

σ 2
i

]

(5)

is the bias generated from using α̂i (β) instead of αi0.3 Following Hahn and Newey
(2004), this expression suggests that the bias introduced by plugging-in α̂i (β) has three
components: (i) the asymptotic bias of α̂i (β); (ii) the correlation between α̂i (β) and
β̂ depending on the same data; (iii) the variance of α̂i (β). This result can be clarified
by noticing that D comes from an expansion of the APE around αi0, where the term
α̂i (β) − αi0 is characterized by (3). Furthermore,

E = ET

[
∂mitk(αi0,β0)

∂β ′ B

]

is the bias from plugging in β̂, instead if using β0.
Further insights can be drawn from Expression (4). First, notice that even if a fixed–

T consistent estimator of β0 was available, the asymptotic bias of the APE estimator
would still be of order O(T−1) because of the presence of D. Secondly, using a bias-
corrected estimate of αi along with a fixed-T consistent estimator of β would not
remove the bias of order O(T−1), as it would not take care of the last component in
D.

The sources of bias discussed above, however, have been shown to become asymp-
totically negligible under rectangular array asymptotics, as plug-in estimators of
average effects converge at a rate slower than (nT )−1/2. Dhaene and Jochmans (2015)
summarize this property in their Theorem 5.1, which is based on the following ratio-
nale. Consider the infeasible estimator

μ∗
k ≡ 1

nT

n∑

i=1

T∑

t=1

mitk(αi0,β0, xi t ),

3 Expressions for τis , ξi , and σ 2
i for panel binary choice models are given in Fernández-Val (2009).
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and let μik be the individual-specific average partial effect, with mean μk0 and finite
variance. Then, μ∗

k can be written as:

μ∗
k = 1

n

n∑

i=1

μik + 1

n

n∑

i=1

(
1

T

T∑

t=1

mitk(αi0,β0, xi t ) − μik

)

.

Notice that the first term converges to μk0 at the rate n−1/2, whereas the second term
converges to zero at the rate (nT )−1/2, thus implying that the infeasible APE estimator
will converge no faster than n−1/2.

From the above expression, it is straightforward to notice that any feasible average-
effect estimator will converge at the same rate as μ∗

k , thus making the bias introduced
by replacing αi0 and β0 withML estimates, or their first order bias-corrected versions,
asymptotically negligible. However, based on their simulation evidence, Dhaene and
Jochmans (2015) still suggest using some bias correction of the APE estimator in
finite samples, especially when T is small. The proposed method operates such bias
reduction, as well as the alternative analytical and jackknife bias corrections recalled
in the following section.

3 Estimation of average partial effects

In the following, we briefly review the existing strategies based on analytical and
jackknife bias corrections, which represent the benchmark for the finite sample perfor-
mance of the proposed estimator. We then illustrate the proposed methodology, which
combines the consistent CML estimator of β0 and the analytical bias correction for
the APE. Finally, we turn to the dynamic logit, for which the proposed procedure is
based on a PCML estimator.

3.1 Existing strategies

The available bias reduction techniques for the estimation of APEs for fixed-effects
binary choice models are based on either analytical or jackknife bias corrections.4

Analytical bias corrections for theAPEs amount to plug-in a bias corrected estimate
of β, say β̂

c = β̂ − B̂/T , instead of the ML estimate in expression (2), along with
α̂i (β̂

c
). Doing so effectively removes the E component of the bias in (4), but the

APE estimator is still plagued by the estimation noise in α̂i (β), giving rise to the D
component. In order to remove it, the bias-corrected estimator of μk is computed as:

μ̂c
k = 1

nT

n∑

i=1

T∑

t=1

mitk(α̂i (β̂
c
), β̂

c
, xi t ) − D̂, (6)

4 In the following discussion, we will use the notation for the static logit model, unless required otherwise.
Nonetheless, everything that follows can be generalized to the dynamic logit model.
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where D̂ is the sample counterpart of D in (5) and then evaluated at α̂i (β̂
c
) and β̂

c
.

Expressions for panel binary choicemodels are given in Fernández-Val (2009),5 whose
derivations are based on general results for static (Hahn andNewey 2004) and dynamic
(Hahn and Kuersteiner 2011) nonlinear panel data models. For the expressions as well
as for further details, we refer the reader to Hahn and Newey (2004), Fernández-Val
(2009), and Hahn and Kuersteiner (2011). A similar correction of the APEs is pro-
vided by Bester and Hansen (2009), who also perform a comparison of their proposal
with alternative strategies.6 Furthermore, for the static logit model, Stammann et al.
(2016) develop a computationally more efficient implementation of the bias corrected
estimator of structural parameters and APEs proposed by Hahn and Newey (2004),
based on a pseudo-demeaning algorithm.

An alternative bias correction method for the APE estimator relies on the panel
jackknife. A general procedure for nonlinear static panel data models is proposed by

Hahn and Newey (2004). Let β̂
(t)

and α̂
(t)
i (β̂

(t)
) be the ML estimators with the t th

observation excluded for every subject. Then, the jackknife corrected estimator for the
APE is

μ̂c
k = T μ̂k − T − 1

T

T∑

t=1

μk

(
α̂

(t)
i (β̂

(t)
), β̂

(t))
.

If the set of model covariates includes the lag of explanatory variables, then leaving out
one of the T observations at a time becomes unsuitable. Instead, a block of consecutive
observations has to be considered so as to preserve the dynamic structure of the data.
The so-called split panel jackknife estimator is proposed by Dhaene and Jochmans
(2015). A simple version of the estimator is the half-panel jackknife, which is based on
splitting the panel into two half-panels, also non-overlapping if T is even and T ≥ 6,
with T /2 time periods. Denote the set of half-panels as

S = {S1, S2}, S1 = {1, . . . , T /2}, S2 = {T /2 + 1, . . . , T };

then the half-panel jackknife estimator of the APE is

μ̂
(1/2)
k = 2μ̂k − 1

2

(
μ̄
S1
k + μ̄

S2
k

)
,

where μ̄
S1
k and μ̄

S2
k are the plug-in estimators evaluated at the ML estimators of the

individual effects and slope parameters obtained using the observations in subpanels S1
and S2, respectively. Dhaene and Jochmans (2015) also illustrate generalized versions
of the half-panel jackknife to deal with odd T and overlapping subpanels, as well as
an alternative jackknife estimator based on the split-panel log-likelihood correction.

It is finally worth mentioning that jackknife and analytical higher-order bias cor-
rections for the slope parameters have also been proposed by Dhaene and Jochmans

5 The term ξi is denoted by βi and the term τi t by ψi t in Fernández-Val (2009).
6 The approach by Bester and Hansen (2009) is not considered here, as it is very similar to that put forward
by Fernández-Val (2009) and not specific to static and dynamic binary choice models.
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(2015) andDhaene and Sun (2021), respectively, and can be extended to the estimation
of APEs, but their viability in dynamic models is limited. In the first case, the authors
warn that the magnitude of the bias of the terms that are not eliminated increases in the
order of the correction with the half-panel jackknife. In the second case, the correction
is developed under the assumption of independent observations, thus ruling out its
application to dynamic models completely.

3.2 Proposedmethodology

The proposedmultiple-step strategy is based on removing the two sources of bias in (4)
by (a) using the fixed-T consistent CML estimator of β, β̃, instead of theML estimator
β̂ and (b) reducing the order of bias of the APE plug-in estimator, induced by α̂i (β̃),
from O(T−1) to O(T−2) by applying the analytical bias-correction of Fernández-Val
(2009) reported in Eq. (6).

3.2.1 Multiple-step estimation

The first step consists in estimating by CML the structural parameters of the logit
model in (1). Taking the individual intercept αi as fixed, the joint probability of the
response configuration yi = (yi1, . . . , yiT )′ conditional on X i = (xi1, . . . , xiT ) can
be written as:

p( yi |X i , αi ) =
exp

(
yi+αi + ∑T

t=1 yit x
′
i tβ

)

∏T
t=1

[
1 + exp

(
αi + x′

i tβ
)] ,

where the dependence of the probability on the left hand-side upon the slope param-
eters is suppressed to avoid abuse of notation. It is well known that the total score
yi+ = ∑T

t=1 yit is a sufficient statistic for the individual intercepts αi (Andersen
1970; Chamberlain 1980). The joint probability of yi conditional on yi+ does not
depend on αi and can therefore be written as:

p( yi |X i , yi+) =
exp

[(∑T
t=1 yit xi t

)′
β

]

∑

z:z+=yi+
exp

[(∑T
t=1 zt xi t

)′
β

] , (7)

where the denominator is the sum over all the response configurations z such that
z+ = yi+ and where the individual intercept αi has been cancelled out. The log-
likelihood function is

	(β) =
n∑

i=1

I(0 < yi+ < T ) log p( yi |X i , yi+),

where the indicator function I(·) is included to take into account that observations
with total score yi+ equal to 0 or T do not contribute to the log-likelihood. The above
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function can be maximized with respect to β by a Newton–Raphson algorithm using
standard results on the regular exponential family (Barndorff-Nielsen 1978), so as
to obtain the CML estimator β̃, which is

√
n-consistent and asymptotically normal

with fixed–T (see, Andersen, 1970, and Chamberlain, 1980, for details). Therefore, if
plugged into the APE formulation (2) instead of theML estimator β̂, the E component

of the bias in (4) is removed since β̃
p→ β0 as n → ∞.

In the next step, we obtain estimates of the individual intercepts αi , which are not
directly available as they have been cancelled out by conditioning on the total score.
Our strategy is to obtain the ML estimates of αi , denoted α̂i (β̃), for those subjects
such that 0 < yi+ < T , by maximizing the individual term

∑T
t=1 log pβ̃(yit |xi t , αi ),

where pβ̃(yit |xi t , αi ) is the probability of the logit model defined in (1) evaluated at

the CML estimate, namely at β = β̃. As well as the ML estimator, the analytical
and the jackknife bias correction, our proposal leads to an APE equal to zero for the
subjects whose response configurations are made of only 0s and 1s, as the marginal
effects are evaluated at theML (non-finite) estimates of αi . However, even if β is fixed
at some

√
n-consistent estimate, the bias of the ML estimator of αi0 will still be of

order O(T−1) because α̂i (β̃)
p→ αi0 only as T → ∞. Stammann et al. (2016) and

Bartolucci andPigini (2019) consider suchplug-in estimator and confirmby simulation
that this source of bias, although rather small for the static logit model, indeed shows
up in finite samples. Moreover, Bartolucci and Pigini (2019) report that the bias is
more severe for the dynamic logit model.7 In Sect. 4, we show that correcting for the
bias generated by the use of α̂i (β) instead of αi0, denoted by D in (4), is necessary in
finite samples, especially with short T .

In the final step, the APEs are obtained by simply replacing the ML estimators in
(2) with β̃ and α̂(β̃) and reducing the bias from O(T−1) to O(T−2) by applying the
bias correction proposed by Fernández-Val (2009), that is,

μ̃k = 1

nT

n∑

i=1

T∑

t=1

mitk(α̂i (β̃), β̃, xi t ) − D̃,

where D̃ denotes the sample counterpart of (5) evaluated in β̃ and α̂(β̃). It is worth
stressing that the proposed estimator exhibits the same asymptotic properties of any
feasible average effect estimator under rectangular array asymptotics, as outlined in
Sect. 2, since the CML estimator is also proved to be

√
nT -consistent.8

7 It is worth recalling that using a bias corrected estimate of αi , such as the one proposed by Kunz et al.
(2019), along with a fixed-T consistent estimator of β will not reduce the order of the bias of the APE
estimator to O(T−2), as it would not take care of the last component in (5). Yet Bartolucci and Pigini
(2019) show that the finite sample performance of the resulting APE estimator is superior to that of the
panel jackknife with short-T , while the two estimators are comparable with moderately long panels.
8 The result is a special case of Theorem 1 by Hanfelt and Wang (2014), who extend the results in Hahn
and Newey (2004) to derive asymptotic properties for a general class of estimators based on what they call
a “relaxed” conditional likelihood. The CML estimator emerges as a special case when, as in our case,
responses are distributed according to the regular exponential family.
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3.2.2 Standard errors

In order to derive an expression for the standard errors of theAPEs μ̃ = (μ̃1, . . . , μ̃K )′,
we need to account for the variability in xi t and the use of the estimated parameters β̃

in the first step. For the latter, we rely on the generalized method of moments (GMM)
approach by Hansen (1982) and also implemented by Bartolucci and Nigro (2012)
for the quadratic exponential model. In particular, following Newey and McFadden
(1994), we formulate the proposed multi-step procedure as the solution of the system
of estimating equations

f (β,μ) = 0,

where

f (β,μ) =
n∑

i=1

f i (β,μ),

f i (β,μ) =

⎛

⎜
⎜⎜
⎝

∇β	i (β)

∇μ1gi (β, μ1)
...

∇μK gi (β, μK )

⎞

⎟
⎟⎟
⎠

, (8)

and

gi (β, μk) = 1

T

T∑

t=1

[mitk(αi (β),β, xi t ) − μk]
2 , k = 1, . . . , K .

The asymptotic variance of (β̃
′
, μ̃′)′ is then

W(β̃, μ̃) = H(β̃, μ̃)−1S(β̃, μ̃)[H(β̃, μ̃)−1]′, (9)

where

S(β̃, μ̃) =
n∑

i=1

f i (β̃, μ̃) f i (β̃, μ̃)′.

Moreover, we have that

H(β̃, μ̃) =
n∑

i=1

H i (β̃, μ̃),

where

H i (β,μ) =
( ∇ββ 	i (β) O

∇μβ gi (β,μ) ∇μμ gi (β,μ)

)
(10)
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is the derivative of f i (β,μ) with respect to (β,μ), with O denoting a K × K matrix
of zeros and gi (β,μ) collects gi (β, μk), for k = 1, . . . , K . Expressions for the
derivatives in (8) are

∇β	i (β) =
T∑

t=1

yit xi t −
∑

z:z+=yi+

(

p(z|X i , yi+)

T∑

t=1

zt xi t

)

,

and

∇μk gi (β, μk) = − 2

T

T∑

t=1

[mitk(αi (β),β, xi t ) − μk] .

The second derivatives in (10) are

∇ββ	i (β) =
∑

z:z+=yi+
p(z|X i , yi+)e(z, X i )e(z, X i )

′,

where

e(z, X i ) =
T∑

t=1

zt xi t −
∑

z:z+=yi+

(

p(z|X i , yi+)

T∑

t=1

zt xi t

)

,

and∇μμ gi (β,μ) is a K ×K diagonal matrix with elements equal to 2. Finally, for the
computation of the block ∇μβgi (β,μ), we rely on a numerical differentiation. Once
the matrix in (9) is computed, the standard errors for the APEs μ̃ may be obtained by
taking the square root of the elements in themain diagonal of the lower right submatrix
of W(β̃, μ̃).

3.2.3 Dynamic logit model

The method proposed to obtain the APE for the logit model cannot be applied directly
to the dynamic logit model (Hsiao 2005). In the latter case, the conditional probability
of yit is

p(yit |xi t , yi,t−1;αi ,β, γ ) = exp
[
yit (αi + x′

i tβ + yi,t−1γ )
]

1 + exp(αi + x′
i tβ + yi,t−1γ )

, (11)

where γ is the regression coefficient for the lagged response variable that measures the
true state dependence. Plugging the CML estimator of β and γ in the APE formulation
is not viable in this case because the total score is no longer a sufficient statistic for the
incidental parameters if the lag of the dependent variable is included among the model
covariates. Conditioning on sufficient statistics eliminates the incidental parameters
only in the special case of T = 3 and no other explanatory variables (Chamberlain
1985). Honoré and Kyriazidou (2000) extend this approach to include explanatory
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variables and the corresponding parameters can be estimated by CML on the basis of
a weighted conditional log-likelihood. However, time effects cannot be included in
the model specification, and the estimator’s rate of convergence to the true parameter
value is slower than

√
n.

More recently, Honoré andWeidner (2020) generalize the approach by Honoré and
Kyriazidou (2000) to include any type of strictly exogenous covariate and by providing
a
√
n-consistent generalized method of moments (GMM) estimator, based on moment

conditions that are free of the incidental parameters. The viability of their approach in
practice, though, has to be assessed since this estimator, asGMMestimators in general,
suffers from a considerable small sample bias when built on a large number of moment
conditions, which is shown to rapidly increase in the number of time occasions and
in the number of covariates. A different perspective is taken by Bartolucci and Nigro
(2010) who, instead of the dynamic logit, consider a QE formulation (Cox 1972)
to model dynamic binary panel data, that has the advantage of admitting sufficient
statistics for the individual intercepts.

Bartolucci and Nigro (2012) propose a QE model that approximates more closely
the dynamic logit model, the parameters of which can easily be estimated by PCML.
Under the approximating model, each yi+ is a sufficient statistic for the fixed effect
αi . By conditioning on the total score, the joint probability of yi becomes:

p∗( yi |X i , yi0, yi+) =
exp

(∑T
t=1 yit x

′
i tβ − ∑T

t=1 q̄i t yi,t−1γ + yi∗γ
)

∑

z:z+=yi+
exp

(∑T
t=1 zt x

′
i tβ − ∑T

t=1 q̄i t zi,t−1γ + zi∗γ
) ,

(12)

where yi∗ = ∑T
t=1 yi,t−1yit and zi∗ = yi0z1 + ∑

t>1 zt−1zt . Moreover, q̄i t is a
function of given values ofβ andαi , resulting fromafirst-order Taylor series expansion
of the log-likelihood based on (11) around β = β̄ and αi = ᾱi , i = 1, . . . , n, and
γ = 0 (see Bartolucci and Nigro 2012, for details). The expression for q̄i t is then

q̄i t = exp(ᾱi + x′
i t β̄)

1 + exp(ᾱi + x′
i t β̄)

.

Expressions for the partial effects and APEs are derived in the same way as for the
static logit model. Let wi t = (x′

i t , yi,t−1)
′ collect the K + 1 model covariates. Based

on (11), the partial effect of covariate wi tk for i at time t on the probability of yit = 1
can be written as:

mitk(αi , θ ,wi t ) =

⎧
⎪⎪⎨

⎪⎪⎩

p(yit = 1|wi t ; αi ,β, γ )
[
1 − p(yit = 1|wi t ; αi ,β, γ )

]
βk , wi tk continuous,

p(yit = 1|wi t,−k , wi tk = 1; αi ,β, γ )−
p(yit = 1|wi t,−k , wi tk = 0; αi ,β, γ ), wi tk binary,

wherewi t,−k denotes the vectorwi t excludingwi tk , and θ = (β ′, γ )′. This expression
may also be used to compute the APE of the lagged response variable. Notice that this
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function does not depend on β̄, since the probability in (11) does not depend on q̄i t .
The APE of the kth covariate can then be obtained by taking the expected value of
mitk(αi , θ ,wi t ) with respect to wi t and αi0, and can be written as

μk0 =
∫

mitk(αi0, θ0,wi t )dG(αi0,wi t ),

where G(αi0,wi t ) denotes the joint distribution of αi0 and wi t .
As for the static logit model, the estimate of μk0 is based on those of the αi , which

we obtain in the same manner as in the first step described in Sect. 3.2.1. In addition,
here the CML estimation of θ based on (12) relies on a preliminary step in order to
obtain q̄i t . In the first step, a preliminary estimate of β̄ is obtained by maximizing the
conditional log-likelihood

	(β̄) =
n∑

i=1

I(0 < yi+ < T )	i (β̄),

where

	i (β̄) = log
exp

[(∑T
t=1 yit xi t

)′
β̄

]

∑

z:z+=yi+
exp

[(∑T
t=1 zt xi t

)′
β̄

] ,

which is the same conditional log-likelihood of the static logit model and may be
maximized by a standard Newton–Raphson algorithm. We denote the resulting CML
estimator by β̌. The estimate α̌i is then computed by maximizing the individual log-
likelihood

	i (ᾱi ) =
T∑

t=1

log
exp

[
yit (ᾱi + x′

i t β̌)
]

1 + exp(ᾱi + x′
i t β̌)

,

where β̌ is fixed. The probability q̄i t in (12) is estimated as q̌i t = exp(α̌i +
x′
i t β̌)/

[
1 + exp(α̌i + x′

i t β̌)
]
.

In the second step, we estimate θ by maximizing the conditional log-likelihood

	(θ) =
n∑

i=1

I(0 < yi+ < T ) log p∗
q̌i

( yi |X i , yi0, yi+),

where p∗
q̌i

( yi |X i , yi0, yi+) is the joint probability in (12) evaluated at q̌i =
(q̌i1, . . . , q̌iT )′. The above function can easily be maximized with respect to θ by
a Newton–Raphson algorithm, so as to obtain the PCML estimator θ̃ , which is a

√
n-

consistent estimator of θ0 only if γ0 = 0, representing the special case in which the QE
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model corresponds to the dynamic logit model.9 Nonetheless, Bartolucci and Nigro
(2012) show that the PCML estimator has a limited bias in finite samples even in the
presence of non-negligible state dependence.

The next step consists of recovering the estimates of αi , α̃i (θ̃), by maximizing the
concentrated log-likelihood evaluated at θ̃ . In the final step, the APEs can then be
estimated by plugging α̃i (θ̃) and θ̃ in the APE formulation and applying the same
correction shown in Sect. 3.2.1, so as to obtain

μ̃k = 1

nT

n∑

i=1

T∑

t=1

mitk(α̂i (θ̃), θ̃ ,wi t ) − D̃.

Standard errors for μ̃k can be obtained exactly in the same way as illustrated in
Sect. 3.2.2 with the appropriate change of notation.

4 Monte Carlo simulation study

In the following, we illustrate the design and report the main results of the simulation
studies aimed at assessing the finite sample performance of the estimators of the APEs
for the static and dynamic logit models. We also discuss the results of some robustness
exercises, with the related tables reported in Appendix.

4.1 Simulation set-up

We generate data for the logit model according to the formulation proposed by Honoré
and Kyriazidou (2000), that is, for i = 1, . . . , n,

yit = I(αi + yi,t−1γ + xitβ + εi t > 0), t = 1, . . . , T , (13)

yi0 = I(αi + xi0β + εi0 > 0), (14)

where xit ∼ N (0, π2/3) and εi t follows a standard logistic distribution for t =
0, . . . , T .

Based on the above design, we generate data from the static and dynamic logit
models as follows. For the static logit model, data are generated under assumption
(13) with γ = 0 and β = 1, for t = 1, . . . , T . Here the individual intercepts are
given by αi = ∑4

t=1 xit/4. For the dynamic logit model, data are generated for
t = 0, . . . , T using also (14), γ in (13) takes values (0.25, 0.5, 0.75), β = 1, and
the individual heterogeneity is generated as αi = ∑3

t=0 xit/4. We consider the same
scenarios for both the static and dynamic logit model, corresponding to n = 100, 500
and T = 4, 8, 12, and the number of Monte Carlo replications is 1000.

For the static logit model, we compare the finite sample performance of the pro-
posed APE estimator (denoted by CML-BC) with: (a) theML plug-in estimator (ML);

9 The correspondence refers to the log-odds ratio. This is clarified by Theorem 1 in Bartolucci and Nigro
(2012).
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(b) Hahn and Newey (2004)’s jackknife bias corrected estimator (Jackknife-BC); (c)
the ML estimator with the analytical bias correction (Analytical-BC) provided by
Fernández-Val (2009), also mentioned in the previous section.

For the dynamic logit model, we compare the finite sample performance of the
proposed APE estimator (PCML-BC) with: (a) the ML plug-in estimator; (b) Dhaene
and Jochmans (2015)’s half-panel jackknife bias-corrected estimator (Jackknife-BC);
(c) the analytically bias-corrected estimator (Analytical-BC) byFernández-Val (2009).
It must be noted that the half-panel Jackknife-BC estimator cannot be computed for
T = 4.

For each scenario,we report themean and themedian of the ratio μ̃/μ∗, the standard
deviation of μ̃, the rejection frequency at the 5% and 10% nominal value of a t-test
for the true value of the APE, and the mean ratio between the estimator standard error
and standard deviation.10

4.2 Main results

Table 1 reports the simulation results for the static logit model. It emerges that the
proposed estimator (CML-BC) has good finite sample performance with both small
n and T . On the contrary, the Jackknife-BC and the Analytical-BC exhibit a sizable
bias when T = 4 and produce unreliable coverage intervals. Actually, the simulation
results of the ML estimator, especially for T ≥ 8, suggest that the bias correction is
unnecessary in this case. Therefore, it emerges here, and also from the results reported
by Fernández-Val (2009), that for the APEs of static models the sources of bias are
negligible not only asymptotically, as discussed in Sect. 2, but also in finite samples.

Bias corrections are bound to be more relevant for the dynamic logit, as ML is
known to produce a severely biased estimator of the state dependence parameter in
auto-regressive formulations for both linear and nonlinear models (Heckman 1981;
Nickell 1981). Tables 2, 3 and 4 report the results for the partial effect relative to the
state dependence parameter, μy . The simulation results of the APEs for the covariate,
denoted μx , are reported in Tables 8, 9 and 10 in Appendix A.1.

Results confirm that the bias of plug-in APEs based on ML estimates is greater,
especially concerning the partial effect of the state dependence parameters. While all
bias corrections produce a remarkable improvement over ML, the proposed estimator
outperforms the Analytical-BC and Jackknife-BC. With γ = 0.25, the advantage is
noticeable across all the scenarios considered. Furthermore, the proposed method-
ology seems to provide the most reliable confidence intervals among the examined
estimators. In this regard, it is worth noticing that when T = 4, all the estimators
provide poor coverage. As for the APE of the covariate μx , the PCML-BC exhibits a
better performance with T = 4, whereas all the bias correction strategies have com-
parable performance with larger values of T . These results suggest that the use of
a fixed-T consistent estimator, even though for an approximating model, offers an

10 ML standard errors are computed for Hahn and Newey (2004)’s Jackknife-BC estimator. Bootstrapped
standard errors (500 replications) are computed for Dhaene and Jochmans (2015)’s half-panel Jackknife-BC
estimator.
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Table 1 Simulation results for μ̃, static logit model

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML 0.981 0.977 0.013 0.098 0.161 0.805

Jackknife-BC 1.231 1.220 0.022 0.407 0.499 0.806

Analytical-BC 0.704 0.742 0.026 0.960 0.982 0.340

CML-BC 0.911 0.909 0.012 0.108 0.193 1.132

100 8

ML 1.008 1.008 0.008 0.048 0.112 0.873

Jackknife-BC 0.999 0.997 0.008 0.018 0.048 1.052

Analytical-BC 0.983 0.982 0.008 0.055 0.104 0.898

CML-BC 0.991 0.991 0.008 0.044 0.090 0.910

100 12

ML 1.006 1.005 0.006 0.054 0.119 0.853

Jackknife-BC 0.998 0.997 0.006 0.035 0.068 0.971

Analytical-BC 0.997 0.996 0.006 0.038 0.072 0.946

CML-BC 1.000 0.998 0.006 0.039 0.078 0.916

500 4

ML 0.973 0.972 0.006 0.164 0.236 0.822

Jackknife-BC 1.210 1.209 0.010 0.935 0.964 0.743

Analytical-BC 0.755 0.758 0.005 1.000 1.000 0.703

CML-BC 0.908 0.908 0.005 0.581 0.730 1.156

500 8

ML 1.007 1.007 0.004 0.067 0.117 0.876

Jackknife-BC 1.001 1.000 0.004 0.029 0.061 1.033

Analytical-BC 0.983 0.983 0.003 0.120 0.189 0.899

CML-BC 0.991 0.990 0.004 0.067 0.122 0.917

500 12

ML 1.003 1.003 0.003 0.056 0.104 0.861

Jackknife-BC 0.996 0.996 0.003 0.033 0.066 0.976

Analytical-BC 0.995 0.994 0.003 0.039 0.086 0.952

CML-BC 0.997 0.997 0.003 0.039 0.080 0.926

1000 replications. ML is the plug-in estimator for the static logit model; Jackknife-BC denotes Hahn and
Newey (2004)’s jackknife bias correction; Analytical-BC denotes Hahn and Newey (2004)’s analytical bias
correction; CML-BC denotes the proposed estimator

advantage when the bias is sizable, as removing only the O(T−1) component may not
provide enough of a reduction.

As discussed in Section 3.2.3, while the PCML estimator is consistent only when
γ = 0, Bartolucci and Nigro (2012) show that its finite-sample bias is limited even in
presence of non-negligible state dependence. The results in Tables 2, 3 and 4 confirm
that the PCML-BC APE estimator has the same behaviour: although the advantage
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Table 2 Simulation results for μ̃y , dynamic logit model, γ = 0.25

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML −3.143 −3.185 0.039 0.963 0.979 0.895

Analytical-BC 1.884 1.768 0.050 0.152 0.227 0.771

PCML-BC 0.954 0.888 0.052 0.018 0.047 1.234

100 8

ML −1.260 −1.231 0.029 0.845 0.903 0.945

Jackknife-BC 0.612 0.631 0.036 0.077 0.134 1.006

Analytical-BC 0.924 0.963 0.030 0.093 0.135 0.896

PCML-BC 1.012 1.058 0.033 0.064 0.113 0.978

100 12

ML −0.594 −0.605 0.024 0.691 0.786 0.930

Jackknife-BC 0.800 0.812 0.029 0.091 0.142 0.946

Analytical-BC 0.900 0.886 0.025 0.077 0.147 0.900

PCML-BC 0.931 0.915 0.027 0.071 0.131 0.921

500 4

ML −3.199 −3.193 0.018 1.000 1.000 0.867

Analytical-BC 1.557 1.549 0.019 0.254 0.335 0.870

PCML-BC 0.902 0.896 0.024 0.021 0.049 1.208

500 8

ML −1.294 −1.291 0.013 1.000 1.000 0.950

Jackknife-BC 0.602 0.609 0.016 0.154 0.236 1.019

Analytical-BC 0.903 0.899 0.014 0.081 0.147 0.904

PCML-BC 0.979 0.977 0.015 0.053 0.096 0.994

500 12

ML −0.528 −0.528 0.011 0.999 1.000 0.954

Jackknife-BC 0.881 0.881 0.013 0.086 0.132 0.987

Analytical-BC 0.970 0.972 0.011 0.076 0.130 0.925

PCML-BC 1.004 1.006 0.012 0.073 0.113 0.950

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene
and Jochmans (2015)’s half-panel jackknife bias corrected estimator; Analytical-BC denotes Fernández-Val
(2009)’s analytical bias correction; PCML-BC denotes the proposed estimator

over the alternative approaches is reduced with γ = 0.5 and γ = 0.75, the proposed
approach remains the most effective strategy to correct APEs for the state dependence
parameter, especially with short T .

It is finally worth recalling that further to plugging fixed-T (pseudo)consistent
estimators for the slope parameters in the APEs, the good finite-sample performance
of the proposed approach also benefits form the correction aimed to remove the bias
originating from the ML estimate of the unobserved heterogeneity, denoted by D in
(4). In order to illustrate the indirect bias effect introduced by α̂i (β), we report in
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Table 3 Simulation results for μ̃y , dynamic logit model, γ = 0.5

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML −1.221 −1.264 0.041 0.975 0.986 0.840

Analytical-BC 1.167 1.103 0.048 0.102 0.166 0.783

PCML-BC 0.883 0.831 0.054 0.025 0.047 1.231

100 8

ML −0.210 −0.218 0.030 0.861 0.910 0.919

Jackknife-BC 0.780 0.760 0.040 0.093 0.157 0.950

Analytical-BC 0.889 0.883 0.032 0.096 0.175 0.863

PCML-BC 0.982 0.978 0.035 0.076 0.126 0.943

100 12

ML 0.177 0.172 0.024 0.728 0.825 0.960

Jackknife-BC 0.916 0.913 0.028 0.061 0.118 1.007

Analytical-BC 0.939 0.931 0.025 0.068 0.129 0.931

PCML-BC 0.987 0.981 0.026 0.066 0.125 0.943

500 4

ML −1.224 −1.218 0.018 1.000 1.000 0.867

Analytical-BC 1.027 1.033 0.018 0.082 0.125 0.905

PCML-BC 0.873 0.865 0.025 0.026 0.064 1.200

500 8

ML −0.204 −0.206 0.013 1.000 1.000 0.961

Jackknife-BC 0.800 0.795 0.017 0.140 0.230 0.997

Analytical-BC 0.903 0.903 0.014 0.117 0.182 0.908

PCML-BC 0.994 0.993 0.015 0.052 0.105 0.993

500 12

ML 0.182 0.177 0.010 1.000 1.000 0.990

Jackknife-BC 0.923 0.921 0.012 0.071 0.132 1.027

Analytical-BC 0.943 0.940 0.011 0.079 0.148 0.957

PCML-BC 0.991 0.991 0.011 0.059 0.105 0.983

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene
and Jochmans (2015)’s half-panel jackknife bias-corrected estimator; Analytical-BCdenotes Fernández-Val
(2009)’s analytical bias correction; PCML-BC denotes the proposed estimator

Table 5 the results of a simulation exercise where we compare the performance of
the proposed approach (P)CML-BC with that of an APE estimator based on (P)CML
estimates ignoring the bias correction. The latter approach is employed by Stammann
et al. (2016) and was considered on an earlier version of this work by Bartolucci and
Pigini (2019). It clearly emerges that a bias reduction is needed for both the static and
dynamic logit model, especially with T = 4. Besides, these results also highlight that
plugging fixed-T consistent estimators already brings a sizable improvement over the
ML-based APEs.
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Table 4 Simulation results for μ̃y , dynamic logit model, γ = 0.75

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML −0.561 −0.583 0.040 0.984 0.992 0.865

Analytical-BC 0.949 0.928 0.069 0.100 0.160 0.546

PCML-BC 0.877 0.865 0.054 0.028 0.042 1.263

100 8

ML 0.130 0.133 0.029 0.906 0.938 0.937

Jackknife-BC 0.823 0.818 0.038 0.105 0.159 0.995

Analytical-BC 0.867 0.867 0.031 0.116 0.196 0.886

PCML-BC 0.967 0.961 0.034 0.064 0.126 0.977

100 12

ML 0.434 0.431 0.024 0.753 0.827 0.964

Jackknife-BC 0.960 0.958 0.029 0.064 0.116 0.985

Analytical-BC 0.950 0.944 0.025 0.068 0.131 0.930

PCML-BC 1.008 1.004 0.027 0.068 0.124 0.945

500 4

ML −0.565 −0.559 0.018 1.000 1.000 0.878

Analytical-BC 0.855 0.857 0.018 0.180 0.250 0.917

PCML-BC 0.861 0.860 0.024 0.032 0.068 1.302

500 8

ML 0.139 0.141 0.013 1.000 1.000 0.954

Jackknife-BC 0.843 0.838 0.017 0.171 0.270 1.005

Analytical-BC 0.882 0.885 0.014 0.206 0.302 0.903

PCML-BC 0.979 0.979 0.015 0.052 0.098 0.996

500 12

ML 0.423 0.427 0.011 1.000 1.000 0.964

Jackknife-BC 0.944 0.943 0.013 0.073 0.134 1.005

Analytical-BC 0.937 0.941 0.011 0.123 0.189 0.938

PCML-BC 0.994 0.998 0.012 0.063 0.116 0.962

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene
and Jochmans (2015)’s half-panel jackknife bias-corrected estimator; Analytical-BCdenotes Fernández-Val
(2009)’s analytical bias correction; PCML-BC denotes the proposed estimator

4.3 Robustness exercises

In this section, we illustrate the design and discuss the results of a series of robustness
exercises aimed to test the performance of the proposed approach under potentially
problematic departures from the baseline setting. The results are collected inAppendix
A.2.

The first set of exercises concerns the violation of standard hypotheses that are
necessary for the asymptotic results on the bias correction of the ML estimator to
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hold. In fact, it is worth recalling the characterization of this correction that is based
on a large-T asymptotic expansion, which theoretically rules out the possibility of
including time dummies in the model specification as, with large-T asymptotics, time
fixed-effects are incidental parameters as well.11 We devise an experiment where data
are generated from the dynamic logit model defined in (13)-(14), with the addition
of a trending regressor ηt = −1 + 2(t−1)

T−1 in [−1, 1] and the model specification
then includes time effects as well. The results for T = 4, 8 are reported in Table 11
and suggest overall robustness of the approaches considered to the inclusion of time
dummies, as also documented by Fernández-Val (2009).

Large-T asymptotics also requires stationarity of covariates, which may be rather
restrictive in applications. Yet both Fernández-Val (2009) and Dhaene and Jochmans
(2015) report similar performance of the approaches under departures from this
assumption. We confirm the same behaviour for the proposed approach by means
of a simulation exercise where data are generated from a logit model with a trending
regressor. The design is based on the one adopted by Hahn and Newey (2004), where

yit = I(αi + xitβ + εi t > 0), i = 1, . . . , n, t = 1, . . . , T ,

with β = 1, αi ∼ N (0, 1), the error terms εi t follow a standard logistic distribution,
and

xit = t/10 + xi,t−1/2 + uit ,

with uit ∼ U [−0.5, 0.5] and xi0 = ui0. According to the results reported in Table 12,
there are no remarkable differences with respect to the baseline scenario.12

The second set of exercises explores the finite-sample performance of the proposed
approach with different settings for the unobserved heterogeneity. We first consider
the design based on assumptions (13)-(14) with individual intercepts generated as
αi = ∑3

t=0 xit/4+ (ui − 1), with ui ∼ χ2
1 . The corresponding results are reported in

Table 13 for the scenarios with T = 4, 8. As expected with fixed-effects approaches,
results are unaffected by the distribution of the unobserved heterogeneity.

We then consider a shift in the distribution of the individual effects and generate
them as αi = ∑3

t=0 xit/4−3.5. In this way, we generate samples where the frequency
of 1s amounts to about 12%, whereas in the baseline setting was around 53%, thus
simulating a response variable describing rare events, which is often realistic in appli-
cations. Results are reported in Table 14 and, as expected, document a deterioration in

11 Fernández-Val and Weidner (2016) provide an analytical formulation and a jackknife procedure to
accommodate this case. Their simulation setup and results, however, suggest that their method is more
suitable for dyadic network data, or in any case panel datasets where the dimensions of n and T are
comparable, which is why their approach is not considered in our analysis, more focused on the large-n
short-T framework. The conditional inference approach exploiting sufficient statistics for both individual
and time effects is instead considered by Charbonneau (2017), Jochmans (2018), and Bartolucci et al.
(2021).
12 Actually, the Honoré and Kyriazidou’s design also violates the stationarity assumption, in that the initial
observations (yi0, xi0) are not drawn from their state distribution and the relationship between x and the
unobserved heterogeneity changes drastically after the fourth time occasion. The only stationary setting
should therefore be that of the static logit model with T = 4. Nevertheless, the results in Table 12 with
T = 4 do not stress any deterioration in the performance of the approaches considered.
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the performance of all the approaches considered. This is due to the limited availability
of useful response configurations, which generates a larger small sample bias in the
parameter estimates and increases the number of instances in which the PE must be
set to zero.

5 Empirical application

We apply the proposed formulation to the problem of estimating the labour supply
of married women. The same empirical application is considered by Fernández-Val
(2009) and Dhaene and Jochmans (2015), after the seminal work of Hyslop (1999).
The sample is drawn from the Panel Study of IncomeDynamics (PSID),which consists
of n = 1,908 married women between 19 and 59 years of age in 1980, followed for
T = 6 time occasions, from 1980 to 1985, further to an additional observation in 1979
exploited as initial condition in dynamic models. We specify a static logit model for
the probability of being employed at time t , conditional on the number of children
of a certain age in the family, namely the number of kids between 0 and 2 years old,
between 3 and 5, and between 6 and 17, and on the husband’s income. We also specify
a dynamic logit model, that is, we include lagged participation in the set of model
covariates.

The estimation results for the static logit model are reported in Table 6, which shows
the ML, Hahn and Newey (2004)’s panel Jackknife-BC, Hahn and Newey (2004)’s
Analytical-BC, and CML estimates of the model parameters. The CML, Analytical-
BC, and Jackknife-BC estimates of the parameters are all similar to each other and
smaller (in absolute value) than the uncorrected ML ones. These suggest a negative
effect on labour participation of having children younger than 17 in the household as
well as of the level of the husband’s income. The estimated APEs obtained with the
proposed method suggest that having an additional child between 0 and 2 reduces the
probability of working by 8.9 percentage points, and having a child between 3 and
5 years old reduces the employment probability by 6.1 percentage points. The APE
estimates obtained with the Analytical-BC and Jackknife-BC estimators point toward
the same results, with the exception of having children between 6 and 17 years old,
which appear to be not statistically significant, according to our procedure.

Table 7 reports the results for the dynamic logit specification. Here, we report the
ML,Dhaene and Jochmans (2015)’s half-panel Jackknife-BC, Fernández-Val (2009)’s
Analytical-BC, and PCML estimates of themodel parameters. The effect of the exoge-
nous model covariates is now smaller and all the APE estimates suggest a negative
and statistically significant effect of having children between 0 and 5 years old in the
household.

The PCML estimator detects a strong state dependence in the labour force partici-
pation ofmarriedwomen, as the estimated coefficient for lagged participation amounts
to 1.706. In terms of APE, this is translated into an increase of 15.7 percentage points
in the probability of being employed at time t for a woman who was working in t − 1,
with respect to a woman who was not working in t − 1.
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Table 6 Female labour force participation: static logit model

Labour Force Participation Model parameters β

ML Jackknife BC Analytical BC CML

# Children 0–2 −1.331∗∗∗ −1.051∗∗∗ −1.090∗∗∗ −1.092∗∗∗
(0.145) (0.145) (0.117) (0.109)

# Children 3–5 −0.922∗∗∗ −0.706∗∗∗ −0.755∗∗∗ −0.756∗∗∗
(0.147) (0.147) (0.112) (0.103)

# Children 6–17 −0.193 −0.141 −0.157∗ −0.157∗
(0.123) (0.123) (0.088) (0.081)

Husband income −0.011∗ −0.005 −0.009∗∗ −0.009∗∗∗
(0.006) (0.006) (0.004) (0.004)

Average partial effects μ

ML Jackknife BC Analytical BC CML-BC

# Children 0–2 −0.091∗∗∗ −0.092∗∗∗ −0.088∗∗∗ −0.089∗∗∗
(0.009) (0.009) (0.008) (0.021)

# Children 3–5 −0.063∗∗∗ −0.066∗∗∗ −0.061∗∗∗ −0.061∗∗∗
(0.009) (0.010) (0.008) (0.022)

# Children 6–17 −0.013 −0.012 −0.013∗∗ −0.013

(0.009) (0.009) (0.006) (0.019)

Husband income −0.001 −0.001 −0.001∗∗ −0.001

(0.001) (0.001) (0.000) (0.001)

Standard errors in round brackets. ***p < 0.01; **p < 0.05; *p < 0.10. ML denotes the maximum
likelihood estimator; Jackknife-BC denotesHahn andNewey (2004)’s jackknife bias correction; Analytical-
BC denotes Hahn and Newey (2004)’s analytical bias correction; CML denotes the conditional maximum
likelihood estimator; CML-BC denotes the proposed estimator for the APE. Source: PSID 1980-1985

6 Conclusion

We develop a multiple-step procedure to compute APEs for fixed-effects logit models
that are estimated by CML. Our strategy amounts to building a plug-in APE estimator
based on the fixed-T consistent CML estimator of the slope parameters and bias-
corrected estimates of APEs.

The proposed estimator is asymptotically equivalent to the plug-in ML and
alternative bias-corrected APE estimators, and it exhibits comparable finite sample
performance when the static logit model is considered. On the contrary, the proposed
approach for the dynamic logit model has a remarkable advantage in finite samples. In
this respect, the multiple-step procedure here developed could be particularly useful
for practitioners who often deal with short-T datasets, such as rotated surveys, and/or
highly unbalanced panels.
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Table 7 Female labour force participation: dynamic logit model

Labour force participation Model parameters θ

ML Jackknife BC Analytical BC PCML

# Children 0–2 −1.269∗∗∗ −0.895∗∗∗ −0.930∗∗∗ −0.912∗∗∗
(0.141) (0.246) (0.122) (0.095)

# Children 3–5 −0.823∗∗∗ −0.503∗∗ −0.532∗∗∗ −0.503∗∗∗
(0.141) (0.250) (0.117) (0.091)

# Children 6–17 −0.173 −0.019 −0.106 −0.092

(0.117) (0.225) (0.092) (0.074)

Husband income −0.011∗ −0.005 −0.009∗∗ −0.008∗∗
(0.006) (0.010) (0.004) (0.004)

Lagged Participation 0.569∗∗∗ 2.107∗∗∗ 1.319∗∗∗ 1.706∗∗∗
(0.081) (0.119) (0.082) (0.103)

Average partial effects μ

ML Jackknife BC Analytical BC PCML-BC

# Children 0–2 −0.086∗∗∗ −0.097∗∗∗ −0.075∗∗∗ −0.071∗∗∗
(0.009) (0.014) (0.008) (0.016)

# Children 3–5 −0.056∗∗∗ −0.059∗∗∗ −0.043∗∗∗ −0.039∗∗∗
(0.009) (0.014) (0.008) (0.015)

# Children 6–17 −0.012 −0.009 −0.009 −0.007

(0.008) (0.013) (0.006) (0.012)

Husband income −0.001 −0.001 −0.001∗∗ −0.001

(0.001) (0.001) (0.001) (0.001)

Lagged Participation 0.041∗∗∗ 0.124∗∗∗ 0.121∗∗∗ 0.157∗∗∗
(0.008) (0.010) (0.006) (0.021)

Standard errors in round brackets. ***p < 0.01; **p < 0.05; *p < 0.10. ML denotes the maximum
likelihood estimator; Jackknife-BC denotes Dhaene and Jochmans (2015)’s jackknife bias correction;
Analytical-BC denotes Fernández-Val (2009)’s analytical bias correction; PCML denotes the pseudo con-
ditional maximum likelihood estimator; PCML-BC denotes the proposed estimator for the APE. Source:
PSID 1979–1985
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Appendix A

A.1 Simulation results: additional tables

See Tables 8, 9 and 10.

Table 8 Simulation results for μ̃x , dynamic logit model, γ = 0.25

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML 0.922 0.914 0.013 0.206 0.287 0.849

Analytical-BC 0.633 0.693 0.036 0.975 0.989 0.276

PCML-BC 0.891 0.888 0.012 0.164 0.268 1.118

100 8

ML 0.996 0.995 0.008 0.039 0.087 0.959

Jackknife-BC 1.057 1.057 0.011 0.077 0.146 1.051

Analytical-BC 0.987 0.985 0.008 0.052 0.104 0.892

PCML-BC 0.990 0.989 0.008 0.045 0.093 0.914

100 12

ML 0.998 0.997 0.006 0.020 0.052 1.020

Jackknife-BC 1.009 1.008 0.007 0.041 0.092 1.003

Analytical-BC 0.997 0.996 0.006 0.030 0.067 0.957

PCML-BC 0.997 0.996 0.006 0.038 0.074 0.943

500 4

ML 0.922 0.921 0.006 0.575 0.673 0.826

Analytical-BC 0.707 0.713 0.007 1.000 1.000 0.592

PCML-BC 0.894 0.893 0.005 0.701 0.817 1.090

500 8

ML 0.991 0.991 0.004 0.059 0.113 0.936

Jackknife-BC 1.055 1.054 0.005 0.333 0.457 0.991

Analytical-BC 0.983 0.982 0.004 0.126 0.202 0.872

PCML-BC 0.986 0.987 0.004 0.092 0.150 0.900

500 12

ML 0.996 0.998 0.003 0.027 0.069 0.985

Jackknife-BC 1.009 1.010 0.003 0.048 0.094 0.983

Analytical-BC 0.996 0.997 0.003 0.040 0.082 0.933

PCML-BC 0.996 0.997 0.003 0.042 0.094 0.917

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene
and Jochmans (2015)’s half-panel jackknife bias-corrected estimator; Analytical-BCdenotes Fernández-Val
(2009)’s analytical bias correction; PCML-BC denotes the proposed estimator

123

http://creativecommons.org/licenses/by/4.0/


APE for FE Logit Models 2283

Table 9 Simulation results for μ̃x , dynamic logit model, γ = 0.5

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML 0.916 0.914 0.014 0.228 0.319 0.835

Analytical-BC 0.640 0.696 0.034 0.967 0.983 0.286

PCML-BC 0.885 0.882 0.012 0.153 0.252 1.125

100 8

ML 0.990 0.990 0.008 0.050 0.096 0.926

Jackknife-BC 1.056 1.056 0.012 0.089 0.157 0.996

Analytical-BC 0.982 0.983 0.008 0.067 0.118 0.861

PCML-BC 0.986 0.987 0.008 0.054 0.103 0.891

100 12

ML 0.994 0.994 0.006 0.021 0.062 1.006

Jackknife-BC 1.008 1.009 0.007 0.039 0.070 1.003

Analytical-BC 0.994 0.994 0.006 0.027 0.077 0.948

PCML-BC 0.993 0.993 0.006 0.028 0.083 0.930

500 4

ML 0.911 0.909 0.006 0.669 0.769 0.852

Analytical-BC 0.707 0.712 0.007 1.000 1.000 0.574

PCML-BC 0.885 0.882 0.005 0.747 0.846 1.169

500 8

ML 0.989 0.989 0.004 0.071 0.115 0.956

Jackknife-BC 1.059 1.059 0.005 0.366 0.506 1.028

Analytical-BC 0.981 0.981 0.004 0.134 0.210 0.882

PCML-BC 0.985 0.985 0.004 0.097 0.169 0.919

500 12

ML 0.996 0.998 0.003 0.037 0.082 0.974

Jackknife-BC 1.013 1.013 0.003 0.075 0.141 0.990

Analytical-BC 0.996 0.997 0.003 0.044 0.093 0.923

PCML-BC 0.996 0.997 0.003 0.050 0.103 0.908

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene
and Jochmans (2015)’s half-panel jackknife bias-corrected estimator; Analytical-BCdenotes Fernández-Val
(2009)’s analytical bias correction; PCML-BC denotes the proposed estimator
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Table 10 Simulation results for μ̃x , dynamic logit model, γ = 0.75

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML 0.907 0.901 0.013 0.247 0.343 0.843

Analytical-BC 0.634 0.692 0.035 0.976 0.987 0.284

PCML-BC 0.878 0.875 0.012 0.154 0.258 1.169

100 8

ML 0.989 0.989 0.008 0.048 0.097 0.929

Jackknife-BC 1.063 1.061 0.012 0.081 0.155 1.021

Analytical-BC 0.980 0.981 0.008 0.071 0.132 0.867

PCML-BC 0.984 0.984 0.008 0.057 0.122 0.901

100 12

ML 0.994 0.994 0.006 0.030 0.061 0.999

Jackknife-BC 1.013 1.014 0.007 0.034 0.077 1.004

Analytical-BC 0.993 0.995 0.006 0.036 0.078 0.939

PCML-BC 0.993 0.994 0.006 0.046 0.083 0.924

500 4

ML 0.904 0.904 0.006 0.710 0.810 0.824

Analytical-BC 0.707 0.712 0.007 1.000 1.000 0.575

PCML-BC 0.879 0.880 0.006 0.730 0.851 1.129

500 8

ML 0.985 0.985 0.004 0.087 0.158 0.893

Jackknife-BC 1.063 1.062 0.005 0.383 0.515 0.975

Analytical-BC 0.978 0.978 0.004 0.180 0.267 0.833

PCML-BC 0.981 0.981 0.004 0.124 0.214 0.866

500 12

ML 0.995 0.995 0.003 0.034 0.072 0.981

Jackknife-BC 1.015 1.015 0.003 0.074 0.147 0.985

Analytical-BC 0.995 0.995 0.003 0.044 0.089 0.926

PCML-BC 0.994 0.994 0.003 0.050 0.095 0.915

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene
and Jochmans (2015)’s half-panel jackknife bias-corrected estimator; Analytical-BCdenotes Fernández-Val
(2009)’s analytical bias correction; PCML-BC denotes the proposed estimator

A.2 Simulation results: robustness exercises

See Tables 11, 12, 13 and 14.
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Table 11 Simulation results for the dynamic logit model, γ = 0.5, time dummies

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

μy

100 4

ML −1.385 −1.406 0.041 0.981 0.992 0.857

Analytical-BC 1.860 1.725 0.068 0.250 0.335 0.690

PCML-BC 0.867 0.834 0.054 0.028 0.060 1.205

100 8

ML −0.276 −0.284 0.028 0.888 0.929 0.951

Analytical-BC 0.868 0.871 0.030 0.091 0.153 0.913

PCML-BC 0.976 0.991 0.033 0.002 0.005 1.755

500 4

ML −1.372 −1.368 0.018 1.000 1.000 0.881

Analytical-BC 1.476 1.443 0.024 0.422 0.518 0.741

PCML-BC 0.863 0.855 0.024 0.035 0.060 1.215

500 8

ML −0.264 −0.265 0.012 1.000 1.000 0.972

Analytical-BC 0.891 0.892 0.013 0.118 0.187 0.928

PCML-BC 0.992 0.989 0.015 0.001 0.004 1.783

μx

100 4

ML 0.896 0.899 0.014 0.255 0.336 0.854

Analytical-BC 0.348 0.518 0.060 0.978 0.986 0.281

PCML-BC 0.862 0.861 0.013 0.138 0.255 1.186

100 8

ML 0.995 0.994 0.009 0.049 0.094 0.922

Analytical-BC 0.984 0.984 0.008 0.068 0.136 0.845

PCML-BC 0.990 0.991 0.009 0.054 0.098 0.905

500 4

ML 0.893 0.892 0.006 0.756 0.829 0.855

Analytical-BC 0.573 0.598 0.015 1.000 1.000 0.298

PCML-BC 0.868 0.867 0.005 0.780 0.880 1.281

500 8

ML 0.990 0.990 0.004 0.061 0.122 0.907

Analytical-BC 0.982 0.981 0.004 0.143 0.226 0.845

PCML-BC 0.986 0.986 0.004 0.080 0.144 0.905

1000 replications. ML is the plug-in estimator for the dynamic logit model; analytical-BC denotes
Fernández-Val (2009)’s analytical bias correction; CML-BC denotes the proposed estimator. With n = 100
and T = 4, we removed 3 Monte Carlo draws for Analytical-BC as convergence failed
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Table 12 Simulation results for the static logit model (μ̃), trending regressor

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

100 4

ML 0.988 0.993 0.072 0.048 0.102 1.006

Jackknife-BC 0.988 0.990 0.077 0.050 0.090 1.001

Analytical-BC 0.926 0.932 0.067 0.071 0.132 0.938

CML-BC 0.929 0.934 0.068 0.025 0.071 1.126

100 8

ML 0.998 0.999 0.028 0.046 0.101 0.985

Jackknife-BC 0.999 1.000 0.028 0.036 0.090 1.026

Analytical-BC 0.984 0.985 0.028 0.046 0.100 0.973

CML-BC 0.985 0.986 0.028 0.039 0.086 1.025

100 12

ML 0.992 0.996 0.016 0.066 0.127 0.906

Jackknife-BC 0.996 0.999 0.016 0.056 0.110 0.936

Analytical-BC 0.988 0.992 0.016 0.045 0.106 0.965

CML-BC 0.989 0.993 0.016 0.042 0.101 0.986

500 4

ML 1.004 0.997 0.032 0.056 0.094 1.004

Jackknife-BC 1.010 1.004 0.035 0.056 0.113 0.994

Analytical-BC 0.940 0.934 0.030 0.091 0.154 0.931

CML-BC 0.943 0.936 0.031 0.030 0.087 1.120

500 8

ML 0.996 0.996 0.013 0.066 0.122 0.929

Jackknife-BC 0.997 0.997 0.014 0.059 0.102 0.960

Analytical-BC 0.982 0.982 0.013 0.080 0.139 0.909

CML-BC 0.983 0.983 0.013 0.059 0.124 0.966

500 12

ML 0.999 1.000 0.007 0.075 0.126 0.910

Jackknife-BC 1.003 1.002 0.007 0.066 0.113 0.946

Analytical-BC 0.995 0.996 0.007 0.053 0.114 0.964

CML-BC 0.996 0.996 0.007 0.042 0.104 0.990

1000 replications. ML is the plug-in estimator for the static logit model; Jackknife-BC denotes Hahn and
Newey (2004)’s jackknife bias correction; Analytical-BC denotes Hahn and Newey (2004)’s analytical bias
correction; CML-BC denotes the proposed estimator
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Table 13 Simulation results for the dynamic logit model, γ = 0.5, non-normal αi

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

μy

100 4

ML −1.242 −1.216 0.039 0.962 0.986 0.850

Analytical-BC 1.172 1.144 0.044 0.105 0.162 0.816

PCML-BC 0.905 0.914 0.054 0.017 0.045 1.276

100 8

ML −0.237 −0.248 0.027 0.866 0.919 0.976

Jackknife-BC 0.731 0.726 0.035 0.080 0.146 1.034

Analytical-BC 0.869 0.852 0.029 0.092 0.158 0.916

PCML-BC 0.974 0.960 0.032 0.041 0.087 1.087

500 4

ML −1.229 −1.231 0.017 1.000 1.000 0.887

Analytical-BC 1.023 1.026 0.017 0.079 0.137 0.903

PCML-BC 0.867 0.864 0.023 0.013 0.032 1.335

500 8

ML −0.242 −0.248 0.013 1.000 1.000 0.930

Jackknife-BC 0.752 0.744 0.016 0.191 0.284 0.988

Analytical-BC 0.873 0.864 0.014 0.148 0.222 0.869

PCML-BC 0.976 0.966 0.015 0.049 0.096 1.035

μx

100 4

ML 0.910 0.909 0.013 0.232 0.317 0.861

Analytical-BC 0.630 0.689 0.032 0.959 0.976 0.300

PCML-BC 0.883 0.882 0.012 0.118 0.208 1.231

100 8

ML 0.987 0.986 0.009 0.043 0.085 0.903

Jackknife-BC 1.060 1.059 0.011 0.059 0.107 1.036

Analytical-BC 0.977 0.976 0.008 0.073 0.110 0.839

PCML-BC 0.982 0.982 0.009 0.048 0.090 0.900

500 4

ML 0.905 0.905 0.006 0.685 0.769 0.858

Analytical-BC 0.697 0.703 0.007 1.000 1.000 0.576

PCML-BC 0.880 0.881 0.005 0.662 0.809 1.244

500 8

ML 0.987 0.987 0.004 0.059 0.107 0.915

Jackknife-BC 1.064 1.064 0.005 0.335 0.482 1.023

Analytical-BC 0.978 0.977 0.004 0.129 0.226 0.854

PCML-BC 0.982 0.981 0.004 0.075 0.132 0.925

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene and
Jochmans (2015)’s jackknife bias correction; Analytical-BC denotes Fernández-Val (2009)’s analytical bias cor-
rection; PCML-BC denotes the proposed estimator
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Table 14 Simulation results for the dynamic logit model, γ = 0.5, rare events

n T Mean ratio Median ratio SD Rejection rate SE/SD

5% 10%

μy

100 4

ML −1.447 −1.452 0.028 0.914 0.945 0.837

Analytical-BC 2.072 1.228 0.466 0.171 0.245 0.085

PCML-BC 0.727 0.623 0.044 0.001 0.003 2.392

100 8

ML −0.565 −0.591 0.021 0.768 0.840 0.940

Jackknife-BC 0.267 0.196 0.029 0.190 0.268 1.006

Analytical-BC 0.617 0.593 0.025 0.187 0.271 0.786

PCML-BC 0.954 0.932 0.030 0.002 0.008 1.727

500 4

ML −1.421 −1.430 0.013 1.000 1.000 0.860

Analytical-BC 1.026 0.991 0.018 0.180 0.252 0.621

PCML-BC 0.709 0.686 0.019 0.000 0.000 2.581

500 8

ML −0.594 −0.593 0.010 1.000 1.000 0.903

Jackknife-BC 0.273 0.275 0.013 0.510 0.634 0.968

Analytical-BC 0.600 0.603 0.012 0.401 0.492 0.757

PCML-BC 0.910 0.908 0.014 0.002 0.015 1.658

μx

100 4

ML 0.822 0.810 0.010 0.296 0.394 0.924

Analytical-BC 0.332 0.503 0.034 0.905 0.925 0.371

PCML-BC 0.795 0.793 0.010 0.001 0.004 2.434

100 8

ML 0.949 0.949 0.008 0.063 0.125 0.890

Jackknife-BC 1.092 1.088 0.011 0.032 0.077 1.104

Analytical-BC 0.917 0.915 0.008 0.125 0.202 0.850

PCML-BC 0.936 0.933 0.008 0.003 0.013 1.450

500 4

ML 0.816 0.815 0.005 0.836 0.897 0.879

Analytical-BC 0.513 0.551 0.011 1.000 1.000 0.293

PCML-BC 0.800 0.800 0.004 0.046 0.174 2.355

500 8

ML 0.948 0.947 0.004 0.178 0.288 0.895

Jackknife-BC 1.093 1.092 0.005 0.208 0.326 0.995

Analytical-BC 0.920 0.919 0.003 0.449 0.578 0.859

PCML-BC 0.936 0.936 0.003 0.022 0.069 1.440

1000 replications. ML is the plug-in estimator for the dynamic logit model; Jackknife-BC denotes Dhaene and
Jochmans (2015)’s jackknife bias correction; Analytical-BC denotes Fernández-Val (2009)’s analytical bias cor-
rection; PCML-BC denotes the proposed estimator. With n = 100 and T = 4, we removed 11 Monte Carlo draws
for Analytical-BC as convergence failed
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