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Abstract
In this paper, we analyse Okun’s law—a relation between the change in the unem-
ployment rate and GDP growth—using data from Australia, the euro area, the UK
and the USA. More specifically, we assess the relevance of non-Gaussianity when
modelling the relation. This is done in a Bayesian VAR framework with stochastic
volatility where we allow the different models’ error distributions to have heavier-
than-Gaussian tails and skewness. Our results indicate that accounting for heavy tails
yields improvements over a Gaussian specification in some cases, whereas skewness
appears less fruitful. In terms of dynamic effects, a shock to GDP growth has robustly
negative effects on the change in the unemployment rate in all four economies.

Keywords Bayesian VAR · Heavy tails · GDP growth · Unemployment

JEL Classification C11 · C32 · C52 · E32

B Tamás Kiss
tamas.kiss@oru.se

Hoang Nguyen
hoang.nguyen@oru.se

Pär Österholm
par.osterholm@oru.se

1 Division of Economics, School of Business, Örebro University, 701 82 Örebro, Sweden

2 Division of Statistics, School of Business, Örebro University, Örebro, Sweden

3 National Institute of Economic Research, Stockholm, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00181-022-02309-2&domain=pdf
http://orcid.org/0000-0001-8124-328X


2184 T. Kiss et al.

1 Introduction

Okun’s law is a key macroeconomic relation which has become a popular tool for
analysis and forecasting since its introduction almost 60 years ago (Okun 1962).
Typically relating the change in the unemployment rate to GDP growth,1 a fairly large
literature has analysedvarious aspects of it, such as its stability over time, its forecasting
properties or its validity in different countries; see, for example, Knotek (2007), IMF
(2010), Meyer and Tasci (2012), Owyang and Sekhposyan (2012), Rülke (2012),
Zanin and Marra (2012), Huang and Yeh (2013), Valadkhani (2015), Economou and
Psarianos (2016), Ball et al. (2017), Grant (2018), An et al. (2019), Ball et al. (2019)
and Karlsson and Österholm (2020) for some fairly recent contributions. Conclusions
regarding the properties of the relation differ somewhat depending on the country and
period studied, but Ball et al. (2017, p. 1439) nevertheless suggest that Okun’s law
“… is strong and stable by the standards of macroeconomics”.

In this paper, we extend the literature onOkun’s law by investigating the importance
of non-Gaussianity when modelling the relation between the change in the unemploy-
ment rate and GDP growth. We consider two aspects of non-Gaussianity. The first of
these is heavy tails (or “fat tails”)—an issue that takes its starting point in the observa-
tion that many economic variables seem to experience large swings more frequently
than what one would expect if the shocks hitting the economy are drawn from a Gaus-
sian distribution; see, for example, Fagiolo et al. (2008), Ascari et al. (2015), Cross and
Poon (2016), Liu (2019) and Kiss and Österholm (2020). The second aspect is that the
unconditional distribution of many variables appears to be characterised by skewness.
Particular interest has often been paid to GDP growthwith respect to this issue; see, for
example, Neftci (1984), Acemoglu and Scott (1997) and Bekaert and Popov (2019).
The topic of non-Gaussianity appears to have gained interest over time. This is perhaps
not surprising in the light of recent historical events; we have, for instance, seen both
the Global Financial Crisis and the crisis associated with the corona pandemic in less
than 15 years.

Heavy tails and/or skewness in the unconditional distribution of the variables (i.e.
the distributions of the actual data) can potentially be caused by the conditional dis-
tribution of the error terms of the model having these properties.2 Using data from
Australia, the euro area, the UK and the USA, we assess the relevance of such non-
Gaussianity. This is done by estimating bivariateBayesianVARmodelswith stochastic
volatility under three different assumptions regarding the error distributions: (i) Gaus-
sian, (ii) Student’s t and (iii) generalised hyperbolic skew Student’s t, also known as
“skew-t”. Our econometric setting—which has been recently developed by Karlsson
et al. (2021)—allows us to conduct formal model comparison based on the marginal
likelihoods of the estimated models. We can accordingly make statements regarding

1 Another way to specify the relation is to connect the unemployment rate (or unemployment gap) to the
output gap.
2 Time variation in the variance, or randomness (which is usually modelled as a separate error term for
the variance process), can also result in heavier-than-Gaussian tails in the unconditional distribution of the
variables, even if error terms are Gaussian; we account for these effects by estimating all our models with
stochastic volatility. Finite sample sizes can also cause heavy tails and skewness in the data, even if the data
generating process is a homoscedastic Gaussian VAR model.
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howwell the differentmodels fit the data based on a formal statistical criterion. By con-
ducting this analysis, we contribute to the literature in two distinctways. First, wemake
a general contribution concerning the importance of modelling the non-Gaussianity of
the unconditional distribution of macroeconomic variables. Second, we provide inter-
national empirical evidence concerning Okun’s law in a state-of-the-art econometric
setting.3

Our key results are the following: We find that the unconditional distributions of
both variables for all four economies exhibit non-Gaussianity. Our main analysis is
conducted using quarterly data up until 2019Q4, that is, we do not include data from the
corona pandemic. The estimatedmodels using these data suggest that allowing for error
terms with heavy tails yields substantial improvements over a Gaussian specification
for Australia and the euro area. Also for the USA is a t-distribution the preferred
specification, but its benefits relative to a Gaussian distribution are minor judging by
the marginal likelihoods of the estimated models. For the UK, the specification with
Gaussian error terms is the preferred specification. In no case is the model with skew-t
error terms supported by the data, and we conclude that modelling skewness appears
less fruitful in this context.

In order to establish how robust our findings are, we also perform some addi-
tional analysis. This consists of two parts. We first conduct an out-of-sample forecast
exercise. Using the log predictive score as an evaluation measure, we assess the fore-
casting properties of the differentmodels. These results are somewhatmore ambiguous
but nevertheless indicate that in some cases—primarily for the euro area and the
USA—there might be benefits to employing a t-distribution. Second, we also esti-
mate our models with data up until 2021Q2 to see how the large swings associated
with the corona crisis affect our results. Results from this exercise indicate—not sur-
prisingly—that support for non-Gaussianity strengthens when these observations are
added. Regarding the dynamic relationship between the variables, we find—regard-
less of which period we study—that Okun’s law prevails: A shock to GDP growth has
robustly negative effects on the change in the unemployment rate in all four economies.

The rest of this paper is organised as follows: In Sect. 2, we describe the data we use
in our analysis. The econometric framework is described in Sect. 3. We present our
results—from both our main analysis and the robustness checks—in Sect. 4. Finally,
Sect. 5 concludes.

2 Data

Data onGDPgrowth (gt) and the change unemployment rate (�ut) are shown in Fig. 1;
all data were sourced from Macrobond.4 The samples we use for the four economies

3 The fact that Okun’s law prescribes an economic relationship between two well-defined quantities allows
us to rely on bivariate specifications of the VARs—that is, a low dimensional setup. Hence, we do not need
to address issues associated with large Bayesian VAR models, such as sparsity or volatility specifications
in high dimensions; see, for example, Bańbura et al. (2010), Chan (2021) and Gruber and Kastner (2022).
4 GDP growth is given as the percentage change in seasonally adjusted real GDP from the previous quarter,
that is, it is given as gt = 100

(
Yt/Yt−1 − 1

)
, where Yt is seasonally adjusted real GDP at time t. The

change in the seasonally adjusted harmonized unemployment rate is given in percentage points.
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Fig. 1 Data. Note: Per cent on vertical axis for GDP growth. GDP growth is given as the percentage change
in seasonally adjusted real GDP from the previous quarter. Percentage points on vertical axis for the change
in the seasonally adjusted harmonised unemployment rate. Vertical green dashed line indicates the end of
the sample for our main analysis. Source: Macrobond

vary with respect to their starting point due to availability of data, but all have the
same end date. In our main analysis, the samples are 1978Q3–2019Q4 for Australia,
1995Q2–2019Q4 for the euro area, 1971Q3–2019Q4 for theUK and 1948Q2–2019Q4
for the USA. We do not include data from 2020 and later since the corona pandemic
induced movements in the variables which were so large that they maybe should be
considered outliers; this is clearly illustrated in Fig. 1. As can be seen, particularly
the swings in GDP growth associated with the corona pandemic were of a magnitude
which had never been seen before in the samples considered here. This was also the
case for the change in the unemployment rate in the USA. However, for Australia,
the euro area and the UK, the change in the unemployment rate was obviously large
but not extreme by historical standards. We assess the importance of excluding the
corona-related observations in the robustness analysis in Sect. 4.2.2.
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Table 1 Descriptive statistics and Jarque–Bera test statistics

Mean Standard
deviation

Skewness Excess
kurtosis

Jarque–Bera Start End

Australia

gt 0.773 0.751 − 0.053 1.151 10.060 1978Q3 2019Q4

�ut − 0.007 0.300 1.645 6.219 353.491 1978Q3 2019Q4

Euro area

gt 0.423 0.602 − 0.563 8.673 333.042 1995Q2 2019Q4

�ut − 0.034 0.213 1.343 3.128 74.351 1995Q2 2019Q4

UK

gt 0.539 0.893 0.265 5.611 264.928 1971Q3 2019Q4

�ut − 0.001 0.256 0.881 1.545 45.976 1971Q3 2019Q4

USA

gt 0.781 0.936 − 0.017 1.602 31.968 1948Q2 2019Q4

�ut − 0.000 0.381 1.256 3.311 210.846 1948Q2 2019Q4

gt is GDP growth, which is given as the percentage change in seasonally adjusted real GDP from the
previous quarter. �ut is the change—given in percentage points—in the seasonally adjusted harmonised
unemployment rate. The critical value at the 5% level of the Jarque–Bera test is 5.99

In order to assess potential non-Gaussianity of the data, we present some key
descriptive statistics in Table 1. We also show histograms which illustrate the uncon-
ditional distributions of the variables in Fig. 8 in Appendix. The unconditional
distribution of the variables is in all cases associated with excess kurtosis. Regard-
ing skewness, this seems fairly modest for GDP growth; it is negative in three out of
four economies, but for both Australia and the USA, it is quite close to zero. Turning
to the skewness of the change in the unemployment rate, this is found to be positive
and more substantial in all four economies. The Jarque–Bera test strongly rejects nor-
mality in all cases. This provides an initial indication that a departure from a Gaussian
distribution might prove useful when modelling the Okun’s law relation empirically.

3 Econometric framework

We rely on bivariate BayesianVARmodelswith stochastic volatility for our analysis of
Okun’s law.5 In that sense, our analysis is closely related to Karlsson and Österholm’s
(2020) analysis onUSdata.UnlikeKarlsson andÖsterholm though,wedonot allow for
time variation in parameters and, importantly, we have flexible error term distributions
that allow for heavy tails and skewness. Denoting yt = (gt ,�ut )′ for t = 1, . . . , T ,

5 We use models with stochastic volatility since heteroskedasticity has been shown to be a relevant feature
whenmodellingmacroeconomic time series. In a VAR setting, important early contributions include Cogley
and Sargent (2005) and Primiceri (2005). Recently Karlsson and Österholm (2020) pointed out that models
with constant shock volatility had substantially lower marginal likelihood than models with stochastic
volatility when modelling Okun’s law in the USA.
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we have

yt = c+ B1 yt−1 + · · · + B p yt−p + et , (1)

where c is a vector of intercepts and B1 to Bp include the coefficients describing the
dynamics of the VAR. We set lag length to p = 1 for Australia and the euro area and
p = 2 for the UK and the USA.6 The stochastic representation of the error term et
can be written in terms of a variance–mean mixture of normal distributions so that the
marginal distribution of et follows a multivariate skew-t distribution (McNeil et al.
2015),

et = (wt − w)γ + w
1/2
t A−1H1/2

t εt , (2)

where the lower triangular matrix A with unit diagonal contains the structural param-
eters of the VAR model and wt is a scalar independent mixing variable drawn from
an inverse-gamma distribution with identical scale and shape parameters equal to ν

2 ,
where ν is the degree of freedom and w = ν/(ν − 2), γ is the vector of skewness
parameters and εt ∼ N (0, I). The matrix H t = diag(h1t , h2t ) contains the stochastic
volatilities of the variables, whose time-series evolution is described as

log(hit ) = log(hit−1) + σiηi t , (3)

for i = 1, 2 with σ i > 0 and ηi t ∼ N (0, 1). Finally, when wt , Ht and εt are mutually
independent, the marginal distribution of et is a multivariate skew-t distribution with
zero vector mean, scale matrix � t = A−1H t A′−1, skewness vector γ , and degrees of
freedom ν. The distribution in (2) allows for both leptokurtic and skewed distributions
even after filtering out stochastic volatility. While the mixing variable wt captures the
high-frequency shock in mean and variance, the stochastic volatility accounts for the
low-frequency shocks.

Our proposed specification nests several important models as special cases. Setting
γ = 0, we get the Bayesian VAR model with stochastic volatility and Student’s t-
distributed error terms proposed by Ni and Sun (2005), which has been a workhorse
used in empirical modelling of heavy-tailed error terms in the Bayesian VAR context;
see, for example, Cross and Poon (2016), Chiu et al. (2017), Chan (2020) and Carriero
et al. (2021). TheGaussian distribution is also nested in this specification (γ = 0, ν →
∞). We accordingly consider three Bayesian VAR models with stochastic volatility
for each of the economies: the benchmark Gaussian, the Student’s t and the skew-t.

Bayesian estimation requires specifying prior distributions for the parameters. We
use a diffuse normal prior (with zero mean and variance 10) for the free element
of the lower triangular matrix A. We impose a Minnesota prior for the regression
coefficients (c and B) with overall shrinkage l1 = 0.2 and cross-variable shrinkage l2

6 Lag length has been determined by comparing the marginal likelihoods of VARs with stochastic volatility
and Gaussian disturbances; see Table 6 in Appendix. If lag length instead were to be based on the Schwarz
(1978) information criterion applied to VARs with homoscedastic and Gaussian disturbances, estimated
with maximum likelihood, one would instead conclude that a lag length of p = 1 is optimal for all four
economies.
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= 0.5 (Koop and Korobilis 2010).7 The priors for the rest of the parameters are given
by ν ∼ G(2, 0.1) for ν > 4, γi ∼ N (0, 1) for i = 1, 2, and σ 2

i ∼ G(0.5, 0.5), where
G(a, b) is a gamma distribution with shape and rate parameters a and b (Kastner and
Frühwirth-Schnatter 2014).

As the error term is written in terms of a variance–mean mixture distribution, it is
straightforward to make inference on the model parameters based on the Gibbs sam-
pler of the VAR model with Gaussian stochastic volatility; see details in the online
appendix of Karlsson et al. (2021). For example, in the VAR model with skew-t dis-
tribution and stochastic volatility, the conditional posterior distribution of parameters
(c, B, γ ) is a multivariate normal distribution (Clark 2011). The conditional posterior
distribution of the parameter in the lower triangular matrix A is also a normal dis-
tribution (Cogley and Sargent 2005), and that of the parameters σ 2

i is a generalised
inverse Gaussian distribution (Hörmann and Leydold 2014). We sample the stochastic
volatility following Kim et al. (1998) and Carter and Kohn (1994). We sample the
mixing variable wt based on the generalised inverse Gaussian distribution (Hörmann
and Leydold 2014) and sample the degrees of freedom ν based on an adaptive random-
walk Metropolis–Hastings algorithm (Roberts and Rosenthal 2009 and Karlsson et al.
2021).

In order to compare different specifications of the VAR model with stochastic
volatility, we calculate the marginal likelihood based on the cross-entropy method of
Chan and Eisenstat (2018). Themarginal likelihood provides us with ameasure of how
well the model and the priors agree with the data, where the model with the highest
marginal likelihood is the one preferred by the data. The marginal likelihood requires
a high-dimensional integration over the fixed parameters θ = (c, B, γ , A, σ 2, ν) and
the latent states ϕ= (h1:T ),

p
(
y1:T

) = ∫ p( y1:T |θ)p(θ)dθ ≈
∑ p( y1:T |θ)p(θ)

f (θ)
,

p( y1:T |θ) = ∫ p( y1:T |ϕ, θ)p(ϕ|θ)dϕ ≈
∑ p( y1:T |ϕ, θ)p(ϕ|θ)

g(ϕ)
.

Following Chan and Eisenstat (2018), we use two-stage importance sampling to cal-
culate the marginal likelihood. In the first stage, we use the cross-entropy method
to learn the proposal distribution of the fixed parameters f (θ ) based on the posterior
samples. Then, we obtain N = 20,000 proposal samples from f (θ ) and calculate the
integrated likelihood p( y1:T |θ) for each sample of θ based on an inner importance
sampling loop. The proposal distribution of the latent states g(ϕ) is based on a sparse
matrix representation. For further details concerning posterior inference and marginal
likelihood calculations, see Karlsson et al. (2021).

7 The Minnesota prior, although a workhorse assumption in empirical modelling, has been pointed out to
be relatively inflexible. Recently, more flexible alternatives have been proposed in the literature; see, for
example, Huber and Feldkircher (2019), Follett and Yu (2019) and Kastner and Huber (2020). However,
these alternative priors are mostly designed to aid in case of VAR models with many variables. Since our
specification is only bivariate, the use of these more flexible prior specifications is largely unwarranted and
therefore we opt for the Minnesota prior.
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4 Results

We initially present results based on ourmain sample, that is,where the last observation
of each sample is 2019Q4. In Sect. 4.2, we present sensitivity analysis related to the
highly volatile period associated with the corona pandemic.

4.1 Main results

Our main results are based on in-sample estimation of the Bayesian vector autore-
gressions proposed in Sect. 3. To keep the focus on the role of non-Gaussianity, Table
2 presents parameter estimates (posterior means) of the parameters governing non-
Gaussianity in the distribution of the error term. In particular, the scalar degrees of
freedom ν govern the heaviness of the tail of the distribution, where a lower value of ν
indicates a heavier tail. The vector γ contains the variable-specific asymmetry param-
eters for the two variables. A positive asymmetry value means that the distribution

Table 2 Log marginal
likelihoods and estimated key
parameters

Gaussian Student’s t Skew-t

Australia

LML − 170.37 − 168.06 − 170.95

ν – 14.34 26.42

γ g – – 0.10

γ �u – – 0.15

Euro area

LML − 3.44 1.67 − 0.59

ν – 11.01 23.38

γ g – – 0.34

γ �u – – 0.04

UK

LML − 83.89 − 84.09 − 87.26

ν – 27.93 38.35

γ g – – 0.13

γ �u – – − 0.03

USA

LML − 317.01 − 316.30 − 317.83

ν – 24.53 29.46

γ g – – − 0.28

γ �u – – 0.14

Last observation of each sample is 2019Q4. Log marginal likelihoods
(LMLs) are calculated using the cross-entropy methods by Chan and
Eisenstat (2018). ν is the degrees of freedom. γ g and γ �u are skewness
parameters for GDP growth and the change in the unemployment rate,
respectively
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of the error term has a positive skew. Furthermore, Table 2 shows the log marginal
likelihoods of the estimatedmodels. As described in the previous section, logmarginal
likelihoods can be considered as a summary measure, where a higher log marginal
likelihood value suggests that the given model fits the data better.

Starting with the log marginal likelihoods, they suggest that it is beneficial to take
heavy tails into account for Australia, the euro area and the USA. For Australia, the
support for the Student’s t-distribution is “positive” against both other models when
we use the scale of two times the difference in the log marginal likelihood and the
terminology of Kass and Raftery (1995, p. 777). For the euro area, the support for the
Student’s t-distribution is “positive” against the skew-t distribution and “very strong”
against the Gaussian. For the USA, the support for the Student’s t-distribution is “not
worth more than a bare mention” when compared with the Gaussian and “positive”
against the skew-t. Turning to the UK, we find that the Gaussian model is preferred.
The support for it is “not worth more than a bare mention” though when compared
with the t-distribution but “very strong” relative to the skew-t.

These results are also reflected in the estimates of the parameters. For the models
with a Student’s t-distribution, the estimated degrees of freedom are relatively low for
Australia (14.34) and the euro area (11.01) signalling modestly heavy tails of the error
terms. For the UK and the USA, the estimated degrees of freedom are substantially
higher (27.93 and 24.53, respectively); with such high degrees of freedom, the dis-
tribution of the error terms is empirically indistinguishable from the Gaussian, which
is also reflected in the log marginal likelihoods. For the skew-t models, the degrees
of freedom parameters are higher for all four economies; hence, distributions become
less heavy-tailed. It suggests that allowing for asymmetry helps capture some of the
larger movements in the variables. Looking at the asymmetry parameter γ , we see a
positive skewness in most variables; the only exceptions are the change in the unem-
ployment rate for the UK and GDP growth for the USA, where the estimated skewness
of the error terms is negative. While the sign of parameter γ pins down the direction
of the asymmetry, the magnitude of the skewness of the error terms depends on both
the asymmetry parameter—which is constant over time—and the stochastic volatility
(see discussions in Karlsson et al. 2021). Figure 9 in Appendix shows the skewness of
the error term for each variable over the sample periods. Looking at this figure, we can
see that the absolute value of the skewness parameter is well below one in all cases for
all periods. This is small in magnitude; see, for example, Mallery and George (2000).
Hence, the evidence in favour of allowing for skewness is weak.

We conclude that it seems reasonable to rely on a Student’s t-distribution when
modelling Australia and the euro area. For the UK and the USA, both the Gaussian
and Student’s t-distribution seem like acceptable choices.

Having focused on the question of error distributions so far, we next attract our
attention to a key aspect of Okun’s law in this framework, namely how the change in
the unemployment rate responds to an unexpected increase in GDP growth; the size
of the shock is one standard deviation (given as the square root of the estimate of
h1t). These impulse-response functions are presented in Fig. 2. For consistency—and
comparability—we have used the model based on Student’s t-distributed errors for all
four economies when conducting this analysis (even though it was not the best model
for the UK).
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Australia Euro area

United Kingdom United States

Fig. 2 Impulse-response functions. Response of change in the unemployment rate to a shock to GDP growth.
Note: The impulse-response functions are based on themodel with Student’s t-distributed errors. Percentage
points on the vertical axis. Horizon is given in quarters on the horizontal axes. The size of the shock is one
standard deviation

As can be seen, the response is negative contemporaneously and remains negative
(or zero) over the entire ten-quarter horizon, in all four economies. We note though
that the effect of the shock appears somewhat longer lasting in the euro area and the
UK. In the light of higher GDP growth than expected, wewould accordingly revise our
forecast of the unemployment rate downwards. This is in line with our expectations
given previous research on Okun’s law.

Figure 2 does not give any indication regarding the uncertainty associated with the
impulse-response functions. In order to illustrate this, we show the impulse-response
functions for all economies at 2019Q4 togetherwith the 90%credible interval in Fig. 3.
At short horizons, the interval does in no case cover the zero line and we conclude
that there is indeed a negative effect on the change in the unemployment rate from a
shock to GDP growth.
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Fig. 3 Impulse-response functions at 2019Q4. Response of change in the unemployment rate to a shock to
GDP growth. Note: The impulse-response functions are based on the model with Student’s t-distributed
errors. Percentage points on the vertical axis. Horizon is given in quarters on the horizontal axes. Coloured
band gives 90% credible interval. The size of the shock is one standard deviation

Returning to Fig. 2, it is striking how themagnitude of the impulse response changes
considerably over the sample period. Since the regression parameters of the model
are constant, these changes are solely attributed to stochastic volatility. Since this
is another important feature of the employed modelling framework, we present the
posterior mean of the time-varying volatility of the shocks (i.e. the process hit) to
both variables in Fig. 4. In order to illustrate the difference between a Gaussian and
a Student’s t-distribution, we provide the estimated stochastic volatilities under both
assumptions.

Regarding the time-varying volatilities, the patterns obviously differ across
economies and variables. However, some features tend to be common. For exam-
ple, except for Australian GDP growth, there is an increase in volatility around the
Global Financial Crisis in 2008. From a modelling perspective, we also note that
there is substantial time variation in the estimates of the volatilities. This shows that
it is relevant to use models which account for heteroskedasticity, such as the models
employed here.
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Fig. 4 Stochastic volatility estimates fromVARmodels.Note: The red solid line gives the stochastic volatility
under the assumption of a Student’s t-distributionwith the coloured bands showing the 50%credible interval.
The black dashed line gives the volatility under the assumption of a Gaussian distribution

The volatility estimates based on a Gaussian and a Student’s t-distribution show
overall similar patterns, but substantial differences can also be observed in some cases.
For example, under the assumption of a Student’s t-distribution the volatility of the
change in the unemployment rate in Australia is clearly smoother, and the overall
level of the volatility is lower in the euro area. Further, the spikes in output growth
volatility in crisis periods are more pronounced in the euro area if we use Gaussian
error terms. This latter observation can be attributed to the fact that, in the absence of
flexible error distributions, the effect of larger swings in the variables appears through
increased volatility. However, in line with what we would expect based on the results
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presented in Table 2, we can also see that some differences are minor. For the UK
and the USA—where the marginal likelihoods of the two models were quite similar
and the estimated degrees of freedom of the Student’s t-distribution high for both
variables—estimated volatilities are similar for both GDP growth and the change in
the unemployment rate.

4.2 Robustness

In order to assess the robustness of the above findings, we next conduct some additional
analysis. There are two aspects that we will look at more closely. The first of these
is the forecasting properties of the different models; the second relates to the sample
period employed.

4.2.1 Out-of-sample forecasts

Our analysis so far has been conducted in-sample. In this sub-section, we will instead
investigate the out-of-sample forecasting performance of the different models using
the log predictive score of the models. The purpose of this is twofold. First, it can be
seen as a validation tool; if the in-sample and out-of-sample results point in the same
direction, this implies that the evidence is stronger. Second, it gives us an opportunity
to find out how the model evidence evolves over time, for which the cumulative Bayes
factor based on log predictive scores (Geweke and Amisano 2010) is particularly
suited.

The forecast exercise is conducted the following way for Australia, the UK and the
USA: We first estimate the competing models using data from the beginning of the
sample until T0 = 1999Q4.8 Forecasts for horizons one, two, three, four and eight
quarters are then generated, and the log predictive density for the forecasts of each
model and horizon calculated. We then extend the sample one quarter, re-estimate the
models, generate new forecasts and again calculate the log predictive density. This
continues until the sample employed for estimation ends in T1 = 2017Q4. Since the
full sample for the euro area is substantially shorter than that for the other economies,
we instead use the sample 1995Q2 to 2009Q4 for the first estimation; we then proceed
in a similar fashion as for the other economies but get fewer forecasts that can be
evaluated.9 Following Karlsson et al. (2021), the log predictive score (LPS) of the
variable i at the horizon h is computed as the average of the log predictive density,

LPSi,h = 1

T1 − T0 + 1

T1∑

t=T0

log p
(
yoi,t+h | y1:t

)
,

8 The sample starts in 1978Q3 for Australia, 1971Q3 for the UK and 1948Q2 for the USA; see also Table
1.
9 It can be noted that we do not use real-time data for this exercise. Given that our purpose here is general
model comparison—in contrast to a formal analysis of how the models would have performed in a real time
forecasting context—employing the most recent vintage should suffice.
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where p
(
yoi,t+h | y1:t

)
is the h-step ahead posterior predictive density function evalu-

ated at the realisation of the variable i.
Our results are summarised in two ways. In Table 3, we present the LPS for all

economies and forecast horizons. Figures 10, 11, 12, and 13 in Appendix present

Table 3 Log predictive score and difference in log predictive score

1Q 2Q 3Q 4Q 8Q

Panel (a) GDP growth

Australia

Gaussian − 0.666 − 0.656 − 0.666 − 0.668 − 0.632

Student’s t − 0.002 − 0.005 − 0.002 − 0.003 0.003

Skew-t − 0.004 − 0.006 − 0.004 − 0.003 0.002

Euro area

Gaussian − 0.483 − 0.506 − 0.582 − 0.654 − 0.681

Student’s t 0.026* 0.013 0.021 0.030* 0.025

Skew-t 0.022 − 0.016 − 0.019 − 0.006 − 0.018

UK

Gaussian − 0.409 − 0.568 − 0.704 − 0.763 − 0.725

Student’s t − 0.003 0.004 0.016 0.011 − 0.001

Skew-t − 0.012 − 0.015 − 0.001 − 0.007 − 0.032

USA

Gaussian − 0.861 − 0.884 − 0.948 − 0.971 − 0.901

Student’s t 0.010* 0.010 0.012* 0.014* 0.016*

Skew-t 0.002 0.006 0.011 0.016* 0.011

Panel (b) Δ Unemployment rate

Australia

Gaussian 0.235 0.210 0.174 0.170 0.179

Student’s t 0.014 − 0.003 − 0.003 − 0.004 0.015

Skew-t 0.002 − 0.009 − 0.010 − 0.007 0.008

Euro area

Gaussian 0.618 0.389 0.183 0.093 − 0.029

Student’s t 0.002 0.004 0.008 0.014 0.023

Skew-t − 0.006 0.005 0.014 0.005 0.009

UK

Gaussian 0.393 0.213 0.117 0.024 0.047

Student’s t 0.003 0.000 − 0.003 − 0.007 − 0.009

Skew-t 0.002 − 0.003 − 0.006 − 0.008 − 0.014

USA

Gaussian 0.072 − 0.138 − 0.301 − 0.356 − 0.296

Student’s t 0.001 0.005 0.026 0.015* 0.011
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Table 3 (continued)

1Q 2Q 3Q 4Q 8Q

Skew-t 0.011* 0.027* 0.039 0.045* 0.029*

We report the LPS of the benchmark VAR model with Gaussian stochastic volatility during the out-of-
sample period 1999:Q4–2017:Q4 (73 recursive estimations) for each economy, except the euro area where
the out-of-sample period is 2009:Q4–2017:Q4 (33 recursive estimations). The difference inLPS is computed
as the LPS of the alternative specifications minus the LPS of the benchmark model. The entries greater
than 0 indicate that the given model is better. * and † denote that the corresponding model significantly
outperforms the benchmark and the Student’s t at the 5% level based on the one-sided Diebold andMariano
(1995) test where the standard errors of the test statistics are computed with the Newey–West estimator
(Clark 2011)

cumulative log Bayes factors based on the predictive score for the one-quarter-ahead
forecast. The cumulative log Bayes factors show the effect of an individual observation
to the evidence in favour of one model over another; see the discussion in Geweke and
Amisano (2010). Note that the evidence is cumulated from time t = T0 + 1 (whereas
the full sample is used when calculating the log marginal likelihood). Figures 10 and
11 show comparisons between the Gaussian model and the model with a Student’s t-
distribution, and Figs. 12 and 13 showcomparisons between themodelwith a Student’s
t-distribution and a skew-t distribution.

Turning first to Table 3, we note that significant improvements in the log predictive
score of GDP growth forecasts are obtained for the Student’s t distribution in the euro
area and the USA, while improvements are modest to non-existent in Australia and
the UK. We also see that the skew-t model performs worse than the Student’s t in all
cases except for four quarters ahead in the USA. For the change in the unemployment
rate, advantages of allowing for non-Gaussianity also concentrate on the euro area and
the USA, with significant improvements only appearing for the latter. Interestingly,
the change in the unemployment rate in the USA benefits from being modelled with
skewness. These results overall confirm our in-sample finding that non-Gaussianity
matters for modelling the Okun’s law relationship and point towards the importance
of heavy tails, in particular for modelling GDP growth.

Next, we turn to the cumulative log Bayes factors based on the predictive score
for the one-quarter-ahead forecast presented in Appendix. These provide information
regarding how the model evidence evolves over time. Looking first at Figs. 10 and
11—which provide comparisons between the Gaussian model and the Student’s t
specification—the panels forGDPgrowth suggest that improvements overGaussianity
are obtained for the euro area largely continuously for the evaluated period and for
the USA after the Global Financial Crisis. Also for Australia does the Student’s t
model perform better after the financial crisis but it can be noted that leading up to that
point in time, the Gaussian model performed better; seen over the entire out-of-sample
period, the Gaussian model performs better, as shown by the negative value for the
cumulative log Bayes factor at the end of the sample. For the UK, the pattern is not
very clear. Turning to the change in the unemployment rate, we find that the Student’s
t model performs better in all four economies when looking at the full sample, though
the differences are small in both the euro area and the USA. We also note that patterns
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over time are less easily spotted; an exception is the change in the US unemployment
rate where theGaussianmodel tended to perform better up until 2009 and the Student’s
t model thereafter.

Looking at the cumulative log Bayes factors between the Student’s t and the skew-t
model in Figs. 12 and 13, we can see that based on the full evaluation period, in most
cases the skew-t model is worse than the one based on Student’s t; the only exception
to this is the change in the unemployment rate for the USA, thereby confirming the
log predictive score results in Table 3. The change in the US unemployment rate also
provides the most stable pattern in terms of skew-t outperforming Student’s t most
of the time (as shown by the relatively steady upward trend in the graph). Regarding
patterns over time, we also find that for GDP growth, the Student’s t model tends to
perform better in Australia and the UK after the Global Financial Crisis judging from
the decreasing cumulative log Bayes factors during this period. However, leading up
to the crisis the skew-t model performed somewhat better in both countries.

Summing up, we find that our results—while clearly not pointing unambiguously
in one direction—indicate that in some cases, mainly for the euro area and the USA,
there might be benefits to employing a t-distribution, while the usefulness of a skew-t
distribution in an out-of-sample context continues to be limited and concentrates on
the unemployment rate in the USA.

4.2.2 Including observations from the corona pandemic

Our results so far indicate that for some economies, there might be improvements to be
made when it comes to modelling Okun’s law if error terms are assumed to be drawn
from a Student’s t-distribution. However, our analysis has been based on a sample
which excludes the corona pandemic and the economic crisis and the recovery which
followed it. As pointed out in Sect. 2, the swings in the variables associated with this
period were very large—so large that they perhaps should be considered outliers; see,
for example, the discussion in Carriero et al. (2021). Issues associated with modelling
the corona pandemic have recently been discussed in the literature; see, for example,
Bobeica and Hartwig (2021), Carriero et al. (2021) and Hartwig (2021). Seeing that
these data are something that empirical macroeconomists will have to handle in the
future, we next assess the effects that they have in the context of the analysis in this
paper.

We accordingly expand our sample so that it includes data up until 2021Q2 to see
how the large swings associated with the corona crisis affect our results. In Table 4, we
first provide descriptive statistics and results from the Jarque–Bera test for normality.
The large movements in the variables around the corona pandemic affect higher-order
moments of the unconditional distribution. The standard deviation of the variables
increases somewhat comparedwith the baseline results inTable 1.Anegative skewness
of GDP growth and a positive skewness of the change in the unemployment rate also
become salient features of the data in all economies. The most prominent difference
compared with the baseline sample, which excludes the corona observations, is found
in the excess kurtosis of the variables which shoots up by including observations from
2020 and 2021. The increase is most striking for GDP growth in all economies and the
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Table 4 Descriptive statistics and Jarque–Bera test statistics—sample including corona pandemic

Mean Standard
deviation

Skewness Excess
kurtosis

Jarque–Bera Start End

Australia

gt 0.757 0.994 − 2.518 20.170 3179.736 1978Q3 2021Q2

�ut − 0.006 0.334 1.724 6.935 442.994 1978Q3 2021Q2

Euro area

gt 0.388 1.833 − 0.014 33.988 5268.788 1995Q2 2021Q2

�ut − 0.027 0.231 1.590 3.899 116.631 1995Q2 2021Q2

UK

gt 0.525 2.106 − 1.684 59.661 30,388.72 1971Q3 2021Q2

�ut 0.003 0.258 0.854 1.359 41.093 1971Q3 2021Q2

USA

gt 0.770 1.165 − 1.310 19.262 4686.325 1948Q2 2021Q2

�ut 0.008 0.717 6.712 96.729 118,071.7 1948Q2 2021Q2

gt is GDP growth. �ut is the change in the unemployment rate. The critical value at the 5% level of the
Jarque–Bera test is 5.99

change in the unemployment rate in the USA, in which cases excess kurtosis becomes
six to ten times larger.

Estimation results are also impacted by the strong increase in excess kurtosis. In
Table 5, we present the log marginal likelihoods and estimated key parameters from
the models when relying on the sample including the observations during the corona
pandemic, that is, up until 2021Q2. Considering the log marginal likelihoods first, it
can be seen that the Student’s t-distribution is preferred in three cases, namely for
Australia, the UK and the USA. The strength of the evidence varies though; compared
with the Gaussian model, we find that it is “very strong” for Australia and the USA but
“not worth more than a bare mention” for the UK. For the euro area, the skew-t model
is now the preferred one and the support in favour of it is “very strong” and “strong”
when compared with the models assuming a Gaussian and a Student’s t-distribution,
respectively. As a general tendency, we see that the skew-t model is doing much better
in this sample; while it is the preferred model only for the euro area, one should recall
that for the sample excluding the corona pandemic, it is always the worst model (Table
2). Not surprisingly, we also see that the support for the Gaussianmodel declines when
using the sample including the corona pandemic.

Turning to the estimated degrees of freedom and skewness parameters, we also see
an effect of the pandemic observations. The degrees of freedom radically decrease
for Australia and the USA if one considers the model with Student’s t-distribution.
Interestingly, for the USA it remains low (signalling very heavy tails) even when
allowing for skewness. In contrast, allowing for skewness in the case of Australia
helps capturing large movements as the degrees of freedom parameter jumps up for
the skew-t specification. For the other two economies, the change in the estimated
degrees of freedom is less dramatic. The skewness parameters for each country also
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Table 5 Log marginal
likelihoods and estimated key
parameters—sample including
corona pandemic

Gaussian Student’s t Skew-t

Australia

LML − 213.22 − 206.05 − 210.48

ν – 5.98 27.38

γ g – – 0.84

γ �u – – 0.21

Euro area

LML − 50.24 − 47.52 − 43.25

ν – 15.95 30.82

γ g – – − 1.04

γ �u – – 0.27

UK

LML − 131.20 − 130.10 − 130.92

ν – 23.12 35.23

γ g – – 0.48

γ �u – – − 0.12

USA

LML − 397.90 − 376.97 − 384.72

ν – 4.51 4.72

γ g – – − 0.02

γ �u – – 0.02

Last observation of each sample is 2021Q2. Log marginal likelihoods
(LMLs) are calculated using the cross-entropy methods by Chan and
Eisenstat (2018). ν is the degrees of freedom. γ g and γ �u are skewness
parameters for GDP growth and the change in the unemployment rate,
respectively

change somewhat (they tend to increase), but they retain the same sign as in the baseline
sample. The only exception is the skewness of GDP growth in the euro area where
the point estimate of the sign of the skewness parameter switches from positive to
negative.

Another way of illustrating the influence of the observations associated with the
corona pandemic is by looking at the posterior distribution of the estimated degrees
of freedom for the model based on Student’s t-distributed error terms. This is shown
in Fig. 5. First, we can note that the posterior distributions in the euro area and the
UK change only in a fairly moderate manner. For the euro area, the sample including
corona actually puts somewhat more weight on higher values of degrees of freedom,
that is, the tails become less heavy. The changes are more drastic for Australia and the
USA though, where the posterior distribution becomes heavily concentrated at low
values (which is also reflected in the radically decreased point estimate which is taken
to be the posterior mean).

As established above, including the corona pandemic has implications for which
model is preferred by the data. It also tends to affect the estimated volatilities of the
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Fig. 5 Posterior distributions of the estimated degrees of freedom—samples including and excluding the
corona pandemic. Note: The blue density gives the degrees of freedom based on data which do not include
the corona pandemic, that is, the samples end in 2019Q4. The yellow density gives the degrees of freedom
based on data which do include the corona pandemic, that is, the samples end in 2021Q2. All densities are
based on the model with Student’s t-distributed error terms

models in a substantial manner, particularly near the end of the sample. Figure 6 shows
the estimated log volatilities from themodels.We see that inmost cases there is a sharp
jump in volatility, during 2020 and 2021, often reaching previously unprecedented
levels. Note, however, that using our baseline sample ending in 2019, the volatility
estimates were on a stable low level or slightly on the way down in most cases,
signalling tranquil times. This drastically changes when the observations from 2020
and 2021 are included: Not only does the volatility spike during these latter years,
but in order to match the high volatility during the crisis associated with the corona
pandemic, volatility is also on the rise even a few years before that during the second
half of the 2010s. Furthermore, for the USA—where the evidence on heavy tails
is also the strongest in the longer sample—we also see that using the Student’s t-
distribution allows the model to capture the large movements around the end of the
sample. Using a non-Gaussian specification allows stochastic volatility for both the
change in unemployment rate and GDP growth to remain at a modest level (in contrast
to the large upward jump in the Gaussian case). A similar effect can be observed for
Australia regarding the change in unemployment rate. The volatility estimates for the
euro area and the UK are almost identical regardless of the distributional assumption,
which is in line with the fact that the Student’s t-distribution is less useful for these
economies.

Finally, we also look at the impulse-response functions of the change in the unem-
ployment rate to a shock toGDPgrowth; for comparabilitywith themain specification,
we continue to use the model based on a Student’s t-distribution. We present the
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Fig. 6 Log volatility estimates from VAR models—samples including and excluding the corona pandemic.
Note: The red (blue) solid line gives the logarithm of the volatility of the variables using a model with
Gaussian (Student’s t) error terms up to 2021Q2, that is, including the pandemic period. The orange (green)
dashed line gives the logarithm of the volatility of the variables using a model with Gaussian (Student’s
t) error terms up to 2019Q4, that is, excluding the pandemic period

impulse-response functions at 2021Q2, that is, the end of the extended sample. These
are given in Fig. 7. The shape of the impulse responses remains similar to the ones
reported in Fig. 3. We still find that all the impulse responses start in the negative
region and remain significantly negative for several quarters. It can be noted though
that the magnitudes are quite different to those in Fig. 3. This is of course only to be
expected given the much higher volatility in 2021Q2.

To sum up, we conclude that including the corona pandemic has non-negligible
effects on the results. The large swings in the variables during this time generally
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Fig. 7 Impulse-response functions at 2021Q2. Response of change in the unemployment rate to a shock to
GDP growth—sample including corona pandemic. Note: The impulse-response functions are based on the
model with Student’s t-distributed errors. Percentage points on the vertical axis. Horizon is given in quarters
on the horizontal axes. Coloured band gives 90% credible interval. The size of the shock is one standard
deviation

result in stronger evidence against Gaussianity. This is supported by the radically
decreasing degrees of freedom for the distribution of the error terms for Australia (for
the model with Student’s t-distribution) and the USA (for both the Student’s t and
skew-t models), and the fact that models with non-Gaussian error terms (either with
Student’s t or skew-t distribution) become the preferred model based on log marginal
likelihoods in all four economies. The cases of Australia and the USA also highlight
that accounting for heavier tails in the error terms also helps avoiding large jumps in
stochastic volatility.

5 Conclusion

In this paper, we have analysed the relevance of taking non-Gaussianity into account
when empirically modelling Okun’s law in Australia, the euro area, the UK and the
USA.Our results based onBayesianVARmodelswith stochastic volatility suggest that
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heavier-than-Gaussian tails find support in some cases. Taking skewness into account
is generally less beneficial, even if our robustness analysis suggests some benefits
of a skewed distribution for the change in the unemployment rate in the USA. Our
results confirm that it can be important to account for heavy tails in the distribution
of macroeconomic variables, an argument put forward by Fagiolo et al. (2008) and
Ascari et al. (2015) among others.

It should be noted though that our results to some extent depend on whether data
from the corona pandemic are included or not. We believe that including them might
be problematic since they should probably be treated as outliers. If they neverthe-
less are treated as regular observations, our analysis indicates that the evidence of
non-Gaussianity strengthens. In addition, it can be noted that accounting for non-
Gaussianity not only improves the model fit in several cases, but it also captures the
large swings in the variables without causing large swings in the stochastic volatility.

Apart from the modelling perspective, our analysis has also provided updated
international empirical evidence concerning Okun’s law. We find that the dynamic
relationship between the variables in all four economies is such that a shock to GDP
growth has robustly negative effects on the change in the unemployment rate. This
finding is robust to whether we include the period associated with the corona pandemic
or not. It confirms Ball et al. (2017) and Ball et al. (2019) who argue that Okun’s law
continues to be a robust relationship in empirical macroeconomics. This should be
highly relevant information to the central banks of the economies studied here, sug-
gesting that Okun’s law—which has been an important empirical relationship when
modelling the economy—continues to be useful regardless of modelling choices and
time periods.
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Appendix

See Table 6 and Figs. 8, 9, 10, 11, 12, and 13.

Table 6 Log marginal likelihoods for different lag lengths of VAR models with Gaussian innovations

p = 1 p = 2 p = 3 p = 4 p = 5

Australia − 161.29 − 161.90 − 163.63 − 164.54 − 165.66

Euro area − 4.32 − 5.14 − 6.44 − 7.69 − 7.95

UK − 88.80 − 88.72 − 91.34 − 91.90 − 93.79

USA − 319.78 − 318.89 − 321.62 − 320.09 − 319.63

The data for each economy are chosen such that the same number of observations is used to calculate the
log marginal likelihood of the VAR models, regardless of lag length (p). Last observation of each sample is
2019Q4. Log marginal likelihoods are calculated using the cross-entropy methods by Chan and Eisenstat
(2018)
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Fig. 8 Unconditional distributions of the data.Note: Histograms and smoothed kernel density estimates (red
line) of the data series ending in 2019Q4. Frequency on vertical axis. Per cent on horizontal axis for GDP
growth. Percentage points on horizontal axis for the change in the unemployment rate
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Fig. 9 The time-varying skewness of the conditional distribution of the error terms with their 50% credible
interval in the VAR model with skew-t innovations
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Fig. 10 Cumulative log Bayes factors based on the predictive score for the one-quarter-ahead forecast
between the VAR with Gaussian innovations and Student’s t innovations. Note: The positive values (red)
mean the VAR with Student’s t innovations predicts better and negative values (blue) mean the VAR with
Gaussian innovations predicts better; see Geweke and Amisano (2010) for details
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Fig. 11 Cumulative log Bayes factors based on the predictive score for the one-quarter-ahead forecast
between the VAR with Gaussian innovations and Student’s t innovations. Note: The positive values (red)
mean the VAR with Student’s t innovations predicts better and negative values (blue) mean the VAR with
Gaussian innovations predicts better; see Geweke and Amisano (2010) for details
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Fig. 12 Cumulative log Bayes factors based on the predictive score for the one-quarter-ahead forecast
between the VAR with Student’s t innovations and skew-t innovations. Note: The positive values (red)
mean the VAR with skew-t innovations predicts better and negative values (blue) mean the VAR with
Student’s t innovations predicts better; see Geweke and Amisano (2010) for details
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Fig. 13 Cumulative log Bayes factors based on the predictive score for the one-quarter-ahead forecast
between the VAR with Student’s t innovations and skew-t innovations. Note: The positive values (red)
mean the VAR with skew-t innovations predicts better and negative values (blue) mean the VAR with
Student’s t innovations predicts better; see Geweke and Amisano (2010) for details
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